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Abstract:
This thesis proposes a new approach to natural language processing.
Rather than trying to estimate directly the probability distribution of
a random sentence, we will detect syntactic structures in the language,
which can be used to modify and create new sentences from an initial
sample.
The study of syntactic structures will be done using Markov substitute
sets, sets of strings that can be freely substituted in any sentence without
affecting the whole distribution. These sets define the notion of Markov
substitute processes, modelling conditional independence of certain sub-
strings (given by the sets) with respect to their context. This point of view
splits the issue of language analysis into two parts, a model selection stage
where Markov substitute sets are selected, and a parameter estimation
stage where the actual frequencies for each set are estimated.
We show that these substitute processes form exponential families of distri-
butions, when the language structure (the Markov substitute sets) is fixed.
On the other hand, when the language structure is unknown, we propose
methods to identify Markov substitute sets from a statistical sample, and
to estimate the parameters of the distribution. Markov substitute sets
show some connections with context-free grammars, that can be used to
help the analysis. We then proceed to build invariant dynamics for Markov
substitute processes. They can among other things be used to effectively
compute the maximum likelihood estimate. Indeed, Markov substitute
models can be seen as the thermodynamical limit of the invariant measure
of crossing-over dynamics.

Keywords: Markov processes; Natural language processing; Metropolis
algorithm; PAC-Bayes hypothesis testing; Formal grammars; Statistical
machine learning



Résumé :
Ce travail de thèse propose une nouvelle approche au traitement des
langues naturelles. Plutôt qu’essayer d’estimer directement la probabilité
d’une phrase quelconque, nous identifions des structures syntaxiques dans
le langage, qui peuvent être utilisées pour modifier et créer de nouvelles
phrases à partir d’un échantillon initial.
L’étude des structures syntaxiques est accomplie avec des ensembles de
substitution Markoviens, ensembles de chaînes de caractères qui peuvent
être échangées sans affecter la distribution. Ces ensembles définissent
des processus de substitution Markoviens qui modélisent l’indépendance
conditionnelle de certaines chaînes vis-à-vis de leur contexte. Ce point de
vue décompose l’analyse du langage en deux parties, une phase de sélection
de modèle, où les ensembles de substitution sont sélectionnés, et une phase
d’estimation des paramètres, où les fréquences pour chaque ensemble sont
estimées.
Nous montrons que ces processus constituent des familles exponentielles
quand la structure du langage est fixée. Lorsque la structure du langage est
inconnue, nous proposons des méthodes pour identifier des ensembles de
substitution à partir d’un échantillon, et pour estimer les paramètres de la
distribution. Les ensembles de substitution ont quelques relations avec les
grammaires hors-contexte, qui peuvent être utilisées pour aider l’analyse.
Nous construisons alors des dynamiques invariantes pour les processus
de substitution. Elles peuvent être utilisées pour calculer l’estimateur du
maximum de vraisemblance. En effet, les processus de substitution peuvent
être vus comme la limite thermodynamique de la mesure invariante d’une
dynamique de crossing-over.

Mots-clefs : Processus markoviens ; Analyse des langues naturelles ; Al-
gorithme Metropolis ; Tests d’hypothèse PAC-Bayesiens ; Grammaires for-
melles ; Apprentissage statistique
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Introduction

0.1 Context

0.1.1 Natural language processing
The goal of this thesis is to propose some new theoretical tools for the statistical
analysis of natural languages. This will lead us to introduce new models with a
quite general purpose, that could be applied to approximate any process on a finite
alphabet with a complex dependence structure.

A standard approach to language processing is to model a language as a dis-
tribution on sentences. The set of grammatical sentences is then given by the
support of the distribution. As an alternative, computing the probability of a
sentence provides an indication about its correctness with more gradations.

In such a framework, central questions are to represent and estimate the lan-
guage distribution, to compute the probability of a sentence and to simulate from
the estimated language. Since the support of a natural language is made of a
huge number of grammatically correct sentences, an adaptive statistical approach,
using a collection of parametric models of various dimensions, and going through
the two steps of model selection and parameter estimation is required.

0.1.2 Remarks on the shortcomings of standard models
One approach to language processing is to use Markov chain based models. In
these models, a chain of words is seen as the result of a production process that
outputs words one at a time, depending only on the near past. In classical Markov
chains, the nth word depends only on the n− 1th, for example:

P(ωn|ω1 . . . ωn−1) = P(ωn|ωn−1).

Many variations on this pattern exists, as hidden Markov chains (where we
only see a function of the words of a non observed Markov chain), or n-grams,
where the mth word depends on the n previous ones. Context trees may also be
used to model the dependence on the past context in a more flexible way, using a

1
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suffix tree. More generally, the conditional probabilities may be defined with the
help of any context function f with a finite range, according to the formula

P(ωn|ω1 . . . ωn−1) = P(ωn|f(ω1 . . . ωn−1)).

Markov chains have been thoroughly studied, and as such are a good starting
point to study many processes that output a chain of words – including natural
languages.

However, Markov chains are missing a few important properties pertaining to
the structure of natural languages. The description of a sentence likelihood as
a product of forward conditional probabilities does not fit easily the long range
backward and forward interactions described by linguistics. As a result, increasing
the number of parameters (for instance the size of the context tree in a context tree
model) to better fit the data, bumps into the curse of dimensionality, the number
of parameters required for a decent fit precluding the possibility of a successful
statistical estimation of those parameters.

0.1.3 Syntactic analysis
Linguists have developped several models to grasp the structure of a sentence,
such as context-free grammars, minimalist grammars, head-driven phrase structure
grammars, and many more. Many of these models use the notion of syntactic tree,
analysing the structure of a sentence as a tree, each subtree representing a syntactic
sub-unit of the sentence. For example, a (simplified) syntactic tree for the sentence
“a cat chased the mouse” could be

[.VP [.DP [.D a ] [.NP cat ] ] [.V’ [.V chased ] [.DP [.D the ] [.NP mouse ] ] ] ]

In this example, the subtree “the mouse” forms a syntactic unit, a determiner
phrase, as “chased the mouse”, which is a verbal phrase.

The notion of phrases, or syntactic constituents, is fundamental in linguistics,
as the structure of sentences seems to, in a first approach at least, follow simple
rules if we consider them to be constituted by nested elements.

The first observation, which is actually the main tool used by syntacticians to
identify these categories, is that some strings seem to be mostly interchangeable
in a given language, without loss of grammaticality. For example, the two strings
“a cat” and “the dog” are mostly interchangeable. In any sentence where “a cat”
appears, we can substitute it by “the dog” and keep a grammatical sentence: they
are both constituents of the same type, DPs. In the same way, “chased the mouse”
and “slept” are both constituents of the same type (called V’).

Syntactic relations can apparently reach over huge stretches of the sentence,
while actually ignoring only a simple sub-tree. For example, relatives can be added
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or subtracted and are effectively invisible to the rest of the sentence: “the dog (that
Uncle Jim gave to the son of my neighbour) barked all night”.

Other considerations, such as the fact that some constituents can “move” to
other specific parts of the tree, add even more weight to such structures. In our
work, however, we will mainly be interested in rigid trees, without movement.
Since movement is rarely optional (at least in languages with poor flectional mor-
phology), a rigid structure is not so great a restriction. A classic model using such
rigid trees are context-free grammars, in which sentences are generated by rewrit-
ing non-terminal symbols. In our cat-and-mice example, DP may for example be
rewritten as D and NP, D being in turn rewritten as “the” or “a”, etc.

There is another property of natural languages which is quite dear to linguists,
namely the recursivity of language, as typically examplified by “I tell you that
John said that Mary thought that (...)”. Such recursivity is very easily obtained
by tree-like structures: in the case of context-free grammars, it suffices that a
non-terminal symbol may be rewritten (after a number of interations) as itself.

One last property of natural languages that is closely linked to tree-structure
and syntactic constituents is dependency. As we hinted before, whole sub-trees
can be virtually invisible from the rest of the sentence. One notion that goes in
the same direction is that of syntactic head. From outside of a constituent, only
its “head” (usually one word) is visible (to check grammaticality). To go back to
our example of the barking dog, the head of the constituent “the dog that Uncle
Jim gave to the son of my neighbour” is “the dog” (the actual head is theoretically
“the”, but let’s not delve into the linguistics depths here). As such, we could
replace the rest of the syntagm by anything we could want (for example, “the dog
of my aunt” and, provided that the result is still a correct nominal syntagm, put
it in any sentence were the original syntagm was grammatical, and it would still
be (“the dog of my aunt barked all night”).

This indicates that legitimate substitutions may be conditioned by relations
between constituents and contexts depending only on appropriate surface labels.

Of course, the theoretical properties of natural language structures are still un-
der heavy research, and the models we briefly exposed here are far from being the
latest in terms of linguistic advancement. Even some notions presented here are
currently questioned, as the rigid structure of head-context dependencies. How-
ever, one cannot deny that theories such as X̄, mainly used for the presentation
here, are very good first approximations for the analysis of natural languages. They
may fail to grasp some intricate subtleties, but still do a good job at providing a
rough global picture.

The Markov models presentend in section 0.1.1 on page 1 fail to grasp the
recursive nature of natural languages, as well as many syntactic properties, such
as far-reaching relations. As such, many efforts have been made to incorporate
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syntactic structures in the models (Della Pietra et al. 1994 [DPDPG+94]; B. Roark
2001 [Roa01]; M. Tan et al. 2012 [TZZW12], to cite only a few). The question
of learning the structure of the syntax has been also considered, for example by
A. Clark [Cla14].

0.1.4 Markov substitute processes and toric grammars in
a few words

Our proposal follows the trend described in the previous section, but with a change
of perspective. While trying some variations on the theme of Markov models on
data, we realized that modeling dependencies in natural languages through an
improvement of the Markov model was a daunting task. Therefore at some point,
we decided to depart from conventional modeling.

In the classical statistical approach, the tabula rasa is in some sense that all
words are independent. In statistical words, this corresponds to taking as the de-
fault model the independent word model, or Markov chain of order zero. Starting
from there, we may build models that describe some possible dependencies adding
progressively to the set of parameters of the independent model. This works only
with limited success, the structure of natural languages being too flexible to be
grasped by rigid parametric models, defined prior to examining data. Using adap-
tive model selection may help (as in context tree weighting estimators), but does
not solve the problem entirely.

So we propose to go in the opposite direction. This means taking as our tabular
rasa the hypothesis that all words are dependent. Accordingly, our default model
is the multinomial distribution on the language support. Using this default model,
we can only output from any i.i.d. data sample the trivial distribution estimate
consisting in the empirical sample distribution.

Starting from the multinomial model, we incorporate incremental conditional
independence assumptions to decrease progressively the dimension of the model.
These conditional independence assumptions are related to the fact that some
constituents may be substituted for one another independently of the value of the
context. As we remove parameters in this way, we can build distribution estimators
whose support is spread further and further beyond the support of the empirical
sample distribution.

We first implemented this idea by describing, with the help of a new type
of grammar, that we called toric grammars, what we called sample level kernel
estimates. These are language distribution estimates that produce a sentence
distribution by recombining the sentences of the statistical sample, performing
randomly a set of allowed constituent substitutions. This can be described as
applying to the sample a Markov kernel with interactions between sentences, hence
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the name sample level kernel estimate. Technically, the distribution estimate is
the invariant measure of this Markov kernel, restricted to the communicating class
of the statistical sample. This can be seen as some extension of classical kernel
density estimates, where a smoothing Markov kernel is applied independently at
each point of the statistical sample.

At first, we were not able to provide a principled statistical theory to choose
this sample level kernel, (that is to choose the substitution rules), and relied on
some heuristic criterion that gave satisfactory empirical results. We then realized
that we could relate the sample level kernel estimates of the first chapter to a full
fledged statistical model, that in fact appears as a very natural extension of Markov
random field models. We called this model Markov substitute processes. In the
second chapter, we describe those models in terms of conditional independence
assumptions and address the two questions of model selection through multiple
statistical tests, and of parameter estimation.

We show that once a set of conditional independence assumptions has been
chosen, this results in a parametric model that can be described as an exponential
family. The construction of the corresponding potential function is given by a
theorem that extends in some way the theorem of Hammersley and Clifford [Bes74]
to our model but that does not provide an efficient algorithm to compute the
potential in practice (except for toy examples). We show on the other side that the
conditional independence assumptions can be tested by a collection of simultaneous
tests with a controlled complexity. The model complexity in these tests is handled
in a data dependent way, using PAC-Bayesian theorems (a theory first proposed
by D. McAllester, see [McA98,McA99]).

We then explored the combinatorics of our conditional independence assump-
tions. Each assumption is described by a substitute set : a list of constituents
that can be substituted independently of the context, according to a substitute
probability measure. A Markov substitute model is thus described by a finite
family of Markov substitute sets, the set of parameters being the parameters of
the substitute measures. Interaction between Markov substitute sets means that
we need much less parameters than the number of actual members of each set to
describe the substitute measures.

Any family of substitute sets defines a non trivial Markov substitute model,
that is a non void exponential family (this is one of our results). Moreover, there
is a combinatorics on Markov substitute sets : the fact that some sets are Markov
substitute sets implies that other sets are also Markov substitute sets. This com-
binatorics is related to context-free grammars. Starting from a finite family of
Markov substitute sets, we can build a context-free grammar, such that the lan-
guages that are generated choosing each non terminal symbol in turn as the start
symbol forms a broader collection of Markov substitute sets. This broader collec-
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tion is not the largest one. In fact, if we include one point sets in the definition of
Markov substitute sets, it is possible to show that the family of maximal Markov
substitute sets forms a partition of the sentence space. Anyhow we do not have
an efficient algorithms to compute this partition, so that parsing algorithms for
context-free grammars are at present our best offer to compute a large amount of
Markov substitute sets.

This large collection can be used to build more efficient sample level kernel
estimates. On the other hand, the support of our language distribution is not
necessarily itself a language generated by a context-free grammar, and can be much
bigger. Context-free grammars are used as a tool to manipulate a large family of
substitute sets, allowing to simulate faster Monte Carlo sampling dynamics and
to compute more efficiently the probability of a single sentence. The interplay
between grammars and Markov substitute processes is the subject of the third
chapter.

In this chapter, we also describe properly balanced sample level kernel esti-
mates, based on random crossing over between sample sentences or based on more
sophisticated and faster mixing sentence recombinations using grammatical pars-
ing. By properly balanced, we mean kernels that are reversible with respect to the
sample distribution (that a tensor product of the language distribution).

Since we are dealing with models forming exponential families, we know that
the maximum likelihood estimate in each such model has good off-model proper-
ties. Namely, it will converge to the projection according to the Kullback-Leibler
distance of the actual data distribution on the model, at a rate that depends on the
rate of estimation of the expectation of each component of the potential function.
The problem is that, as long as we are not able to compute explicitly the potential
function, we are not able to compute the maximum likelihood estimator either.

To solve this problem, we show that properly balanced sample level kernel esti-
mates have a thermodynamical limit, when applied to n replicas of the statistical
sample, when n tends to infinity, that is equal to the maximum likelihood estimate
of the parameters of the corresponding Markov substitute model. This means that,
although we cannot provide an efficient algorithm to compute the potential func-
tion that describes a Markov substitute process model as an exponential family,
we still have a feasible Monte-Carlo algorithm to compute the maximum likelihood
estimator in this model. This shows that the model can be used not only on data
that would exactly match the required assumptions, but that the model can be
used on any data distribution to provide an approximation of this distribution,
in the same way as high order Markov chains can be used to approximate non
Markovian stationary ergodic processes.
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0.2 Overview of the main results
We will now present a quick overview of the notions encountered and the main
results of this work. In what follows, we will consider a text sample S1:n of n
sentences on a dictionary D. It will sometimes be convenient, since we do not
attempt to model interactions between sentences in this work, to see this sample
(and any text), as an empirical distribution on D+ = ⋃∞

j=1D
j, so the order of

sentences does not count.

0.2.1 Toric grammars
We began with what we called a communication model, in the form of a kernel
modifying sentences and texts according to a certain type of interaction. This
point of view was inspired by the linguistic notion of syntactic categories, seen as
chains of words that can be substituted regardless of their contexts.

The main tool we developed to build these sample level kernels was toric gram-
mars, a notion closely related to context-free grammars. Indeed, the set G of toric
grammars is defined in definition 1.2.1 on page 22 as the set of positive measures on
context-free rewriting rules E . Using this definition, we can see the set of texts T
as a subset of the toric grammar set G, whose support is included in the rewriting
rules for the start symbol. For ease of notation, we write the non-terminal sym-
bols as ]i, i ∈ N, and for the left-hand side of production rules, we replace the
usual notation ]i −→ by [i. The start symbol ]0 is supposed to never occur in the
right-hand side of the rules (as in some normal forms of context-free grammars),
so only the symbol [0 appears.

The main difference between toric grammars and context-free grammars could
be roughly summarized by the fact that the context-free rewriting rules of toric
grammars are more viewed as context-free substitution rules (replace any string
that can be generated by a given non-terminal symbol by any other, regardless of
the context), than rewriting rules.

These grammars give us a method to modify a text (seen as an empirical
measure on sentences, and thus also a toric grammar) by substituting substrings
by others. In order to do so, we have to make a distinction between what we
chose to call a reference grammar R, used to describe the model of the language
considered, and “regular” toric grammars G , obtained from parsing a certain text
using the rules of a reference grammar in a possibly random manner.

The reference grammar can thus be seen as a collection of context-free rewriting
rules, without a start symbol. For these, (in chapter 1, at least), the weights are
not important. From this reference grammar, we will define in section 1.3.2 on
page 28 a random split-and-merge process Gt, that will swap the occurences of
constituents of same type in the text.
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This process is implemented in two steps, each step being a time homogeneous
stopped Markov chain. The first step, the splitting process St, is the decomposition
of the initial text into the rules of R used to produce the text, giving a regular toric
grammar. It is stopped at stopping time τ , when no more authorized splits are
available. The second step, the production process Pt, is the converse operation of
using the same rules back to generate a new text, effectively mixing the constituents
of the initial text into a new one. It is stopped at stopping time σ, when there is
no possible move left.

As such, the split-and-merge process Gt is a Markov chain on grammars, a
grammar on even time being a text produced by the grammar of the previous
time using a production process, and a grammar on odd time being a parse of the
previous text, obtained with a splitting process.

We show in proposition 1.3.4 on page 30 that both the splitting and the pro-
duction processes take finite time, with a deterministc bound depending on the
size of the initial text. This justifies the definition of the split-and-merge process,
whose transitions are then computable in finite time.
Proposition
Let (St)t6τ , (Pt)t6σ and (Gt) be a splitting process, a production process and the
corresponding split and merge process, starting from G0 = T ∈ T. For any G ∈ G,
any T ′ ∈ T, such that ∑t∈NP(G2t+1 = G ) > 0 and ∑t∈NP(G2t = T ′) > 0,

P

(
τ 6 2

[
T
(
DS∗

)
−T

(
[0 S

∗
)] ∣∣∣S0 = T ′

)
= 1,

P

(
σ 6 2

[
T
(
DS∗

)
−T

(
[0 S

∗
)] ∣∣∣P0 = G

)
= 1.

In other words, the length of all the splitting and production processes involved in
the split and merge process have a uniform bound, given by twice the difference
between the number of words and the number of sentences in the original text.

Moreover, we prove in proposition 1.4.2 on page 36 that this process is weakly
reversible.
Proposition
Given a parsing process St based on a reference grammar R ∈ G and a production
process Pt, the corresponding split and merge process Gt is weakly reversible, in
the sense that for any T ∈ T, any G ∈ ⋃t∈N supp

(
PG2t+1

)
,

P
(
G1 = G

∣∣∣G0 = T
)
> 0 ⇐⇒ P

(
G2 = T

∣∣∣G1 = G
)
> 0.

Consequently, for any T ,T ′ ∈ T and any G ,G ′ ∈ ⋃t∈N supp
(
PG2t+1

)
,

P
(
G2 = T ′

∣∣∣G0 = T
)
> 0 ⇐⇒ P

(
G2 = T

∣∣∣G0 = T ′
)
> 0,

P
(
G3 = G ′

∣∣∣G1 = G
)
> 0 ⇐⇒ P

(
G3 = G

∣∣∣G1 = G ′
)
> 0.
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In other words, the two processes G2t and G2t+1 are weakly reversible time homo-
geneous Markov chains.
As we will also prove that the set of reachable states from any starting point is
finite, this proposition shows that the split and merge process defines two recurrent
Markov chains, one on texts and one on grammars. These two chains partition
their respective state spaces into positive recurrent communicating classes.

This means that the split and merge process can be seen as a communication
process, where each speaker, upon hearing a given text, learns a grammar that
could have produced it, and utters back a new text to a new speaker, and so forth.
What this result shows is that if the reference grammar (which can be seen as an
internal language model) is common to all speakers, the asymptotic language, that
is, the distribution of lim 1

T

∑
t6T G2t+1, is uniquely determined by the recurrent

class of the initial text.
The main difference of this approach from usual context-free grammars is that

the rules are weighted by a counting measure, counting how many times each rule
is to be applied. This means that, for example, the size, vocabulary, etc. remains
constant between texts in the same communicating class. A second difference is
that the process Gt, going from texts to texts, is iterated. As such, the texts
produced are produced by the context-free rules of the reference grammar, com-
plemented by a set of rewriting rules for the start symbol, that may not be the
same for all texts in the same communicating class. We will see in section 1.6.2 on
page 39 that in some cases this gives a wider generated language than what can
be obtained using a context-free grammar.

0.2.2 Markov substitute sets and processes
The study of the first chapter leaves the question of the statistical estimation
of the reference grammar essentially unsolved, although encouraging preliminary
experimental results could be obtained using some heuristic rules of thumb to learn
the reference grammar.

This question led us to relate our toric grammars to more classical statistical
models, described in chapters 2 and 3.

In chapter 2, we begin by defining in definition 2.1.1 on page 64 the notion of
Markov substitute sets, as a possible formalization of syntactic constituents. These
sets are sets of strings that can be substituted in any sentence, regardless of their
contexts. In more formal terms, a Markov substitute set B for a distribution PS
has a substitute measure qB such that, for any context (x, y), and any string b ∈ B,

PS(xby) = PS(xBy)qB(b).
While this notion is rooted in linguistic considerations, it is in no way restricted to
linguistics, and could have applications in other domains. It can indeed be seen as
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a generalization of the (one dimensional) Markov field conditional independence
property, that corresponds to the case when B is of the form w1Dw2, where w1
and w2 are two boundary words.

To any collection of Markov substitute sets B corresponds an equivalence rela-
tion that relates two strings s ∼B s′ if and only if s and s′ can be reached from one
another by a sequence of substitutions authorized by B. The components of D+

for this equivalence relation are all Markov substitute sets.
Conversely, we can define a B-Markov substitute process (for a given finite

collection of finite sets B) as any process S such that each set of B is a Markov
substitute set (technically, we have to require also that each element of each set
of B has a positive probability to appear in a sentence). We will prove in section 2.3
on page 74 that Markov substitute processes actually exist for any collection of
Markov substitute sets, and that the set of B-Markov substitute processes is an
exponential family (technically a union of exponential families, depending on the
support of the process).

Proposition
Given any finite set B of finite subsets of D+, there is a finite set of pairs, P,
that we can choose such that each one is included in a member of B, such that the
sets of B-Markov and P-Markov substitute processes are the same, and such that
P is minimal for the inclusion relation (removing a pair from P would break the
above property).

For any B-Markov substitute process S, we can decompose its support as a
union of components C ⊂ D+

/∼B, such that supp(PS) = ⋃
C and such that

B =
⋃
C∈C

BC .

For any such subset, there is a free, non empty subset of pairs F ⊂ P, a ma-
trix

(
ej,i, j ∈ P \ F , i ∈ F

)
, an index set I(C ) containing F and an energy

function
(
Ui(s), i ∈ I(C ), s ∈ C

)
, such that the set of B-Markov processes whose

support is ⋃C is the linear exponential family

MC (B) =


p(s) =

exp
(
−

∑
i∈I(C )

βi Ui(s)
)

∑
s′∈
⋃

C

exp
(
−

∑
i∈I(C )

βi Ui(s′)
) , s ∈⋃C

, β ∈ B ⊂ RI(C )

,

where
B =

{
β ∈ RI(C ),

∑
s∈
⋃

C

exp
(
−

∑
i∈I(C )

βiUi(s)
)
<∞

}
,
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and such that for any member p of this family, the substitute measure of any
pair i = {yi,0, y′i,1} ∈ F (taken in a suitable order compatible with the definition
of U), is given by

qi(yi,σ) = exp(σβi)
1 + exp(σβi)

, σ ∈ {0, 1},

whereas for j ∈P \F ,

qj(yi,σ) = exp(σβj)
1 + exp(σβj)

, σ ∈ {0, 1},

where
βj =

∑
i∈F (C)

ej,i βi.

We can see here that the problem of analysing any language using this frame-
work can be decomposed into two stages:

− first a model selection stage, where a good collection B of Markov substitute
sets is to be selected,

− and then a parameter estimation stage, in which the substitute measures qB,
for each B ∈ B are to be estimated. (We could in principle estimate only
the parameters of the exponential family, but the above theorem does not
provide an efficient algorithm to compute the energy function U explicitly,
so that this will not be feasible, except for some toy models.)

Since Markov substitute sets are a possible formalization of syntactic con-
stituents, we will see in section 3.1 on page 119 that it is possible to relate them
to context-free rules. Conversely, a set of context-free rules defines a collection
of Markov substitute sets, as the collection of the languages generated by each
non-terminal symbol. This duality gives us quite efficient ways to analyse any sen-
tence in terms of Markov substitute sets, using parsing algorithms, as described
in section 3.B on page 159.

0.2.3 Model selection: finding a collection of Markov sub-
stitute sets

The question is to find Markov substitute sets, or, equivalently, context-free rules.
A good starting point is that two strings form a Markov substitute set if their

relative frequencies do not depend on their context. This observation can be
extended to two sets of strings, for which we know that each already forms a
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Markov substitute set. This can be used to build several test functions to test
whether the union of two Markov substitute sets B1∪B2 is still a Markov substitute
set. We explore two main categories of possible test functions.

The first category involves the simulation of a parse (X, Y ) of a sentence S, so
that S = α(X, Y ) (meaning that S is the string where Y appears in context X),
and Y ∈ B1 ∪ B2 = B. These tests are based on the empirical mean of test
functions of the form

Fθ(X, Y, p) = 1(X ∈ θ)
[
1(Y ∈ B1)− p 1(Y ∈ B1 ∪B2)

]
,

where θ ∈ Θ is a context type.
The second category is built by computing explicitly conditional expectations

with respect to the raw (non parsed) sentence sample. It is of the type

FB1,B2,θ(s, p) = E
{[
1
(
YB1∪B2 ∈ B1

)
− p 1

(
YB1∪B2 ∈ B1 ∪B2

)]
1
(
XB1∪B2 ∈ θ

) ∣∣∣S = s
}
.

The goal is to find test functions FB1,B2,θ(S, p) such that, regardless of the
context type θ,

E
(
FB1,B2,θ(S, p)

)
= 0

when p = qB1∪B2(B1), in the case when B1 ∪B2 is indeed a Markov substitute set.
In other words, if we define

p+ = sup
{
P
(
Y ∈ B1 |Y ∈ B,X = x

)
;x ∈ (D∗)2,P(Y ∈ B,X = x) > 0

}
,

p− = inf
{
P
(
Y ∈ B1 |Y ∈ B,X = x

)
;x ∈ (D∗)2,P(Y ∈ B,X = x) > 0

}
,

the test function allows us to test whether p+ = p−. A third interpretation is that
the test functions define p(B1, B2, θ) so that

E
[
F
(
S, p(B1, B2, θ)

)]
= 0,

and we want to test whether p(B1, B2, θ) is independent of θ.
For both of these types of test function, we can define similar tests, for which we

can prove accurate bounds for the simultaneous probability of both false rejection
and false acceptance.

For the first type of test function, for example, we can prove the following
result (propositions 2.6.1 and 2.6.3 on page 89 and on page 92)
Proposition
Let µ ∈M 1

+ be a probability measure depending only on
(
Xi,1(Yi ∈ B), i ∈ J1, nK

)
.

Let us define
Fθ,i(p) = Fθ(Xi, Yi, p).
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Let Λ be a finite subset of ]0, 1[. With probability at least 1− 2ε,

B−(p+) def= sup
ρ∈M 1

+(Θ),λ∈Λ

∫ n∑
i=1

log
(
1 + λFθ,i(p+)

)
dρ(θ)−K (ρ, µ)− log

(
|Λ|/ε

)
6 0,

B+(p−) def= sup
ρ∈M 1

+(Θ),λ∈Λ

∫ n∑
i=1

log
(
1− λFθ,i(p−)

)
dρ(θ)−K (ρ, µ)− log

(
|Λ|/ε

)
6 0,

where

K (ρ, µ) =


∫

log
(dρ

dµ

)
dρ, when ρ� µ,

+∞, otherwise.
Therefore, if we reject the hypothesis that B is a Markov substitute set when

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> 0,

the probability of false rejection is at most 2ε.
Let us assume in addition that the number of context types that can be en-

countered in the language is bounded by m, and that µ is the uniform probability
measure on the finite set of encountered context types Θ̂. Let us put

δ = log(mn) + 2 log(ε−1) + log(|Λ|)
n

,

and
χ = sup

x ∈ [n−1/2, n1/2]
inf

λ ∈ Λ
cosh

[
log
(

λ

(1− λ)x

)]
·

Let us assume that there are θ+ and θ− ∈ Θ such that p+ = p(θ+), p− = p(θ−),
q+ = E

[
1(Y ∈ B)1(X ∈ θ+)

]
and q− = E

[
1(Y ∈ B)1(X ∈ θ−)

]
satisfy

min{q−, q+} > 8χ2δ,

p+ − p− > 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
+ (2 +

√
2)δ

q+

+ 2χ

√√√√p−(1− p−)δ
q−

(
1 + 4χ2δ

q−

)
+ (2 +

√
2)δ

q−
·

Then with probability at least 1− 2ε

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> 0.

Therefore, the test has in this case a probability of false acceptance at most equal
to 2ε.
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A similar result about the test functions that do not simulate the parse is proved
in propositions 2.7.3 and 2.7.7 on page 101 and on page 112. The test proposed in
this case also comprises a uniform bound on all tests on pairs of Markov substitute
sets chosen in a finite collection B. We propose a novel PAC-Bayes complexity
measure, based on the Kullback divergence between a posterior distribution and
another observable reference distribution, that plays the role of a prior, but involves
only the contexts appearing in the statistical sample. This observable complexity
factor is bounding the more classical divergence of the posterior from a prior,
according to eq. (2.7.4) on page 98.

We can remark at this point that these tests give a way to test if the union of two
Markov substitute sets is still one, without having to actually compute the whole
extent of each set. This is interesting, because, if we take the rewriting rule view,
the new Markov substitute set can then be described as a simple rewriting rule
B1 ∪B2 −→ B1|B2. This mechanism gives actually a method to build recursively
a complete toric grammar, for which the distribution (provided no test failed) is a
Markov substitute process.

0.2.4 Parameter estimation

The second chapter proposes tests to select a particular model described by a
collection of Markov substitute sets. The next question is, given this collection,
how to estimate the parameters qB for each Markov substitute set in the collection.

While the prospect of estimating the parameter qB(x) for each member x of B
is quite daunting, we will see that we can use the grammar structure to greatly
simplify this estimation. In order to understand this result, we first need to see that
collection of Markov substitute sets and reference grammars are closely related.
Indeed, we can define for any string e of symbols the language set Be as the set of
strings that can be generated from e. We will see in section 3.1 on page 119 that this
set Be is a Markov substitute set, as soon as each Bi

def= B]i are Markov substitute
sets themselves. We call such a grammar a Markov grammar. Conversely, if we
build a collection of Markov substitute sets using the tests of chapter 2, we can
define a corresponding Markov grammar, as described in section 3.4 on page 144.

Another useful notion is that of parse trees t ∈ T , defined in section 3.1.2 on
page 122. They are parenthetized strings in D̆∗ = (D ∪ {(i, )i, i ∈ N})∗, such that
the content y of each pair parentheses (iy)i is a member of Bi, that is, a string in
the language generated by the grammar with ]i as start symbol. The structure of
a given tree gives a very simple decomposition of the string in terms of Markov
substitute sets. The surface structure ς (t) of t, which is simply the string t where
all pairs of parentheses (and their contents) (iy)i are replaced by the corresponding
non-terminal symbol ]i, gives one language that can generate ϕ (t) (t whithout
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parentheses), that is, ϕ (t) ∈ Bς(t). Using these notions, we will show the following
result, lemma 3.2.1 on page 125, giving a formula for any substitute measure:
Lemma
For any s ∈ D+, and any t ∈ T such that s = ϕ (t),

qBς(t)(s) = Aς(t)
∏

[je∈R

[
AeqBj

(
Be

)]χ(t,j,e)
,

where
χ(t, j, e) =

∑
x∈(D̆∗)2

∑
y∈T

1
[
t = α

(
x, (jy)j

)]
1
(
ς (y) = e

)
.

The advantage of this result is that we need only to compute the parameters Ae
and qBj(Be) for expressions e that are actually in the grammar, and not for all
members of the Markov substitute sets.

The sections 3.2.2 and 3.2.3 on page 127 and on page 129 use this result to
propose methods to estimate there parameters and simulate qB.

0.2.5 Invariant dynamics
The last part of chapter 3 is about three types of invariant dynamics, that we can
define with the previous tools.

The first one is a dynamics on sentences, and requires the knowledge of the
substitute measures qB. This dynamics is defined in section 3.2.4 on page 131,
and simply identifies members of a Markov substitute sets B in the sentence, and
replaces it by another member of B according to qB.

The two other dynamics work on whole texts, but do not require actual knowl-
edge of the substitute measures qB.

The second method, described in section 3.5.1 on page 151, is actually a new
take on the split and merge process defined in chapter 1, using a Metropolis algo-
rithm to make it reversible.

The third method, described in section 3.2.5 on page 134, is a sort of crossing-
over dynamics, that will simply swap elements of the same set found in the text.

These three methods are all made reversible using a slightly more general (to
our knowledge) method for the Metropolis algorithm, that allows for an arbitrary
number of intermediate steps between the argument and the result. This method
is described in section 3.D on page 165.

This last dynamics also gives an interesting view on Markov substitute pro-
cesses. We mentioned that these could in fact be described as an exponential
family. This means that the maximum likelihood estimate for any sample will con-
verge to the projection according to the Kullback Leibler distance on the model.
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The problem is that since the energy function is hard to compute, the projection
is also difficult to find.

However, we will be able to prove in section 3.3 on page 135 that the crossing-
over dynamics from any sample does indeed converge to the projection (with some
additional hypotheses, of course).

If we write Km a crossing-over dynamics on texts of size nm, we can define, for
any text s1:n, Sm a random uniform shuffle of m copies of s1:n, and the distribution

pm = lim
t→∞

1
t

t∑
u=1
PSmK

u
m.

We can then define the random measure

Nm =
nm∑
i=1

δ
Sm,i

∈M+(D),

where
(
Sm,i, 1 6 i 6 nm

)
is a random variable distributed according to pm. Simply

put, Nm is the empirical distribution of the crossing-over of m copies of the initial
text, randomly shuffled.

We then will prove in proposition 3.3.3 on page 143 that

Proposition
Under some hypotheses described at the beginning of section 3.3 on page 135, the
maximum likelihood

sup
β∈RI

n∑
j=1

log
[
pβ(si)

]
is reached at some β∗ ∈ RI . For any ε > 0, there are η > 0 and M > 0 such that
for any m >M ,

P
[
d
(
Nm, pβ∗

)
> ε

]
6 exp(−nmη),

where d(µ, ν) =
√∑
s∈D

(
µ(s)− ν(s)

)2
. Moreover,

lim
m→∞

E
(
Nm/(nm)

)
= pβ∗ .

This means that we can actually project any sample on the Markov substitute
model using a crossing-over dynamics, and thus that Markov substitute processes
can be seen as thermodynamical limits of crossing-over dynamics.



Chapter 1

Toric grammars and
communication models

1.1 Introduction to a new communication model
In the well known kernel approach to density estimation on a measurable space X ,
the probability distribution P of a random variable X ∈ X is estimated from a
statistical sample (X1, . . . , Xn) of n independent copies of X as 1

n

∑n
i=1 k(Xi, dx),

where k is a suitable Markov kernel (also known as a conditional probability ker-
nel). This kernel estimate can be seen as a modification of the empirical mea-
sure P = 1

n

∑n
i=1 δXi .

Finding sensible kernel estimates or sensible parametric models in the context
of natural language processing is a challenge. Therefore, we propose here another
route, that we will describe as an alternative way of producing a modification of
the empirical measure. The idea is to recombine repeatedly a set of sentences. Let
us describe for this a general framework, concerned with an arbitrary countable
state space X .

Let
Pn =

{
1
n

n∑
i=1

δxi , xi ∈X

}

be the set of empirical measures of all possible samples of size n. Let us consider
a parametric family {qθ, θ ∈ Θ} of Markov kernels on Pn. Let us assume for
simplicity that for any P ∈Pn, the reachable set

{
Q ∈Pn,

∑
t∈N q

t
θ

(
P,Q) > 0

}
is finite, where qtθ is qθ composed t times with itself, t ∈ N, so that for in-
stance q2

θ(P,Q) = ∑
P ′∈Pn

qθ(P, P ′)qθ(P ′, Q). In this case we can define the
Markov kernel

q̂θ(P,Q) = lim
k→∞

1
k

k∑
t=1

qtθ(P,Q).

17



18 Chapter 1. Toric grammars and communication models

It is such that for any P ∈ Pn, q̂θ(P, ·) is an invariant measure of qθ. More gen-
erally qθq̂θ = q̂θqθ = q̂θ. The distribution q̂θ(P, ·) ∈ M 1

+

(
Pn

)
induces a marginal

distribution Q̂θ,P on X through the formula

Q̂θ,P =
∑

Q∈Pn

q̂θ(P,Q)Q. (1.1.1)

We will here be concerned with estimators of the form P̂ = Q̂θ,P, if θ is fixed
in advance, or of the form Q̂

θ̂,P
, if θ̂ is an estimator of the parameter θ depending

also on P.
Another interpretation of our framework is to consider qθ as a communication

model. One speaker hears a set of sentences described by its empirical distribu-
tion P ∈Pn (which means that he will not make use of the special order in which
he has heard them). He uses those sentences to learn the corresponding language.
Then he teaches another speaker what he has learnt by outputting another random
set of sentences, distributed according to qθ(P, ·). The language model (as opposed
to the communication model qθ), is Q̂θ,P , the average sentence distribution along
an infinite chain of communicating speakers.

If we start from a recurrent state P , and we assume that θ is known, we obtain
a communication model where the target sentence distribution Q̂θ,P can be learnt
without error from the set of sentences output by any involved speaker. Indeed
Q̂θ,P = Q̂θ,Q for any Q in the communicating class of P , which in this situation is
also the reachable set from P .

This error free estimation behaviour is desirable for a communication model.
It tells us that the language can be transmitted from speaker to speaker without
distortion, a desirable feature in the case of a large number of speakers. The
model may also account for weak stimulus learning, the fact that human beings
learn language through a limited number of examples compared with the variety of
new sentences they are able to formulate. Indeed, whereas the size of the support
of P ∈Pn (the number of sentences heard by one speaker) is constant and equal
to n, the support of the language model Q̂θ,P may be much larger. We will actually
give a toy example where the number of sentences in the language is exponential
with n.

Remark on the other hand that if the parameter θ is not known, but rather
estimated at each step from the heard sample, the error free property is obviously
not true anymore. This view of communication by iterated learning, where a
internal grammar θ is learned at each generation and used to produce a learning
sample for the next generation, is not new, and has been studied, for example, by
Griffiths and Kalish [GK07] to form models of language evolution.

In the language transmission interpretation, we may evaluate the interest of the
model by studying whether it can model a large family of sentence distributions.
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This richness will depend on the number of recurrent communicating classes of
the communication Markov model qθ, since any invariant distribution q̂θ(P, ·) is a
convex combination of the unique invariant measures supported by each recurrent
communicating class. The situation is even simpler in the case when all P ∈Pn

are recurrent states (a fact we will be able to prove in our particular model).
In this case q̂θ(P, ·) is the unique invariant measure supported by the recurrent
communicating class to which P belongs.

The parameter θ of our model will be a new kind of grammar, closely related
to context-free grammars, in that it will use rewriting rules, but used to generate
sentences in a different way. These toric grammars will be defined in section 1.2
below as a weighted collection of rewriting rules, not unlike stochastic context-free
grammars.

We will relate the building of a communication kernel presented in this chapter
with the construction of more classical statistical models in the following chapters
of this work.

1.2 First definitions

1.2.1 Toric grammars
We consider some finite dictionary of words D, and a random sentence S, that is
a random sequence of words of random finite length. We will use the notation

D+ =
∞⋃
j=1

Dj

for the set of sequences of words of finite positive length. As explained in the
introduction, S, or equivalently its probability distribution PS ∈ M 1

+

(
D+

)
, will

be our mathematical representation of a language.
From this language, we will observe a statistical sample of sentences S1, . . . , Sn,

made of n independent copies of S.
In this chapter, we will build estimators by applying a Markov kernel to the

empirical sample distribution. To describe this construction, let us introduce the
state space of counting measures of weight n as

Pn =
{

n∑
i=1

δsi , si ∈ D+
}
.

(Let us remark that in this definition, where δsi is the Dirac mass at si, the same
sentence can be repeated more than once.)
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We will call Pn the set of texts of length n. Let us notice that for us, texts
are unordered sets of sentences (with possible repetitions). The question of gener-
ating meaningful ordered sequences of sentences is also of interest, but will not be
addressed in this study.

In order to define a language estimator, we will first define a Markov kernel q
(that is a conditional probability kernel) on the state space Pn. We will construct
this kernel in such a way that the reachable sets

{
Q ∈Pn,

∑∞
t=0 q

t(P,Q) > 0
}
are

finite (for any starting point P ), so that we can define a limit Markov kernel

q̂(P,Q) = lim
k→∞

1
k

k∑
t=1

qt(P,Q),

and take as our language estimator

P̂ = 1
n

∑
Q∈Pn

q̂
( n∑
i=1

δSi , Q
)
Q.

In order to define the communication kernel q, we will describe random trans-
formations on texts, related to the notion of context-free grammars. Let us start
with an informal presentation. The communication kernel will perform random
recombinations of sentences.

Our point of view is to see a context-free grammar as the result of some frag-
mentation process applied to a set of sentences. Let us explain this on a simple
example. Consider the sentence

This is my friend Peter.

Imagine we would like to represent this sentence as the result of pasting the ex-
pression my friend in its context, because we think language is built by cutting
and pasting expressions drawn from some large sets of memorized expressions. We
can do this by introducing the simple context-free grammar

0 → This is 1 Peter.
1 → my friend

where we have used numbered framed boxes for non terminal symbols, the start
symbol being 0 . The two rules mean that we can rewrite the start symbol 0 to
obtain the right-hand side of the first rule, and that we can then rewrite the non
terminal symbol 1 as the right-hand side of the second rule.

Since we want to see the rules of the grammar as the result of some splitting
operation, we are going to use more symmetric notations. Instead of considering
that we have described our original sentence with the help of two rules and two non
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terminal symbols 0 and 1 , we may as well consider that we have split our original
sentence into two new sentences using three non terminal symbols, namely 0 →,
1 and 1 →. To emphasize this interpretation, we can adopt more symmetric
notations and write these three non terminal symbols as [0, ]1 and [1. With these
new notations, the representation of our original sentence is now

[0 This is ]1 Peter .
[1 my friend

In this new representation, the rewriting rules can be replaced by merge operations
of the type

a ]ic+ [i b 7→ abc

We can make this merge operations even more symmetric, if we consider that each
expression can be represented by any of its circular permutations. Indeed, each
expression contains exactly one non terminal symbol of the form [i, and therefore
is uniquely defined by any of its circular permutations (since, due to this feature,
we can define the permutation in which the opening bracket [i comes first as the
canonical form, and recover it from any other circular permutation). Using this
convention, we can write a ]ic as ca ]i (note that a starts with an opening bracket
and contains no other opening bracket, whereas c does not contain any opening
bracket) and describe the merge operation as

ca ]i + [i b 7→ cab,

or, renaming ca as a, simply as

a]i + [ib 7→ ab.

Let us formalize what we have explained so far. Let D be some dictionary of
words (which can be for the sake of this mathematical description any finite set,
representing the words of the natural language to be modeled). Let us form the
symbol set S = D ∪

{
[i, ]i, i ∈ N

}
. Let us define the set of circular permutations

of a sequence of symbols as

S(w0, . . . , w`−1) =
{

(w(i+j mod `), i = 0, . . . , `− 1), j = 0, . . . , `− 1
}
,

so that for instance S(w0, w1, w3) = {w0w1w2, w1w2w0, w2w0w1}. Let us define its
support (the set of symbols included in the sequence) as

supp
(
w0, . . . , w`−1

)
=
{
w0, . . . , w`−1

}
.

Let A+ = ⋃+∞
n=1A

n, ]+ =
{

]i, i ∈ N \ {0}
}
, and consider the set of expressions

E =
{
e ∈ S

(
[i a
)
, i ∈ N, a ∈

(
D ∪ ]+

)+
\ ]+

}
.
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In plain words, an expression is a circular permutation of a finite sequence of
symbols starting with an opening bracket, containing no other opening bracket
and not reduced to an opening bracket followed by a closing bracket.

This definition mirrors the fact that a given rule of a context-free grammar has
exactly one i → (the left side), and the right side of the rule cannot be just a non
terminal symbol j . Indeed, if we had allowed i → j , or with our notations [i ]j,
we could as well have replaced j by i everywhere.

We can now define the notion of toric grammars, which will be the central tool
in all of this chapter, both to describe the language structure, and to define the
transformations on texts.
Definition 1.2.1
The set of toric grammars is the set G of positive measures G on E with finite
support such that for any circular permutation e′ ∈ S(e) of any expression e ∈ E ,
G (e′) = G (e).

In other words, a toric grammar G is a positive measure with finite support on
the set of expressions E satisfying

G (e) = |S(e)|−1G
(
S(e)

)
.

Let us remark that, in our definition of toric grammars, on top of choosing some
special notations for context-free grammars, we also introduced positive weights,
so that it is more the support of a toric grammar than the grammar itself that
corresponds to the usual notion of context-free grammar, while a toric grammar
in its entirety corresponds to a stochastic context-free grammar.

The weights will serve to keep track of word frequencies through the process
of splitting a set of sentences to obtain a toric grammar.

Our aim is indeed to build a toric grammar from a text. To be consistent with
our definition of grammars, we will also define texts as positive measures (only
on whole sentences, so that no non-terminal other than [0 is used). Let us give a
formal definition. We will forget the sentence order, a text will be an unordered
set of sentences with possible repetitions.
Definition 1.2.2
The set T of texts is the set of toric grammars with integer weights supported by
S ([0D+), that is the set of toric grammars with integer weights using only one
non terminal symbol, the start symbol [0.

In this definition, it should be understood that
[0D

+ =
{(

[0, w1, . . . , wk
)
, where k ∈ N \ {0} and wi ∈ D, 1 6 i 6 k

}
,

and that
S
(
[0D

+
)

=
⋃

e∈[0 D+

S(e).
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1.2.2 A roadmap towards a communication model
We will use toric grammars as intermediate steps to define the transition probabil-
ities of our communication model on texts. To this purpose, we will first introduce
some general types of transformations on toric grammars (reminding the reader
that in our formalism texts are some special subset of toric grammars).

It will turn out that two types of expressions, global expressions and local
expressions, will play different roles. Let us define them respectively as

Eg = E ∩S
(
[0 S

+
)
,

E` = E ∩S
(
[+ S

+
)
,

where we remind that [+ =
{

[i, i ∈ N\{0}
}
and S+ = ⋃∞

j=1 S
j. Roughly speaking,

global expressions correspond to full sentences, whereas local expressions corre-
spond to partial constituents. Any toric grammar G ∈ G can be accordingly
decomposed into G = Gg + G`, where Gg(A) = G

(
A∩ Eg

)
and G`(A) = G

(
A∩ E`

)
,

for any subset A ⊂ E .
The transitions of the communication chain with kernel qθ(T ,T ′) will be de-

fined in two steps. The first step consists in learning from the text T a toric
grammar G . To this purpose we will split the sentences of T into syntactic con-
stituents. The second step consists in merging the constituents again to produce a
random new text T ′. The parameter θ = R of the communication kernel qθ, will
also be a toric grammar. The role of this reference grammar R will be to provide
a stock of local expressions to be used when computing G from T . We will discuss
later the question of the estimation of R itself, (and bring satisfactory statistical
answers to this issue only in the forthcoming chapters). For the time being, we
will assume that the reference grammar R is a parameter of the communication
chain, known to all involved speakers.

We could have defined a communication kernel q
R̂(T )(T ,T ′), where the ref-

erence grammar R̂(T ) itself is estimated at each step from the current text T ,
but we would have obtained a model with weaker properties, where, in particular,
all the states are not necessarily recurrent states. On the other hand, the proof
that the reachable set from any starting point is finite still holds for this modified
model, so that it does provide an alternative way of defining a language model as
described in the introduction.

We will still need an estimator R̂(T ) of the reference grammar, in order to pro-
vide a language estimator Q̂

R̂(T ),T ′ , where we are using the notations of eq. (1.1.1)
on page 18. We will propose a first tentative method for the estimation R̂(T ) of
the reference grammar in this chapter, and study this question in more details in
the two following ones.
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1.3 Operations on toric grammars

1.3.1 Non stochastic syntax splitting and merging
Let us now describe the model, starting with the description of some non random
grammar transformations. We already introduced a model for grammars that
includes texts as a special case. We have now to describe how to generate a toric
grammar from a text, with, or without, the help of a reference grammar to learn
the local component of the grammar. The mechanism producing a grammar from
a text will be some sort of random parse algorithm (or rather tentative parse
algorithm).

All of this will be achieved by two transformations on toric grammars that
will respectively split and merge expressions (syntagms) of a toric grammar into
smaller or bigger ones. We will first describe the sets of possible splits and merges
from a given grammar. This will serve as a basis to define random transitions from
one grammar to another in subsequent sections.

Let us first introduce some elementary operations involving toric grammars.

e⊕ f =
∑

s∈S(e)
δs +

∑
s∈S(f)

δs, e, f ∈ E ,

e	 f =
∑

s∈S(e)
δs −

∑
s∈S(f)

δs, e, f ∈ E ,

ρ⊗ e = ρ
∑

s∈S(e)
δs, ρ ∈ R, e ∈ E ,

The first operation builds a toric grammar containing expressions e and f with
weights 1, and the third one builds a toric grammar containing expression e with
weight ρ.

We can generalize these notations to be able to take the sum of a toric grammar
and an expression, as well as the sum of two toric grammars.

G ⊕ e = G +
∑

s∈S(e)
δs, G ∈ G, e ∈ E

G 	 e = G −
∑

s∈S(e)
δs, G ∈ G, e ∈ E

G ⊕ G ′ = G + G ′, G ,G ′ ∈ G.

With these notations, a split is described as

G ′ = G 	 ab⊕ a]i ⊕ [ib, G ,G ′ ∈ G,

the fact that G ,G ′ ∈ G implying that

i ∈ N \ {0}, ab, a]i, [ib ∈ E and G (ab) > 1.
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The (partial) order relation G 6 G ′ will also be defined by the rule

G 6 G ′ ⇐⇒ G ′ − G ∈ G,

or equivalently
G 6 G ′ ⇐⇒ G ′ − G ∈M+(E ).

Let us resume our example. Starting from the one sentence text

T = 1⊗ [0 This is my friend Peter .

we get after splitting the grammar

G = [0 This is ]1 Peter .⊕ [1 my friend

which can also be written as

G = Peter . [0 This is ]1 ⊕ [1 my friend

In this example, as well as in the following, punctuation marks are treated as
words, so that here the required dictionary has to include the set

{is, friend, my, Peter, This, .}.

Splitting a sentence providing a new label for each split does not create gener-
alization, since it allows only to merge back two expressions that came from the
same split. To create a grammar capable of yielding new sentences, we need some
label identification scheme. We will perform label identification through the more
general process of label remapping, identification being a consequence of the fact
that the map may not be one to one. Let

F =
{
f : N→ N such that f(0) = 0

}
be the set of label maps. For any symbol ]i or [i, let us define f( ]i) = ]f(i)
and f([i ) = [f(i). Let us also define for any word w ∈ D, f(w) = w and for
any expression e = (w0, . . . , w`−1), f(e) = (f(w0), . . . , f(w`−1)). Since any gram-
mar G ∈ G is a measure on the set of expressions E , we can define its image
measure by f , considered as a map from E to E . We will put f(G ) = G ◦ f−1,
meaning that f(G )(A) = G (f−1(A)), for any subset A ⊂ E .
Definition 1.3.1
Two label maps f and g ∈ F are said to be isomorphic if there is a one to one
label map h ∈ F such that g = h ◦ f . In this case h−1 ∈ F and f = h−1 ◦ g.
Two grammars G and G ′ ∈ G are said to be isomorphic if there is a one to one
label map f ∈ F such that f(G ) = G ′. In this case, f−1(G ′) = G and we will
write G ≡ G ′. If f and g are two isomorphic label maps, then for any toric
grammar G ∈ G, f(G ) and g(G ) are isomorphic grammars.
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In the following of this work, to ease notations and simplify exposition, we will
freely identify isomorphic label maps and isomorphic grammars and often speak
of them as if they were equal.

This being put, we proceed with the introduction of a set of grammar trans-
formations β that consist in a split with possible label remapping. The split will
be the core component for generating a toric grammar from a text, by splitting
the sentences in smaller parts (syntagms).

Definition 1.3.2 (Splitting rule)
For any G ∈ G, let us consider

β(G ) =
{
f(G ′), f ∈ F,G ′ ∈ G,G ′ = G 	 ab ⊕ a]i ⊕ [ib

}
⊂ G.

Let us remark that in this definition, necessarily, ab, a ]i, [i b ∈ E , i ∈ N \ {0},
1⊗ ab 6 G , and a ]i ⊕ [i b 6 G ′. Let us put

β∗(G ) =
+∞⋃
n=0

β ◦ · · · ◦ β︸ ︷︷ ︸
n times

(G ),

the set of grammars that can be constructed from repeated invocations of β.

Lemma 1.3.1
Let us recall that S = D ∪

{
[i, ]i, i ∈ N

}
and let us put S∗ = ⋃+∞

n=0 S
n. For any

text T ∈ T, and any G ∈ β∗(T ), G is a toric grammar with integer weights,

G ([iS
∗) = G (]iS

∗), i ∈ N \ {0},

G (wS∗) 6 T (wS∗), w ∈
(
D ∪ {[0 }

)+
,

G (wS∗) = T (wS∗), w ∈
(
D ∪ {[0 }

)
,

and in particular

G ([0S
∗) = T ([0S

∗).

This means that in any toric grammar obtained by splitting a text, the weights of
expressions containing the two forms ]i and [i of a label are balanced, the word
frequencies are the same in the grammar and in the text, and the number of sen-
tences contained in the text is given by the total weight of expressions containing
the start symbol [0 in the grammar.
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Proof. For the first assertion, an induction on the number of applications of β
yields the result, since

T ([iS
∗) = T (]iS

∗) = 0, i ∈ N \ {0},

and, for any G ′ = G 	 ab⊕ a ]i ⊕ [i b, and any label j ∈ N \ {0, i},

G ′([jS
∗) = G ([jS

∗), (1.3.1)
G ′(]jS

∗) = G (]jS
∗), (1.3.2)

whereas

G ′([iS
∗) = G ([iS

∗) + 1, (1.3.3)
G ′(]iS

∗) = G (]iS
∗) + 1. (1.3.4)

For the second assertion, it suffices to remark that the weight of expressions
beginning with a given sequence of words is not increased by application of β.
Indeed, any word sequence w ∈ (D ∪ {[0)+} appears the same number of times at
the beginning of an expression of 1⊗ ab and of a ]i⊕ [i b if w is not split between a
and b and appears a smaller number of times if w is split between a and b. When
w is a single word, it cannot be split, so we have equality, as stated in the third
assertion of the lemma. The subsequent application of a label map f to G ′ does
not change the counts involved in the lemma.

This lemma is important, because we will subsequently want to impose restric-
tions on the splitting rule based on word frequencies. Our choice to define a new
type of grammar as a positive measure on symbol sequences was made to keep
track of word frequencies throughout the construction.

Let us now describe the reverse of a splitting transformation, that we will call a
merge transformation. This transformation will be central in generating new texts
from a toric grammar, by merging the syntagms into bigger ones, ending with a
full sentence.
Definition 1.3.3 (Merge rule)
For any toric grammar G ∈ G we consider the following set of allowed merge
transformations

α(G ) =
{

G ′ ∈ G,G ′ = G 	 a ]i 	 [i b ⊕ ab
}
.

Let us remark that in this definition, necessarily i ∈ N \ {0}, a ]i, [i b, ab ∈ E ,
and a ]i ⊕ [i b 6 G .

The merge transformation is indeed the reverse of the split, in the sense that:



28 Chapter 1. Toric grammars and communication models

Lemma 1.3.2
For any G ,G ′ ∈ β∗(T), G ′ ∈ β(G ) if, and only if, there is f ∈ F such that
f(G ) ∈ α(G ′).

Proof. Let us suppose that G ′ = f
(
G ⊕ a ]i ⊕ [i b 	 ab

)
is in β(G ). In this

case, G ′ = f(G ) ⊕ f(a ]i) ⊕ f([i b) 	 f(ab), so that both f(a ]i) and f([i b) are
in supp(G ′), f(ab) ∈ supp

(
f(G )

)
, and consequently f(a ]i), f([ib) and f(ab) ∈ E .

Moreover f(G ) = G ′ ⊕ f(a)f(b)	 f(a) ]f(i) 	 [f(i) f(b), so that f(G ) ∈ α(G ′).
On the other hand, if for some f ∈ F, f(G ) ∈ α(G ′), f(G ) = G ′⊕ab	a ]i	 [i b.

Since ab ∈ supp
(
f(G )

)
, there is e ∈ E such that f(e) = ab. But this implies that

there is c, d ∈ S+ such that a = f(c) and b = f(d). We can then if needed modify f
outside

{
j ∈ N : [j S∗ ∈ supp(G )

}
, to make sure that i ∈ f(N). Let f(j) = i.

We now get that f(G ) = G ′ ⊕ f(c)f(d) 	 f(c) ]f(j) 	 [f(j) f(d), so that finally
G ′ = f

(
G ⊕ c ]j ⊕ [j d	 cd

)
, proving that G ′ ∈ β(G ).

Another useful property of the merge rule is given by the following lemma:
Lemma 1.3.3
For any f ∈ F and any G ∈ G, f

(
α(G )

)
⊂ α

(
f(G )

)
.

Proof. Indeed, any G ′ ∈ f
(
α(G )

)
is of the form

G ′ = f
(
G ⊕ ab	 a ]i 	 [i b

)
= f(G )⊕ f(a)f(b)	 f(a) ]f(i) 	 [f(i) b ∈ α

(
f(G )

)
.

Unfortunately, repeating the merge transformation will not provide a text in
all circumstances. Indeed, we can end up with some expressions of the type [i a ]ib.
However, since an expression is allowed to contain only one opening bracket, we are
sure that [0 6∈ supp([i a ]i b), and that all sentences (global expressions, beginning
with [0) are “complete”, in the sense that they do not contain any other non-
terminal symbol.

To continue the discussion, we will switch to a random context, where split
and merge transformations are performed according to some probability measure.

1.3.2 Random split and merge processes
The grammars we described so far are obtained using splitting rules. Texts can
be reconstructed using merge transformations. The splitting rules as well as the
merge rules allow for multiple choices at each step. We will account for this by
introducing random processes where these choices are made at random.



1.3. Operations on toric grammars 29

We will describe two types of random grammar transformations. Each of these
will appear as a finite length Markov chain, where the length of the chain is given
by a uniformly bounded stopping time.

− The learning process (or splitting process) will start with a text and build a
grammar through iterated splits;

− the production process will start with a grammar and produce a text through
iterated merge operations.

These two types of processes may be combined into a split and merge process,
going back and forth between texts and toric grammars.

Let us give more formal definitions. Learning and parsing processes will be
some special kinds of splitting processes, to be defined hereafter.

Definition 1.3.4 (Splitting process)
Given some restricted splitting rule βr : G → 2G from the set of grammars to the
set of subsets of G, such that for any G ∈ G, βr(G ) ⊂ β(G ), a splitting process is
a time homogeneous stopped Markov chain St, 0 6 t 6 τ defined on G such that

τ = inf
{
t ∈ N : βr(St) = ∅

}
,

P
(
St = G ′ |St−1 = G

)
> 0 ⇐⇒ G ′ ∈ βr(G ).

Definition 1.3.5 (Production process)
A production process is a time homogenous stopped Markov chain Pt, 0 6 t 6 σ
defined on G such that

σ = inf
{
t ∈ N, α(Pt) = ∅

}
,

and
P
(
Pt = G ′ |Pt−1 = G

)
> 0 ⇐⇒ G ′ ∈ α(G ).

Definition 1.3.6 (Split and Merge process)
Given a splitting process St, t ∈ N and a production process Pt, t ∈ N, a split and
merge process is a Markov chain Gt ∈ G, t ∈ N, with transitions

P
(
G2t+1 = G ′ |G2t = G

)
= P

(
Sτ = G ′ |S0 = G

)
, t ∈ N,

P
(
G2t = G ′ |G2t−1 = G

)
= P

(
Pσ = G ′ |P0 = G , Pσ ∈ T

)
, t ∈ N \ {0},

whose initial distribution is a probability measure on texts, so that almost surely
G0 ∈ T.
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Let us remark that we have to impose the condition that Pσ ∈ T, because the
production process does not produce a true text with probability one. On the
other hand it can yield back G2t−2 with positive probability when started at G2t−1,
as will be proved later on. Therefore P(Pσ ∈ T |P0 = G ) > 0 for any G such that
P(G2t−1 = G ) > 0. One way to simulate PG2t |G2t−1 is to use a rejection method,
simulating repeatedly from the production process until a true text is produced.
In the experiments we made, P

(
Pσ ∈ T |P0 = G

)
was close to one and rejection

a rare event. We will describe the relations between these processes and parsing
rules issued from the statistical model of the following chapters in section 3.5 on
page 151.

Proposition 1.3.4
Let St, Pt and Gt be a splitting process, a production process and the corresponding
split and merge process, starting from G0 = T ∈ T. For any G ∈ G, any T ′ ∈ T,
such that ∑t∈NP(G2t+1 = G ) > 0 and ∑t∈NP(G2t = T ′) > 0,

P

(
τ 6 2

[
T
(
DS∗

)
−T

(
[0 S

∗
)] ∣∣∣S0 = T ′

)
= 1, (1.3.5)

P

(
σ 6 2

[
T
(
DS∗

)
−T

(
[0 S

∗
)] ∣∣∣P0 = G

)
= 1. (1.3.6)

In other words, the length of all the splitting and production processes involved in
the split and merge process have a uniform bound, given by twice the difference
between the number of words and the number of sentences in the original text.

Proof. This proof is a bit lengthy and is based on some invariants in the split
and merge operations. It has been put off to section 1.A.1 on page 49.

Proposition 1.3.5
If Gt is a split and merge process starting almost surely from the text G0 = T ∈ T,
there is a finite subset of toric grammars GT such that with probability equal to one
there is for each time t a grammar G′t isomorphic to Gt such that G′t ∈ GT . Thus,
after identification of isomorphic grammars, we can analyze the split and merge
process as a finite state Markov chain, since the reachable set from any starting
point is finite. We should however keep in mind that the finite state space GT

depends on the initial state T , so the state space is still infinite, although any
trajectory will almost surely stay in a finite subset of reachable states.

Proof. Let us assume that the labels of G are taken from J0,W`(G )K, where, as

defined in the appendix, W`(G ) =
∞∑
i=1

G ([i S∗) is the number of labels (with their

multiplicities) used in the grammar G . Consequently G ([i S∗) = 0 for i > W`(G ).
This can be achieved, up to grammar isomorphisms, by applying to G a suitable



1.3. Operations on toric grammars 31

label map.
Let us define the set of canonical expressions as

Ec = E ∩

 ⋃
i∈N

[i S
∗

,
and the canonical decomposition of G as

G =
∑
e∈Ec

G (e)⊗ e.

We see that G can be described by the concatenation of the canonical expressions,
each repeated a number of times equal to its weight, to form a sequence of symbols
of length Ws(G ). From the proof of the previous proposition, we know that

Ws(G ) 6M = 5Ww(T )− 3We(T ) = 5T (DS∗)− 3T ([0S
∗),

(with notations defined in the appendix). We can represent G by a sequence of ex-
actly M symbols by padding with trailing [0 symbols the representation described
above. Let us give an example

G = 2⊗ [0w1 ]1w2 ⊕ [1w3 ⊕ [1w4

can be coded as
[0w1 ]1w2 [0w1 ]1w2 [1w3 [1w4 [0 [0 [0

in the case when M = 15. Let us consider the set of symbols

ST = D ∪
{

[0 , [i , ]i, 0 < i 6 2
[
T (DS∗)−T ([0 S

∗)
]}
.

Since G uses only those symbols, we see from the proposed coding of G that it can
take at most |ST |M different values. Since

|ST | = |D|+ 1 + 4
[
T (DS∗)−T ([0S

∗)
]
,

we have proved that

|GT | 6
(
|D|+ 1 + 4

[
T (DS∗)−T ([0S

∗)
])5T (DS∗)− 3T ([0 S

∗)
.

Let us notice that this bound, while being finite, is very large, and probably quite
loose in practice.
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1.3.3 Splitting rules and label identification
In the previous section, we introduced some class of random processes, and studied
some of their general properties. In this section, we are going to describe some
more specific schemes and go further in the description of split and merge processes
that can learn toric grammars in a satisfactory way.

The choice of splitting rules and label identification rules has a decisive influence
on the way syntactic categories and syntactic rules are learnt by the split and merge
process. While it is necessary as a starting point to consider rules learnt from the
text to be parsed itself, it will also be fruitful to consider the case when a previously
learnt reference grammar R ∈ G can be used to govern the splits.

To make things easier to grasp, let us explain on some example the basics of
syntactic generalization by label identification. Let us start with the simple text
with two sentences.

G0 = T = [0 This is my friend Peter . ⊕ [0 This is my neighbour John .

If we split “my friend” and “my neighbour” in the two sentences using the same
label, we will form after two splits the grammar

G1 = [0 This is ]1 Peter . ⊕ [0 This is ]1 John .
⊕ [1 my friend ⊕ [1 my neighbour

If no more splits are allowed and we therefore reached the stopping time of the
splitting process, so that τ = 2, we can proceed to the production process, and
reach after two more steps the new text G2 that can either be G2 = G0 or

G2 = [0 This is my neighbour Peter . ⊕ [0 This is my friend John .

Now is a good time to remind the reader of the distinction made in section 1.2.2
on page 23 about local and global expressions.

Legitimate local expressions will be provided by the reference grammar R,
whereas global expressions will be deduced from the text itself. This approach
will be particularly efficient in the case when the set of local expressions is smaller
than the set of global expressions.

We will need two different kinds of split processes, one to learn the reference
grammar from a text and the other one to perform the first part of the transitions
of the communication Markov chain.

These split processes may be viewed as performing some parsing of the text
they are applied to. Here, we do not use parsing as it is usually used to discover
whether a sentence is correct or not, we use it instead to discover new expressions.

We will start by defining the parsing rules to be used in the communication
chain. We will call them narrow parsing rules. We will then proceed to the
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definition of a broad parsing rule suitable for a first go at learning the reference
grammar R̂(T ) from a text.
Definition 1.3.7
Let us define the narrow parsing rule with reference grammar R as

βn
(
G ,R

)
=
{

G ′ ∈ G : G ′ = G ⊕ a ]i ⊕ [i b 	 ab,

ab ∈ Eg, R
(
[i b
)
> 0

}
, G ∈ G.

Let us remark that, due to the definition of the set of expressions E and of toric
grammars G ⊂ M+(E ), the fact that G and G ′ ∈ G implies that i ∈ N \ {0} in
this definition, since necessarily a ]i, [i b ∈ E . It implies also that [0 ∈ supp(a), a
condition equivalent to ab ∈ Eg.

The narrow parsing rule depends on R only through supp(R) ∩ El.
Let us define the broad parsing rule as

βb
(
G ,R

)
=
{

G ′ ∈ G : G ′ = G ⊕ a ]i ⊕ [i b	 ab,

R
(
a ]i
)

+ R
(
[i b
)
> 0,R

(
aS∗

)
6 µ1R

(
[0 S

∗
)
,

and R
(
bS∗

)
6 µ2R

(
[0 S

∗
) }

, G ,R ∈ G,

where µ1, µ2 ∈ R+ are two positive real parameters.

Since the reference grammar is under construction during broad parsing, we will
mainly use this rule with R = G , as will be explained later. The same learning
parameters µ1 and µ2 are present here and in the innovation rule to be described
next. They serve to split expressions into sufficiently infrequent halves, in order
to constrain the model.

Let us define now maximal sequences, a notion that will be needed to define
learning rules.
Definition 1.3.8
Given some toric grammar G , we will say that a ∈ S+ is G -maximal and write
a ∈ max(G ) when

G (aS∗) > max
{
G (awS∗),G (waS∗), w ∈ S

}
.

In other words, a is a maximal subsequence among the subsequences with the same
weight in G . Note that if a is G -maximal, usually G (a) = 0 (meaning that a is
not an expression of the grammar, but only a subexpression) and if moreover the
grammar G has integer weights (which will be the case if it has been produced by
a split and merge process), then G (aS∗) > 2.
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Definition 1.3.9 (Innovation rule)
Using the notations [+ =

{
[i , i ∈ N\{0}

}
and ]+ =

{
]i, i ∈ N\{0}

}
, let us define

the innovation rule with reference grammar R as

βi
(
G ,R

)
=
{

G ′ ∈ G : G ′ = G ⊕ a ]i ⊕ [i b 	 ab,

R
(
[iS
∗
)

= 0, {a, b} ∩max(R) 6= ∅,

R(aS∗) 6 µ1R
(
[0 S

∗
)
, and R

(
bS∗

)
6 µ2R

(
[0 S

∗
) }

.

Here again, the rule will be used while learning the reference grammar with R = G .
We will now introduce a label map that identifies the labels appearing in the

same context.
Definition 1.3.10 (Label identification through context)
Given some toric grammar G ∈ G, let us consider the relation C ∈ (N \ {0})2

defined as

C =
{

(i, j) ∈
(
N \ {0}

)2
:
∑
a∈S∗

G (a ]i) G (a ]j) + G ([i a) G ([j a) > 0
}
.

The smallest equivalence relation containing C defines a partition of N \ {0} into
equivalence classes. Let (Ak)k∈N\{0} be an arbitrary indexing of this partition. Each
positive integer falls in a unique class of the partition, so that the relation i ∈ Aχ

G
(i)

defines a label map χ
G

: N → N in a non ambiguous way. The choice of the
indexing of the partition (Ak)k∈N\{0} does not matter, since two different choices
lead to two isomorphic label maps. When applying χ

G
to G itself, we will use the

short notation χ(G ) def= χ
G

(G ).
Let us consider the evolution of the number of labels used by G :

L(G ) =
∣∣∣{i ∈ N : G ( ]iS

∗) > 0}
∣∣∣.

It is easy to see that L
(
χ(G )

)
6 L(G ) and that χ(G ) ≡ G (where the symbol ≡

means isomorphic) if and only if L
(
χ

G
(G )

)
= L(G ). Accordingly there is k ∈ N

such that χk+1(G ) ≡ χk(G ), and we can take it to be the smallest integer such
that L

(
χk+1(G )

)
= L

(
χk(G )

)
. Consequently, k is such that for any n > k,

χn(G ) ≡ χk(G ). We will define χ(G ) = χk(G ), up to grammar isomorphisms (so
that χ(G ) belongs to G/≡ rather than to G itself).

A characterisation in terms of more elementary label maps will be established
in proposition 1.A.6 on page 58. This characterization provides an algorithm to
compute χ in practice.

We are now ready to define a learning rule.
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Definition 1.3.11
Let us define the learning rule

β`(G ) =

βi
(
G ,G

)
, when βb

(
G ,G

)
= ∅,{

χ
(
G ′
)

: G ′ ∈ βb
(
G ,G

)}
, otherwise.

We will define two kinds of splitting processes, based on two different choices
of the restricted splitting rule βr.

Definition 1.3.12 (Learning process)
A learning process is a splitting process with restricted splitting rule

βr(G ) = β`(G ).

Definition 1.3.13 (Parsing process)
A parsing process with reference grammar R ∈ G is a splitting process with re-
stricted splitting rule

βr(G ) = βn(G ,R).

Before we reach the aim of this chapter and describe our statistical language
model, we need to explore some of the properties of the production, learning and
parsing processes introduced so far.

1.4 Parsing and generalization
Let us introduce some notations for the output of parsing, learning and production
processes.

Definition 1.4.1
Let St be a parsing process, with reference grammar R ∈ G. We will use the
following notation for the distribution of Sτ .

GT ,R = PSτ |S0=T , T ∈ T.

We will also use a short notation for the distribution of the output of a production
process.

TG = PPσ |P0=G ,Pσ∈T, G ∈ G.

Eventually, GT will be the probability distribution of the output of a learning pro-
cess St, according to the definition

GT = PSτ |S0=T , T ∈ T.
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At this point we obviously may consider different notions of parsing that we
have to connect together. Namely, we would like to make a link between the
following statements:

− TG (T ) > 0, the grammar G can produce the text T ;

− GT ,R(G ) > 0, the text T can generate the grammar G when parsed with
the help of the grammar R;

− GT (G ) > 0, the grammar G can be learnt from the text T .
Lemma 1.4.1
The previous parse notions are related in the following way. For any G ,R ∈ G,
and any T ∈ T,

GT (G ) > 0 =⇒ TG (T ) > 0,
GT ,R(G ) > 0 =⇒ TG (T ) > 0,
TG (T ) > 0 =⇒ GT ,G (G ) > 0.

Consequently, for any G ,R ∈ G such that
(
supp(G ) ∩ El

)
⊂ supp(R), and

any T ∈ T,
TG (T ) > 0 ⇐⇒ GT ,R(G ) > 0.

Proof. This is one of the core lemmas of this chapter. The proof is given in
section 1.A.2 on page 51, on account of its length.

It has the following important implication.
Proposition 1.4.2
Given a parsing process St based on a reference grammar R ∈ G and a production
process Pt, the corresponding split and merge process Gt is weakly reversible, in
the sense that for any T ∈ T, any G ∈ ⋃t∈N supp

(
PG2t+1

)
,

P
(
G1 = G

∣∣∣G0 = T
)
> 0 ⇐⇒ P

(
G2 = T

∣∣∣G1 = G
)
> 0.

Consequently, for any T ,T ′ ∈ T and any G ,G ′ ∈ ⋃t∈N supp
(
PG2t+1

)
,

P
(
G2 = T ′

∣∣∣G0 = T
)
> 0 ⇐⇒ P

(
G2 = T

∣∣∣G0 = T ′
)
> 0,

P
(
G3 = G ′

∣∣∣G1 = G
)
> 0 ⇐⇒ P

(
G3 = G

∣∣∣G1 = G ′
)
> 0.

In other words, the two processes G2t and G2t+1 are weakly reversible time ho-
mogeneous Markov chains. As we already proved that the set of reachable states
from any starting point is finite, it shows that they are recurrent Markov chains:
they partition their respective state spaces into positive recurrent communicating
classes.
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Proof. Let us remark first that

P
(
G1 = G

∣∣∣G0 = T
)
> 0 ⇐⇒ GT ,R

(
G
)
> 0

P
(
G2 = T

∣∣∣G1 = G
)
> 0 ⇐⇒ TG

(
T
)
> 0.

Moreover, since G ∈ supp(PG2t+1) for some t ∈ N, there is T ′ ∈ T such that
GT ′,R(G ) > 0, implying that supp(G ) ∩ El ⊂ supp(R). This ends the proof
according to the last statement of the previous lemma.

We will see in section 3.5 on page 151 a method to build split and merge pro-
cesses that are actually reversible, and not only weakly so. This method involves
a slightly modified Metropolis algorithm, that allows for intermediate steps (here,
the grammar G2t+1).

1.5 Expectation of a random toric grammar
In section 1.4 on page 35, given some text T ∈ T, we defined a random distribution
on toric grammars GT that we would like to use to learn a grammar from a text.
The most obvious way to do this is to draw a toric grammar at random according
to the distribution GT , and we already saw an algorithm, described by a Markov
chain and a stopping time, to do this.

The distribution GT will be spread in general on many grammars. This is a
kind of instability that we would like to avoid, if possible. A natural way to get
rid of this instability would be to simulate the expectation of GT . To do this, we
are facing a problem: the usual definition of the expectation of GT , that is∫

G dGT (G ),

although well defined from a mathemacial point of view, is a meaningless toric
grammar, due to the possible fluctuations of the label mapping. To get a mean-
ingful notion of expectation, we need to define in a meaningful way the sum of two
toric grammars. We will achieve this in two steps.

Let us introduce first the disjoint sum of two toric grammars. We will do this
with the help of two disjoint label maps. Let us define the even and odd label
maps fe and fo as

fe(i) = 2i, fo(i) = max{0, 2i− 1}, i ∈ N.
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Definition 1.5.1
The disjoint sum of two toric grammars G ,G ′ ∈ G is defined as

G � G ′ = fe(G ) + fo(G ′).

Definition 1.5.2
Given a probability measure G ∈ M 1

+(G) with finite support, we define the mean
of G as ∮

G dG(G ) = χ

�
G∈G

G(G ) G

.
Lemma 1.5.1
If Gi is an i.i.d. sequence of random grammars distributed according to G, then
almost surely

lim
n→+∞

1
n
χ

 n

�
i=1

Gi

 =
∮

G dG(G ).

Proof. The proof of this result is quite lengthy, and postponed till section 1.A.3
on page 54.

1.6 Language models

1.6.1 Communication model
We are now ready to define the language model announced in the introduc-
tion. Given a reference grammar R, and the corresponding split and merge pro-
cess (Gt)t∈N with reference R, we define the communication kernel qR(T ,T ′)
on T2 as

qR(T ,T ′) = P
(
G2 = T ′ |G0 = T

)
.

According to proposition 1.3.5 on page 30 and proposition 1.4.2 on page 36, qR has
finite reachable sets and is weakly reversible, so that all texts T ∈ T are positive
recurrent states of the communication kernel qR .

Thus to each text T ∈ T corresponds a unique invariant text distribution
q̂R(T , ·), as explained in the introduction. As all states are positive recurrent,
q̂R(T , ·) is the unique invariant measure of qR on the communicating class con-
taining T . Moreover, from the ergodic theorem,

P

q̂R(T , ·
)

= lim
t→∞

1
t

t∑
j=1

δG2j

∣∣∣∣∣ G0 = T

 = 1,
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showing that q̂R(T , ·) can be computed by an almost surely convergent Monte-
Carlo simulation. Eventually, we deduce from the invariant probability measure
on texts q̂R(T , ·), a probability measure on sentences Q̂R,T as explained in the
introduction, according to the formula

Q̂R,T = T
(
[0S
∗
)−1 ∑

T ′∈T
q̂R
(
T ,T ′

)
T ′.

(This is the same formula as eq. (1.1.1) on page 18 in the introduction, taking into
account the fact that texts in the support of q̂R(T , ·) are non normalized empirical
measures with the same total mass equal to T ([0S∗), the number of sentences in
the text T .)

To obtain a true language estimator, there remains to estimate R by some
estimator R̂(T ). We could do this as described in section 1.5 on page 37, putting

R̂(T ) =
∮

G dGT (G ).

Let us remark that, according to lemma 1.5.1 on the preceding page, R̂(T ) can
be computed from repeated simulations from the distribution GT .

1.6.2 Comparison with other models
Comparison with context-free grammars

Given a toric grammar G ∈ β∗(T), we may consider the split and merge process Gt

with reference grammar G starting at G1 = G (so here we start at time 1 with an
initial state that is a grammar, instead of starting at time 0 with an initial state
that is a text). Due to the weak reversibility of proposition 1.4.2 on page 36, G2
almost surely falls in the same recurrent communicating class of t 7→ G2t, and the
unique invariant probability measure supported by this recurrent communicating
class defines a probability measure TG on texts, and therefore a stochastic lan-
guage model. This way of defining the language generated by the grammar G can
be compared to the usual definition of the language generated by a context-free
grammar. Indeed, the support of G is a context-free grammar, so this is meaning-
ful to consider the language generated by this grammar and to compare it with
the support of our stochastic language model.

None of these two sets of sentences is contained in the other one. In our
stochastic model, the number of times a rule can be used is bounded, so if the
recursive use of some rules is possible, the deterministic language will in this
sense be larger. On the other hand, the stochastic model uses both production
and parsing to build new sentences, whereas the deterministic model uses only
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production rules. In this respect, the stochastic model may, at least in some cases,
define a much broader language, as we will show on the following example.

Let us take as dictionary the set

D = {+,=} ∪ J1, NK,

where J1, NK =
{
i ∈ N, 1 6 i 6 N

}
, and consider the toric grammar

G = N2 ⊗ "[0 ]N = N" ⊕
N⊕
i=1

N ⊗ "[i i" ⊕
N⊕
i=2

N(i− 1)⊗ "[i ]i−1 + 1",

(where we put expressions into double quotes " to ease the reading of this defini-
tion.) Let us also consider the text

T = N ⊗
N⊕
i=1

"[0 i+1 + · · ·+ 1︸ ︷︷ ︸
N−i times

= N".

It is easy to check that TG (T ) > 0, (so that G ∈ β∗(T ),) that indeed the support
of T is the language generated by supp(G ), seen as a context-free grammar, and
that the stochastic language TG generated by G is able to produce with positive
probability a set of sentences

supp2(TG ) def=
⋃

T ∈supp(TG )

supp(T ),

equal to

supp2(TG ) =
{

"[0 x1 + · · ·+ xi = xi+1 + · · ·+ xj",

1 6 i < j 6 2N, xk ∈ J1, NK, 1 6 k 6 j,
i∑

k=1
xk =

j∑
k=i+1

xk = N
}
.

Here, the number of sentences produced by the underlying context-free grammar
is |supp(T )| = N , whereas the number of sentences produced by our stochastic
language model is |supp2(TG )| = 22(N−1). Thus, in this small example based on
arithmetic expressions (admittedly closer to a computing language than it is to
a natural language), our new definition of the generated language induces a huge
increase in the number of generated sentences.

Note that with usual context-free grammar notations, supp(G ) would have
been described as

0 → N = N

i → i, i = 1, . . . , N,
i → i− 1 + 1, i = 2, . . . , N,
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where 0 is the start symbol and i , i = 1, . . . , N , are other non terminal symbols.
To count the number of elements in supp2(TG ), one can remark that the number

of ways N can be written as ∑i
k=1 xk with an arbitrary number of terms is also

the number of increasing integer sequences 0 < s1 < · · · < si−1 < N of arbitrary
length, which is also the number of subsets {s1, . . . , si−1} of {1, . . . , N − 1}, that
is 2N−1.

Intuitively speaking, the underlying context-free grammar supp(G ) is limited
to producing a small set of global expressions of the form i + 1 + . . . + 1 = N ,
whereas the stochastic language model incorporates some crude logical reasoning
that is capable of deducing from them a large set of new global expressions.

Let us remark also that, when we start as here from a text made of true
arithmetic statements, the language generated by our language model is also made
of true arithmetic statements. This shows that our approach to language modeling
is capable of some sort of logical reasoning.

Comparison with Markov models

The kind of reasoning illustrated in the previous section is related to the fact that
we analyse global syntactic structures represented by the global expressions of our
toric grammars.

In order to give another point of comparison, we would like in this section to
make a qualitative comparison with Markov models, that do not share this feature.
To make a parallel between toric grammars and Markov models, we are going to
show how a Markov model could be described in terms of toric grammars and
label identification rules. More striking relations between our models and Markov
models will however be outlined in forthcoming chapters.

To build a Markov model in our framework, we have to use a deterministic
splitting (or parsing) rule. This is because in a Markov model, conditional prob-
abilities are specified from left to right in a rigid data independent way. Let us
introduce the Markov splitting rule

βm(G ) =
{
G ′ ∈ G, G ′ = G 	 [0 aw ]i ⊕ [0 a ]j ⊕ [j w ]i,

i, j ∈ N \ {0}, a ∈ D+, w ∈ D,G
(
[j S

∗
)

= 0
}
.

We will describe now label identification rules using concepts introduced in sec-
tion 1.A.3 on page 54. Let us say that the pair of labels p ∈

(
N\{0}

)2
is G -Markov

if there is w ∈ D such that G
(
w]p1

S∗
)
G
(
w]p2

S∗
)
> 0. Let us say that the sequence

of pairs p1, . . . , pk is G -Markov if pj is ξp1,...,pj−1(G )-Markov. It can be proved as in
the case of congruent sequences that if σ is a permutation and p is G -Markov, then
p◦σ is also G -Markov. It can also be proved that if p and q are maximal G -Markov



42 Chapter 1. Toric grammars and communication models

sequences, then ξp ≡ ξq, and therefore ξp(G ) ≡ ξq(G ). We will call ξp(G ) ∈ G/≡
the Markov closure of G and use the notation ξp(G ) def≡ µ(G ),where µ(G ) is the
Markov pendent of χ(G ) in the construction of toric grammars.

Let St, 0 6 t 6 τ be a splitting process based on the restricted splitting rule

βr(G ) =
{
µ(G ′), G ′ ∈ βm(G )

}
.

It is not very difficult to check that the support of Sτ is contained in a single
isomorphic class of grammars, so that, up to label remapping the result of this
splitting process is deterministic. More specifically, starting from a text

T =
n⊕
j=1

[0w
j
1 . . . w

j
`(j),

where wji ∈ D \ {.}, 1 6 i < `(j), 1 6 j 6 n, and wj`(j) = . , 1 6 j 6 n so that all
sentences end with a period, we obtain a grammar isomorphic to

G =
n⊕
j=1

(
[0 w

j
1 ]wj1

`(j)−1⊕
i=2

[wji−1
wji ]wji ⊕ [wj

`(j)−1
wj`(j)

)
,

where we have used words as labels instead of integers, since in this model, due
to the label identification rule, labels are functions of words (namely ]w is the non
terminal symbol following the word w ∈ D).

We can now define a Markov production mechanism, to replace the production
process. It is described as a Markov chain Xi, i ∈ N, where Xi ∈ D ∪ {∆},
where ∆ /∈ D is a padding symbol used to embed finite sentences into infinite
sequences of symbols, all equal to ∆ for indices larger than the sentence length.
The distribution of the Markov chain Xi is as follows. Its initial distribution is

P(X0 = w) =
G
(
[0w]w

)
G
(
[0S∗

) ,
and its transition probabilities are

P
(
Xi = ∆ |Xi−1 = .

)
= 1,

P
(
Xi = . |Xi−1 = w

)
=

G
(
[w .
)

G
(
[wS∗

) , w ∈ D \ {.}

P
(
Xi = w′ |Xi−1 = w

)
=

G
(
[ww′]w′

)
G
(
[wS∗

) , w, w′ ∈ D \ {.}.
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Roughly speaking, the difference with the production process Pt defined previously
is that in the production process the production rules are drawn at random without
replacement whereas here, the production rules are drawn with replacement.

It is easy to see that the initial distribution and transition probabilities of the
Markov chain Xi are the empirical initial distribution and empirical transition
probabilities of the training text T .

In conclusion, to build a Markov model using the same framework as for toric
grammars, we had to modify two steps in a dramatic way:

− we had to change the splitting process, and replace the random splitting
process of toric grammars with a non random splitting process which chains
forward transitions in a linear way;

− we had to change in a dramatic way the label identification rule to replace
the forward and backward global condition of toric grammars with a backward
only local condition.

(The modification of the production process is less crucial and boils down to draw-
ing production rules with or without replacement.)

We hope that this discussion of Markov models will help the reader realize that
our model proposal is indeed really different from the Markov model at sentence
level. We could have extended easily the discussion to Markov models of higher
order, or to more general context tree models. We let the reader figure out the
details. All these more sophisticated models show the same differences from toric
grammars: a more rigid splitting process and local backward label identification
rules.

1.7 A small experiment
Let us end this chapter with a small example. Here we use a small text that is
meant to mimic what could be found in a tutorial to learn English as a foreign
language. We have added a more elaborate sentence at the end of the text to show
its impact. More systematic experiments are yet to be carried out, although the
conception of this model was guided by experimental trial and errors with models
starting with variable length Markov chains, before we tried global rules leading
to grammars.

This is the training text T (each line shows an expression, starting with its
weight) :

1 [0 He is a clever guy .
1 [0 He is doing some shopping .
1 [0 He is laughing .
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1 [0 He is not interested in sports .
1 [0 He is walking .
1 [0 He likes to walk in the streets .
1 [0 I am driving a car .
1 [0 I am riding a horse too .
1 [0 I am running .
1 [0 Paul is crossing the street .
1 [0 Paul is driving a car .
1 [0 Paul is riding a horse .
1 [0 Paul is walking .
1 [0 Peter is walking .
1 [0 While I was walking , I saw Paul crossing the street .

And now, the new sentences produced by the model (that is by Q̂
R̂,T

, approx-
imated on 50 iterations of the communication chain with kernel q

R̂
).

1 [0 Paul is driving a car too .
1 [0 Paul is doing some shopping .
1 [0 Paul is laughing .
1 [0 Paul is riding a horse too .
1 [0 Paul is running too .
1 [0 Paul is running .
1 [0 Paul is not interested in sports too .
1 [0 Paul is not interested in sports .
1 [0 Paul is a clever guy too .
1 [0 Paul is a clever guy .
1 [0 Paul is walking too .
1 [0 Peter is driving a car too .
1 [0 Peter is driving a car .
1 [0 Peter is doing some shopping .
1 [0 Peter is laughing .
1 [0 Peter is riding a horse too .
1 [0 Peter is riding a horse .
1 [0 Peter is running too .
1 [0 Peter is running .
1 [0 Peter is not interested in sports .
1 [0 Peter is a clever guy .
1 [0 Peter is crossing the street .
1 [0 He is driving a car too .
1 [0 He is driving a car .
1 [0 He is riding a horse too .
1 [0 He is riding a horse .
1 [0 He is running too .
1 [0 He is running .
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1 [0 He is not interested in sports too .
1 [0 He is crossing the street too .
1 [0 He is crossing the street .
1 [0 He is walking too .
1 [0 I am driving a car too .
1 [0 I am doing some shopping .
1 [0 I am laughing too .
1 [0 I am laughing .
1 [0 I am riding a horse .
1 [0 I am not interested in sports .
1 [0 I am a clever guy .
1 [0 I am crossing the street too .
1 [0 I am crossing the street .
1 [0 I am walking too .
1 [0 I am walking .
1 [0 While I was driving a car , I saw Paul doing some shopping too .
1 [0 While I was driving a car , I saw Paul doing some shopping .
1 [0 While I was driving a car , I saw Paul riding a horse .
1 [0 While I was driving a car , I saw Paul crossing the street .
1 [0 While I was driving a car , I saw Paul walking .
1 [0 While I was driving a car , I saw Peter riding a horse .
1 [0 While I was doing some shopping , I saw Paul riding a horse .
1 [0 While I was doing some shopping , I saw Paul walking .
1 [0 While I was laughing too , I saw Peter crossing the street .
1 [0 While I was laughing , I saw Peter riding a horse .
1 [0 While I was riding a horse , I saw Paul driving a car too .
1 [0 While I was riding a horse , I saw Paul driving a car .
1 [0 While I was riding a horse , I saw Paul laughing .
1 [0 While I was riding a horse , I saw Paul running .
1 [0 While I was riding a horse , I saw Paul walking .
1 [0 While I was riding a horse , I saw Peter not interested in sports .
1 [0 While I was running , I saw Paul laughing .
1 [0 While I was running , I saw Paul not interested in sports .
1 [0 While I was running , I saw Paul a clever guy .
1 [0 While I was running , I saw Paul walking .
1 [0 While I was not interested in sports , I saw Paul driving a car .
1 [0 While I was not interested in sports , I saw Paul riding a horse .
1 [0 While I was a clever guy , I saw Paul running .
1 [0 While I was a clever guy , I saw Paul crossing the street .
1 [0 While I was a clever guy , I saw Paul walking .
1 [0 While I was crossing the street , I saw Paul riding a horse .
1 [0 While I was crossing the street , I saw Paul running .
1 [0 While I was crossing the street , I saw Paul crossing the street .
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1 [0 While I was crossing the street , I saw Paul walking .
1 [0 While I was crossing the street , I saw Peter walking .
1 [0 While I was walking , I saw Paul driving a car .
1 [0 While I was walking , I saw Paul laughing .
1 [0 While I was walking , I saw Paul riding a horse .
1 [0 While I was walking , I saw Paul running .
1 [0 While I was walking , I saw Paul not interested in sports .
1 [0 While I was walking , I saw Paul crossing the street too .
1 [0 While I was walking , I saw Paul walking .
1 [0 While I was walking , I saw Peter not interested in sports .
1 [0 While I was walking , I saw Peter walking .

The reference grammar was learnt first, and was computed from 10 samples
of GT . (We did not normalize the weights, since we were interested in the support
of the local expressions only.)

10 [0 He likes to walk ]6 ]3 streets .
2 [0 ]1 ]8 clever guy .
2 [0 ]1 doing some shopping .
2 [0 ]1 laughing .
2 [0 ]1 not interested ]6 sports .
2 [0 ]1 riding ]8 horse .
2 [0 ]1 riding ]8 horse ]2 .
2 [0 ]1 running .
24 [0 ]7 am ]5 .
28 [0 Paul is ]5 .
40 [0 He is ]5 .
4 [0 ]1 crossing ]3 street .
4 [0 ]1 driving ]8 car .
5 [0 ]4 is ]5 .
6 [0 ]1 walking .
7 [0 Peter is ]5 .
8 [0 While ]7 was ]5 , ]7 saw ]4 ]5 .
10 [1 He is
2 [1 Peter is
2 [1 While ]7 was ]5 , ]7 saw ]4
6 [1 ]7 am
8 [1 Paul is
2 [2 too
30 [3 the
14 [4 Paul
1 [4 Peter
16 [5 crossing ]3 street
16 [5 driving ]8 car
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16 [5 riding ]8 horse
34 [5 walking
8 [5 ]5 too
8 [5 ]8 clever guy
8 [5 doing some shopping
8 [5 laughing
8 [5 not interested ]6 sports
8 [5 running
20 [6 in
50 [7 I
50 [8 a

Although we did not yet make the software development effort required to test
large text copora, we learnt a few interesting things from what we already tried:

− As it is, the model requires the inclusion of a sufficient number of simple
and redundant sentences to start generalizing. At this stage, we do not
know whether this could be avoided by changing the learning rules. We
made quite a few attempts in this direction. All of them resulted in the
production of grammatical nonsense. Breaking the global constraints that
are enforced by the model seems to have a dramatic effect on grammatical
coherence. This could be a clue that these global conservation rules reflect
some fundamental feature of the syntactic structure of natural languages.
Including a bunch of “simple” sentences made of frequent words may be seen
as introducing a pinch of supervision in the learning process.

− The constraints on subexpressions frequencies in the learning rule defini-
tion 1.3.7 on page 33 and 1.3.9 were added to avoid some unwanted gener-
alizations. For instance here we took µ1R

(
[0 S∗

)
= µ2R

(
[0 S∗

)
= 5. If we

had chosen 10 instead of 5, sentences of the kind

[0 While I was walking , I saw He crossing the street .

would have emerged, where the pronoun “He” is substituted to a noun in
the wrong place. We deliberately wrote the training text in such a way that
“He” is more frequent than any noun, since we expect that to be true for
any reasonable large corpus. Doing so, we were able to rule out the wrong
construction by lowering the frequency constraint to avoid the unwanted
substitution.

− Despite all the limitations of this small example, it shows that the model is
able to find out non trivial new constructs, like

[0 While I was laughing too, I saw Peter crossing the street.
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where it has discovered that “too” could be added to the subordinate clause
opening the sentence. We are quite pleased to see that such things could be
learnt along very general label identification rules, while all the generalized
sentences remain, if not all grammatically correct, at least all grammati-
cally plausible. Of course this judgement is purely subjective. But since we
have no mathematical or otherwise quantitative definition of what natural
languages are, we have to be content with a subjective evaluation of models.

Studying how this learning model scales with large corpora is still a work to be
done (it will require from us that we optimize our code so that it can run efficiently
on large data sets).

1.8 The story so far...
We have built in this chapter a new statistical framework for the syntactic analysis
of natural languages.

The main idea pervading our approach is that trying to estimate the distri-
bution of an isolated random sentence is hopeless. Instead we propose to build
a Markov chain on sets of sentences (called texts in this work), with non trivial
recurrent communicating classes and to define our language model as the invariant
measures of this Markov chain on each of these recurrent communicating classes.
At each step, the Markov chain recombines the set of sentences constituting its
current state, using cut and paste operations described by grammar rules. In this
way we define the probability distribution of an isolated random sentence only in
an indirect way. We replace the hard question of generating a random sentence by
the hopefully simpler one of recombining a set of sentences in a way that keep the
desired distribution invariant.

The main result of this chapter is the construction of the split and merge
process with reference grammar R. It has non trivial mathematical properties
proving that it can be simulated using a bounded number of operations at each
step, and that the state space is divided into recurrent communicating classes each
including a finite number of states.

Nonetheless, the model needs some further refinements. For example, we did
not (yet) propose a simple way to define the actual probabilities on the split
and merge process. But more importantly, our method to estimate the reference
grammar through the grammar expectation

R̂(T ) =
∮

G dGT

(
G
)

is clearly lacking. The next chapter will be dedicated to introducing the notion
of Markov substitute sets, which will be used to estimate the reference grammar
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within a more traditional statistical framework, enjoying proved mathematical
properties.

1.A Proofs

1.A.1 Bound on the length of splitting and production pro-
cesses

Proof of proposition 1.3.4 on page 30. Let us define the length of an ex-
pression e ∈ Sk ∩ E as `(e) = k. Let us introduce some remarkable weights
associated with a grammar G ∈ β∗(T).

Ws(G ) =
∑
e∈E

G (e),

We(G ) =
∑
e∈E

G (e)`(e)−1,

Wl(G ) =
+∞∑
i=1

G ([i S
∗),

Ww(G ) =
∑
w∈D

G (wS∗).

Let us define the set of canonical expressions as

Ec = E ∩

⋃
i∈N

[iS
∗

.
Using previously introduced notations, we can write the grammar as

G =
∑
e∈Ec

G (e)⊗ e.

We will call this the canonical decomposition of G . The two weights Ws(G ) and
We(G ) are better understood in terms of this canonical decomposition. They can
be expressed as

Ws(G ) =
∑
e∈Ec

G (e)`(e),

We(G ) =
∑
e∈Ec

G (e).

This shows that Ws(G ) counts the “number of symbols” in the canonical decom-
position of G , whereasWe(G ) counts the number of expressions (that is G (Ec), the
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weight put by the grammar on canonical expressions). We can also see from the
definitions that Wl(G ) counts the number of canonical expressions starting with
a positive (that is non terminal) label, that we will call for short the number of
labels, and that Ww(G ) counts the number of words.

Since a split increases the number of canonical expressions by one, the number
of symbols in canonical expressions by two, the number of labels by one, and keeps
the number of words constant, whereas a merge decreases these quantities in the
same proportions, the following quantities are invariant in all the toric grammars
involved: for any G ∈ G such that ∑t∈NP

(
Gt = G

)
> 0,

Ws(G )− 2We(G ) = Ws(T )− 2We(T ),
We(G )−Wl(G ) = We(T )−Wl(T ) = We(T ),

Ww(G ) = Ww(T ).

Moreover, for the same reasons, for any T ′ ∈ T and G ∈ G such that∑
t∈NP

(
G2t = T ′

)
> 0 and ∑t∈NP

(
G2t+1 = G

)
> 0,

P

(
τ = Wl(Sτ )

∣∣∣S0 = T ′
)

= 1,

P

(
σ = Wl(G )

∣∣∣P0 = G , Pσ ∈ T
)

= 1.

Thus, we will prove the lemma if we can bound Wl(G ) (or equivalently Wl(Sτ )
when S0 = T ′, since Sτ almost surely satisfies the conditions imposed on G ). We
can then remark that∑

e∈Ec

G (e)1
[
`(e) > 3

]
6
∑
e∈Ec

G (e)
[
`(e)− 2

]
= Ws(G )− 2We(G ),

∑
e∈Ec

G (e)1
[
`(e) = 2

]
=
∑
e∈E

G (e)1
[
`(e) = 2

] ∑
w∈D

1
(
e ∈ wS∗

)
6
∑
e∈E

G (e)
∑
w∈D

1
(
e ∈ wS∗

)
= Ww(G ),

because any canonical expression of length 2 is of the form e = [iw, with i ∈ N
and w ∈ D, so that for any e ∈ Ec of length 2,∑

e′∈S(e)

∑
w∈D

1
(
e′ ∈ wS∗

)
= 1.

Thus
We(G ) 6 Ww(G ) +Ws(G )− 2We(G ),

and consequently we can bound Wl(G ) by the split and merge invariant bound

Wl(G ) 6 Wl(G )−We(G ) +Ww(G ) +Ws(G )− 2We(G ).
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This, added to the fact that Wl(T ) = 0 and Ws(T ) = Ww(T ) + We(T ), proves
that

Wl(G ) 6 2
[
Ww(T )−We(T )

]
.

This ends the proof, since Ww(T ) = T (DS∗) and We(T ) = T ([0S∗).

1.A.2 Parsing Relations
Proof of lemma 1.4.1 on page 36. The implication

TG (T ) > 0 =⇒ GT ,G (G ) > 0

is less trivial than it may seem. Indeed we can reverse the path of the splitting
process St, be it a parsing or a learning process, to obtain a path followed with
positive probability by the production process, but reversing the production pro-
cess does not give a parsing process. Let us illustrate this difficulty on a simple
example. Consider

T = 1⊗ [0abcd and G = [0a]1 ⊕ [1b]2 ⊕ [2c]3 ⊕ [3d.

The production path

G , [0 ab ]2 ⊕ [2 c ]3 ⊕ [3 d, [0 ab ]2 ⊕ [2 cd, T

has positive probability. The reverse path may have a positive probability for the
learning process but not for the parsing process with reference G , since none of
the expressions [0 ab ]2 or [2 cd belongs to the support of G . To parse T according
to G , one can instead follow with positive probability such a path as

T , [0 abc ]3 ⊕ [3 d, [0 ab ]2 ⊕ [2 c ]3 ⊕ [3 d, G .

To prove the lemma, we will have to show that it is always possible to find such
an alternative parsing path. This property is fundamental to our approach, since
it proves that the toric grammars we build can be used to parse the texts they can
produce.

Let us start with the easiest part of the proof. Assume that GT ,R(G ) > 0.
This means that there is a path G0, . . . ,Gk such that G0 = T , Gk = G , and at each
step Gt ∈ βn(Gt−1,R). Anyhow it is easy to check that

Gt ∈ βn(Gt−1,R) =⇒ Gt−1 ∈ α(Gt),

so that the reverse path is followed with a positive probability by the production
process. This means that TG (T ) > 0.
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In the case of the learning process, if GT (G ) > 0, there is a path Gt, 0 6 t 6 k,
such that Gt ∈ β`(Gt−1), G0 = T and Gk = G , consequently there is a label
map ft ∈ F such that ft(Gt−1) ∈ α(Gt). We can then remark that

fk ◦ · · · ◦ ft(Gt−1) ∈ α
(
fk ◦ · · · ◦ ft+1(Gt)

)
,

because as already proved before in lemma 1.3.3 on page 28, f
(
α(G )

)
⊂ α

(
f(G )

)
.

Let us consider the path G̃t = fk ◦ · · · ◦ fk−t+1(Gk−t). It begins at G̃0 = Gk = G
and ends at G̃k = fk ◦ · · · ◦ f1(G0) = T . According to the previous remark, this
path is followed by the production process with positive probability, proving that
TG (T ) > 0.

Let us now come to the proof of the third implication of the lemma. For
this let us assume now that TG (T ) > 0. Consider a path G0, . . . ,Gk such that
G0 = G , . . . ,Gk = T and Gt ∈ α(Gt−1). We are going to define some decorated
path G̃0, . . . , G̃k with some added parentheses. Introduce a new set of symbols
B =

{
(i , )i, i ∈ N \ {0}

}
and assume that it is disjoint from the other symbols

used so far, so that B ∩ S = ∅. Consider the set of toric grammars S̃ based on
the enlarged dictionary D ∪ B, and the projection π : G̃ → G defined with the
help of the canonical decomposition of toric grammars as

π

(∑
e∈Ẽc

G (e)⊗ e
)

=
∑
e∈Ẽc

G (e)⊗ π(e),

where Ẽc is the set of canonical expressions based on the enlarged dictionary D∪B,
and where π(e) is obtained by removing from the sequence of symbols e the symbols
belonging to the decoration set B (that is the parentheses).

Let us put G̃0 = G and define G̃t for t = 1, . . . , k by induction. We will check
on the go that π(G̃t) = Gt. It is obviously true for G̃0, because G̃0 ∈ S, so that
π(G̃0) = G̃0 = G0. That said, let us describe the construction of G̃t, assuming that
G̃t−1 is already defined, and satisfies π(G̃t−1) = Gt−1. Consider the sequence of
symbols a and b ∈ S∗ and the index i ∈ N \ {0} such that

Gt = Gt−1 ⊕ ab	 a ]i 	 [i b.

Since π(G̃t−1) = Gt−1, and since a ]i⊕ [i b 6 Gt−1, there are ã ∈ S̃∗ and b̃ ∈ S̃∗ such
that π(ã) = a, π(b̃) = b, and ã ]i ⊕ [i b̃ 6 G̃t−1. (The choice of ã and b̃ may not be
unique, in which case we can make any arbitrary choice). Let us define

G̃t = G̃t−1 ⊕ ã(i b̃ )i 	 ã ]i 	 [i b̃.

Since π
(
ã(i b̃ )i

)
= π

(
ãb̃
)

= ab,

π
(
G̃t
)

= π
(
G̃t−1

)
⊕ π

(
ã(i b )i

)
	 π

(
ã]i
)
	 π

(
[ib̃
)

= Gt−1 ⊕ ab	 a ]i 	 [i b = Gt,



1.A. Proofs 53

where we have used the obvious fact that π is linear.
We are now going to define another mapping between grammars that allows

to recover G from any G̃t (obviously the decorations where added to keep track
of G ). Let us define ψ : S̃′ → S on the set of decorated grammars S̃′ which
are supported by expressions where the parentheses (i )i are matched (at the same
level) by the formula

ψ

(∑
e∈Ẽc

G̃ (e)⊗ e
)

=
∑
e∈Ẽc

G̃ (e)ψ(e),

where ψ(e) is defined by the rules

ψ(e) =

ψ
(
[ia ]jc

)
+ ψ

(
[j b
)
, if e = [i a(j b)jc, with a, b, c ∈ S̃∗

ψ(e) = 1⊗ e, otherwise.

It is easy to check that this definition is not ambiguous and that

ψ(e) = ψ′(e)⊕
⊕

(ia)i∈supp(e)
[iψ
′(a),

where ψ′(e) is the expression obtained from e by replacing all the sequences be-
tween outer parentheses pairs (ja)j by ]j. This is may be easier to grasp on some
example:

ψ
(
[0a(1b(2c)2d)1e(3f(4g)4)3h

)
= [0a ]1e ]3h⊕ [1 b ]2d⊕ [2 c⊕ [3 f ]4 ⊕ [4 g.

It is easy to check by induction that G̃t ∈ S̃′. Moreover, we have that ψ
(
G̃t
)

= G .
Indeed ψ

(
G̃0
)

= ψ
(
G
)

= G and

ψ
(
G̃t

)
= ψ

(
G̃t−1

)
⊕ ψ

(
ã(ib̃)i

)
	 ψ

(
ã ]i
)
	 ψ

(
[i b̃
)

= ψ
(
G̃t−1

)
,

since ψ is linear and ψ
(
ã(i b̃)i

)
= ψ

(
ã ]i
)
⊕ ψ

(
[i b
)
.

We are now going to define a continuation for the path
(
G̃t, 0 6 t 6 k

)
that

will bring us back to G .
We will maintain during our inductive construction two properties:

ψ
(
G̃t
)

= G ,

and supp
(
G̃t
)
∩ Ẽl ⊂ El,

where Ẽl is the set of local decorated expressions, so that

Ẽl =
{
e ∈ Ẽ : [0 /∈ supp(e)

}
.
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We already proved that the first property is satisfied by G̃k. As π(G̃k) = Gk = T ,
supp(G̃k) ∩ Ẽl = ∅, so that the second condition is also satisfied. Let us assume
that, for some t > k, G̃t−1 has been defined and satisfies the two conditions above,
and let us proceed to the construction of G̃t.

As long as G̃t−1 6∈ S, (and this will be the case for t < 2k), find some canonical
expression e ∈ Ẽc \ Ec, such that G̃t−1(e) > 1. From our induction hypotheses,
we see that necessarily [0 ∈ supp(e). Our continuation will be such that each
such expression has matching parentheses with matching labels, and we will check
this on the go while building it by induction. Among those matching pairs of
parentheses, there is necessarily at least one inner pair. We can for instance choose
the one starting with the last opening parenthesis (j of the sequence e. This choice
makes it obvious that the subsequence of e enclosed between (j and )j contains no
further parentheses.

Since ψ is linear and preserves positive measures,

G 	 ψ(e) = ψ
(
G̃t−1

)
	 ψ(e) = ψ

(
G̃t−1 	 e

)
> 0.

On the other hand, e has the form e = [0a(jb)jc, where ψ(b) = b (since (j)j is an
inner pair of parentheses in e). As ψ(e) = ψ

(
[0a ]jc

)
+ ψ

(
[jb
)
and ψ

(
[jb
)

= [jb,
this shows that [j b 6 G , and therefore that G ([jb) > 0. Let us now define

G̃t = G̃t−1 	 e⊕ [jb⊕ [0 a ]jc.

Applying ψ to G̃t, we see as previously that ψ(G̃t) = ψ(G̃t−1) = G . As G̃k contains
k pairs of parentheses, and we consume one pair at each step t > k, we see that
G̃2k contains no more parentheses, so that G̃2k ∈ G and G̃2k = ψ(G̃2k) = G . Let us
put now Gt = π(G̃t), for t = k + 1, . . . , 2k. We see that

Gt = Gt−1 	 [0 abc⊕ [0 a ]jc⊕ [j b,

where [0 abc, [0 a ]jc ∈ E and G
(
[j b
)
> 0, so that Gt ∈ βn(Gt−1,G ), therefore

Gk = T , . . . ,G2k = G is a path of positive probability under the parsing process
with reference G , leading from T to G , in other words, GT ,G (G ) > 0 as required.

1.A.3 Convergence to the expectation of a random toric
grammar

We will here prove lemma 1.5.1 on page 38. This result is based on the fact that
the operation (

G ,G ′
)
7→ χ

(
G � G ′

)
is associative.
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Let us begin the proof by several definitions and lemmas.
For any grammar G ∈ G and any pair of indices p = (p1, p2) ∈

(
N \ {0}

)2
, we

will say that p is G -congruent when there is a ∈ S∗ such that G (a]p1)G (a ]p2) > 0
or G ([p1 a)G ([p2 a) > 0.

Let us define the label map ξp as

ξp(i) =

i, when i /∈ {p1, p2},
min{p1, p2}, when i ∈ {p1, p2}.

For any sequence p1, . . . , pk ∈ (N \ {0})2k of pairs of indices, let us define the label
map ξp1,...,pk as

ξp1,...,pk = ξξp1,...,pk−1 (pk) ◦ ξp1,...,pk−1 ,

where f
(
(i, j)

)
= (f(i), f(j)), for any (i, j) ∈

(
N \ {0}

)2
.

Let us say that (p1, . . . , pk) ∈
(
N \ {0}

)2k
is G -congruent, if ξp1,...,pj−1(pj) is

ξp1,...,pj−1(G )-congruent for any j 6 k, and that it is maximal G -congruent is it is
G -congruent and any G -congruent sequence of the form (p1, . . . , pk, pk+1) is such
that

ξp1,...,pk(p1
k+1) = ξp1,...,pk(p2

k+1),

or equivalently such that ξp1,...,pk+1 = ξp1,...,pk .

Lemma 1.A.1
For any sequence (p1, . . . , p`) ∈

(
N \ {0}

)2`
, for any k < `,

ξp1,...,p` = ξξp1,...,pk (pk+1,...,p`) ◦ ξp1,...,pk .

Proof. By induction on ` for k fixed. This is true from the definition for ` = k+1.
Assuming we have established the lemma for `− 1, we can write

ξp1,...,p` = ξξp1,...,p`−1 (p`) ◦ ξp1,...,p`−1

= ξξξp1,...,pk (pk+1,...,p`−1)◦ξp1,...,pk (p`) ◦ ξξp1,...,pk (pk+1,...,p`−1) ◦ ξp1,...,pk

= ξξp1,...,pk (pk+1,...,p`) ◦ ξp1,...,pk ,

Lemma 1.A.2
For any permutation σ of {1, . . . , k},

ξp1,...,pk ≡ ξpσ(1),...,pσ(k)
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Proof. Let us consider the smallest equivalence relation containing the set
{p1, . . . , pk}. Let πk : N \ {0} → C be the corresponding projection of each
label to its component. Let us befine the label map πk by πk(0) = 0 and

πk(i) = min πk(i), i > 0.

We are going to prove by induction on k that ξp1,...,pk ≡ πk. Since πk is invariant
by permutation of the sequence (p1, . . . , pk), this will prove the lemma.

Let us remark now that ξp1,...,pk ≡ πk if and only if

ξp1,...,pk(i) = ξp1,...,pk(j) ⇐⇒ πk(i) = πk(j), i, j > 0.

So we are going to prove this equivalence. It is easy to see from the previous lemma
that for any integer m = 1, . . . , k,

ξp1,...,pk(p1
m) = ξp1,...,pk(p2

m). (1.A.1)

Indeed,
ξp1,...,pk = ξξp1,...,pm (pm+1,...,pk) ◦ ξξp1,...,pm−1 (pm) ◦ ξp1,...,pm−1 ,

so that, changing pm for ξp1,...,pm−1(pm), we are back to proving the result when
m = k = 1, where it is obvious from the definitions.

Now, eq. (1.A.1) on the current page and the minimality of πk implies that

πk(i) = πk(j) =⇒ ξp1,...,pk(i) = ξp1,...,pk(j), i, j > 0.

Let us assume conversely that ξp1,...,pk(i) = ξp1,...,pk(j) and let

m = min
{
` : ξp1,...,p`(i) = ξp1,...,p`(j)

}
.

Since ξp1,...,pm = ξξp1,...,pm−1 (pm) ◦ ξp1,...,pm−1 , we see that necessarily

ξp1,...,pm−1

(
{i, j}

)
= ξp1,...,pm−1

(
{p1

m, p
2
m}
)
,

and that this set contains two distinct elements. Exchanging the role of i and j if
necessary, we can assume without loss of generality that

ξp1,...,pm−1

(
(i, j)

)
= ξp1,...,pm−1

(
pm
)
.

From the induction hypothesis, this implies that πm−1
(
(i, j)

)
= πm−1(pm). Since

the equivalence relation defined by πm−1 is a subset of the equivalence relation
defined by πk, this implies that πk

(
(i, j)

)
= πk(pm). Since moreover we have that

πk(p1
m) = πk(p2

m), this implies that πk(i) = πk(j).
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Lemma 1.A.3
For any f ∈ F, any sequence of pairs of positive labels p1, . . . , pk, there is a label
map g ∈ F such that

ξf(p1,...,pk) ◦ f = g ◦ ξp1,...,pk .

Proof. We have to prove that

ξp1,...,pk(i) = ξp1,...,pk(j) =⇒ ξf(p1,...,pk) ◦ f(i) = ξf(p1,...,pk) ◦ f(j), i, j > 0.

From the proof of the previous lemma, it is enough to check that the right-hand
side holds when (i, j) = pm, m = 1, . . . , k, which is then obvious.

Lemma 1.A.4
If f ∈ F and (p1, . . . , pk) is G -congruent, then the sequence (f(p1), . . . , f(pk)) is
also f(G )-congruent.

Proof. Assume that for some a ∈ S∗

ξp1,...,pm−1(G )
(
a ]ξp1,...,pm−1 (p1

m)

)
> 0.

Then, ξf(p1,...,pm−1) ◦ f = g ◦ ξp1,...,pm−1 , and

ξf(p1,...,pm−1) ◦ f(G )
(
g(a) ]ξf(p1,...,pm−1)◦f(p1

m)

)
= g ◦ ξp1,...,pm−1(G )

(
g(a) ]g◦ξp1,...,pm−1 (p1

m)

)
= ξp1,...,pm(G )

(
g−1 ◦ g

(
a ]ξp1,...,pm−1 (p1

m)

))
> ξp1,...,pm−1(G )

(
a ]ξp1,...,pm−1 (p1

m)

)
> 0.

The same is true when p1
m is replaced with p2

m and when a ]ξ
p1,...,pm−1(p1m)

is replaced
with a[ξ

p1,...,pm−1(p2m)
.

The lemma is a straightforward consequence of these remarks and the definition
of a congruent sequence.

Lemma 1.A.5
If (p1, . . . , pk) and (q1, . . . , q`) are both G -congruent, then

(p1, . . . , pk, q1, . . . , q`)

is G -congruent.
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Proof. According to the previous lemma, we know that ξp1,...,pk(q1, . . . , q`) is
ξp1,...,pk

(
G
)
-congruent. Coming back to the definition this proves that

ξξp1,...,pk (q1,...,q`−1) ◦ ξp1,...,pk(q`)

is
ξξp1,...,pk (q1,...,q`−1) ◦ ξp1,...,pk

(
G
)
-congruent.

In lemma 1.A.1 on page 55 we have moreover proved that

ξp1,...,pk,q1,...,q`−1 = ξξp1,...,pk (q1,...,q`−1) ◦ ξp1,...,pk .

This identity applied to the above statement shows that (p1, . . . , pk, q1, . . . , q`)
satisfies the definition of a G -congruent sequence.

Proposition 1.A.6
If (p1, . . . , pk) and (q1, . . . , q`) are both maximal G -congruent, then

ξp1,...,pk

(
G
)
≡ ξq1,...,q`

(
G
)
≡ χ

(
G
)
.

Proof. From the previous lemma, (p1, . . . , pk, q1, . . . , q`) is G -congruent. Since p
is maximal, ξp1,...,pk,q1,...,q` = ξp1,...,pk . In the same way ξq1,...,q`,p1,...,pk = ξq1,...,q` . We
have seen moreover in a previous lemma that

ξp1,...,pk,q1,...,q` ≡ ξq1,...,q`,p1,...,pk .

This proves that ξp1,...,pk ≡ ξq1,...,q` .
We see from the definition of χ (see definition 1.3.10 on page 34) that there

is some maximal G -congruent sequence r1, . . . , rm such that χ(G ) = ξr1,...,rm(G ).
Therefore

χ
(
G
)
≡ ξp1,...,pk

(
G
)
≡ ξq1,...,q`

(
G
)
.

Proposition 1.A.7
For any G ,G ′ ∈ G,

χ
(
χ(G )� G ′

)
= χ

(
G � G ′

)
.

Consequently, for any G ,G ′,G ′′ ∈ G,

χ
(
χ
(
G � G ′

)
� G ′′

)
= χ

(
G � G ′ � G ′′

)
.
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Proof. Let us assume that G , G ′ and χ(G ) use disjoint label sets, so that

χ
(
χ
(
G
)
� G ′

)
≡ χ

(
χ(G ) + G ′

)
,

χ
(
G � G ′

)
≡ χ

(
G + G ′

)
.

Let p1, . . . , pk be some maximal G -congruent sequence. It is then obviously
also (G + G ′)-congruent, and since label sets are disjoint,

ξp1,...,pk

(
G
)

+ G ′ = ξp1,...,pk

(
G + G ′

)
.

Let us continue the sequence p1, . . . , pk to form a maximal
(
G + G ′

)
-congruent

sequence p1, . . . , p`. Let (qk+1, . . . , q`) be defined as

qm = ξp1,...,pk(pk+m).

It now follows from the definitions that the sequence (qk+1, . . . , q`) is a maximal
ξp1,...,pk(G + G ′)-congruent sequence, and a maximal

(
ξ1,...,pk(G ) + G ′

)
-congruent

sequence by consequence. Consequently

χ
(
χ
(
G
)

+ G ′
)
≡ ξqk+1,...,q`

(
ξp1,...,pk

(
G
)

+ G ′
)

= ξqk+1,...,q` ◦ ξp1,...,pk

(
G + G ′

)
= ξξp1,...,pk (pk+1,...,p`) ◦ ξp1,...,pk

(
G + G ′

)
= ξp1,...,p`

(
G + G ′

)
≡ χ

(
G + G ′

)
,

proving the proposition.

Proof of lemma 1.5.1 on page 38. Let π be the projection of G on G/≡.
From the law of large numbers, we have that, for all G ∈ G,

1
n

n∑
i=1
1(Gi ≡ G ) −→

n→∞
G(π(G )).

Let us now remark that
n

�
i=1

n−1Gi = �
G∈G/≡
�
i

Gi∈G

n−1Gi. Thus

1
n
χ


n

�
i=1

Gi

 = χ

�
G∈G/≡

χ

�
i

Gi∈G

n−1Gi




= χ

(
�

G∈G/≡

(
n∑
i=1

n−11(Gi ∈ G )
)
χ(G )

)

= χ

(
�

G∈G/≡

(
n∑
i=1

n−11(Gi ∈ G )
)

G

)
.
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We used here proposition 1.A.7 on page 58, together with the fact that for any
numbers a, b ∈ R+,

χ
[
(aG )� (bG )

]
= (a+ b)χ(G ),

which comes from the following reasoning: Suppose that

{1, . . . , d} = {i ; G ([iS
∗) > 0},

and let pi = (2i, 2i−1). Since each pi is (aG )�(bG )-congruent, (p1, . . . , pd) is also
(aG )� (bG )-congruent, from lemma 1.A.5 on page 57. It is quite straightforward
to see that

ξp1,...,pd

[
(aG )� (bG )

]
≡ (a+ b) G .

This implies that

χ
[
(aG )� (bG )

]
= χ ◦ ξp1,...,pd

[
(aG )� (bG )

]
= χ

[
(a+ b) G

]
= (a+ b)χ(G ).

To take the limit inside χ, we need to prove that χ is continuous in a suitable
sense. Actually, G 7→ χ(G) is continuous on sets of fixed support, and this is what
is required to conclude.

Indeed, for any sequence (Gi) with fixed support for n large enough, there is
a fixed label map f (depending on the support) such that for n large enough
χ(Gi) = f(Gi), and the result follows from the fact that G 7→ f(G ) is continuous;
since f(G )(A) = G (f−1(A)).

Consequently

lim
n→∞

1
n
χ

 n

�
i=1

Gi

 = χ

�
G∈G/≡

lim
n→∞

(
1
n

n∑
i=1
1
(
Gi ∈ G

))
G


= χ

(
�

G∈G/≡
G(G )G

)
= χ

(
�

G∈G/≡
G(G )χ(G )

)

= χ

(
�

G∈G/≡
�
G∈G

G(G )χ(G )
)

= χ

(
�
G∈G

G(G )χ(G )
)

= χ

(
�
G∈G

G(G )G
)

=
∮

G dG(G ).

1.B Language produced by a toric grammar
In this appendix, we make a deterministic study of the language produced by a
toric grammar G ∈ β∗(T). More precisely, we are interested in the support of the
distribution TG of the final state of the production process.
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Lemma 1.B.1
Let T ∈ T be some text and G ∈ β∗(T ) be some grammar obtained by splitting
this text a finite number of times. The number of splits performed can be read in G
and is equal to

n =
+∞∑
i=1

G
(

]iS
∗
)
.

Let us put α(G ) = αn(G ). Then, T ∈ α(G ) ⊂ T, moreover α(G ) = supp(TG ).

Proof. The grammar G is obtained by making a succession of splits. Each of
those splits add one [i and one ]i to the grammar, whereas in the original text
there are no [i nor ]i, except for the [0 at the beginning of each sentence. Since
application of an element of F does not change the number of such symbols, they
may be used to count the number of splits performed.

Let us take then a sequence of toric grammars T = G0, . . . ,Gn = G , such that
Gk ∈ β(Gk−1). From lemma 1.3.2 on page 28, there is a sequence f1, . . . , fn ∈ F

such that fk
(
Gk−1

)
∈ α

(
Gk
)
. Let us prove by induction that for any k = 0, . . . , n,

fk ◦ · · · ◦ f1
(
T
)
∈ αk

(
Gk
)
.

Indeed, this is true for k = 0, since G0 = T . Moreover, assuming that the assertion
holds for k − 1, we deduce that

fk ◦ · · · ◦ f1
(
T
)
∈ fk

(
αk−1

(
Gk−1

))
⊂ αk−1

(
fk
(
Gk−1

))
⊂ αk

(
Gk
)
.

showing that if the assertion holds for k, it also holds for k + 1. For k = n, we
obtain that

fn ◦ · · · ◦ f1
(
T
)
∈ αn

(
Gn
)
.

As fn ◦ · · · ◦ f1(T ) = T , since T is a text, and Gn = G , we get that T ∈ αn(G ).
Let us consider now G ′ ∈ α(G ). Let (G = G0, . . . ,Gn = G ′) the chain of

grammars leading to G ′. Then for any k = 0, . . . , n,
+∞∑
i=1

Gk
(

]iS
∗
)

= n− k,

since Gk ∈ α(Gk−1) and each merge takes away one [i and one ]i. This implies that∑+∞
i=1 G ′

(
]iS∗

)
= 0, and thus G ′ ∈ T.

Note that, as remarked above, repeated merges may create elements of the
type [i a ]ib. However, this will not happen if n successful merges can be performed.
Indeed in the case when expressions of the form [i a ]ib remain unmatched during
the merge process, we will get α(Gk) = ∅ for some k < n.





Chapter 2

Markov substitute Sets

2.1 Presentation of the model

2.1.1 Motivation
In the previous chapter, we constructed a split and merge process that rearranged
texts according to a known reference grammar. We saw that when this reference
grammar is known, the distribution of texts can be estimated without error via a
Monte-Carlo simulation.

The question of building such a reference grammar R along justified statistical
principles was left open. The model of toric grammars, as we saw, is based on the
assumption that any elements [ia and [ib in the grammar can be substituted in
any sentence, while keeping grammaticality. The goal of this chapter is to propose
some ways to define properly this kind of property, and to test it.

2.1.2 What is a Markov substitute set
We will work for a while with a probability distribution of sentences using the
dictionnary of words D, leaving the notion of text aside. We will use the nota-
tion D∗ = ⋃∞

j=0D
j = {ε} ∪D+, where ε stands for the empty string. Let S ∈ D+

be a random sentence drawn from the language distribution and Si, 1 6 i 6 n, a
statistical sample made of n independent copies of S, our observed sample.

Given a right and left context x = (x1, x2) ∈ D∗×D∗, and an expression y ∈ D+

(that is any non void finite string of words), it will be useful to introduce the
insertion operator α as

α(x, y) = x1 y x2 ∈ D+,

the concatenation of the strings of words x1, y, and x2.
Let us remark that for any x ∈ (D∗)2, the map y 7→ α(x, y) is one to one,

whereas the map x 7→ α(x, y) is not, since for instance α((y, y′), y) = α((∅, yy′), y).

63
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Definition 2.1.1
We will say that the set B ⊂ D+ is a Markov substitute set of S when∑

x∈(D∗)2

P
(
S = α(x, y)

)
> 0, y ∈ B, (2.1.1)

and when there exists a probability measure qB ∈M 1
+(B) on B, called the substitute

measure of B, such that for any x ∈ (D∗)2 and any y ∈ B,

PS[α(x, y)] = PS[α(x,B)]qB(y), (2.1.2)

where α(x,B) = {α(x, y), y ∈ B}.
For any context x ∈ (D∗)2, such that PS[α(x,B)] > 0, the substitute measure

is equal to
qB(y) = PS[α(x, y)]

PS[α(x,B)] ·

Therefore supp(qB) = B. An equivalent characterization of the Markov substitute
property is that B is a Markov substitute set if and only if it satisfies eq. (2.1.1)
on this page and for any y, y′ ∈ B, any x, x′ ∈ (D∗)2,

PS[α(x, y)] PS[α(x′, y′)] = PS[α(x, y′)] PS[α(x′, y)]. (2.1.3)

To justify calling this a Markov substitute set, we can make a link with Markov
chains. Indeed, in the case when S = (Z1, . . . , ZL) is a finite length time ho-
mogeneous Markov chain, where L > 2 is a non random integer, and where
supp

(
PZ1

)
= D, for any w1, w3 ∈ D, the set

Bw1,w3 =
{

(w1, w2, w3) ∈ D3,P(Z2 = w2, Z3 = w3|Z1 = w1) > 0
}
,

is a Markov substitute set. In the same way, let us consider a time homogeneous
Markov chain (Zn, n ∈ N \ {0}), a subset C ⊂ D and let us take for its stopping
time τ = inf{k > 1, Zk ∈ C}. Let us assume that P(τ < ∞|Z1 = z) = 1 for
any z ∈ D. In this situation, the chain S = Z1:τ

def= (Z1, . . . , Zτ ), stopped at
time τ , is a process in D+. For any w,w′ ∈ D, such that∑

16j<k
P
(
Zj = w,Zk = w′, j 6 τ

)
> 0

the set

Bw,w′ =
{
w1:k ∈ Dk, k > 1, w1 = w,wk = w′, wj ∈ D \ C, 1 < j < k,

PZ2:k |Z1=w1(w2:k) > 0
}
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is a Markov substitute set.
Indeed, in this case, there are j < k 6 t such that

P
(
Zj = w,Zk = w′, τ = t

)
> 0,

so that there is a chain y1:t ∈ Dt such that y2:t−1 ∈ (D \ C)t−2, yj = w, yk = w′,
yt ∈ C and

P
(
Z1:τ = y1:t

)
> 0.

Since

P
(
Z1:τ = y1:t

)
= P

(
Z1:t = y1:t

)
= P

(
Z1:j = y1:j

)
P
(
Z2:k−j+1 = yj+1:k |Z1 = w

)
P
(
Z2:t−k+1 = yk+1:t |Z1 = w′

)
,

this implies that yj:k ∈ Bw,w′ , and that for any w1:` ∈ Bw,w′ ,

P
[
S = α

(
(y1:j−1, yk+1,t), w1,`

)]
= P

(
Z1:j = y1:j

)
P
(
Z2:` = w2:`|Z1 = w

)
P
(
Z2:t−k+1 = yk+1:t|Z1 = w′

)
> 0,

so that the set Bw,w′ satisfies eq. (2.1.1) on the preceding page.
Moreover for any (x1:j, xj+1:m) ∈ (D∗)2,

PS
(
α(x,w)

)
= P

(
Z1:j+1 = γ(x1:j, w), τ > j

)
P
(
Z2:k = w2:` |Z1 = w, τ > `

)
× P

(
Z2,m−j+1 = xj+1,m |Z1 = w′, τ > m− j + 1

)
.

(where γ is the concatenation operator) so that Bw,w′ satisfies also eq. (2.1.2) on
the facing page, where

qBw,w′ (w1:`) =
P
(
Z2,k = w2,` |Z1 = w, τ > `

)
∑

y∈(D\C)∗
P
(
Z2:`(y)+1 = γ(w, y) |Z1 = w

) ·
We gave these examples to show the connections with the usual Markov prop-

erty and to provide an example of Markov substitute sets containing strings of
variable lengths. We will see other examples of Markov substitute models a little
later.

2.1.3 Weak Markov substitute sets
In natural language analysis, we may be mainly interested in the support of the
distribution of S. If this is the case, we can weaken our definition of Markov
substitute set to deal only with support shapes.
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Definition 2.1.2
We will say that the set B ⊂ D+ is a weak Markov substitute set of S when it
satisfies eq. (2.1.1) on page 64 and when for any context x ∈ (D∗)2 such that
PS[α(x,B)] > 0, PS[α(x, y)] > 0 for any y ∈ B.

2.1.4 Basic properties of Markov substitute sets
Proposition 2.1.1

Any one point set {y}, where y ∈ D+ satisfies eq. (2.1.1) on page 64, is a
Markov substitute set, whose substitute measure is the Dirac mass at y.

A subset of a Markov substitute set is itself a Markov substitute set.
If B and C are Markov substitute sets such that B∩C 6= ∅, then B∪C is also

a Markov substitute set.
As such, a set B is a Markov substitute set if and only if, for any y, y′ ∈ B,

the pair {y, y′} is a Markov substitute pair.
Less restrictively, a set B is a Markov substitute set if and only if there is a

connected undirected spanning graph G ⊂ B2 such that for any (y, y′) ∈ G , {y, y′}
is a Markov substitute pair.

This is obvious from the characterization by eq. (2.1.2) on page 64 for the first
point and eq. (2.1.3) on page 64 for the others.

These properties lead us to define the relation

y ∼S y′ ⇐⇒ {y, y′} is a Markov substitute pair.

This is an equivalence relation and D+
/∼S forms a partition of D+ into maximal

Markov substitute sets.
Proposition 2.1.2
If B is a Markov substitute set, then for any x ∈ (D∗)2, α(x,B) is also a Markov
substitute set, as soon as it satisfies∑

z∈(D∗)2

P
[
S ∈ α

(
z, α(x,B)

)]
> 0.

Proof. From the definition of the Markov substitute property, we see that for
any z ∈ (D∗)2, any y ∈ B,

PS
[
α(z, α(x, y)

]
= PS

[
α(z1x1, x2z2, y)

]
= PS

[
α
(
z, α(x,B)

)]
qB(y),

so that α(x,B) is a Markov substitute set and qα(x,B)
(
α(x, y)

)
= qB(y).
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Proposition 2.1.3
If Bj, 1 6 j 6 k are Markov substitute sets (including possibly some one point
sets), then

B = γ (B1, . . . , Bk) def=
{
y = y1 . . . yk, yj ∈ Bj, 1 6 j 6 `

}
,

is also a Markov substitute set, as soon as it satisfies∑
x∈(D∗)2

P
(
α(x,B)

)
> 0.

Proof. For any y1:k, y′1:k ∈ γ (B1, . . . , Bk),{
y′1:j−1yj:k, y

′
1:jyj+1:k

}
= α

(
y′1:j−1, yj+1,k, {yj, y′j}

)
and is therefore a Markov substitute pair, so that y1:k and y′1:k are connected by the
equivalence relation ∼S defined above and themselves form a Markov substitute
pair.

The same properties are true for weak Markov substitute sets. They show the
key role played by Markov substitute pairs.

2.1.5 Interpretation in terms of random parsing
Let us consider some finite subset B ∈ D+ satisfying eq. (2.1.1) on page 64. We
define the set of B splits of s, for any sentence s ∈ D+ as

S (s, B) =
{

(x, y), x ∈ (D∗)2, y ∈ B,α(x, y) = s
}
.

Let us consider some conditional probability kernel(
π(s, x, y), s ∈ D+, x ∈ (D∗)2, y ∈ (B ∪ {ε})

)
such that π(s, ·) ∈M 1

+

(
(D∗)2 ×D∗

)
, and such that

S (s, B) ⊂ supp
(
π(s, ·)

)
⊂ S (s, B) ∪

{(
(s, ε), ε

)}
. (2.1.4)

Introducing the split counts

c(s) =
∣∣∣S (s, B)

∣∣∣,
we can for instance take

π(s, x, y) =


c(s)−1, (x, y) ∈ S (s, B),
1−

∑
(x′,y′)∈S (s,B)

π(s, x′, y′), x = (s, ε), y = ε.
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Let us define the random B-parse X, Y of the random sentence S on the same
probability space by its conditional distribution

PX, Y |S = s(x, y) =


min
y′∈B

π
(
α(x, y′), x, y′

)
, (x, y) ∈ S (s, B),

1−
∑

(x′,y′)∈S (s,B)
PX, Y |S = s(x′, y′), x = (s, ε), y = ε.

Let us remark that the random B-parse can be simulated using a rejection method.
Indeed, let us put

w(x, y) = min
y′∈B

π
(
α(x, y′), x, y′

)
π
(
α(x, y), x, y

) ·
We can first draw the pair (X ′, Y ′) according to the conditional probability distri-
bution PX ′, Y ′|S = π(S, ·), and then draw (X, Y ) according to the distribution

P(X, Y )|S,X ′, Y ′ = w(X ′, Y ′)δ(X ′, Y ′) +
(
1− w(X ′, Y ′)

)
δ((S, ε), ε).

Proposition 2.1.4
The set B is a Markov substitute set for S if and only if the random B-parse (X, Y )
satisfies one of the three following conditions :

PX, Y |Y ∈ B = PX|Y ∈ B ⊗ PY |Y ∈ B, (2.1.5)

PX|Y = y = PX|Y = y′ , y, y′ ∈ B, (2.1.6)

PY |X = x, Y ∈ B = PY |Y ∈ B, x ∈ (D∗)2, PX|Y ∈ B(x) > 0. (2.1.7)

Moreover, when B is a Markov substitute set, the substitute measure qB is equal
to PY |Y ∈ B .

Proof. The three properties are quite obviously equivalent, and the fact that,
for any x ∈ (D∗)2 and any y ∈ B,

PX, Y (x, y) = min
y′∈B

π
(
α(x, y′), x, y′

)
PS[α(x, y)]

= min
y′∈B

π
(
α(x, y′), x, y′

)
PS[α(x,B)]qB(y),

ends the proof.
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2.2 Invariant dynamics
Markov substitute sets can be used to define various reversible (and consequently
invariant) dynamics.

Moreover, when PS has a sufficient number of Markov substitute sets, we will
be able to define an irreducible (in other words ergodic) dynamics that will have
a single invariant measure.

The idea is to replace an element from a Markov substitute set by another one.
Such a transformation stays necessarily in the support of the language, and, if the
substitution weights are properly related to the substitute measure, this dynamics
can be invariant, and even reversible. We will see here simple invariant dynamics,
both on single sentences and on texts, that will only modify one element of a
Markov substitute set at a time. More evolved invariant dynamics will be defined
and studied in chapter 3.

2.2.1 Metropolis invariant dynamics on sentences
We will here have a first go at describing invariant dynamics on sentences, related
to the Markov substitute property.

Let us consider a family Bj, 1 6 j 6 t of Markov substitute sets, and let us
assume that we know for each Bi the substitute measure qBi of a Markov substitute
set Bi containing Bi. We do not need necessarily to know qBi itself, since we can
deduce it from the relation qBi(y) = qBi(y)/qBi(Bi)1(y ∈ Bi).

We will locate a member of a Markov substitute set in the sentence and replace
it by another element of the same Markov substitute set, according to the relevant
substitute measure. Let us remark that we accordingly will only use the substitute
measures qBi such that

∑
x∈(D∗)2

E
(
π(S, x,Bi, i)

)
> 0.

Definition 2.2.1
A splitting kernel is a kernel

π : D+ →M 1
+

(
(D∗)2 ×D∗ × {1, . . . , t}

)
such that for any s ∈ D+,

π(s, x, y, j) > 0 =⇒ y ∈ Bj ∪ {ε} (the empty string), and α(x, y) = s.

For now, we will suppose that we have access to such kernels. Actual constructions
will be presented in chapter 3.
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Definition 2.2.2
Given a splitting kernel π, we can define the substitute dynamics

kπ(s, s′) =
∑

x∈(D∗)2,(y,y′)∈(D∗)2,j

π(s, x, y, j) qBj(y
′)
(
π(s′, x, y′, j)
π(s, x, y, j) ∧ 1

)
, s 6= s′,

kπ(s, s) = 1−
∑

s′∈D+\{s}
kπ(s, s′). (2.2.1)

The simulation of S ′ such that PS′|S=s(s′) = kπ(s, s′) can be implemented in the
following way. First draw (X, Y, j) such that PX,Y,j|S = π, then draw Y ′ according
to qBj and set

S ′ =


α(X, Y ′) with probability

π(α(X, Y ′), X, Y ′, j
)

π(S,X, Y, j) ∧ 1
 ,

S otherwise.
Proposition 2.2.1
Any substitute dynamics defined as in definition 2.2.2 on this page is reversible
(and therefore invariant) with respect to PS.
Proof. We can see that kπ is reversible by writing

PS(s)k(s, s′) =
∑

x∈(D∗)2,(y,y′)∈(D∗)2,j

PS
(
α(x,Bj)

)
× qBj(y)qBj(y

′)
[
π(s, x, y, j) ∧ π(s′, x, y′, j)

]
,

which is obviously a symmetric expression in s and s′.
Remark that, while all these operations are defined on single sentences, it is

quite straightforward to extend them to texts, that is, an empirical distribution
on sentences, by applying them to each sentence of the text.

2.2.2 Reflecting a reversible dynamics on the boundary of
a finite domain

We can reflect a PS reversible dynamics k on the boundary of any finite do-
main D ⊂ D+, by defining the reflected dynamics as

kD(s, s′) =



k(s, s′), when s, s′ ∈ D , s 6= s′,

0, when s ∈ D , s′ /∈ D ,

k(s, s) +
∑

s′′∈D+\D
k(s, s′′), when s = s′ ∈ D ,

δs(s′), s 6∈ D .

It is immediate to see that kD is still reversible with respect to PS.
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2.2.3 Compound dynamics
Definition 2.2.3
Let us consider a finite family of PS reversible dynamics, k1, . . . , kt and a probabil-
ity distribution ξ ∈M 1

+

(
{1, . . . , t}

)
on the t first integers. We define the compound

substitute dynamics kξ as the reversible kernel

kξ(s, s′) =
t∑

j=1
ξ(j)kj(s, s′).

This compound kernel can be easily implemented by drawing at random an index j
according to the distribution ξ and then drawing s′ according to kBj(s, s′). It is
obviously reversible with respect to PS.

Definition 2.2.4
We can then define the accelerated compound dynamics

kξ(s, s′) =
( ∑
s′′∈D+\{s}

kξ(s, s′′) ∨
∑

s′′∈D+\{s′}
kξ(s′, s′′)

)−1

kξ(s, s′), s 6= s′ ∈ D+,

kξ(s, s) = 1−
∑

s′∈D+\{s}
kξ(s, s′), s ∈ D+.

Let us remark that for states s ∈ D+ such that∑
s′′∈D+\{s}

kξ(s, s′′) = max
s′∈D+,k(s,s′)>0

∑
s′′∈D+\{s′}

kξ(s′, s′′),

the accelerated dynamics jumps with probability one, meaning that kξ(s, s) = 0.

2.2.4 A simple example of recursive structure
In this subsection, we will present a small example, showing that the Markov
substitute property is suitable to model recursive structures.

Let us consider on D = {a, b} the language distribution

PS(abn) =
(1

2

)n+1
·

It is easy to check that {a, ab} is a Markov substitute set for this language, with

qB = 2
3δa + 1

3δab.
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A random B-parse as defined in section 2.1.5 on page 67 can be defined in this
case as

P(X = (ε, bn), Y = a|S = abn) = P(X = (ε, bn−1), Y = ab|S = abn) = 1
2 ·

The invariant dynamics in this setup is to either remove one b with probability 1
3

or add one with probability 1
6 , as shown in fig. 2.1 on this page.

abn

(ε, bn, a)

(ε, bn, ab) kπ(abn, abn+1) = 1
6

1
3

(ε, bn, a) kπ(abn, abn) = 1
6 + 1

3 = 1
2

2
3

parse
1

2

(ε, bn−1, ab)

(ε, bn−1, ab)1
3

(ε, bn−1, a) kπ(abn, abn−1) = 1
3

2
3

pars
e
1
2

a

(ε, ε, a)

(ε, ε, ab) kπ(a, ab) = 1
6

1
3

(ε, ε, a) kπ(a, a) = 1
2 + 1

3 = 5
6

2
3

parse
1

2

(ε, a, ε) (ε, a, ε)
1

parse
1
2

Figure 2.1: Invariant dynamics for abn.

It is quite straightforward to see that this dynamics is indeed invariant.
It is important to realize on this basic example that substitute dynamics have

the power to generate languages with a recursive structure.
Here, the full language abn, n ∈ N is generated from any starting point abk,

because the invariant dynamics is ergodic (since it has a single communicating
class). A statistical sample larger than a single sentence would still be necessary
to discover that {a, ab} is a Markov substitute pair.

On the other hand, we can define invariant dynamics implementing any set of
rewriting rules, generating languages with arbitrarily complex recursive structures.
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2.2.5 Crossing-over reversible dynamics on texts
The previous method required that we know the substitute measures qBi , which
must be estimated. We will now present another way to build an invariant dy-
namics, on texts this time, that does not require to know the substitute measures.
We will here see texts as a concatenation of symbols, supposing that each sentence
ends with a dedicated symbol (a period, if you prefer), so that the sentences of
a text are uniquely defined. This dynamics will simply swap two elements of the
same Markov substitute set.

Accordingly, we introduce T = γ(S1, . . . , Sn) ∈ D+, obtained by concatenating
the sentences of our statistical sample.

To describe crossing-over dynamics, it will be useful to generalize the merge
operation to multiple contexts. A two-fold context x being an element of (D∗)3,
we define

α
(
(x1, x2, x3), y

)
= (x1yx2, x3).

Quite obviously, all formulas on α may be generalized on two-fold contexts, in
particular the definition of Markov substitute sets

PS

(
α
(
α(x, y), z

))
= PS

(
α
(
α(x,B), z

))
qB(y).

Definition 2.2.5
A double splitting kernel on a text is an kernel

π : D+ →M 1
+

((
(D∗)3

)
×D∗ ×D∗ × {1, . . . , t}

)
such that for any t ∈ D+,

π(t, x, y1, y2, j) > 0 =⇒ y1, y2 ∈ Bj ∪ {ε}, x ∈ (D∗)3, α(α(x, y1), y2) = t.

Definition 2.2.6
Given a double splitting kernel π, we can define the crossing-over dynamics on
texts

σπ(t, t′) =
∑

x∈(D∗)3,(y1,y2)∈(D∗)2,j

π(t, x, y1, y2, j) (2.2.2)

×
(
π(t′, x, y2, y1, j)
π(t, x, y1, y2, j)

∧ 1
)
, t 6= t′

σπ(t, t) = 1−
∑

t′∈D+\{t}
σπ(t, t′). (2.2.3)
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The simulation of T ′ such that PT ′|T=t(t′) = σπ(t, t′) can be implemented in the
following way. First draw P = (X, Y1, Y2, j) such that PP |T = π, then set

T ′ =

α
(
α(X, Y2), Y1

)
, w. p.

(
π(T ′, X, Y2, Y1, j, n1, n2)
π(T,X, Y1, Y2, j, n1, n2) ∧ 1

)
,

T otherwise.

Proposition 2.2.2
Any crossing-over dynamics defined as in definition 2.2.6 on the previous page is
reversible with respect to PT = (PS)⊗n.

Proof. It is obvious that σπ(t, t′) = σπ(t′, t) for any texts t, t′, so we only have to
prove that PT (t) = PT (t′) as soon as σπ(t, t′) > 0.

In this case, there is a configuration (x, y1, y2, j) ∈ (D∗)3 ×B2
j × {j} such that

t = α
(
α(x, y1), y2

)
and t′ = α

(
α(x, y2), y1

)
. We can then remark that

P(T = t) = qBj(y2)
∑
y∈Bj

P
[
T = α

(
α(x, y1), y

)]
= qBj(y1) qBj(y2)

∑
y,y′∈Bj

P
[
α
(
α(x, y), y′

)]
= qBj(y1)

∑
y∈Bj

P
[
T = α

(
α(x, y2), y

)]
= P

[
T = α

(
α(x, y2), y1

)]
= P(T = t′).

2.3 Exponential families of Markov substitute
processes

As there may be compatibility issues, knowing whether there exists a language
distribution with a given family of Markov substitute sets is not obvious. We are
going in this section to give a theoretical answer to this question, by which we
mean a non constructive description of the Markov substitute processes having a
prescribed set of Markov substitute sets. We will show more precisely that the
language probability distributions having a prescribed finite collection of Markov
substitute sets form a union of exponential families (depending on their support),
and that these exponential families are non empty, meaning that the compatibility
issue between Markov substitute sets never results in a void model.
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Definition 2.3.1
For any given family B of subsets of D+, we will say that the random pro-
cess S ∈ D+ is a B-Markov substitute process if all the members B ∈ B are
Markov substitute sets for PS.

The purpose of this section is to describe the set of B-Markov substitute pro-
cesses.

We will first introduce the special subfamily of independent Markov substitute
processes, that will be useful to show that the set of B-Markov substitute processes
is not empty.

Given a strict sub-probability measure ξ ∈M+(D), let us put

r = 1−
∑
w∈D

ξ(w) > 0,

and let us define the independent process S̃ξ by its distribution

P(S̃ξ = w1:k) = r

1− r

k∏
j=1

ξ(wj).

Let us remark that it is such that P
[
`(S̃) = L

]
= r(1 − r)L−1. It is easy to see

from the definition that supp(ξ)+ is a Markov substitute set for the independent
model S̃ and that its substitute measure is equal to the distribution of S̃ξ itself.

We will start with a description of the possible supports of B-Markov substitute
processes.

To do so, let us introduce the equivalence relation ∼B defined as

y ∼B y′ ⇐⇒ ∃(xj, yj, y′j), xj ∈ (D∗)2, yj, y
′
j ∈ Bj ∈ B, 0 6 j 6 J,

y = α(x0, y0), y′ = α(xJ , y′J), α(xj−1, y
′
j−1) = α(xj, yj), 0 < j 6 J. (2.3.1)

Let us remark that any component of D+
/∼B is a Markov substitute set for

any B-Markov substitute process, due to the basic properties of Markov substitute
sets.

For any C ∈ D+
/∼B, let us define the subset BC of B present in C as

BC =
{
B ∈ B,

∑
x∈(D∗)2

1
(
α(x,B) ∩ C 6= ∅

)
> 0

}
.

Proposition 2.3.1
For any family B of subsets of D+, for any B-Markov substitute process S, there
is a subset CS ⊂ D+

/∼B such that the support supp
(
PS
)
is of the form

supp
(
PS
)

=
⋃

C∈CS

C (2.3.2)
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and such that
B =

⋃
C∈CS

BC . (2.3.3)

Conversely, if C ⊂ D+
/∼B is such that

B =
⋃
C∈C

BC , (2.3.4)

given any strict sub-probability measure ξ ∈M+(D), such that supp(ξ) = D, and
any probability measure µ ∈M 1

+(C ), such that supp(µ) = C , the process S defined
as

PS =
∑
C∈C

µ(C)P
S̃ξ|S̃ξ ∈ C

(2.3.5)

is a B-Markov substitute process such that

supp
(
PS

)
=

⋃
C∈C

C. (2.3.6)

Proof. Any component C ∈ D+
/∼B such that supp(PS) ∩ C 6= ∅ is a Markov

substitute set. Consequently, C ⊂ supp(PS), since by considering an empty con-
text x in eq. (2.1.2) on page 64,

P(S = s) = P(C) qC(s) > 0, s ∈ C.

Moreover, condition eq. (2.3.3) on the current page is required to ensure that all
members of B satisfies eq. (2.1.1) on page 64.

The support of S̃ξ being D+, it is clear that the support of S is as described
in eq. (2.3.6) on the current page. This implies that any member B ∈ B satisfies
eq. (2.1.1) on page 64.

Let us consider now any B ∈ B, any x ∈ (D∗)2, and any y ∈ B. There
is C ∈ D+

/∼B such that α(x, y) ∈ C. Consequently, α(x,B) ∈ C, since all
members of this set are connected as described in eq. (2.3.1) on the previous page.
We can write

PS
(
α(x, y)

)
=
µ(C)P

(
S̃ξ = α(x, y)

)
P(S̃ξ ∈ C)

=
µ(C)P

(
S̃ξ = α(x,B)

)
P
(
S̃ξ = y | S̃ξ ∈ B

)
P
(
S̃ξ ∈ C

)
= PS

(
α(x,B)

)
P
(
S̃ξ = y | S̃ξ ∈ B

)
,

proving that B satisfies eq. (2.1.2) on page 64, with qB = P
S̃ξ | S̃ξ ∈ B

. Conse-
quently, S is a B-Markov process as claimed in the proposition. In this proof, we
have used the fact that the Markov substitute property is stable by conditioning.
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We are now going to show that the B-Markov processes form an exponential
family, although we will not provide an efficient algorithm to compute the corre-
sponding energy function (or in other terms sufficient statistics). In this respect,
the method can be considered as non constructive.

Let B be any finite family of finite subsets of D+.
The B-Markov substitute processes remain the same if we replace B by any

other family of sets such that the equivalence relation ∼B remains unchanged.
Indeed, the fact that S is a B-Markov substitute process is equivalent to the
fact that any subset of D+

/∼B is a Markov substitute set, since it implies it and
the reverse implication is trivial (since each B ∈ B is included in one of the
components of D+

/∼B).
This property allows to propose some reorganization of B. First of all, we can

split any B ∈ B into pairs. Namely, if B = {yj, 1 6 j 6 k}, we can replace B
with the k − 1 sets {y1, yj}, 1 < j 6 k.

After this transformation, B, being a finite set of pairs, can be considered as
an undirected graph on D+ (with a finite number of edges). We can then remove
successively any pair included in a cycle, and prune in this way B until we obtain
an acyclic graph (this will leave the connected components of B, and therefore
also ∼B, unchanged). We can go further and remove more pairs as long as this
removal does not change ∼B, until we obtain a minimal set of pairs. However,
this last removal operation is not constructive since it is not clear that an efficient
algorithm could check the required property.

Let us now decompose the distribution of any B-Markov substitute process
into

PS(s) =
∑

C∈D+
/∼B

P(S ∈ C)P(S = s|S ∈ C).

Let us choose in each C ∈ D+
/∼B a reference point sC ∈ C, and let us write

explicitly
B =

{
{yi,0, yi,1}, 1 6 i 6 I

}
,

where we have chosen an explicit order or indexation for each pair of B.
Let us choose for any s ∈ C ∈ D+

/∼B, such that P(C) > 0 a path(
(xj, ij, σj), 0 6 j 6 J, xj ∈ (D∗)2, 1 6 ij 6 I, σj ∈ {0, 1}

)
(2.3.7)

such that

α(x1, yi0,σ0) = sC ,

α(xJ , yiJ ,1−σJ ) = s,

α(xj−1, yij−1,1−σj−1) = α(xj, yij ,σj), (2.3.8)
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and let us put

βi = log
(
q{yi,0,yi,1}(yi,1)
q{yi,0,yi,1}(yi,0)

)
, 1 6 i 6 I,

as,i =
J∑
j=0
1(ij = i)

(
1(σj = 0)− 1(σj = 1)

)
, s ∈ C, 1 6 i 6 I,

bs = log
(
P(S = s)
P(S = sC)

)
·

The vector bs defines PS|S ∈ C , according to the relation

P(S = s|S ∈ C) = exp(bs)∑
s′∈C

exp(bs′)
·

Moreover, due to the Markov substitute property,

bs =
I∑
i=1

as,iβi, (2.3.9)

since
PS(s)
PS(sC) =

J∏
j=0

q{yji,0,yji,1}(yji,1−σj)
q{yji,0,yji,1}(yji,σj)

· (2.3.10)

Let us remark now that S is a B-Markov substitute process, if and only if

B =
⋃

C∈D+
/∼B,P(S∈C)>0

BC , (2.3.11)

and eq. (2.3.10) on the current page holds not only for the chosen path, but for
any path connecting sC and s as prescribed above, for some set of substitute mea-
sures qB, B ∈ B, with full support supp(qB) = B. Indeed the first condition
eq. (2.3.11) on this page is required by eq. (2.1.1) on page 64 and the second con-
dition is obviously necessary too. The two conditions are also sufficient. Indeed, in
this case, for any y ∈ B = {yi,0, yi,1} ∈ B, there is C such that P(C) > 0 and there
is x ∈ (D∗)+ such that α(x,B) ∩ C 6= 0. Therefore, α(x,B) ⊂ C, because obvi-
ously α(x, yi,0) ∼B α(x, yi,1). According to eq. (2.3.10) on this page, P(S = s) > 0
for any s ∈ C, so that P

(
S = α(x, yi,0)

)
> 0 and P

(
S = α(x, yi,1)

)
> 0, implying

that P
(
S = α(x, y)

)
> 0, and therefore that eq. (2.1.1) on page 64 is satisfied.

Moreover, given x ∈ (D∗)2 and i, 1 6 i 6 I, such that P
(
S = α(x, {yi,0, yi,1})

)
> 0,

considering the component C ∈ D+
/∼B such that α(x, yi,0) ∈ C, this implies that
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α(x, yi,1) ∈ C also, and that we can connect sC with α(x, yi,1) adding to the
path chosen to connect sC with α(x, yi,0) the step (x, i, 0) at the end of the path.
Applying eq. (2.3.10) on the facing page to these two paths proves that

PS
(
α(x, yi,1)

)
PS
(
α(x, yi,0)

) =
q{yi,0,yi,1}(yi,1)
q{yi,0,yi,1}(yi,0) ,

and therefore that S is a B-Markov process.
Now we can remark that eq. (2.3.10) on the preceding page will hold for any

path, and not only the chosen one, if and only if, for any loop ` ∈ L connecting
some sC , such that P(S ∈ C) > 0 to itself, that is satisfying eq. (2.3.8) on page 77,
with s = sC , the corresponding vector of weights

c`,i =
J∑
j=0
1(ij = i)

(
1(σj = 0)− 1(σj = 1)

)
, 1 6 i 6 I,

is such that
I∑
i=1

c`,i βi = 0. (2.3.12)

Let us remark that L is countable but may be infinite. By reindexing BC if
necessary, we may assume that the vectors (c·,i, d < i 6 I) forms a basis of the
vector space generated by the vectors c·,i, 1 6 i 6 I, where d is some integer. We
can therefore find a real matrix (ej,i, d < j 6 I, 1 6 i 6 I) such that

c`,i =
I∑

j=d+1
c`,j ej,i, ` ∈ L , 1 6 i 6 I.

Let us remark that the submatrix (ej,i, d < j 6 I, d < i 6 I) is equal to the
identity matrix. Substituting in eq. (2.3.12) on the current page, we get

I∑
j=d+1

c`,j
I∑
i=1

ej,i βi = 0.

Since by construction c·,i, d < j 6 I are independent, eq. (2.3.12) on this page is
equivalent to

I∑
i=1

ej,i βi = 0, d < j 6 I,

which can be rewritten according to the fact that (ej,i, d < j 6 I, d < i 6 I) is the
identity, as

βj = −
d∑
i=1

ej,i βi, d < j 6 I.
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Plugging this condition into eq. (2.3.9) on page 78, we get that S is a B-Markov
process if and only if

bs = −
d∑
i=1

βi Ui(s), s ∈ supp(PS),

where

Ui(s) = −
(
as,i −

I∑
j=d+1

as,j ej,i

)
, s ∈ supp(PS), 1 6 i 6 d.

Let us insist on the fact that the energy Ui(s) depends only on supp(PS), and not
on the coefficients βi that defines the substitute measures of the members of B
under PS.

We conclude that the process S is a B-Markov substitute process if and only
if its support satisfies eq. (2.3.11) on page 78 and there is a vector of real coeffi-
cients (βi ∈ R, 1 6 i 6 d) such that

P(S = s) =
∑

C∈D+
/∼B

1(s ∈ C)P(S ∈ C)
exp

(
−

d∑
i=1

βi Ui(s)
)

∑
s′∈C

exp
(
−

d∑
i=1

βi Ui(s′)
) ,

where the energy function Ui(s), depends only on supp(PS). This can be written
as an exponential family on supp(PS). More precisely, for any C ∈ D+

/∼B such
that

B =
⋃
C∈C

BC ,

the set of B-Markov processes whose support is ⋃C is the exponential family


 exp

(
−

∑
C∈C \{C0}

βC 1(s ∈ C)−
d∑
i=1

βi Ui(s)
)

∑
C∈C

∑
s′∈C

exp
(
−

∑
C∈C \{C0}

βC 1(s′ ∈ C)−
d∑
i=1

βi Ui(s′)
) , s ∈⋃C

, βC , βi ∈ R
,

where βC and βi should also be such that the denominator is not infinite.
Moreover, this exponential family contains the independent Markov substitute

processes described previously, so that necessarily d > 1, as soon as B is not
trivial, that is contains at least a member that is not a one point set.

Let us summarize what we have proved in the following proposition.
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Proposition 2.3.2
Given any finite set B of finite subsets of D+, there is a finite set of pairs, P,
that we can choose such that each one is included in a member of B, such that the
sets of B-Markov and P-Markov substitute processes are the same, and such that
P is minimal for the inclusion relation (removing a pair from P would break the
above property).

For any B-Markov substitute process S, we can decompose its support as a
union of components C ⊂ D+

/∼B, such that supp(PS) = ⋃
C and such that

B =
⋃
C∈C

BC .

For any such subset, there is a free, non empty subset of pairs F ⊂ P, a ma-
trix

(
ej,i, j ∈ P \ F , i ∈ F

)
, an index set I(C ) containing F and an energy

function
(
Ui(s), i ∈ I(C ), s ∈ C

)
, such that the set of B-Markov processes whose

support is ⋃C is the linear exponential family

MC (B) =


p(s) =

exp
(
−

∑
i∈I(C )

βi Ui(s)
)

∑
s′∈
⋃

C

exp
(
−

∑
i∈I(C )

βi Ui(s′)
) , s ∈⋃C

, β ∈ B ⊂ RI(C )

,

where

B =
{
β ∈ RI(C ),

∑
s∈
⋃

C

exp
(
−

∑
i∈I(C )

βiUi(s)
)
<∞

}
,

and such that for any member p of this family, the substitute measure of any
pair i = {yi,0, y′i,1} ∈ F (taken in a suitable order compatible with the definition
of U), is given by

qi(yi,σ) = exp(σβi)
1 + exp(βi)

, σ ∈ {0, 1},

whereas for j ∈P \F ,

qj(yi,σ) = exp(σβj)
1 + exp(βj)

, σ ∈ {0, 1},

where
βj =

∑
i∈F (C)

ej,i βi.
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This result implies that the maximum likelihood estimator in MC (B) provides an
asymptotically efficient estimator of the parameters βi, i ∈ I(C ). We will describe
in section 3.3 on page 135 exponential families of Markov substitute processes
restricted to finite subdomains D of D+ and provide a way to compute with the
help of a Monte-Carlo simulation the maximum likelihood estimator in this finite
setting (where B = RI(C )).

Let us give an example showing that it is possible to have P 6= F and that
F and therefore the form of the energy may depend on C .

Let us consider the family B = {B1, B2}, where B1 = {ab, a}, B2 = {bc, c},
and where a, b, c ∈ D.

Let us consider

C1 = {abnc, n ∈ N},
C2 = {bmcabn,m, n ∈ N},
C3 = {bkcabmcabn, k,m, n ∈ N}.

It is easy to check that C1, C2, C3 ∈ D
+
/∼B, and that {C1}, {C2} and {C3} are all

valid choices for C , since both B1 and B2 are present in those three components.
On C1, we have the loop

(a)c→ (ab)c→ a(bc)→ a(c),

and the induced constraint that qB1(ab) = qB2(bc), so that

M{C1} =
{(
p(abnc) = r(1− r)n

)
, r ∈]0, 1[

}
.

Moreover we can take F ({C1}) = {B1}, and although BC1 = B, we could remove
either B1 or B2 from B while maintaining the fact that C1 ∈ D

+
/∼B and without

changing M{C1}.
On C2, we have no non trivial loop, so that F ({C2}) = B and

M{C2} =
{(
p
(
bmcabn

)
= r1r2(1− r1)m(1− r2)m

)
, r1, r2 ∈]0, 1[

}
.

On C3, we have the same kind of non trivial loop as on C1, imposing the
constraint qB1 = qB2 , so that

M{C3} =
{(
p
(
bkcabmcabn

)
= r(1− r)k+m+n, k,m, n ∈ N

)
, r ∈]0, 1[

}
,

but this time, removing B1 or B2 from B would disconnect the component C3 that
would no longer belong to D+

/∼B.
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On {C1, C2}, the situation is again different

M{C1,C2} =
{(
p
(
abnc

)
= r1r2(1− r2)n,

p
(
bmcabn

)
= (1− r1)r2(1− r2)m+n,m, n ∈ N

)
, r1, r2 ∈]0, 1[

}
.

It is interesting to remark that the trace of M{C1,C2} on C2 (the set of conditional
probabilities on C2 of distributions in M{C1,C2}), is not equal to M{C2}: the pres-
ence of C1 in the support imposes further constraints on the dependence between
substitute measures.

2.4 Testing Markov substitute sets
We will discuss in this section the question of building statistical tests to decide
whether sets of expressions are Markov substitute sets.

Let us consider a family of sets of contexts Θ ⊂ 2(D∗)2 , and assume that it
contains all single contexts {x}, x ∈ (D∗)2.

Let us assume that we already know that B1 and B2 are two Markov substitute
sets. If they have a non void intersection, their union is also a Markov substitute
set. However, this may be hard to check, so we assume that we do not know
whether they are disjoint or not, and want to test whether their union B = B1∪B2
is a Markov substitute set.

To perform this test, we assume that we can check efficiently whether a given
y ∈ D+ belongs to B1 or to B2, using a parsing algorithm. We consider the random
variables

FB1,B2,θ

(
XB, YB, p

)
=
[
1(YB ∈ B1)− p 1(YB ∈ B)

]
1(XB ∈ θ),

θ ∈ Θ, p ∈ [0, 1], (2.4.1)

where (XB, YB) is the B-parse defined in section 2.1.5 on page 67. It is easy to
deduce from the properties stated in this section that B is a Markov substitute
set if and only if, there is p ∈ [0, 1] such that for any θ ∈ Θ,

E
[
FB1,B2,θ

(
XB, YB, p

)]
= 0.

If we do not want to actually simulate the parse process (XB, YB), we can work
with E

[
FB1,B2,θ(XB, YB, p)

∣∣∣S] instead of working with FB1,B2,θ(XB, YB, p) itself. In
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other words, we may consider

FB1,B2,θ

(
S, p

)
= E

[(
1(YB ∈ B1)− p 1(YB ∈ B)

)
1(XB ∈ θ)

∣∣∣S]
=

∑
x∈(D∗)2

∑
y∈B1∪B2

1(x ∈ θ) min
y′∈B1∪B2

π
(
α(x, y′), x, y′

)
×
[
1
(
y ∈ B1

)
(1− p)− 1

(
y ∈ B2

)
p
]
1
(
S = α(x, y)

)
. (2.4.2)

Using this last formula, we can see that

E
[
FB1,B2,θ(S, p)

]
=
∑
x∈θ

min
y′∈B1∪B2

π
(
α(x, y′), x, y′

)
×
[
PS
(
α(x,B1)

)
(1− p)− pPS

(
α(x,B2)

)]
.

2.4.1 Alternative construction of a test function
For any θ ∈ Θ, let us consider some probability measure νθ ∈ M 1

+((D∗)2), such
that θ ⊂ supp(νθ) (in the case when θ is a finite set, we can for instance consider
the uniform measure on θ).

Let Xθ be some random variable distributed according to νθ and independent
of S. Since y 7→ α(x, y) is one to one, we can define a random variable Yθ ∈ D∗
by the property α(Xθ, Yθ) = S when S ∈ α(Xθ, D

+), and Yθ = ε otherwise.
Let us define the test functions

FB1,B2,θ(S, p) =
∑

x∈(D∗)2

∑
y∈D+

νθ(x)1
(
x ∈ θ

)
1
(
S = α(x, y)

)
×
[
1(y ∈ B1)− p1

(
y ∈ B1 ∪B2

)]
= E

[(
1
(
Yθ ∈ B1

)
−p1

(
Yθ ∈ B1 ∪B2

))
1
(
Xθ ∈ θ

) ∣∣∣S]. (2.4.3)

We see on this expression that this definition of the test function may not be very
efficient when θ is large, because of the factor νθ(x), but that it will not be affected
by the size of B1 ∪ B2, that is not even required to be a finite set, whereas the
definition given in eq. (2.4.2) on the current page may be inefficient when B1 ∪B2
is large, and does not allow B1 ∪B2 to contain an infinite number of elements.

Given that B1 and B2 are two Markov substitute sets, it is easy to see that
B = B1 ∪ B2 is a Markov substitute set if and only if there is p ∈ [0, 1] such that
for any θ ∈ Θ,

E
[
FB1,B2,θ(S, p)

]
= 0.

Indeed, we can write this expectation as∑
x∈θ

νθ(x)
[
PS
(
α(x,B1)

)
(1− p)− pPS

(
α(x,B2)

)]
.
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If we are ready to loose the interpretation of FB1,B2,θ(S, p) in terms of the
random variables Xθ and Yθ, while retaining the property that |FB1,B2,θ(S, p)| 6 1,
we can take for some real parameter α > 1,

νθ(x) = ν(x) = ν(x1, x2) = (α− 1)2
(
`(x1) + 2

)−α(
`(x2) + 2

)−α
,

that is such that for any s ∈ D+,∑
x∈(D∗)2

∑
y∈D+

ν(x)1
(
s = α(x, y)

)
6 1.

We can also build tests that are more closely related to the invariant dynamics
introduced in section 2.2.1 on page 69. Let us assume that B1 and B2 are dis-
joint Markov substitute sets. Let π be a conditional probability kernel, satisfying
eq. (2.1.4) on page 67, for B = B1 ∪B2.

Consider the family of test functions

FB1,B2,θ(S, p) =
∑

x∈(D∗)2

∑
y1∈B1,y2∈B2

1(x ∈ θ)
[
π
(
α(x, y1), x, y1

)
∧ π

(
α(x, y2), x, y2

)]
×
[
1
(
S = α(x, y1)

)
qB2(y2)(1− p)− 1

(
S = α(x, y2)

)
qB1(y1)p

]
. (2.4.4)

The advantage, when compared to eq. (2.4.2) on the facing page or eq. (2.4.3) on
the preceding page is that we take the infimum on two values of the kernel π only,
and that the coefficient νθ(x) is not present. The drawback is that we have to
know, or at least to estimate the substitute measures qB1 and qB2 .
Proposition 2.4.1
Let us assume that B1 and B2 are two Markov substitute sets. Let us also assume
that for any (x, y) ∈ (D∗)2 × (B1 ∪ B2), π

(
α(x, y), x, y

)
> 0. Then B1 ∪ B2 is a

Markov substitute set if and only if there is p ∈ [0, 1] such that for any θ ∈ Θ,

E
(
FB1,B2,θ(S, p)

)
= 0,

so that we can use the random variables FB1,B2,θ(S, p) to define a test.

To see that the proposition is true, we can remark that

E
(
FB1,B2,θ(S, p)

)
=

∑
x∈(D∗)2

 ∑
(y1,y2)∈B1×B2

1(x ∈ θ)qB1(y1)qB2(y2)

×
[
π
(
α(x, y1), x, y1

)
∧ π

(
α(x, y2), x, y2

)]
×
[
PS
(
α(x,B1)

)
(1− p)− PS

(
α(x,B2)

)
p
]
.
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If B1 ∪B2 is a Markov substitute set, then

PS
(
α(x,B1)

)
= PS

(
α(x,B1 ∪B2

)
qB1∪B2(B1),

PS
(
α(x,B2)

)
= PS

(
α(x,B1 ∪B2

)
qB1∪B2(B2),

so that E
(
FB1,B2,θ(S, qB1∪B2(B1)

)
= 0.

On the other hand, if for any θ ∈ Θ, E
(
FB1,B2,θ(S, p)

)
= 0, then for any

context x ∈ (D∗)2,

PS
(
α(x,B1)

)
− p PS

(
α(x,B1 ∪B2)

)
= 0,

implying that B1 ∪B2 is a Markov substitute set with qB1∪B2(B1) = p.
To see how FB1,B2,θ(S, p) can be computed by simulations, we can remark that

FB1,B2,θ(S, p) =
∑

x∈(D∗)2

∑
y,y′∈(D∗)2

π(S, x, y)1(x ∈ θ)

×
[
1(y ∈ B1)(1− p)qB2(y′)− 1(y ∈ B2)pqB1(y′)

]
×

π
(
α(x, y′), x, y′

)
π
(
α(x, y), x, y

) ∧ 1
 .

Thus, if we draw
P(X, Y )|S = π

and
PY ′|X, Y = 1(Y ∈ B1)qB2 + 1(Y ∈ B2)qB1

we obtain that

FB1,B2,θ(S, p) = E

1(X ∈ θ)
[
1(Y ∈ B1)(1− p)− 1(Y ∈ B2)p

]

×

π
(
α(X, Y ′), X, Y ′

)
π
(
α(X, Y ), X, Y

) ∧ 1
 ∣∣∣∣ S

.
Let us introduce the weights

w(x, y) = E

(π
(
α(X, Y ′), X, Y ′

)
π
(
α(X, Y ), X, Y

) ∧ 1
)∣∣∣∣X = x, Y = y

,
and the random variables (X ′′, Y ′′) defined as

PX ′′, Y ′′|X, Y = w(X, Y )δX, Y +
(
1− w(X, Y )

)
δ(
α(X, Y ), ε

)
, ε
.
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We can rewrite FB1,B2,θ(S, p) as

FB1,B2,θ(S, p) = E

{
1(X ′′ ∈ θ)

[
1
(
Y ′′ ∈ B1

)
− p1

(
Y ′′ ∈ B1 ∪B2

)]∣∣∣S}.
This shows that we could also simulate (X ′′, Y ′′) and base the tests on

FB1,B2,θ(X ′′, Y ′′, p) = 1(X ′′ ∈ θ)
[
1
(
Y ′′ ∈ B1

)
− p1

(
Y ′′ ∈ B1 ∪B2

)]
. (2.4.5)

In this way we fall back on the same setting as the previous one, defined by
eq. (2.4.1) on page 83.

2.5 Weakening the Markov substitute assump-
tion

Let us remark that if we do not want to assume that π
(
α(x, y), x, y

)
> 0 for

all (x, y) ∈ (D∗)2×D∗, we will test a weaker property than the Markov substitute
property, as stated in the following proposition.
Proposition 2.5.1
Let us assume that for any x ∈ (D∗)2, there is θ ∈ Θ such that θ = {x}. Let us
assume also that the dynamics

k(s, s′) =
∑

x∈(D∗)2,(y,y′)∈(D∗)2

π(s, x, y)

×
[
1(y ∈ B1)qB1(y′) + 1(y ∈ B2)qB2(y′)

] (π(s′, x, y′)
π(s, x, y) ∧ 1

)
, s 6= s′,

k(s, s) = 1−
∑
s′ 6=s

k(s, s′)

is reversible with respect to PS. Under these assumptions, the dynamics

k′(s, s′) =
∑

x∈(D∗)2,(y,y′)∈(D∗)2

π(s, x, y)

×
[
pqB1(y′) + (1− p)qB2(y′)

] (π(s′, x, y′)
π(s, x, y) ∧ 1

)
, s 6= s′,

k′(s, s) = 1−
∑
s′ 6=s

k(s, s′).

is reversible with respect to the same invariant probability measure if and only
if, for all θ ∈ Θ, E

(
FB1,B2,θ(S, p)

)
= 0, where the test function is defined as in

eq. (2.4.4) on page 85.
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This comes from the fact that k is reversible if and only if for any any i ∈ {1, 2},
any x ∈ (D∗)2, (y, y′) ∈ B2

i such that π
(
α(x, y), x, y

)
∧ π

(
α(x, y′), x, y′

)
> 0,

P
(
S = α(x, y)

)
qBi(y′) = P

(
S = α(x, y′)

)
qBi(y).

Actually, weakening the hypothesis opens perspectives for a more refined mod-
eling. We can for instance implement along this line the masking of some syntactic
categories. As an example, in the idiom “ a Trojan horse ” you would like to pre-
vent the possibility of replacing horse with another noun, whereas you would like
to be able to do so in other contexts.

2.6 Testing the Markov substitute property us-
ing a parse process

In this section, we will propose a test for the Markov substitute property based on
test functions of the type

Fθ(X, Y, p) = 1(X ∈ θ)
[
1(Y ∈ B1)− p 1(Y ∈ B1 ∪B2)

]
,

where B1 and B2 are Markov substitute sets, and the test has to decide whether
B = B1∪B2 is also a Markov substitute set. This covers two possible constructions
of the parse process, defined either by eq. (2.4.1) on page 83, or by eq. (2.4.5) on
the previous page. We make this study as an introduction to tests based on the
other type of test functions, where a conditional expectation knowing S is taken.
In particular, we will not address here the question of making the test uniform
with respect to the range of values that the pair B1, B2 may take.

As already explained, in both cases, we want to test whether there is a value
of p ∈ [0, 1] such that for any θ ∈ Θ, E

[
Fθ(X, Y, p)

]
= 0. Let us introduce the

constants

p+ = sup
{
P
(
Y ∈ B1 |Y ∈ B,X = x

)
;x ∈ (D∗)2,P(Y ∈ B,X = x) > 0

}
,

p− = inf
{
P
(
Y ∈ B1 |Y ∈ B,X = x

)
;x ∈ (D∗)2,P(Y ∈ B,X = x) > 0

}
.

Remark that with these notations, E
[
Fθ(X, Y, p)

]
= 0 when p+ = p− = p, which

corresponds exactly to the Markov substitute property to be tested.
Since p 7→ Fθ(X, Y, p) is non-increasing,

E
[
Fθ(X, Y, p+) |X, Y ∈ B

]
6 0,

E
[
Fθ(X, Y, p−) |X, Y ∈ B

]
> 0,
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and, observing that Fθ is null when 1(Y ∈ B) = 0, we obtain that

E
[
Fθ(X, Y, p+) |X,1(Y ∈ B)

]
6 0, (2.6.1)

E
[
Fθ(X, Y, p−) |X,1(Y ∈ B)

]
> 0.

These inequalities will be used to get bounds for p+ and p−, based on concentration
inequalities concerning the empirical mean of Fθ(X, Y, p).

The test will be based on a simulation (Xi, Yi), 1 6 i 6 n of the random parse
process, where each pair (Xi, Yi) is independently drawn from the conditional
probability distribution PX, Y |S . Doing so, we obtain an i.i.d. sample (Xi, Yi),
1 6 i 6 n.

2.6.1 Probability of false rejection
Proposition 2.6.1
Let µ ∈M 1

+ be a probability measure depending only on
(
Xi,1(Yi ∈ B), i ∈ J1, nK

)
.

Let us define
Fθ,i(p) = Fθ(Xi, Yi, p).

Let Λ be a finite subset of ]0, 1[. With probability at least 1− 2ε,

B−(p+) def= sup
ρ∈M 1

+(Θ),λ∈Λ

∫ n∑
i=1

log
(
1 + λFθ,i(p+)

)
dρ(θ)−K (ρ, µ)− log

(
|Λ|/ε

)
6 0,

B+(p−) def= sup
ρ∈M 1

+(Θ),λ∈Λ

∫ n∑
i=1

log
(
1− λFθ,i(p−)

)
dρ(θ)−K (ρ, µ)− log

(
|Λ|/ε

)
6 0,

where

K (ρ, µ) =


∫

log
(dρ

dµ

)
dρ, when ρ� µ,

+∞, otherwise.

Therefore, if we reject the hypothesis that B is a Markov substitute set when

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> 0, (2.6.2)

the probability of false rejection is at most 2ε.

Remark 2.6.1
We may also strengthen the Markov substitute property, requiring that the substi-
tute measure is not too unbalanced. For any real parameter η ∈]0, 1[, we will say
that (B1, B2) is an η-Markov substitute pair of sets when B = B1∪B2 is a Markov
substitute set such that qB(B1) ∈ [η, 1 − η]. According to the proposition, we can
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reject the hypothesis that the pair (B1, B2) is an η-Markov substitute pair of sets
when

inf
p∈[η,1−η]

max
{
B−(p), B+(p)

}
> 0, (2.6.3)

with a probability of false rejection not greater than 2ε.

Proof. Let us prove the last statement of the proposition first, assuming that
the rest is true. In the case when B is a Markov substitute set, p− = p+, so that
with probability at least 1− 2ε,

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
6 max

{
B−(p+), B+(p+)

}
6 0.

Consequently
P

(
inf

p∈[0,1]
max

{
B−(p), B+(p)

}
> 0

)
6 2ε.

If moreover (B1, B2) is an η-Markov substitute pair of sets, then p+ ∈ [η, 1 − η],
so that with probability at least 1− 2ε,

inf
p∈[η,1−η]

max
{
B−(p), B+(p)

}
6 max

{
B−(p+), B+(p+)

}
6 0,

proving that
P

(
inf

p∈[η,1−η]
max

{
B−(p), B+(p)

}
> 0

)
6 2ε.

Let us now proceed to the proof of the first statement of the proposition. Let
us put

Wθ(λ) =
n∑
i=1

log
(
1 + λFθ,i(p+)

)
.

This is legitimate, since |Fθ,i(p)| 6 1, and λ < 1. From eq. (2.6.1) on the preceding
page, and the independence of

(
Xi,1(Yi ∈ B), Fθ,i(p+)

)
,1 6 i 6 n,

E
[
exp

(
Wθ(λ)

) ∣∣∣Xi,1(Yi ∈ B), 1 6 i 6 n
]

=
n∏
i=1
E
(
1 + λFθ,i(p+)

∣∣∣Xi,1(Yi ∈ B)
)
6 1.

Since µ depends only on Xi, and 1(Yi ∈ B), 1 6 i 6 n, we get that

E

[∫
exp

(
Wθ(λ)

)
dµ(θ)

]
= E

[∫
E
[
exp

(
Wθ(λ)

)
|Xi,1(Yi ∈ B), 1 6 i 6 n

]
dµ(θ)

]
6 1.
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Together with the remark that for any distribution ρ ∈M 1
+(Θ),

log
(∫

exp(h) dµ
)
>
∫
h dρ−K (ρ, µ), (2.6.4)

we get finally that

E
[
exp

(
B−(p+)

)]
= E

[
exp

(
sup

ρ∈M 1
+(Θ),λ∈Λ

∫
Wθ(λ) dρ(θ)−K (ρ, µ)− log

(
|Λ|/ε

))]

6 E
[∑
λ∈Λ

∫
exp

(
Wθ(λ)− log

(
|Λ|/ε

))
dµ(θ)

]
6 ε,

proving through the Markov inequality that P
(
B−(p+) > 0

)
6 ε. The proof con-

cerning B+(p−) is the same, mutatis mutandi (changing λ for −λ and + for −).

In practice, we will assume that

sup
{ ∣∣∣{θ ∈ Θ : x ∈ θ

}∣∣∣ : x ∈ (D∗)2, α(x,B) ∩ supp
(
PS
)
6= ∅

}
6 m, (2.6.5)

and choose for µ the uniform probability measure on

Θ̂ =
{
θ ∈ Θ, {Xi, 1 6 i 6 n} ∩ θ 6= ∅

}
, (2.6.6)

a set of size at most mn. In this case K (ρ, µ) 6 log
(
|Θ̂|
)
6 log(mn), the former

inequality being an equality when ρ is a Dirac mass.

2.6.2 Probability of false acceptance of the hypothesis
We have built the test of eq. (2.6.2) on page 89 by controlling its probability of
false rejection. We would like now to study its probability of false acceptance.
To this purpose, let us establish lower bounds for B−(p+) and B+(p−). (We need
indeed to prove that these quantities cannot be both negative when the hypothesis
is false.)
Lemma 2.6.2
Let us define

p(θ) = P
(
Y ∈ B1 |X ∈ θ, Y ∈ B

)
.

For any p ∈ [0, 1], any λ ∈]− 1, 1[,

E

[
exp

(
− log

[
1 + λFθ(p)

])]
6 exp

[
E
[
1(X ∈ θ, Y ∈ B)

][
λ
(
p− p(θ)

)
+ λ2

1− |λ|

(
p(θ)

(
1− p(θ)

)
+
(
p− p(θ)

)2
)]]

.
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Proof. Let us remark first that for −1 < λ < 1,−1 6 x 6 1,

− log(1 + λx) = log
(

1− λx+ λ2x2

1 + λx

)
6 log

(
1− λx+ λ2x2

1− |λ|

)
.

As a consequence,

E

[
exp

(
− log

[
1 + λFθ(p)

])]
6 1− λE

(
Fθ(p)

)
+ λ2

1− |λ|E
(
Fθ(p)2

)
·

The rest follows easily from

E
(
Fθ(p)

)
= E

[(
1(Y ∈ B1)− p

)
1(X ∈ θ, Y ∈ B)

)]
=
(
p(θ)− p

)
E
[
1(X ∈ θ, Y ∈ B)

]
,

E
(
Fθ(p)2

)
= E

[(
1(Y ∈ B1)− p

)2
1(X ∈ θ, Y ∈ B)

]
= E

[(
1(Y ∈ B1)(1− 2p) + p2

)
1(X ∈ θ, Y ∈ B)

]
=
(
p(θ)(1− 2p) + p2

)
P
(
X ∈ θ, Y ∈ B

)
=
[
p(θ)

(
1− p(θ)

)
+
(
p− p(θ)

)2]
P
(
X ∈ θ, Y ∈ B

)
.

Proposition 2.6.3
Let us assume that eq. (2.6.5) on the preceding page holds and that µ is the uniform
probability measure on the finite set of parameters Θ̂ defined by eq. (2.6.6) on the
previous page. Let us put

δ = log(mn) + 2 log(ε−1) + log(|Λ|)
n

,

and
χ = sup

x ∈ [n−1/2, n1/2]
inf

λ ∈ Λ
cosh

[
log
(

λ

(1− λ)x

)]
·

Let us assume that there are θ+ and θ− ∈ Θ such that p+ = p(θ+), p− = p(θ−),
q+ = E

[
1(Y ∈ B)fθ+(X)

]
and q− = E

[
1(Y ∈ B)fθ−(X)

]
satisfy

min{q−, q+} > 8χ2δ,

p+ − p− > 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
+ (2 +

√
2)δ

q+

+ 2χ

√√√√p−(1− p−)δ
q−

(
1 + 4χ2δ

q−

)
+ (2 +

√
2)δ

q−
· (2.6.7)
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Then with probability at least 1− 2ε

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> 0.

Therefore, the test defined by eq. (2.6.2) on page 89 has in this case a probability
of false acceptance at most equal to 2ε.

If we assume instead of eq. (2.6.7) on the preceding page that

p+ − 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
− (2 +

√
2)δ

q+
> 1− η, (2.6.8)

or that p− + 2χ

√√√√p−(1− p−)δ
q−

(
1 + 4χ2δ

q−

)
+ (2 +

√
2)δ

q−
> η, (2.6.9)

then with probability at least 1− ε,

inf
p∈[η,1−η]

max
{
B−(p), B+(p)

}
> 0.

Therefore the test defined by eq. (2.6.3) on page 90 has a probability of false accep-
tance not greater than ε in this case.

These two statements are consequences of the following more precise one. Each
of the two following inequalities holds with probability at least 1 − ε (so that both
hold together with probability at least 1− 2ε):

B−

p+ − 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
− (2 +

√
2)δ

q+

 > 0 (2.6.10)

B+

p− + 2χ

√√√√p−(1− p−)δ
q−

(
1 + 4χ2δ

q−

)
+ (2 +

√
2)δ

q−

 > 0. (2.6.11)

Proof. Let us assume for a while the more precise statement at the end of the
proposition. Under the hypothesis specified by eq. (2.6.7) on the preceding page,
there is p∗ ∈ [0, 1], such that

p− + 2χ

√√√√p−(1− p−)δ
q−

(
1 + 4χ2δ

q−

)
+ (2 +

√
2)δ

q−

6 p∗

6 p+ − 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
− (2 +

√
2)δ

q+
·
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As a consequence of the fact that p 7→ B−(p) is non-increasing and p 7→ B+(p) is
non-decreasing, this implies from the precise statement at the end of the proposi-
tion that with probability at least 1−2ε, min

{
B−(p∗), B+(p∗)

}
> 0, and therefore

that

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> min

{
inf

p∈[0,p∗]
B−(p), inf

p∈[p∗,1]
B+(p)

}
= min

{
B−(p∗), B+(p∗)

}
> 0.

In the same way, if we assume eq. (2.6.8) on the preceding page, we get with
probability at least 1− ε that B−(1− η) > 0 and if we assume that eq. (2.6.9) on
the previous page, we get with probability at least 1− ε that B+(η) > 0.

Let us now prove the precise statement at the end of the proposition. Let us
put

p = p+ − 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
− (2 +

√
2)δ

q+
·

Let us choose λ ∈ Λ such that

λ ∈ argmin
ζ∈Λ

cosh
log

 ζ

1− ζ

√
[p+(1− p+) + (p+ − p)2]q+

δ

·
Let us remark that p+ − p >

δ

q+
, so that

√
1
n
6

√
δ

q+
6

√
[p+(1− p+) + (p+ − p)2]q+

δ
6
√
q+

δ
6
√
n.

This implies that

cosh
log

 λ

1− λ

√
[p+(1− p+) + (p+ − p)2]q+

δ

 6 χ.

Let us remark also that

B−(p) >
n∑
i=1

log
[
1 + λFθ+,i(p)

]
− log(mn)− log

(
|Λ|/ε

)
.

According to lemma 2.6.2 on page 91, with probability at least 1− ε,∑
i

log
(
1 + λFθ+,i(p)

)
> − log

(
ε−1

)
− λ(p− p+)− λ2

1− λ

(
p+

(
1− p+

)
+
(
p− p+

)2
)
.
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This implies that with probability at least 1− ε,

B−(p) > nq+λ

(p+ − p)−
λ

1− λ
[
p+(1− p+) + (p+ − p)2

]
− δ

λq+

·
Decomposing δ

λq+
= δ(1− λ)

λq+
+ δ

q+
and using the identity

ax+ b/x = 2
√
ab cosh

[
log
(
x

√
a

b

)]
, x, a, b ∈ R∗+,

we obtain that with probability at least 1− ε,

B−(p) > nq+λ

(p+ − p)−
δ

q+
− 2

√√√√ [p+(1− p+) + (p+ − p)2]δ
q+

× cosh
log

 λ

1− λ

√
[p+(1− p+) + (p+ − p)2]q+

δ


> nq+λ

p+ − p−
δ

q+
− 2χ

√√√√ [p+(1− p+) + (p+ − p)2]δ
q+

·
Let us put ρ = 4χ2δ

q+
, v = p+(1 − p+), y = δ

q+
and x = p+ − p. The sign of the

right-hand side of the previous inequality is the same as the sign of
p+ − p−

δ

q+

2

− 4χ2δ[p+(1− p+) + (p+ − p)2]
q+

= x2 − 2yx+ y2 − ρv − ρx2

= (1− ρ)x2 − 2yx− (ρv − y2).

This quantity is non negative when x is not less than

y

1− ρ +

√√√√ y2

(1− ρ)2 + ρv − y2

1− ρ = y

1− ρ +

√√√√ ρy2

(1− ρ)2 + ρv

1− ρ

6

√
ρv

1− ρ +
(1 +√ρ)y

1− ρ 6
√
ρv

(
1 + ρ

2(1− ρ)

)
+

(1 +√ρ)y
1− ρ

6
√
ρv(1 + ρ) + (2 +

√
2)y = 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
+ (2 +

√
2)δ

q+
,
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where we have used the inequalities
√
a+ b 6

√
a +
√
b,
√

1
1− ρ 6 1 + ρ

2(1− ρ)
and ρ 6 1/2.

This proves that with probability at least 1− ε,

B−

p+ − 2χ

√√√√p+(1− p+)δ
q+

(
1 + 4χ2δ

q+

)
− (2 +

√
2)δ

q+

 > 0.

The proof of eq. (2.6.11) on page 93 is obtained exactly in the same way.

2.7 Testing Markov substitute sets without sim-
ulating the parse process

In this section, we will embrace a broader scope than testing for a single Markov
substitute pair of sets.

We will assume that some partition B of D+ into Markov substitute set is
known, and we will simultaneously test whether any pair (B1, B2) ∈ B2 is such
that B = B1 ∪B2 is a Markov substitute set.

Instead of simulating random B-parse processes, which add some random fluc-
tuations to the observations, we will consider the following conditional expecta-
tions:

FB1,B2,θ(s, p) = E
{[
1
(
YB1∪B2 ∈ B1

)
− p 1

(
YB1∪B2 ∈ B1 ∪B2

)]
1
(
XB1∪B2 ∈ θ

) ∣∣∣S = s
}
. (2.7.1)

Let us notice that similar results could be stated about

FB1,B2,θ(s, p) = E
{[
1
(
XB1∪B2 ∈ θ

)
− p

]
1(YB1∪B2 ∈ B1)

∣∣∣S = s
}
, (2.7.2)

We will not follow this second path, since the first is more closely related to
the invariant dynamics we will use to simulate from the model. The results of
this section also apply to the alternative choices of test functions described in
section 2.4.1 on page 84.

In the case when

p = P
(
YB1∪B2 ∈ B1 |XB1∪B1 ∈ θ, YB1∪B2 ∈ B1 ∪B2

)
,

it is easy to see that E
(
FB1,B2,θ(S, p)

)
= 0, and consequently that

E

[
exp

(
log
(
1 + λFB1,B2,θ(S, p)

))]
= 1, λ ∈]− 1, 1[.
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Let us introduce Θ = B2 × Θ, the parameter space indexing the random
variables FB1,B2,θ(S, p) (apart from p that can be viewed as another parameter).

In order to master the complexity of the problem in a data driven way, we will
use a shadow sample, as in the proof of Vapnik-Chervonenkis complexity bounds.
However, the actual observation of this shadow sample will not be required, be-
cause our generalization bounds will eventually be obtained by taking a conditional
expectation with respect to the observed sample S1:n.
Lemma 2.7.1
Consider an i.i.d sample Si, 1 6 i 6 kn of size kn and an exchangeable prior
distribution µS1:kn ∈M 1

+(Θ), where we have put for short S1:kn = (Si, 1 6 i 6 kn).
For any λ ∈]− 1, 1[, any θ ∈ Θ, any p ∈ [0, 1],

E

∫ exp
(

n∑
i=1

log
(
1 + λFθ(Si, p)

)
− λ

k

kn∑
i=1

Fθ(Si, p)
)

dµ(θ)
 6 1.

Proof. Let us put Wi = λFθ(Si, p). For any exchangeable function G(W1:kn),

E

G(W1:kn)
n∏
i=1

(
1 +Wi

) = E

G(W1:kn)
k−1∑

j1,...,jn=0

n∏
i=1

(
1 +Wi+jin

)
k


= E

G(W1:kn)
n∏
i=1

(
1 + 1

k

k−1∑
j=0

Wi+jn

)
= E

G(W1:kn) exp
 n∑
i=1

log
1 + 1

k

k−1∑
j=0

Wi+jn


6 E

G(W1:kn) exp
n log

1 + 1
nk

kn∑
i=1

Wi


6 E

G(W1:kn) exp
1
k

kn∑
i=1

Wi

.
If we take for any value of θ

Gθ(W1:kn) = µ(θ) exp
−λ

k

kn∑
i=1

Fθ(Si, p)
,

we get that

E

 n∏
i=1

(
1 + λFθ(Si, p)

)
exp

−λ
k

kn∑
i=1

Fθ(Si, p)
µ(θ)


6 E

exp
λ
k

kn∑
i=1

Fθ(Si, p)
 exp

−λ
k

kn∑
i=1

Fθ(Si, p)
µ(θ)

 = E
(
µ(θ)

)
.
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The inequality follows by summing on θ.

Let us now make a more specific choice for µ.
Let us consider some indicator function h : B × D+ → {0, 1}, and the ex-

changeable prior on B defined by

ν(B) = 1
kn

kn∑
i=1

 ∑
B′∈B

h(B′, Si)
−1

h(B, Si).

Let us also consider another indicator function g : B × Θ × D+ → {0, 1}, and
define

ξ(θ |B1, B2) = 1
kn

kn∑
i=1

∑
θ′∈Θ

g
(
B1 ∪B2, θ

′, Si
)−1

g
(
B1 ∪B2, θ, Si

)
.

Let us introduce

ν1(B) = 1
n

n∑
i=1

 ∑
B′∈B

h(B′, Si)
−1

h(B, Si), and

ξ1
(
θ |B1, B2

)
= 1
n

n∑
i=1

∑
θ′∈Θ

g
(
B1 ∪B2, θ

′, Si
)−1

g
(
B1 ∪B2, θ, Si

)
.

We can then choose the prior distribution

µ(B1, B2, θ) = ν(B1)ν(B2)ξ(θ |B1, B2), (2.7.3)

and decompose it as µ = k−3µ1 +
(
1− k−3

)
µ2, where

µ1(B1, B2, θ) = ν1(B1)ν1(B2)ξ1(θ |B1, B2)

depends only on the observable sample S1:n. We can remark moreover that

K (ρ, µ) 6 K (ρ, µ1) + 3 log(k). (2.7.4)

Let us remark that by the law of large numbers, when n is large, µ1 will get close
to µ.

We have more specifically in mind the following weight functions

h(B, s) = 1
(
S (s, B) 6= ∅

)
,

g(B, θ, s) = 1

(
∃ (x, y) ∈ S

(
s, B

)
;x ∈ θ

)
.
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With this choice, the support of ν1 is made of all Markov substitute sets B ∈ B
such that one expression of B is observed in the sample S1:n. In the same way,
the support of µ1

(
·|B1, B2

)
is made of all the context parameters θ ∈ Θ indexing

contexts that appear in the sample S1:n.
Let us put

h(s) =
∑
B∈B

h(B, s),

g(s) = sup
B1, B2 ∈ B

∑
θ∈Θ

g(B1 ∪B2, θ, s).

We can easily see that as soon as µ1
(
B1, B2, θ

)
> 0, then

µ1(B1, B2, θ) > n−3
(

max
i=1,...,n

h(Si)
)−2(

max
i=1,...,n

g(Si)
)−1

.

We can improve this inequality if we choose a conditional probability kernel π
satisfying eq. (2.1.4) on page 67 only when h(s) 6 C1 and g(s) 6 C2, and such
that π

(
s, (s, ε), ε

)
= 1 otherwise. With this choice of kernel, we test the Markov

substitute property only for the sentences s satisfying the above constraint. More
specifically, we test that

PS
(
α(x, y)

)
= PS

(
α(x,B)

)
qB(y), inf

y′∈B
π
(
α(x, y′), x, y′

)
> 0.

On the other hand, we are now sure that

µ1
(
B1, B2, θ

)
> n−3C−2

1 C−1
2 ,

as soon as µ1
(
B1, B2, θ) > 0,

From lemma 2.7.1 on page 97, we get in this context

Proposition 2.7.2
Consider some finite set Λ ⊂]0, 1[, and −Λ =

{
−λ, λ ∈ Λ

}
. With probability at

least 1− 2ε, for any λ ∈ Λ ∪ (−Λ), any p ∈P ⊂]0, 1[, any ρ ∈M 1
+(Θ),

n∑
i=1

(k − 1)λ
k

∫
Fθ(Si, p) dρ(θ)− λ2

2(1− |λ|)2

∫
Fθ(Si, p)2 dρ(θ)

6
∫ n∑

i=1

[
log
(
1 + λFθ(Si, p)

)
− λ

k
Fθ(Si, p)

]
dρ(θ)

6
(k − 1)nλ

k

∫
E
[
Fθ(S, p)

]
dρ(θ) + K (ρ, µ1) + 3 log(k) + log

(
|Λ| |P|/ε

)
.



100 Chapter 2. Markov substitute Sets

Remark 2.7.1
From the shape of this equation, it makes sense to take k of order k = 10 or so.

Proof. The first inequality is a consequence of the fact that

log(1+λx) = λx−
∫ λx

0

(λx− y)
(1 + y)2 dy > λx− λ2x2

2(1− |λ|)2 , x ∈ [−1, 1], λ ∈]−1, 1[.

In order to prove the second inequality, let us put for short

W1(θ) =
n∑
i=1

log
(
1 + λFθ(Si, p)

)
− λ

k

n∑
i=1

Fθ(Si, p),

W2(θ) = −λ
k

kn∑
i=n+1

Fθ(Si, p).

According to the previous lemma,

E

exp
 sup
ρ∈M (Θ)

∫ [
W1(θ) +W2(θ)

]
dρ(θ)−K (ρ, µ1)− 3 log(k)

 6 1.

Using

E
(
exp(·)

)
> E

[
exp

(
E(·|S1:n)

)]
,

E
(
sup
ρ

(·)|S1:n
)
> sup

ρ
E(·|S1:n),

E(W1(θ)|S1:n) = W1(θ),
E(W2(θ)|S1:n) = E

(
W2(θ)

)
,

and E
(
K (ρ, µ1)|S1:n

)
= K (ρ, µ1),

we obtain that

E

exp
 sup
ρ∈M 1

+(Θ)

∫
W1(θ) + E

(
W2(θ)

)
dρ(θ)−K (ρ, µ1)− 3 log(k)

 6 1,

from which the proposition is an easy consequence.

2.7.1 Definition of the test and probability of false rejec-
tion

This leads us to define an alternative to the test proposed in section 2.6 on page 88.
Let p(B1, B2, θ) be the value of p such that

E
(
FB1,B2,θ(S, p)

)
= 0,
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so that

p
(
B1, B2, θ

)
= P

(
YB1∪B2 ∈ B1 |XB1∪B2 ∈ θ, YB1∪B2 ∈ B1 ∪B2

)
,

where FB1,B2,θ(S, p) is defined by eq. (2.7.1) on page 96.
Let us define

p+(B1, B2) = sup
{
p(B1, B2, θ) : θ ∈ Θ,P

(
XB1∪B2 ∈ θ, YB1∪B2 ∈ B1 ∪B2

)
> 0

}
,

and let p−(B1, B2) be the infimum of the same set.
Let us introduce the function

ψ(z) = log(1 + z)− k−1z.

Proposition 2.7.3
Let Λ be a finite subset of ]0, 1[.

With probability at least 1− 2ε, for any pair (B1, B2) ∈ B2,

B−
(
p+(B1, B2)

) def= sup
ρ∈M 1

+(Θ),λ∈Λ

∫ n∑
i=1

ψ
(
λFB1,B2,θ

(
Si, p+(B1, B2)

))
dρ(θ)

−K (ρ, µ1)− 3 log(k)− log
(

|Λ|
ε ν1(B1) ν1(B2)

)
6 0

B+
(
p−(B1, B2)

) def= sup
ρ∈M 1

+(Θ),λ∈Λ

∫ n∑
i=1

ψ
(
−λFB1,B2,θ

(
Si, p−(B1, B2)

))
dρ(θ)

−K (ρ, µ1)− 3 log(k)− log
(

|Λ|
εν1(B1)ν1(B2)

)
6 0

Therefore, if we reject the hypothesis that B1 ∪B2 is a Markov substitute set when

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> 0, (2.7.5)

the probability of making a false rejection (after testing all pairs in B2) is at
most 2ε.

In the same way we can reject the hypothesis that (B1, B2) ∈ B2 is an η-Markov
substitute pair of sets when

inf
p∈[η,1−η]

max
{
B−(p), B+(p)

}
> 0,

with a probability of rejecting one of the true η-Markov pairs (after testing all pairs
in B2), not greater than 2ε.
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Remark 2.7.2
To our knowledge the observable entropy term K (ρ, µ1) is a novel addition to
PAC-Bayes theory that was not proposed before in the literature.

This proposition is a direct consequence of the previous one.
We can remark at this point that this result stays true for any test func-

tions Fθ(S, p) such that |Fθ(S, p)| 6 1 and E(Fθ(S, p)) = 0 for p = p(B1, B2, θ),
so this kind of test can be used for a wide range of test functions. However, this
proposition gives no indication on the probability on false acceptance (which is
admittedly the more important part). Section 2.7.5 on page 111 will deal with
this issue, but will require a more restrictive form of the test function.

2.7.2 Testing for the weak Markov substitute property
We may be interested in situations where the target language does not have a
sufficient number of strong Markov substitute sets, but nevertheless has a bigger
number of weak Markov substitute sets. In this case, we will be able to generate
the support of the language, running an ill specified Markov substitute set model
whose Markov substitute sets are only weak Markov substitute sets for the true
language distribution.

This is how we propose to modify the test. To get the right support, we want
to select pairs which satisfy 0 < p−(B1, B2) 6 p+(B1, B2) < 1. Since it will not be
possible to test that p−(B1, B2) = 0 or p+(B1, B2) = 1, we will take some margin
and focus on pairs for which

η 6 p−(B1, B2) 6 p+(B1, B2) 6 1− η,

where η ∈]0, 1/2[ is a fixed parameter. We will also relax the property that
p−(B1, B2) = p+(B1, B2) to p+(B1, B2)− p−(B1, B2) 6 γ, where γ ∈ [0, 1− 2η] is
a second parameter. Pairs satisfying those two conditions will be called γ-weak
η-Markov substitute pairs of sets. Let us remark that when γ = 1−2η, the second
condition is void (because it is implied by the first one). Let us also remark that
the first condition says that the ratio between the probabilities of observing y ∈ B1
and y ∈ B2 in the same context belongs to the interval

[
η/(1− η), (1− η)/η

]
.

Corollary 2.7.4
With probability at least 1− 2ε, for any γ-weak η-Markov substitute pair,

inf
p∈[η,1−η−γ]

max
{
B−(p+ γ), B+(p)

}
6 0,

so that if we accept as γ-weak η-Markov pairs all pairs satisfying this condition,
the probability of false rejection, that is, the probability that some truly γ-weak
η-Markov pair in B2 may have been unduly rejected is not greater than 2ε.
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2.7.3 Computation of the test
Let us remark first that a more explicit formula is available for the test function.
Indeed, the solution of the optimization with respect to ρ is explicit, according to
the general formula

sup
ρ∈M 1

+(Θ)

∫
h(θ) dρ(θ)−K (ρ, µ1) = log

[∫
exp

(
h(θ)

)
dµ1(θ)

]
,

the supremum being achieved when

dρ
dµ1

= exp(h)∫
exp(h) dµ1

·

According to this general formula

B−(p) = log
∫ exp

[
n∑
i=1

ψ
(
λFB1,B2,θ

(
Si, p

))]
dµ1(θ)

− log
(

k3|Λ|
εν1(B1)ν1(B2)

)
,

(2.7.6)

B+(p) = log
∫ exp

[
n∑
i=1

ψ
(
−λFB1,B2,θ

(
Si, p

))]
dµ1(θ)

− log
(

k3|Λ|
εν1(B1)ν1(B2)

)
.

(2.7.7)

These formulas are indeed very compact and pleasing from this point of view,
but they do not show the structure of the test function. For example they do
not show whether or how the test function involves some variance and complexity
estimates.

To show this structure, we are going in the following lines to compute a more
explicit approximation, in the form of a close empirical lower bound for B− and B+.
Let us put

a(θ, i) = P
(
XB1∪B2 ∈ θ, YB1∪B2 ∈ B1 |S = Si

)
,

b(θ, i) = P
(
XB1∪B2 ∈ θ, YB1∪B2 ∈ B1 ∪B2 |S = Si

)
,

δ(ρ) = K (ρ, µ1) + log
(

k3|Λ|
εν1(B1)ν2(B2)

)
·

so that
FB1,B2,θ(Si, p) = a(θ, i)− p b(θ, i).
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According to proposition 2.7.2 on page 99,

B−(p) > sup
ρ∈M 1

+(Θ),λ∈Λ

∫  n∑
i=1

(k − 1)λ
k

[
a(θ, i)− p b(θ, i)

]

− λ2

2(1− λ)2

[
a(θ, i)− p b(θ, i)

]2 dρ(θ)− δ(ρ).

Let us put, for k = 1, 2,

ak(ρ) =
∫ n∑

i=1
a(θ, i)k dρ(θ),

bk(ρ) =
∫ n∑

i=1
b(θ, i)k dρ(θ),

p̂1(ρ) = a1(ρ)
b1(ρ) ,

p̂2(ρ) = b2(ρ)−1
∫ n∑

i=1
a(θ, i) b(θ, i) dρ(θ),

v̂(ρ) = b2(ρ)−1
∫ n∑

i=1

(
a(θ, i)− p̂2 b(θ, i)

)2
dρ(θ),

α = k − 1
k
·

We get that

B−(p) > sup
ρ∈M 1

+(Θ),λ∈Λ
αb1(ρ)λ

(
p̂1(ρ)−p

)
− λ2

2(1− λ)2 b2(ρ)
[
v̂(ρ)+

(
p̂2(ρ)−p

)2]
−δ(ρ).

We deduce that with probability at least 1 − ε, p+(y1, y2) is solution in p of the
inequalities (indexed by λ ∈ Λ and ρ ∈M 1

+(Θ))

p̂1(ρ)− p− λb2(ρ)
2(1− λ)2αb1(ρ)

[
v̂(ρ) +

(
p̂2(ρ)− p

)2]
− δ(ρ)
λαb1(ρ) 6 0.

Using the inequality (1−λ)−2 6 (1− 2λ)−1, and optimizing the value of λ, we get

p̂1(ρ)− p− χ

√√√√√2b2(ρ)
[
v̂(ρ) +

(
p̂2(ρ)− p

)2]
δ(ρ)

α2b1(ρ)2 − 2δ(ρ)
αb1(ρ) 6 0, (2.7.8)

where

χ = inf
λ∈Λ

cosh
log

 λ

1− 2λ

√√√√b2(ρ)[v̂(ρ) + (p̂2(ρ)− p)2]
2δ(ρ)

.
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We are now going to solve this inequality in p. Although this is straightforward,
it will get a litte technical, so this may be the best place to give an interpratation
of the bound. We have an empirical estimate p̂1(ρ) of some mixture of conditional
probabilities (the mixture being related to ρ). In this empirical estimate, b1(ρ)
plays the role of an empirical “effective” sample dimension. This empirical estimate
is corrected by a deviation term, to provide a lower bound for p+(B1, B2) with
confidence level 1− ε. We also get an upper bound for p−(B1, B2) with confidence
level 1− ε,

p− p̂1(ρ)− χ

√√√√√2b2(ρ)
[
v̂(ρ) +

(
p̂2(ρ)− p

)2]
δ(ρ)

α2b1(ρ)2 − 2δ(ρ)
αb1(ρ) 6 0,

resulting in a final joint statement holding at confidence level 1−2ε. The deviation
term involves a variance estimate given by v̂(ρ) and a complexity (or “effective
dimension”) estimate given by δ(ρ). The confidence level is uniform in ρ, which
includes the case where ρ is a Dirac mass at parameter value θ, but a better
compromise may be found for a distribution ρ with more spread (as shown by
eq. (2.7.6) on page 103, the optimal ρ is indeed a Gibbs distribution and not a
Dirac mass, although a Dirac mass may be a close winner in this discrete setting).
Optimizing the bound in ρ will give a tighter lower bound for p+(B1, B2), which
is itself defined as an upper bound in θ, and for p−(B1, B2) which is defined as a
lower bound in θ.

Let us now solve explicitly the quadratic inequality eq. (2.7.8) on the facing
page. Let us put

x = p̂2(ρ)− p+(B1, B2),

y = p̂2(ρ)− p̂1(ρ) + 2δ(ρ)
αb1(ρ) ,

z = 2χ2b2(ρ)δ(ρ)
α2b1(ρ)2 ,

v = v̂(ρ).

We deduce from the previous discussion that with probability at least 1− ε,

(x− y)2 − z(v + x2) 6 0,

which can also be written as

(1− z)x2 − 2yx− (zv − y2) 6 0,
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implying that

x 6
y

1− z +

√√√√ y2

(1− z)2 + zv − y2

1− z

= y

1− z +

√√√√ zy2

(1− z)2 + zv

1− z

6
1 +
√
z

1− z y +
√
zv

(
1 + z

2(1− z)

)
.

Thus, if we put

p̂+(ρ) = p̂2(ρ)− 1 +
√
z

1− z y −
√
zv

(
1 + z

2(1− z)

)
,

and in the same way (reasoning with B+(p))

p̂−(ρ) = p̂2(ρ) + 1 +
√
z

1− z
[
y + 2

(
p̂1(ρ)− p̂2(ρ)

)]
+
√
zv

(
1 + z

2(1− z)

)
,

we obtain
Proposition 2.7.5
With the previous notations, with probability at least 1− 2ε, for any ρ ∈M 1

+(Θ),

p−(B1, B2) < inf
ρ∈M 1

+(Θ)
p̂−(ρ),

sup
ρ∈M 1

+(Θ)
p̂+(ρ) < p+(B1, B2).

Therefore, we can reject the hypothesis that B1∪B2 is a Markov substitute set with
a probability of false rejection not greater than 2ε whenever

inf
ρ∈M 1

+(Θ)
p̂−(ρ) 6 sup

ρ∈M 1
+(Θ)

p̂+(ρ).

In the same way, we can reject the hypothesis that the pair (B1, B2) is a γ-weak
η-Markov substitute pair of sets with a probability of false rejection not greater
than 2ε whenever

sup
ρ∈M 1

+(Θ)
p̂+(ρ) > 1− η, inf

ρ∈M 1
+(Θ)

p̂−(ρ) 6 η

or sup
ρ∈M 1

+(Θ)
p̂+(ρ)− inf

ρ∈M 1
+(Θ)

p̂−(ρ) > γ.
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We hope that these more explicit approximations of the previous test will help the
reader getting a better understanding of the structure of the test. The main thing
to understand is that hidden in the tighter test of proposition 2.7.3 on page 101 are
lower bound estimators for p+(B1, B2) and upper bound estimators for p−(B1, B2),
and that these confidence bounds hold uniformly for any (B1, B2) ∈ B2, at the
given confidence level.

We would also like to point out that the estimates p̂+(ρ) and p̂−(ρ) contain an
explicit empirical variance estimate, that was somehow hidden in the properties of
the influence function ψ in the previous section.

2.7.4 Some numerical examples and considerations on the
accuracy of the tests

We will here give some numerical examples of the computations presented in the
previous subsections. Let us assume for simplicity that B1 = {y1}, B2 = {y2},
and π

(
α(x, y), x, y

)
= 1 for any

(x, y) ∈
n⋃
i=1

S
(
Si, {y1, y2}

)
,

meaning that there is at most one way to {y1, y2}-parse any given sentence of the
observed sample. In this simple case (X{y1,y2},i, Y{y1,y2},i) is a deterministic function
of Si, so that a(θ, i), b(θ, i) ∈ {0, 1}. As a consequence, a2(ρ) = a1(ρ) def= a(ρ),
b2(ρ) = b1(ρ) def= b(ρ), p̂2(ρ) = p̂1(ρ) def= p̂(ρ) and v̂(ρ) = p̂(ρ)

(
1− p̂(ρ)

)
. Making as

few approximations as possible, we can take

p̂+(ρ) = p̂(ρ)− y

1− z −

√√√√ zy2

(1− z)2 + zv̂(ρ)
1− z ,

p̂−(ρ) = p̂(ρ) + y

1− z +

√√√√ zy2

(1− z)2 + zv̂(ρ)
1− z ·

If we choose µ as mentioned in eq. (2.7.3) on page 98, we get that

δ(ρ) 6 log
(
k3
(

max
16i6n

h(Si)
)2(

max
16i6n

g(Si)
)
n3|Λ|ε−1

)
.
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If we want to be very conservative, taking for instance values of n = 104, k = 10,
max16i6n h(Si) = 20, max16i6n g(Si) = 50, |Λ| = 10 log(n), we get

δ(ρ) 6 log
(
103 × 503 × 1015 × log(103)

)
< 56,

χ 6 cosh(0.1) 6 1.006,

y 6
2× 10× 56

9× b(ρ) 6
125
b(ρ) ,

z 6
2× (1.006)2 × 56× 102

92 × b(ρ) 6
140
b(ρ) ·

Let us compute the minimal gap we have to find between p̂+(ρ+) = sup p̂+(ρ)
and p̂−(ρ−) = inf p̂−(ρ) to reject the Markov substitute hypothesis when, let us
say, b(ρ+) = b(ρ−) = 1000. We may bound v̂(ρ) by 1/4. We get that we need

p̂(ρ−) 6 p̂(ρ+)− 0.71

to reject the hypothesis that the pair is a Markov substitute pair, of in other term,
we need a(ρ−) 6 a(ρ+) + 710. That is not a very tight bound.

However, if we want to be more optimistic, we may think that the union bound
precaution leading to the mathematically correct value of δ(ρ) computed above is
too shy, and that we should get rid of it and keep only δ(ρ) = log(ε−1) to get more
realistic numerical values. If we are ready to take this kind of liberty with the
theory, and choose as before ε = 10−2, we get δ(ρ) 6 5, and consequently

y 6
12
b(ρ) ,

z 6
13
b(ρ) .

With this more optimistic guess, using again for comparison b(ρ+) = b(ρ−) = 1000,
v̂ 6 1/4, we obtain a required gap of

p̂(ρ−) 6 p̂(ρ+)− 0.14.

We may also ask in this context what number of observations we need to
reject the hypothesis when we can find two contexts (say with the same number
of observations as above) such that p̂(ρ+) = 1 and p̂(ρ−) = 0 (so that in both
cases v̂ = 0). We get that we need to observe at least 50 times y1 and y2 in
disjoint contexts before deciding at a confidence level of 98/100 that {y1, y2} is not
a Markov substitute pair (still ignoring the union bound factors).

This is still conservative, since we can make a direct computation in this simple
situation, showing that if {y1, y2} is a Markov substitute pair, then the probability
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of observing 7 times y1 in one context and 7 times y2 in another context is not
greater than 2 × 2−7 6 0.016 (the worst case being when the substitute measure
is a Bernoulli with parameter 1/2).

In this context, it is interesting to see whether the non approximated test
of proposition 2.7.3 on page 101 is more satisfactory for small sample sizes. In
the simplified framework described in this section the test of proposition 2.7.3 on
page 101 can be written as

B−(p) = sup
ρ∈M 1

+(Θ),λ∈Λ
a(ρ)ψ

(
λ(1− p)

)
+
(
b(ρ)− a(ρ)

)
ψ
(
−λp

)
+ δ(ρ), (2.7.9)

B+(p) = sup
ρ∈M 1

+(Θ),λ∈Λ
a(ρ)ψ

(
−λ(1− p)

)
+
(
b(ρ)− a(ρ)

)
ψ
(
λp
)

+ δ(ρ). (2.7.10)

The test will in particular reject the hypothesis when

min
{
B−(1/2), B+(1/2)

}
> 0. (2.7.11)

Let us see what we get if we forget the entropy and union bound factors. Take as
suggested before δ(ρ) = log(ε−1) = log(100) ' 4.6, b(ρ+) = b(ρ−) = a(ρ+) = b,
a(ρ−) = 0, and look for the minimum value of b for which eq. 2.7.11 holds.
Since p = 1/2, F{y1},{y2},θ(S, 1/2) ∈ [−1/2, 1/2], so in this case we can use up
to λ = 2. With this choice we obtain that

min
{
B+(1/2), B−(1/2)

}
> b

(
log(2)−k−1

)
−δ(ρ) > b

(
log(2)−1/10

)
−log(100) > 0

when b > 8, and even b > 7, if we forget the k−1 also (that was contributing
to make the bound uniform). So the conclusion is that in this low sample size
simple situation, the test of proposition 2.7.3 on page 101 is in some sense exact.
If we do not compromise the mathematical properties of the test, keep k−1 and
take δ(ρ) = 63, we get b > 107, whereas the approximated test gives b > 584.

So a first conclusion is that for small sample sizes, the non approximated test
of proposition 2.7.3 on page 101, although not so intuitive, is noticeably sharper
than its more understandable approximation given in the next section.

The above discussion was interested in the difference between p̂(ρ−) and p̂(ρ+).
We may also want to study the ratio p̂(ρ)/(1− p̂(ρ)).

Let us consider again the non approximated test. Equations (2.7.9) and (2.7.10)
on the current page give us that the test will reject the hypothesis as soon as, for
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some p, there are two contexts ρ+ and ρ− such that

a(ρ+)
b(ρ+)− a(ρ+) >

− log(1− λp)− λ

k
p+ δ

b(ρ+)− a(ρ+)

log(1 + λ(1− p))− λ

k
(1− p)

,

b(ρ−)− a(ρ−)
a(ρ−) >

− log(1− λ(1− p))− λ

k
(1− p) + δ

b(ρ−)− a(ρ−)

log(1 + λp)− λ

k
p

·

Once again, we may consider only the case p = 1
2 for the rejection, which has the

advantage of symmetrizing both equations: if we suppose also that b(ρ+) = b(ρ−),
the hypothesis will be rejected as soon as both ratios are greater than

p̂

1− p̂ >
− log

(
1− λ

2

)
− λ

2k + δ

b(ρ)

log
(

1 + λ

2

)
− λ

2k

·

We are now left with the optimization of

f(x) = − log(1− x)− x/k
log(1 + x)− x/k + ∆

log(1 + x)− x/k ,

for x ∈]0, 1
2 [, where ∆ = δ/b(ρ). We may first simplify it by observing that,

if k = 10, the x/k term may be neglected (at least for the derivative), so argmin f
should not be far from

xm = argmin − log(1− x)
log(1 + x) + ∆

log(1 + x) ·

At this point, we can remark that the minimum is attained for x > 1
2 if ∆ > 1

2
(approximately), so we may take the value on λ = 1 in this case, which gives the
bound

p̂

1− p̂ > 1.81 + 2.82∆.

This bound is always true, but gives suboptimal results when ∆ < 1
2 , which is

the case when we have more than 2δ(ρ) observations, which is quite probable
(remember that a plausible bound for δ(ρ) is 56).

Using again b(ρ+) = b(ρ−) = 1000, ∆ = .065, and computing the actual
minimum of the bound function, we get a bound around 1.65 (λ ≈ 0.45), better
than the 2 of the suboptimal bound (λ = 1).
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Another practical question is to choose a reasonable entropy term δ(ρ). One
could argue heuristically that δ(ρ) should be taken of the form log(ε−1N), where
N is the number of Markov substitute pairs and contexts actually tested. For
instance, if we take N = 106, we get that a pair that has been seen b = 32 times
in disjoint contexts can be rejected as a Markov substitute pair with a confidence
level of 98/100.

Another way to think about tuning the value of the entropy term δ(ρ), is that
if we lower it, we are sure to both increase the false rejection rate and decrease the
false acceptance rate. Thus, if we want to put the stress on minimizing the false
acceptance rate rather than the false rejection rate, lowering δ(ρ) will probably
strike a more favorable balance than the theoretical value tuned to obtain a false
rejection rate less than 2ε.

On the other hand, the approximations made to the test in proposition 2.7.5
on page 106 are sharp in the large sample size limit, since we kept the leading term
unchanged at each step and made approximations only on second order terms.

2.7.5 Probability of false acceptance of the test
In the following, we are going to study the probability of false acceptance of the
test of proposition 2.7.3 on page 101. Let us introduce

q(B1, B2, θ) = E
(
XB1∪B2 ∈ θ, YB1∪B2 ∈ B1 ∪B2

)
.

Lemma 2.7.6
For any p ∈ [0, 1], any λ ∈]− 1, 1[, any B1, B2 ∈ B, any θ ∈ Θ,

E

[
exp

(
−ψ

(
λFB1,B2,θ(S, p)

))]
6 exp

q(θ)[λk − 1
k

(
p− p(θ)

)

+ λ2

1− |λ|

(
k − 1
k

+ φ(k−1)
2k2

)(
p(θ)

(
1− p(θ)

)
+
(
p− p(θ)

)2
)],

where φ(z) = 2 z−2
(
exp(z)− 1− z

)
is an increasing function such that φ(0) = 1,

and where we have put for short p(B1, B2, θ) = p(θ) and q(B1, B2, θ) = q(θ). This
obviously implies that, with probability at least 1− ε,

n∑
i=1

ψ
(
λFB1,B2,θ(S, p)

)
> − log

(
ε−1

)
− nq(θ)

λk − 1
k

(
p− p(θ)

)

+ λ2

1− |λ|

(
k − 1
k

+ φ(k−1)
2k2

)(
p(θ)

(
1− p(θ)

)
+
(
p− p(θ)

)2
).
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Proof. Let us remark first that

exp
(
−ψ(λx)

)
= exp

(
λ

k
x− log

(
1 + λx

))
6

1 + λ

k
x+ φ

(
λ

k

)
λ2

2k2x
2

1 + λx

= 1− k − 1
k

λx+
(
k − 1
k

+ 1
2k2φ

(
λ

k

))
λ2x2

1 + λx

6 1− k − 1
k

λx+
(
k − 1
k

+ φ(k−1)
2k2

)
λ2

1− λx
2, λ ∈ [0, 1[, x ∈ [−1, 1].

As a consequence, for any λ ∈]− 1, 1[,

E

[
exp

(
−ψ

(
λFB1,B2,θ(S, p)

))]
6 1− k − 1

k
λE
(
FB1,B2,θ(S, p)

)
+
(
k − 1
k

+ φ(k−1)
2k2

)
λ2

1− |λ|E
(
FB1,B2,θ(S, p)2

)

6 exp
−k − 1

k
λE
(
FB1,B2,θ(S, p)

)

+
(
k − 1
k

+ φ(k−1)
2k2

)
λ2

1− |λ|E
(
FB1,B2,θ(S, p)2

).
The rest follows easily from

E
(
FB1,B2,θ(p)

)
=
(
p(θ)− p

)
q(θ)

E
(
FB1,B2,θ(p)2

)
=
(
p(θ)

(
1− p(θ)

)
+
(
p− p(θ)

)2
)
q(θ).

We can now state the following proposition:
Proposition 2.7.7
Let us put

δ = 1
n

log
[
k3n3

(
max
16i6n

h(Si)
)(

max
16i6n

g(Si)
)
|Λ|ε−2

]
,

χ = sup
x ∈ [(2n)−1/2, (2n)1/2]

inf
λ ∈ Λ

cosh
[
log
(

λx

(1− λ)

)]
,

a = 4χ2k

(k − 1)

(
1 + ϕ(k−1)

2k(k − 1)

)
6 4.47χ2 when k = 10,

b =

(
2 +
√

2
)
k

k − 1 6 3.8 when k = 10.
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Let us assume that there are two sets B1, B2 ∈ B and two contexts θ+, θ− ∈ Θ
such that pε = p(B1, B2, θε) and qε = q(B1, B2, θε), ε = ±1, satisfy

min{q−, q+} >
16kχ2δ

(k − 1) , and

p+ − p− >

√√√√ap+(1− p+)δ
q+

(
1 + aδ

q+

)
+ bδ

q+

+

√√√√ap−(1− p−)δ
q−

(
1 + aδ

q−

)
+ bδ

q−
· (2.7.12)

Then with probability at least 1− 2ε

inf
p∈[0,1]

max
{
B−(p), B+(p)

}
> 0.

Therefore, the test defined by eq. (2.7.5) on page 101 has in this case a probability
of false acceptance of the pair (B1, B2) ∈ B2 as a Markov substitute pair of sets
at most equal to 2ε.

More precisely, with probability at least 1− 2ε,

B−

p+ −

√√√√ap+(1− p+)δ
q+

(
1 + aδ

q+

)
− bδ

q+

 > 0, (2.7.13)

B+

p− +

√√√√ap−(1− p−)δ
q−

(
1 + aδ

q−

)
+ bδ

q−

 > 0. (2.7.14)

If we assume now in place of eq. (2.7.12) on the current page that

p+ − 1 + η >

√√√√ap+(1− p+)δ
q+

(
1 + aδ

q+

)
+ bδ

q+
,

or that η − p− >

√√√√ap−(1− p−)δ
q−

(
1 + aδ

q−

)
+ bδ

q−
,

or that p+ − p− > γ +

√√√√ap+(1− p+)δ
q+

(
1 + aδ

q+

)
+ bδ

q+

+

√√√√ap−(1− p−)δ
q−

(
1 + aδ

q−

)
+ bδ

q−
·

the false acceptance probability of the test (defined in corollary 2.7.4 on page 102)
that (B1, B2) ∈ B2 is an γ-weak η-Markov substitute pair of sets will be not greater
than 2ε.
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Proof. The proof is very similar to the one of proposition 2.6.3 on page 92.
Let us put

p = p+ −

√√√√ap+(1− p+)δ
q+

(
1 + aδ

q+

)
− bδ

q+
·

We will here choose λ ∈ Λ such that

λ ∈ arg min
ζ∈Λ

cosh
log

 ζ

1− ζ

√√√√[k − 1
k

+ φ(k−1)
2k2

]
[p+(1− p+) + (p+ − p)2]q+

δ

·

Once again, since p+ − p >
δ

q+
,

√
1
n
6

√
δ

q+
6

√
[p+(1− p+) + (p+ − p)2]q+

δ
6
√
q+

δ
6
√
n,

which implies, together with the fact that 1
2 6

[
k − 1
k

+ φ(k−1)
2k2

]
6 2, that

cosh
log

 λ

1− λ

√√√√[k − 1
k

+ φ(k−1)
2k2

]
[p+(1− p+) + (p+ − p)2]q+

δ

 6 χ.

Now, we have that

B−(p) >
n∑
i=1

ψ
(
λFB1,B2,θ+(Si, p)

)
− log

[
k3|Λ|

(
max
16i6n

h(Si)
)2(

max
16i6n

g(Si)
)
n3ε−1

]

Together with lemma 2.7.6 on page 111, we get that, with probability at least 1−ε

B−(p) > nλq+

k − 1
k

(p+ − p)

− λ

1− λ

[
k − 1
k

+ φ(k−1)
2k2

] (
p+

(
1− p+

)
+
(
p− p+

)2)
− δ

λq+

·
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We obtain then that with probability at least 1− ε,

B−(p) > nq+λ

k − 1
k

(p+ − p)−
δ

q+

− 2

√√√√[k − 1
k

+ φ(k−1)
2k2

]
[p+(1− p+) + (p+ − p)2]δ

q+

× cosh
log

 λ

1− λ

√√√√[k − 1
k

+ φ(k−1)
2k2

]
[p+(1− p+) + (p+ − p)2]q+

δ


> nq+λ

k − 1
k

(p+ − p)−
δ

q+

− 2χ

√√√√[k − 1
k

+ φ(k−1)
2k2

]
[p+(1− p+) + (p+ − p)2]δ

q+

·
Let us put α = k − 1

k
and ρ = 4χ2δ

q+

(
α + φ(k−1)

2k2

)
, v = p+(1 − p+), y = δ

q+
and x = p+ − p. The sign of the right-hand side of the previous inequality is the
same as the sign ofk − 1

k
(p+ − p)−

δ

q+

2

−
[
k − 1
k

+ φ(k−1)
2k2

]
4χ2δ[p+(1− p+) + (p+ − p)2]

q+

= α2x2 − 2αyx+ y2 − ρv − ρx2

= (α2 − ρ)x2 − 2αyx− (ρv − y2).

This quantity is non negative when x is not less than

αy

α2 − ρ
+

√√√√ α2y2

(α2 − ρ)2 + ρv − y2

α2 − ρ
= αy

α2 − ρ
+

√√√√ ρy2

(α2 − ρ)2 + ρv

α2 − ρ

6

√
ρv

α2 − ρ
+

(α +√ρ)y
α2 − ρ

6
√
ρv

α2

(
1 + ρ

2α2(1− ρα−2)

)
+

(α +√ρ)y
α2 − ρ

6
√
ρv

α2

(
1 + ρ

α2

)
+ (2 +

√
2)y

α
,

where we have used the inequalities
√
a+ b 6

√
a+
√
b and ρ 6 α2/2.

Thus we obtain with probability at least 1− ε that B−(p) > 0 when

p+ − p >
√
ρv

α2

(
1 + ρ

α2

)
+ (2 +

√
2)δ

αq+
·
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Since ρ

α2 = aδ

q+
and (2 +

√
2)

α
= b, this proves in particular that with probability

at least 1− ε,

B−

p+ −

√√√√ap+(1− p+)δ
q+

(
1 + aδ

q+

)
− bδ

q+

 > 0,

The proof of eq. (2.7.14) on page 113 is obtained exactly in the same way,
and the rest of the proposition is a straightforward consequence of eqs. (2.7.13)
and (2.7.14) on page 113.

2.8 Estimation of the substitute measure using
the results of the test

The family of tests we defined here may be used to get an estimation of the
substitute measure qB of a set that passed the test. More precisely, we can get
an estimation p̂ of p such that E(F (X, Y, p)) = 0. These p are usually linked
to the substitute measures, p = q{y1,y2}(y1) in a pair test, or p = qB1∪B2(B1) in
the union test, for example. Note that in the second example, the symmetric
test giving qB1∪B2(B2) is required to have the substitute measure (and gives us an
indication of the size of the intersection qB1∪B2(B1 ∩B2) as a bonus).

Let us remark that all the tests we defined were based on two functions B+(p)
and B−(p), one non-decreasing and one non-increasing, that could be written as

B±(p) = B̃±(p) + log(ε),

where B̃±(p) did not depend on ε. Note that while the functions B± where ex-
pressed as a supremum on ρ(θ) and λ, we can simply take in this case the supremum
on λ, and ρ = δ(D∗)2 to maximize the size of the sample. The analysis told us that
if the set tested was a Markov substitute set with parameter p, with probability
greater than 1− 2ε,

B±(p) < 0,

or equivalently,
B̃±(p) < log(ε−1) = `.

Thus, if we fix `, we have, as before, a test max(B+(p), B−(p)) > 0. However, we
could see this in another light. Indeed, any q such that B−(q) > 0 is smaller than p,
or bigger if B+(q) > 0. Studying the graph of B± gives us then a confidence interval
for p, if we fix `. The middle of the confidence interval is a possible estimator.
However, there is another one we can consider.
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If we do not fix `, we can consider the value p̂ such that B̃−(p̂) = B̃+(p̂). If
we put `0 = B̃+(p̂), we would reject the hypothesis if we wanted a confidence of
more than 1 − 2e`0 . As such, the parameter p̂ is the only parameter that is in
all confidence intervals, for any confidence level that accepts the pair as a Markov
substitute set.

We could also use `0 to sort different candidates, the lower `0, the most likely
they are to be Markov substitute sets.

p

B − log(ε)

1

Accept

Reject

B−
B+

`

`0

p̂p− p+

Figure 2.2: Test of the Markov substitute property.





Chapter 3

Markov substitute sets and
language

3.1 Production rules and Markov substitute sets

3.1.1 Markov grammars

Consider a set of context-free production rules R whose terminal symbols belong
to an alphabet D and whose non terminal symbols belong to N =

{
]i, i ∈ N\{0}

}
.

Let us assume that each rule is of the form ]i → e, where i ∈ N \ {0} and the
expression e ∈ (D ∪N)+, so that no rule uses the empty string.

Production rules alone do not suffice to define a complete context-free grammar,
we also need a start symbol. We will here consider multiple start symbols, defining
each a different context-free grammar. This approach will enable us to study in a
broader sense the properties of our model, and move outside of regular context-free
grammars.

Definition 3.1.1
For any set of context-free production rules (ruleset for short) R, and any i ∈ N,
let Ri be the context-free grammar whose set of rules is R and whose start symbol
is ]i.

For any non empty expression e ∈ (D∪N)+, let Re be the context-free grammar
whose start symbol is ]0 and whose set of rules is R ∪ {]0 → e}.

For any i ∈ N \ {0}, let Bi be the language generated by Ri, and for any
expression e ∈ (D ∪ N)+, let Be be the language generated by Re. Let us remark
that Bi and Be may be empty, and that this will be the case except for a finite set
of values of i and for the expressions e using only the corresponding non terminal
symbols. Elements of the set Bi will be called syntagms of type i.

119
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In the following, we will use for the rule ]i → e the more compact notation [ie,
that we already used in chapter 1.

Let us remark that for any i ∈ N \ {0},

Bi = B]i =
⋃

e, [ie ∈ R

Be,

but that this union is not necessarily a disjoint union.
The context-free property ensures that any elements of a Bi may appear in the

same contexts. We will here strengthen this property.
Definition 3.1.2
A ruleset will be called a Markov ruleset if, for any i ∈ N \ {0}, Bi is a Markov
substitute set.
Lemma 3.1.1
For any Markov ruleset, for any e ∈ S+, such that P

(
S (S,Be) 6= ∅

)
> 0, Be is

a Markov substitute set.

Proof. If we write e = (wk, 1 6 k 6 `), we can write Be as

Be = γ (Bw1 , . . . , Bw`),

and each Bwk is either a singleton (if wk ∈ D) or B]i , so in any case a Markov
substitute set by assumption, so that Be is also a Markov substitute set, according
to proposition 2.1.3 on page 67.

The substitute measure of a syntagm set Be is given by the following lemma.
Lemma 3.1.2
Consider any non terminal expression e = w1:k ∈ (D ∪N)k of length k, such that

P
(
S (S,Be) 6= ∅

)
> 0.

Consider any string γ (y1:k) ∈ Be, where γ is the concatenation operator, such that
yj ∈ Bwj , 1 6 j 6 k. The substitute measure of Be can be expressed as

qBe
(
γ (y1:k)

)
= Ae

k∏
j=1

qBwj (yj),

where the constant Ae is such that for any functions fj, 1 6 j 6 k,

∑
y∈Be

qBe(y)
∑

yj∈Bwj ,16j6k
1
(
y = γ (y1:k)

) k∏
j=1

fj(yj) = Ae
k∏
j=1

( ∑
yj∈Bwj

qBwj (yj)fj(yj)
)
.
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Let us remark that the constant Ae may indeed be different from one, as in
the case when e = ]1]2, where B1 = {a, ab} and B2 = {bc, c}. In this case
Be = γ (B1, B2) = {ac, abc, abbc} has only three elements and not four, so that∑
z∈Be

p(z) =
∑

z1∈B1,z2∈B2

p(z1z2)− p(abc). However, A]i = 1 for all i.

Proof. Let us choose x ∈ (D∗)2 such that PS
(
α(x,Be)

)
> 0.

For any y1:k ∈ Bw1 × · · · ×Bwk ,

P

(
S = α

(
x, γ (y1:k)

))
=
 ∑
y′
k
∈Bwk

PS

(
α
(
x, γ (y1:k−1, y

′
k)
))qBwk (yk)

...
= Cx q(y1:k).

where

Cx =
 ∑
y′1:k∈

∏k

j=1Bwj

PS

(
α
(
x, γ (y′1:k)

)) > PS(α(x,Be)
)
> 0,

and q(y1:k) =
 k∏
j=1

qBwj (yj)
.

This shows that q(y1:k) depends in fact only on γ (y1:k) and that qBe
(
γ (y1:k)

)
is

proportional to q(y1:k), so that for some constant Ae, qBe = Ae q.
We can then write for any test functions fj, 1 6 j 6 k,

∑
y∈Be

qBe(y)
∑

yj∈Bwj ,16j6k
1
(
y = γ (y1:k)

) k∏
j=1

fj(yj)

=
∑

y1:k∈
∏k

j=1Bwj

qBe
(
γ (y1:k)

) k∏
j=1

fj(yj) =
∑

y1:k∈
∏k

j=1Bwj

Aeq(y1:k)
k∏
j=1

fj(yj)

= Ae

 k∏
j=1

∑
yj∈Bwj

qBwj (yj)fj(yj)
.

This lemma will be used in section 3.2.2 on page 127 to build an estimator of the
substitute measures, but we need to introduce first some other notions.
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3.1.2 Parse trees
This definition of grammars and language gives production and parsing methods,
but the structure of a string is not readily apparent. To manipulate this structure,
we will introduce the notion of parse trees.

Definition 3.1.3
For any ruleset R, let R̆ be the ruleset

R̆ =
{

[i(i e )i, [ie ∈ R
}
.

Let D̆ = D ∪
{

(i, )i, i ∈ N
}
be the related extended set of terminal symbols.

Similarly to definition 3.1.1 on page 119, let R̆i be the context-free grammar
with start symbol ]i, terminal symbol set D̆ and set of rules R̆. In the same way,
let R̆e be the grammar with start symbol ]0, terminal symbol set D̆ and set of
rules R̆ ∪ {[0e}.

Let B̆i be the language generated by R̆i.
We can in the same way define B̆e, the language generated by R̆e, for any

expression e ∈ (D ∪N)+. Let us remark that, again, B̆j = B̆]j .
Let T = ⋃

e∈(D∪N)+ B̆e the set of parse trees. When e 6= e′, B̆e and B̆e′ are
disjoint. We can therefore, for any parse tree t ∈ T define its surface struc-
ture ς (t) ∈ (D ∪ N)+ by the condition t ∈ B̆ς(t). It is obtained by replacing each
outer pair (j· · · )j of matched parentheses in t and its content by ]j.

Members of a particular B̆i will be called parse trees of type i.
The realization of a parse tree is given by the operator ϕ : T → D+ which

removes parentheses.
We will say that a tree t ∈ T is a parse of another t′ (noted t < t′), if they

have same realizations ϕ (t) = ϕ (t′), and all parentheses in t′ are also in t.

The realization operator is such that ϕ
(
B̆i

)
= Bi. It is however not one to

one, since a given string may have different parses.
These new grammars will be called for short tree grammars, and will be used

to describe the parse trees. Parse trees of a given type describe the parses of the
syntagms of same type.

Let us remark that for any t ∈ B̆i, ς (t) = ]i, and t = (iy)i, where y ∈ T is
such that [iς (y) ∈ R.

In the same way, for any t ∈ T , and any x ∈
(
D̆∗
)2
, y ∈ T and j ∈ N \ {0},

such that t = α
(
x, (jy)j

)
, [jς (y) ∈ R. This is because the condition y ∈ T

imposes that in the expression (jy)j the outer parentheses (j )j are matched.
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3.1.3 General introduction to parsing
The next step is to construct parsing trees from a string.

Definition 3.1.4
A parsing kernel is a probability kernel Π : D+ 7→ T such that

supp(Π(s, ·)) ⊂ ϕ−1 (s).

A parsing kernel for a certain syntagm set Be is a probability kernel Πe : Be 7→ B̆e

such that
supp(Πe(s, ·)) = ϕ−1 (s) ∪ B̆e.

Parsing kernels can be constructed using classical parsing algorithms for context-
free grammars such as CYK, as discussed in section 3.B on page 159. They provide
a way to build the splitting kernels π used in sections 2.2.1 and 2.2.5 on page 69
and on page 73, by simply drawing at random one or two matching pairs of paren-
theses in the parsed sentence or text.

A parsing kernel builds a tree from a sentence that is compatible with a ruleset.
This operation does not lose any information, and adds a syntactic structure to
the sentence. However, the manipulation of natural language corpora may be
quite difficult due to its sheer size. For this reason, it may be interesting to find
some sort of process that can reduce the size of sentences, while losing as little
information as possible. One way to do this is to actually only keep the syntactic
structure of a given sentence, by considering the surface structure of a parse of the
sentence.
Definition 3.1.5
A parsing reduction kernel is an kernel r from D+ to S+ such that

r(s, e) > 0 =⇒ s ∈ Be.

Given a parsing kernel Π, we can define a parsing reduction kernel r as

r(s, e) =
∑

t:ς(t)=e
Π(s, t).

In order to implement the reversible dynamics we have defined, we need to have
Markov kernels for which both simulating transitions and computing transition
probabilities are fast enough. A detailed description of these two operations is
provided in section 3.D on page 165. In the following sections, we will use parsing
kernels to define the splitting kernel of our Metropolis reversible dynamics. While
simulation and computation are both easy when parsing in a given syntagm set,
the general parse is more tricky. We will have to access the history of the parse,
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and manipulate strings of syntactic trees. This section introduces the required
definitions to achieve this, while the actual parsing schemes, based on the CYK
algorithm, are described in section 3.B on page 159.

Let us note b and e the begin and end operators on strings, b(s1:n) = s1,
e(s1:n) = sn.

We will build the parse using extension kernels, that add one pair of parentheses
at a time.

Definition 3.1.6
A parsing extension is a kernel

{
$(t, t′), t, t′ ∈ T , t′ < t

}
.

A parsing extension relative to a reference tree T is a kernel{
ρT (t, t′), t, t′ ∈ T , T < t′ < t

}
.

We will usually consider bottom-up parsing extensions, that is, that add one pair
of outer parentheses at a time,
{
$(t, t′) : t, t′ ∈ T ,∃i ∈ N, x ∈ T , a ∈ S+, [ia ∈ R, y ∈ B̆a,

t = α(x, y), t′ = α(x, (iy)i)
}
.

Parsing extensions define chains of trees, the end of which is our final parse.

Definition 3.1.7
Any parsing extension $ defines a stopped Markov chain Tn on parse trees, its
stopping time being

τ = inf{n, supp($(Tn, ·)) = ∅}.

A general parsing kernel will then be a kernel Π from syntactic trees (in practice,
strings), to sequences of parsing trees.

Π(t, t̃) = 1(t̃0 = t)1
(
supp($(e(t̃), ·)) = ∅

) `(t̃)−1∏
i=0

$(t̃i, t̃i+1), t̃ ∈ T +.

The “final” parse being, of course, e(t̃).
In the case of parsing extensions relative to a tree, we define the kernels

ζ(t, t̃) = 1(e(t̃) = t)1(b(t̃) = ϕ (t))
`(t̃)−1∏
i=0

ρt(t̃i, t̃i+1), t̃ ∈ T +.
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These parsings will be used to define reversible dynamics as described in sec-
tion 3.D on page 165. This method supposes that we have, for each kernel π used
in the simulation, a “symmetric” kernel π′, so that the quotient π(t,t′)

π′(t′,t) is as close
to 1 as possible. In this case, we start from a string s, and build a sequence of
increasingly bigger parses t̃i using a parsing extension. Conversely, we want, from
a parsing tree t, to build a sequence of smaller parsing trees t̃i, ending at ϕ (t).

Building “parsing reduction kernels”{
ρ(t, t′), t, t′ ∈ T , t < t′

}
that remove parentheses from an initial tree would be an intuitive way to achieve
this, but we can remark that since we know the end part of the tree sequence (ϕ (t)),
we can actually begin from the end result, and use regular parsing extensions,
the only additional requirement being that we finish at the fixed t. This is the
motivation behind the definition of parsing extensions relative to a tree.

Actual construction of these parsing extensions, and discussion of the quo-
tient $

ρ
will be found in section 3.B on page 159.

3.2 Substitute measures and reversible dynam-
ics

3.2.1 Parametrization of substitute measures
Of course, Markov substitute sets are mostly interesting in conjunction with their
substitute measures qB. The proof of lemma 3.1.1 on page 120 hints that this
requires to compute qBi . We will now see how to perform this computation from
the estimation of a few parameters — one for each production rule — using a parse
tree structure.
Lemma 3.2.1
For any s ∈ D+, and any t ∈ T such that s = ϕ (t),

qBς(t)(s) = Aς(t)
∏

[je∈R

[
AeqBj

(
Be

)]χ(t,j,e)
,

where
χ(t, j, e) =

∑
x∈(D̆∗)2

∑
y∈T

1
[
t = α

(
x, (jy)j

)]
1
(
ς (y) = e

)
. (3.2.1)

Proof. The result is equivalent to the fact that for any t ∈ T

qBς(t)

(
ϕ (t)

)
= Aς(t)

∏
[je∈R

[
AeqBj

(
Be

)]χ(t,j,e)
,
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We will prove it by induction on the length of t. If `(t) = 1, then t ∈ D,
ς (t) = ϕ (t) = t, and qBς(t)

(
ϕ (t)

)
= q{t}(t) = 1, so that the result holds in this

case.
Let ς (t) = γ (w1:`) ∈ (D ∪ N)`. We can write the tree t as t = γ (t1:`), where

tk ∈ B̆wk . With these notations, wk = ς (tk), ϕ (t) = γ (ϕ (t1:`)), and ϕ (tk) ∈ Bς(tk).
According to lemma 3.1.2 on page 120 this implies that

qBς(t)

(
ϕ (t)

)
=
∏̀
k=1

Aς(t)qBς(tk)

(
ϕ (tk)

)
. (3.2.2)

If wk = ς (tk) ∈ D, then tk = wk, and as already seen, qBς(tk)(ϕ (tk)) = 1.
In the case when wk ∈ N , ς (tk) = ]i and tk = (iyk)i, where [iς (yk) ∈ R.

Consequently ϕ (tk) = ϕ (yk) ∈ Bς(yk) ⊂ Bς(tk). Therefore

qBς(tk)

(
ϕ (tk)

)
= qBς(tk)

(
Bς(yk)

)
qBς(yk)

(
ϕ (yk)

)
.

Moreover, since ς (tk) is of length one, Aς(tk) = 1. Since `(yk) 6 `(t)− 2 < `(t), we
can now apply the induction hypothesis to yk, to get

qBς(tk)

(
ϕ (tk)

)
= Aς(yk)qBς(tk)

(
Bς(yk)

) ∏
[je∈R

AeqBj(Be)χ(yk, j, e) + 1(j = i, e = ς (yk))

=
∏

[je∈R

AeqBj(Be)χ(tk,j,e).

This proves the result for tk, 1 6 k 6 `, (since Aς(tk) = 1) and implies that

qBς(t)

(
ϕ (t)

)
= Aς(t)

∏
[j e∈R

[
Ae qBj(Be)

]∑`

k=1 χ(tk,j,e)
,

proving the result for t, since

χ(t, j, e) =
∑̀
k=1

χ(tk, j, e).

This lemma means that we only need to know the parameters qBj(Be), and Ae,
for [je ∈ R, to know all substitute measures. These parameters can effectively be
stored with the ruleset by adding weights to each element [je ∈ R.

Let us remark that the knowledge of these measures reduces the estimation of
the distibution PS to the estimation of the probability of syntagm sets according
to the relation

PS(s) = P
(
S ∈ Bς(t)

)
qBς(t)(s), s ∈ ϕ(t).
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3.2.2 Estimating substitute measures
We saw that estimating the substitute measures qBi can be performed through the
estimation of the family of coefficients

(
Ae, qBi(Be), i ∈ N \ {0}, [ie ∈ Ri

)
.

Let us start with the estimation of the constants Ae, where e = w1:k ∈ (D∪N)k.
We will estimate separately

Ne =
∑
y∈Be

qBe(y)
∑

yj∈Bwj ,16j6k
1
(
y = γ (y1:k)

) k∏
j=1

f(yj),

where f(y) = r(1− r)`(y)−1, y ∈ D+, for some parameter r ∈ (0, 1), and each

Dwj =
∑

yj∈Bwj

qBwj (yj)f(yj),

to estimate in the end Ae using the formula

Ae = Ne∏k
j=1Dwj

·

Let us remark first that for any y ∈ Be,

∑
yj∈Bwj ,16j6k

1
(
y = γ (y1:k)

) k∏
j=1

f(yj) =
∑

yj∈Bwj ,16j6k
1
(
y = γ (y1:k)

)
rk(1− r)`(y)−k

6

(
`(y)− 1
k − 1

)
rk(1− r)`(y)−k 6 r.

This inequality motivated our choice of test function.
To estimate Ne, we may consider the test functions

Fθ,e(s, p) =
∑
x∈θ

∑
y∈Be

1
(
s = α(x, y)

)
νθ(x)

×

 ∑
yj∈Bwj ,16j6k

1
(
y = γ (y1:k)

)
rk(1− r)`(y)−k − p

.
They are such that |Fθ,e(s, p)| 6 1 and

E
[
Fθ,e(S, p)

]
=
∑
x∈θ

νθ(x)PS
(
α(x,Be)

)(
Ne − p

)
.

Therefore, for any θ such that∑
x∈θ
P
(
S ∈ α(Be)

)
> 0,
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Ne is the only value of p ∈ [0, 1] such that E
[
Fθ,e(S, p)

]
= 0.

To estimate each Dwj , we may consider the test functions

Gθ,wj(s, p) =
∑
x∈θ

∑
y∈Bwj

1
(
s = α(x, y)

)
νθ(x)

[
r(1− r)`(y)−1 − p

]
.

They are such that |Gθ,wj(s, p)| 6 1 and

E
[
Gθ,wj(S, p)

]
=
∑
x∈θ
PS
(
α(x,Bwj)

)(
Dwj − p

)
.

Therefore, for any θ such that∑
x∈θ
P
(
S ∈ α(x,Bwj)

)
> 0,

Dwj is the only value of p ∈ [0, 1] such that E
[
Gθ,wj(S, p)

]
= 0.

Now that we have explained how to estimate Ae, let us come to the estimation
of
(
qBi(Be), i ∈ N \ {0}, [ie ∈ R

)
.

Let us choose θ ∈ Θ such that∑
x∈θ
P
(
S ∈ α(x,Bi)

)
> 0,

and consider for any [ie ∈ Gi the test function defined as

Fi,e,θ(s, p) =
∑
x∈θ

∑
y∈D+

1
(
s = α(x, y)

)
νθ(x)

[
1(y ∈ Be)− p1(y ∈ Bi)

]
.

Then

E
[
Fi,e,θ(S, p)

]
=
∑
x∈θ

νθ(x)
(
PS
(
α(x,Be)

)
− pPS

(
α(x,Bi)

))
=
∑
x∈θ

νθ(x)PS
(
α(x,Bi)

)(
qBi(Be)− p

)
,

so that qBi(Be) is the only value of p such that E
[
Fi,e,θ(S, p)

]
= 0. As such, the

estimator p̂ such that Fi,e,θ(s, p̂) = 0 is without bias.
Let us also remark that if we assume only that Be are Markov substitute sets

for all expressions e such that [ie ∈ R, then Bi is itself a Markov substitute set
if and only if for any [ie ∈ G , there is pi,e ∈ [0, 1] such that for any θ ∈ Θ,
E
[
Fi,e,θ

(
S, pi,e

)]
= 0. This can serve to build statistical tests to validate the

addition of new rules to the set of rules R. But we will study these in more details
in section 3.4.1 on page 144.
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3.2.3 Simulating substitute measures
The next question is the simulation of the substitute measure qBe , for some ex-
pression e ∈ S+.

Let us consider a parsing kernel
(
Πe(s, t), s ∈ Be, t ∈ B̆e

)
for the syntagm

set Be, as defined in definition 3.1.4 on page 123.
Let us define for any [iy ∈ R

pi(y) = AyqBi(By)∑
[iz∈R

AzqBi(Bz)
6 qBi(By).

Consider the subprobability measure on B̆e defined as

pe(t) = 1
(
ς (t) = e

) ∏
[jy∈R

pj(y)χ(t,j,y),

where χ is defined as in eq. (3.2.1) on page 125. To see that this is indeed a
subprobability measure, see lemma 3.2.2 on the following page.

Starting from the obvious equality

∑
t∈B̆e

pe(t)
qBe(ϕ (t))Πe(s, t)

pe(t)
= qBe(s), s ∈ Be,

we see that if we draw T ∈ B̆e ∪{ε} according to the subprobability pe completed
with pe(ε) = 1− pe

(
B̆e

)
, we obtain that for any bounded function f ,

∑
s∈Be

qBe(s)f(s) = E
(
w(T )f(T )

)
,

where

w(T ) = 1
(
T 6= ε

)qBe(ϕ (T )
)
Πe

(
ϕ (T ), T

)
pe(T )

= 1
(
T 6= ε

)
Πe

(
ϕ (T ), T

)
Ae

∏
j∈N\{0}

( ∑
y,[jy∈R

AyqBj(By)
) ∑
y,[jy∈R

χ(T, j, y)
.

The simulation of T according to pe may be implemented in the following way.
We start with e0 = e. Given ek ∈ S+,

− if ek ∈ T , put T = ek,
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− otherwise ek = α(x, ]i), i ∈ N, x ∈ D̆∗ × S+. Draw y according to pi,
completed with pi(ε) = 1 − pi(B̆e), and put ek+1 = α(x, (iy)i), when y 6= ε

and set T = ε otherwise.
Lemma 3.2.2
For any k ∈ N, any well-parenthetized expression t ∈ (D̆ ∪N)∗, if we call |t| the
number of opening parentheses in t,

P(ek = t) = 1(ς (t) = e)1(|t| = k)
∏

[jy∈R

pj(y)χ(t,j,y).

As such, if we define τ = inf k, ek ∈ T ,

P(eτ = t) = pe(t).

Proof. By induction on k:

− Obviously χ(e, j, y) = 0 for all y, j, and

P(e0 = t) = 1(t = e) = 1(ς (t) = e)1(|t| = 0).

− For any t ∈ (D̆ ∪N)∗, suppose we can write t = α(x, (iy)i), with x2 ∈ S+.
Otherwise t has no parentheses and P(ek+1 = t) = 0.

P(ek+1 = t) = P(ek = α(x, ]i)) · pi(y)
= 1(ς (α(x, ]i)) = e)1(|α(x, ]i)| = k)

×
∏

[jz∈R

pj(z)χ(α(x, ]i), j, z) + 1(j = i, z = y)

= 1(ς (t) = e)1(|t| = k + 1)
∏

[jz∈R

pj(z)χ(t,j,z).

This lemma proves that pe is in fact a probability distribution if the process
defined previously finishes in finite time, in which case we can draw T using this
method. The process does not finish in finite times if there are looping rewrit-
ing rules with probability above some critical value. This will not happen if the
parameters are accurately estimated from a true Markov substitute process.

An alternative to the use of importance sampling is the use a reversible dy-
namics. Let us introduce the conditional probability kernel

(
ke(s, s′), s, s′ ∈ Be

)
,

defined for any s 6= s′ as

ke(s, s′) =
∑

t,t′∈B̆e

Πe(s, t)pe(t′)w(t, t′)1
(
s′ = ϕ (t′)

)
,
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where

w(t, t′) =
1 ∧

Πe

(
ϕ (t′), t′

)
Πe

(
ϕ (t), t

) · qBe(ϕ (t′))
pe(t′)

· pe(t)
qBe(ϕ (t))



=
1 ∧

Πe

(
ϕ (t′), t′

)
Πe

(
ϕ (t), t

) ∏
j∈N\{0}

( ∑
[jy∈R

AyqBj(By)
) ∑

[jy∈R

χ(t′, j, y)− χ(t, j, y).
To draw s′ according to ke(s, ·), we first draw t according to Πe(s, t), then we
draw (independently !) t′ according to pe(t′) (again, we suppose that the process
finishes in finite time), and we set s′ = ϕ (t′) with probability w(t, t′), and s′ = s
otherwise.
Proposition 3.2.3
The kernel ke(s, s′) is reversible with respect to qBe and irreducible on Be.

Proof. It is irreducible because obviously supp
(
ke(s, ·)

)
= Be already. To see

that it is reversible we can write

qBe(s)ke(s, s′) =
∑

t,t′∈B̆e

(
qBe(s)Πe(s, t)pe(t′) ∧ qBe(s′)Πe(s′, t′)pe(t)

)
.

This expression is symmetric in s and s′, since it is of the form

qBe(s)ke(s, s′) =
∑
t,t′
f(s, t, t′, s′),

where f(s, t, t′, s′) = f(s′, t′, t, s).

3.2.4 Reversible dynamics for the language distribution
The same method can be used to build reversible dynamics for the language distri-
bution on the whole, simply by parsing a sentence in general, allowing any surface
structure. Let us consider a general parsing kernel(

Π(s, t), s ∈ D+, t ∈ T
)

such that supp(Π(s, ·)) ⊂ ϕ−1 (s), and a converse kernel ζ from syntactic trees
to sequences of parsing trees. Consider now the conditional probability ker-
nel

(
k(s, s′), s, s′ ∈ D+

)
defined for s 6= s′ as

k(s, s′) =
∑

t̃,t̃′∈T +

t,t′∈T

Π(s, t̃)1(t = t̃`(t̃))pς(t)(t′)ζ(t′, t̃′)w(t̃, t, t′, t̃′)1
(
s′ = ϕ (t′))

)
,
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where

w(t̃, t, t′, t̃′) =
1 ∧

Π
(
ϕ (t′), t̃′

)
ζ
(
t̃′, ϕ (t′)

) · ζ
(
t̃, ϕ (t)

)
Π
(
ϕ (t), t̃

) · qBς(t′)(ϕ (t′))
pς(t′)(t′)

·
pς(t)(t)

qBς(t)(ϕ (t))


=
1 ∧

Π
(
ϕ (t′), t̃′

)
ζ
(
t̃′, ϕ (t′)

) · ζ
(
t̃, ϕ (t)

)
Π
(
ϕ (t), t̃

)

×
∏

j∈N\{0}

( ∑
[jy∈R

AyqBj(By)
) ∑

[jy∈R

χ(t′, j, y)− χ(t, j, y).
Proposition 3.2.4
The kernel k is reversible with respect to the language distribution PS.

Proof. We can use the identity PS
(
ϕ (t)

)
= P(S ∈ Bς(t))qBς(t)

(
ϕ (t)

)
to remark

that

PS(s)k(s, s′) =
∑

t̃,t̃′∈T +

t,t′∈T

P
(
S ∈ Bς(t)

)
1
(
ς (t) = ς (t′)

)

1
(
s = ϕ (t)

)
1
(
s′ = ϕ (t′)

)
1(t = t̃`(t̃))1(t′ = t̃′`(t̃′))

×
(

Π
(
ϕ (t), t

)
ζ
(
t̃′, ϕ (t′)

)
pς(t′)(t′)qBς(t)

(
ϕ (t)

)
∧ Π

(
ϕ (t′), t′

)
ζ
(
t̃, ϕ (t)

)
pς(t)(t)qBς(t′)

(
ϕ (t′)

))
,

where the symmetry in (s, s′) can be seen in the same way as for ke above.

This construction improves on the reversible dynamics of section 2.2.1 on
page 69, inasmuch as it performs more substitutions at each step, allowing to
substitute a sentence in Be with a randomly chosen other one in one shot. It can
also be seen as an implementation of the first dynamics using the extended Markov
substitute set Be. However, this method still requires the knowledge of qBi , and
requires that the production process will terminate in finite time, something that
will happen if the parameters are accurately estimated from a true Markov sub-
stitute process, but may fail if parameter estimation is not precise enough or if
the data are off model. We will see later in section 3.3 on page 135 how to deal
with those termination problems by restricting to a finite state space and using a
different kind of estimator (crossing-over dynamics on a replicated sample).

We can now remark that the invariant dynamics k has the following context
free property.
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Proposition 3.2.5
Let us put Be = supp

(
qBek

∞
)
. Then k is reversible with respect to qBe.

Proof. To prove this, we will first prove the following lemma.

Lemma 3.2.6
For any s, s′ ∈ D+ such that k(s, s′) > 0, {s, s′} is a Markov substitute pair and

q{s,s′}(s)k(s, s′) = q{s,s′}(s′)k(s′, s).

Indeed, when k(s, s′) > 0, there is an expression e such that s, s′ ∈ Be, given by the
surface structure of the parse tree t of s drawn according to Π(s, ·). Thus {s, s′}
forms a Markov substitute pair and

q{s,s′}(s)k(s, s′) = q{s,s′}(s′)k(s′, s). (3.2.3)

The lemma implies that for any s ∈ Be, supp
(
δsk
∞
)
is a Markov substitute

set, and, since s, s′ ∈ Be implies k(s, s′) > 0, that
⋃
s∈Be

supp
(
δsk
∞
)

= supp
(
qBek

∞
)

= Be

is also a Markov substitute set. It is stable : k(s, Be) = 1 for any s ∈ Be. Moreover,
for any s, s′ ∈ Be,

qBe(s
′′) = qBe({s, s

′})q{s,s′}(s′′), s′′ ∈ {s, s′},

proving (still from the above lemma) that k is reversible with respect to qBe .

This leads us to define a equivalence relation on strings.

Definition 3.2.1
For any pair of strings s and s′, we will say that

s ∼ s′ ⇐⇒
∑
n

kn(s, s′) > 0.

This is an equivalence relation, and the classes will be called syntactic categories.

Remark that the equivalence classes thus defined depend only on the syntagm sets
of R, and not on the actual substitute measures, and form Markov substitute sets.
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3.2.5 Crossing-over dynamics
In the same vein as the crossing-over dynamics defined in section 2.2.5 on page 73,
we will now present a second approach that requires neither knowledge of substitute
measures, nor a structure with no infinite loops, but works on whole texts. This
new dynamics will again be a way to accelerate the first crossing-over dynamics
by allowing multiple swap at the same time.

Let us extend on texts the previously defined parsing kernel Π by defining

Π
(
s1:n, t1:n

)
=

n∏
k=1

Π(sk, tk), s1:n ∈
(
D+

)n
, t1:n ∈ T n.

Let us consider some crossing-over tree kernel
(
s(t, t′), t, t′ ∈ T̄

)
, such that s(t, t′) > 0

implies that

ς (t′k) = ς (tk) , 1 6 k 6 n,
n∑
k=1

χ(tk, j, e) =
n∑
k=1

χ(t′k, j, e), [je ∈ R. (3.2.4)

Let us remark that as a consequence of these properties,

P⊗nS

(
ϕ (tk), 1 6 k 6 n

)
= P⊗nS

(
ϕ (t′k), 1 6 k 6 n

)
. (3.2.5)

Such crossing-over tree kernel will be constructed in section 3.C on page 163.
Let us consider the conditional probability kernel K defined for s1:n 6= s′1:n ∈ T

as

K
(
s1:n, s

′
1:n

)
=

∑
t,t′∈T̄+

Π
(
s1:n, t

)
s
(
e(t), e(t′)

)
ζ
(
t′, s′1:n

)

×

 ζ
(
t, s1:n

)
Π
(
s1:n, t

) s
(
t, t′

)
s
(
t′, t

)Π
(
s′1:n, t

′
)

ζ
(
t′, s′1:n

) ∧ 1
.

Proposition 3.2.7
The crossing-over sample kernel K is reversible with respect to P⊗nS .

Proof. As a consequence of eq. (3.2.5) on the current page, we have to prove
that the kernel K is symmetric. This property can easily be deduced from the
following identity

K
(
s1:n, s

′
1:n

)
=

∑
t1:n,t′1:n∈T n

(
Π
(
s1:n, t1:n

)
ζ
(
t1:n, t

′
1:n

)
∧ Π

(
s′1:n, t

′
1:n

)
ζ
(
t′1:n, t1:n

))
.
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3.3 Crossing-over dynamics and the maximum
likelihood estimator

Let us consider some given (deterministic) sample s1:n ∈ Dn, where D ∈ D+ is
a finite domain (for example the set of sentences of length no larger than some
constant). Let us assume that s1:n is not constant (in other words let us assume
that |{si, 1 6 i 6 n}| > 2).

Let B be a finite set of finite subsets of D+, such that

∑
x∈(D∗)2

n∑
j=1
1
(
sj = α(x, y)

)
> 0, y ∈ B. (3.3.1)

This means that each member of each substitute set in B is present in the sub-
strings of the sample s1:n.

We will say that p ∈ M 1
+(D) is a B-Markov substitute process on D if it

satisfies eq. (2.1.1) on page 64 and there are substitute measures qB ∈ M 1
+(B)

for all B ∈ B, such that for any y, y′ ∈ B and any x ∈ (D∗)2 such that{
α(x, y), α(x, y′)

}
⊂ D ,

p
[
α(x, y)

]
qB(y′) = p

[
α(x, y′)

]
qB(y).

This definition goes with a modification of the equivalence relation defined by
eq. (2.3.1) on page 75, where we impose that the path should belong to the re-
stricted domain D . Namely

s ∼B,D s′ ⇐⇒ ∃(xj, yj, y′j), xj ∈ (D∗)2, yj, y
′
j ∈ Bj ∈ B,

α(xj, yj), α(xj, y′j) ∈ D , α(xj−1, y
′
j−1) = α(xj, yj), 0 6 j 6 J,

s = α(x0, y0), s′ = α(xJ , y′J).

It is easy to extend proposition 2.3.2 on page 81 to show that the set of
B-Markov substitute processes on D whose support is the minimal possible sup-
port including {si, 1 6 i 6 n}, is an exponential family of the form

MC (D ,B) =


pβ(s) = Z−1

β exp
(
−

I∑
i=1

βiUi(s)
)
, s ∈

⋃
C

, β ∈ RI

,
where

C =
{
C ∈ D/∼B,D ;

n∑
i=1
1(si ∈ C) > 0

}
.
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We would like in this section to solve the question of finding the maximum
likelihood estimator of s1:n in the set of distributions MC (D ,B). In other words
we would like to solve

inf
β∈RI

n∑
i=1
− log[pβ(si)].

This is a convex minimization problem, and by taking derivatives, we can see that
when the minimum is reached, it is characterized by the fact that∫

D
Ui dpβ∗ = 1

n

n∑
j=1

Ui(sj), 1 6 i 6 I.

We will prove in this section that the minimum is indeed reached when eq. (3.3.1)
on the previous page is satisfied. In practice however, obtaining an explicit
parametrization of pβ (through an explicit computation of the potential func-
tions Ui), is only possible in very simple situations, so that this result is only of
theoretical interest.

We will show on the other hand that a crossing-over dynamics can be used to
compute a Monte-Carlo approximation of pβ∗ .

Let Km be a symmetric kernel on the product Dnm, such that

Km(s1:nm, s
′
1:nm) > 0 =⇒

 nm∑
j=1

Ui(sj)− Ui(s′j) = 0, 1 6 i 6 I

.
Note that the dynamicsK defined in section 3.2.5 on page 134 verifies this property.
Let us assume moreover that Km is permutation invariant in the sense that for
any permutation σ,

Km(s1:nm ◦ σ, s′1:nm ◦ σ) = Km(s1:nm, s
′
1:nm), s1:nm ∈ Dnm, s′1:nm ∈ Dnm,

where s1:nm ◦ σ =
(
sσ(i), 1 6 i 6 nm

)
. Let us assume also that

Km

[(
α(x, y), α(x′, y′), s3:nm

)
,
(
α(x, y′), α(x′, y), s3:nm

)]
> 0,

x, x′ ∈ (D∗)2, y, y′ ∈ B ∈ B, α(x, y), α(x, y′), α(x′, y), α(x′, y′) ∈ D .

This means that Km performs individual swaps with a positive probability.
It is quite easy to modify the dynamics of section 3.2.5 on page 134 to ensure

these properties, by applying a random permutation to the sentences for the first
one, and setting the probability of each crossing over to be strictly less than one
for the second.

We will show that Km can be used to sample (approximately) from pβ∗ . Let
Sm ∈ (D+)mn be defined as

Smσ(kn+i) = si, 0 6 k < m, 1 6 i 6 n,
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where σ is a uniform random permutation of {1, . . . , nm} independent of every-
thing else, so that Sm is a random uniform shuffle of m copies of s.

Let us consider for each m the distribution on Dnm defined as

pm = lim
t→∞

1
t

t∑
u=1
PSmK

u
m.

Since the initial distribution PSm is exchangeable, and since Km is permutation
invariant, pm is an exchangeable probability measure. Moreover, since Km is a
symmetric kernel, and since the starting distribution is a uniform shuffle of a
single configuration, pm is uniform on its support, its support being permutation
invariant. Let us consider a random variable

(
Sm,i, 1 6 i 6 nm

)
distributed

according to pm, and let us put

Nm =
nm∑
i=1

δ
Sm,i

∈M+(D).

This is a random measure with integer weights. According to what we said above
about pm,

P
(
Nm = ν

)
= (nm)!
Zm

∏
s∈D+

ν(s)!
, ν ∈ supp

(
PNm

)
,

where the partition function Z is defined as

Zm =
∑

ν∈supp(PNm )

(nm)!∏
s∈D+

ν(s)!
,

and where we set by convention that 0! = 1. This comes from the fact that the map
Φ(s1:nm) =

nm∑
i=1

δsi is such that Φ−1(ν) is made of (nm)!∏
s∈D+

ν(s)!
distinct permutations

of the same sequence of sentences, that are equiprobable under pm, as soon as
ν ∈ supp(PNm

).
Let us recall Stirling’s approximation formula (see for example [Fel68], p.54)

exp
(

1
12n+ 1

)
<

n!√
2πnn+1/2 exp(−n)

< exp
(

1
12n

)
, n > 1.

Since
∣∣∣supp(PNm

)
∣∣∣ 6 (nm+1)|D |, the following lemma is a consequence of Stirling’s

approximation formula.
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Lemma 3.3.1
Let µm ∈ supp

(
PNm/(nm)

)
be such that

H(µm) = max
{
H(ν), ν ∈ supp

(
PNm/(nm)

)}
,

where

H(µ) = −
∑
s∈D

µ(s) log
[
µ(s)

]
, µ ∈M 1

+(D),

is the Shannon entropy.
There is a real positive constant c (depending only on |D |) such that

(nm+ 1)−c 6 P(Nm = ν)

exp
{
nm

[
H
(
ν/(nm)

)
−H

(
µm
)]} 6 (nm+ 1)c. (3.3.2)

Proof. Let us consider some ν ∈ supp
(
PNm

)
, and let us put Dν = supp(ν),

dν = |Dν | and d = |D |. From Stirling formula, we get

(nm)!∏
s∈Dν

ν(s)!

6 (2π)−(dν−1)/2 (nm)nm∏
s∈Dν

ν(s)ν(s)

(
nm∏

s∈Dν

ν(s)

)1/2

exp
(

1
12nm −

∑
s∈Dν

1
12(ν(s) + 1)

)

6 (nm)1/2 exp
[
nmH

(
ν/(nm)

)]
.

On the other hand

(nm)!∏
s∈Dν

ν(s)!

> (2π)−(dν−1)/2 (nm)nm∏
s∈Dν

ν(s)ν(s)

(
nm∏

s∈Dν

ν(s)

)1/2

exp
(

1
12(nm+ 1) −

∑
s∈Dν

1
12ν(s)

)
·
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Let us then remark that, introducing the uniform probability measure UDν on Dν ,

∏
s∈Dν

ν(s) = exp
(∑
s∈Dν

log
(
ν(s)

))

= exp
−dν 1

dν

∑
s∈Dν

log
(

nm

dνν(s)

)
+ dν log

(
nm

dν

)
= exp

dν
log

(
nm

dν

)
−K

(
UDν , ν/(nm)

)
6 exp

dν log
(
nm

dν

)
6 exp

dmax
{

1, log
(
nm

d

)}
6 exp

d log
(
enm

d

)
6

(
nm

d

)d
exp(d).

Combining the last two equations, we get

(nm)!∏
s∈Dν

ν(s)!
> d1/2

(
2πnm
d

)−(d−1)/2

exp
(
−7d/12

)
exp

[
nmH

(
ν/(nm)

)]

> exp
(
d

2

(
log(d)− log(2π)−7/12

)
+ 1

2 log(2π)
)

(nm)−(d−1)/2 exp
[
nmH

(
ν/(nm)

)]
> (nm)−(max{d,10}−1)/2 exp

[
nmH

(
ν/(nm)

)]
.

Accordingly, there is a constant a > 0, depending only on |D |, such that

(nm)−a 6 (nm)!∏
s∈Dν

ν(s)!
exp

[
−nmH

(
ν/(nm)

)]
6 (nm)1/2. (3.3.3)

Let us remark now that ∣∣∣supp
(
PNm

)∣∣∣ 6 (nm+ 1)d.

This implies that

Zm 6 (nm+ 1)d(nm)1/2 exp
(
nmH(µm)

)
.
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On the other hand
Zm > (nm+ 1)−a exp

(
nmH(µm)

)
,

so that

(nm+ 1)−(c+d+1/2) 6
P(Nm = ν)

exp
(
nm

[
H
(
ν/(nm)

)
−H(µm)

]) 6 (nm+ 1)a+1/2,

ending the proof of the above lemma.

To use this lemma, it remains to prove that supp(Nm) is essentially defined by the
constraints

supp
(
PNm/(mn)

)
'
{
ν ∈M 1

+

(⋃
C
)
,
∫
Ui(s) dν(s) = 1

n

n∑
j=1

Ui(sj), 1 6 i 6 I
}
,

This fact is not so easy to prove directly. To come to a conclusion, we are
going to describe a non random path in supp

(
PNm/(mn)

)
, starting at the initial

probability measure
p = 1

n

n∑
i=1

δsi ,

and converging to some pβ ∈MC (D ,B).
Let us consider the set of vectors

Q =
{
δα(x,y′) + δα(x′,y) − δα(x,y) − δα(x′,y′), x, x

′ ∈ (D∗)2, (y, y′) ∈ B2 ∈ B,

α(x, y), α(x, y′), α(x′, y), α(x′, y′) ∈ D
}
.

Since D is a finite subset of D+, Q is also a finite set. Let us consider the convex
set

A =
{
p+

∑
v∈Q

γ(v)v, γ ∈ RQ
}
∩M 1

+(D).

Let us prove first that we can find a positive constant ζ > 0, a finite se-
quence vj ∈ Q, 1 6 j 6 J , such that for any large enough value of m,

µk = p+
k∑
j=1

dnmζe
nm

vj ∈ A, 0 6 k 6 J,

and
{
s ∈ D , µJ1(s) > ζ

}
= ⋃

C .
Indeed, for any s ∈ C ∈ C , there is i, 1 6 i 6 n and a sequence

(xk, yk, y′k), 0 6 k 6 J, xk ∈ (D∗)2, (yk, y′k) ∈ B2 ∈ B2,

α(xk, yk) ∈ D , α(xk−1, y
′
k−1) = α(xk, yk), 1 6 k 6 J,

α(x0, y0) = si, α(xj, y′J) = s.
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For any k, 0 6 k 6 J , there is ik, 1 6 ik 6 n and x′k ∈ (D∗)2 such that
sik = α(x′k, y′k). Considering

vk = δα(xk,y′k) + δα(x′
k
,yk) − δα(xk,yk) − δsik ,

it is easy to check that for ζ small enough and m large enough,

µk = p+ dnmζe
nm

k∑
j=0

vj ∈M 1
+(D),

(and belongs to A,) and that

µJ(si) > ζ, and µJ(s) > ζ.

Indeed, to create µJ , we remove some mass from {si, 1 6 i 6 n} to carry a fraction
not less than ζ of it to s while spilling the rest around. As the amount of mass
that is moved around goes to zero when ζ decreases and m increases, it is possible
to keep some positive mass at each si, 1 6 i 6 n.

We can repeat this process, starting from the end point µJ , and increasing m
if necessary, to extend progressively the support to the whole ⋃C , along a se-
quence µk, 1 6 k 6 J . We build in this way a probability measure

νm = µJ = p+
J∑
j=1

dnmζe
nm

vj ∈ supp
(
P(nm)−1Nm

)
,

such that νm(s) > ζ, s ∈ ⋃C , and such that

lim
m→∞

νm = ν∞ = p+
J∑
j=1

ζvj ∈ A,

with ν∞(s) > ζ, s ∈ ⋃C .
Now let us consider µ∗ ∈ A such that

H(µ∗) = sup
{
H(µ), µ ∈ A

}
.

Since the Shannon entropy H is strictly convex, it reaches its maximum on the
compact convex set A at a single point, so that µ∗ is uniquely defined by this
property.

Let us prove that supp(µ∗) = ⋃
C . Since H(µ∗) is maximum,

lim
λ→0
λ>0

∑
s∈
⋃

C

(
µ∗(s)− ν∞(s)

)
log
[
λν∞(s) + (1− λ)µ∗(s)

]

= lim
λ→0
λ>0

∂

∂λ
H
(
λν∞ + (1− λ)µ∗

)
6 0.
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Since the left-hand side of this equation is equal to +∞ as soon as µ∗(s) = 0 for
some s ∈ ⋃C , this proves our claim (here we need the fact that ν∞(s) > 0, that
we proved before). Let us remark that we could have used any νm with m large
enough instead of ν∞ in the previous equation.

Lemma 3.3.2
For any x, x′ ∈ (D∗)2, and (y, y′) ∈ B2 ∈ B2, such that

α(x, y), α(x, y′), α(x′, y), α(x′, y′) ∈
⋃

C ,

µ∗
[
α(x, y′)

]
µ∗
[
α(x, y)

] =
µ∗
[
α(x′, y′)

]
µ∗
[
α(x′, y)

] ·
Proof. Consider v = δα(x,y) + δα(x′,y′) − δα(x,y′) − δα(x′,y). For any small enough
positive or negative value of γ, µ∗ + γv ∈ A, therefore

0 = ∂

∂γ

∣∣∣∣∣
γ=0

H(µ∗ + γv)

= log
[
µ
(
α(x, y′)

)]
+ log

[
µ
(
α(x′, y)

)]
− log

[
µ
(
α(x, y)

)]
− log

[
µ
(
α(x′, y′)

)]
.

Since {si, 1 6 i 6 n} ⊂ supp(µ∗), µ∗ satisfies eq. (2.1.1) on page 64, therefore the
above lemma implies that µ∗ ∈ MC (D ,B). Moreover, as it is the case for any
probability measure in A,∑

s∈D

µ∗(s)Ui(s) =
∑
s∈D

p(s)Ui(s),

proving that β∗ exists and that µ∗ = pβ∗ .
Since ν, µ∗ ∈ A and since Q is symmetric, we can write µ∗ as

µ∗ = ν∞ +
J∑
j=1

γjvj, vj ∈ Q, γj > 0, 1 6 j 6 J, (3.3.4)

where vj are independent vectors. Consider the lattice

Lm =
(
νm + 1

nm

J∑
j=1
Z vj

)
∩ A.

Since supp(ν∞) = supp(µ∗) =
⋃

C , it is easy to check that for m large enough,
there is a connected path in this lattice joining νm to the point of the lattice nearest
to µ∗. This a consequence of the fact that the segment joining ν∞ to µ∗ is in the
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interior of A∩
(
ν∞+

J∑
j=1
Rvj

)
viewed as a subset of ν∞+

J∑
j=1
Rvj. Since the nearest

point to µ∗ in Lm converges to µ∗ according to eq. (3.3.4) on the preceding page,
and since Lm ∈ supp

(
PNm/(nm)

)
, we have proved that

lim
m→∞

d
(

supp
(
PNm/(nm)

)
, µ∗

)
= 0,

where d is (for instance) the Euclidean distance.

Proposition 3.3.3
Under the hypotheses described at the beginning of this section, the maximum like-
lihood

sup
β∈RI

n∑
j=1

log
[
pβ(si)

]
is reached at some β∗ ∈ RI . For any ε > 0, there are η > 0 and M > 0 such that
for any m >M ,

P
[
d
(
Nm, pβ∗

)
> ε

]
6 exp(−nmη),

where d(µ, ν) =
√∑
s∈D

(
µ(s)− ν(s)

)2
. Moreover,

lim
m→∞

E
(
Nm/(nm)

)
= pβ∗ .

Proof. For any ε > 0, there is η > 0 such that{
µ ∈ A, d(µ, pβ∗) > ε

}
⊂
{
µ ∈ A,H(µ) 6 H(pβ∗)− 3η

}
,

because H is strictly concave.
For m large enough, there is a measure µ ∈ supp

(
PNm/(nm)

)
whose entropy

is such that H(µ) > H(pβ∗)− η. Thus

P
[
d
(
Nm/(nm), pβ∗) > ε

]
6 P

[
H
(
Nm/(nm)

)
6 H(pβ∗)− 3η

]
6 P

[
H
(
Nm/(nm)

)
6 H(µ)− 2η

]
6 exp(−nmη).

The last inequality is a consequence of eq. (3.3.2) on page 138 and of the fact that∣∣∣supp
(
PNm/(nm)

)∣∣∣ 6 (nm+ 1)|D |
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is polynomial and not exponential in mn. To study the convergence of the ex-
pectation of Nm/(nm), we can remark that the Euclidean distance between two
probability distributions cannot be greater than 2, so that, for m large enough,

d
[
E
(
Nmn/(nm)

)
, pβ∗

]
6 E

[
d
(
Nm/(nm), pβ∗

)]
6 21/2ε+ exp(−nmη),

proving that
lim
m→∞

E
(
Nm/(nm)

)
= pβ∗ .

3.4 Building a Markov ruleset
Let us now discuss the question of building a Markov ruleset. If we index the
dictionnary D = (wi)Mi=1, the trivial set of rules

R0 =
⊕
i

1⊗ [iwi

is of course Markov, for any distribution. The question now is, given a Markov
grammar R, how to make it grow.

3.4.1 Adding new rules
If we are given a Markov grammar R, with the corresponding substitute measures,
we already know that Be is a Markov substitute set for any expression e. We could
now want to add new rules [ie to the grammar, so that the new grammar

R ′ = R
⊕

[ie

is still Markov. Let us note

I(R) =
{
i ∈ N,∃e ∈ S+, [ie ∈ R

}
.

As a first step, we will only add rules [ie where i /∈ I(R). In this case, B′i = Bi,
i ∈ I(R) will still be Markov substitute sets, and we only have to check the
property for the new syntagm sets. In practice, this means that we want to find
expressions e1, e2 so that B′i = Be1 ∪Be2 is still a Markov substitute set, in which
case we can add [ie1 ⊕ [ie2 to the grammar.

Note that if we have at some point added a rule [i]j, we should simply identify
the labels i and j instead.

Now, suppose we have a splitting kernel

π : D+ 7→M 1
+

(
(D∗)2 ×D∗

)
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such that

π(s, x, y) > 0 and y 6= ε =⇒ ∃x̆ ∈ (D̆∗)2, y̆ ∈ T : ς (y̆) ∈ {e1, e2},

and such that
S (s, B′i) ⊂ supp(π(s, ·)). (3.4.1)

If we introduce for B′i the test functions

Fθ(S, p) =
∑

x∈(D∗)2

∑
y1,y2∈D+

1(x ∈ θ)
[
π
(
α(x, y1), x, y1

)
∧ π

(
α(x, y2), x, y2

)]
×
[
(1− p)1

(
S = α(x, y1)

)
1
(
y1 ∈ Be1

)
qB′i\Be1 (y2)

− p1
(
S = α(x, y2)

)
1
(
y2 ∈ B′i \Be1

)
qBe1 (y1)

]
,

we have that B′i is a Markov substitute set if and only if, for some value of p ∈]0, 1[,

∀θ ∈ Θ, E
(
Fθ(S, p)

)
= 0.

When this is the case, we have

qB′i(Be1) = p. (3.4.2)

This mean that we can use the random variables Fθ(S, p) to define a test.
Remark at this point that eq. (3.4.1) on the current page is only necessary to

test if the new set is a “true” Markov substitute set. Whether the condition is
verified or not, it will not change the fact that if E(Fθ(S, p)) = 0, the invariant dy-
namics defined with this splitting kernel will still be invariant. Roughly speaking,
the set would be a Markov substitute set only in the contexts weighted by π.

The test function presented in section 3.2.2 on page 127 may also be used to
test these new rules, however, the introduction of the measure νθ can make the
test less efficient when θ is large.

3.4.2 Reducing the context space
The test we described here relies on the fact that B = C1 ∪ C2 is a Markov
substitute set if and only if for some p ∈]0, 1[,

∀θ ∈ Θ, E
(
Fθ(S, p)

)
= 0,

assuming that the context set Θ contains all singletons {x}, x ∈ D∗2.
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However, we can use here the reduction kernel r to reduce the context space,
by observing that for any context (x1, x2), any pair of expressions (e1, e2) such that
xi ∈ Bei , any string y,

PS
(
γ(x1, y, x2)

)
=
( ∑

x′1∈Be1 ,
x′2∈Be2

PS
(
γ(x′1, y, x′2)

))
qBe1 (x1)qBe2 (x2). (3.4.3)

Let us assume that we have a collection of expressions (ei)i, i ∈ I, such that
D∗ = ⋃

i∈I Bei and ({Bei , i ∈ I})2 ⊂ Θ, and do not assume any more that Θ
contains all one point sets.
Proposition 3.4.1
In this case, the union B = C1 ∪ C2 is a Markov substitute set, if and only if, for
some p ∈]0, 1[,

∀θ ∈ Θ, E
(
Fθ(S, p)

)
= 0,

Proof. We see from the definition of Fθ(S, p) that E
(
Fθ(S, p)

)
= 0 if and only if

∑
x∈θ

∑
y∈C1

PS
(
α(x, y)

)
= p

∑
x∈θ

∑
y∈C1∪C2

PS
(
α(x, y)

)
, (3.4.4)

whereas C1 ∪ C2 is a Markov substitute set if and only if for any x ∈ (D∗)2,∑
y∈C1

PS
(
α(x, y)

)
= p

∑
y∈C1∪C2

PS
(
α(x, y)

)
. (3.4.5)

Now, for any x = (x1, x2) ∈ (D∗)2, there are e1, e2 such that x1 ∈ Be1 , x2 ∈ Be2 ,
and we see that the combination of eq. (3.4.4) on the current page applied to
θ = Be1 × Be2 and of eq. (3.4.3) on this page implies eq. (3.4.5) on the current
page.

To implement this, we can put the whole of {Be,∃s ∈ D+, r(s, e) > 0}2 in Θ,
since we can make Θ as big as we like, knowing that we only have to test on the
contexts that we actually see, and compute 1

(
x ∈ Be1 ×Be2

)
as

1
(
r(xi, ei) > 0, i = 1, 2

)
.

3.4.3 Saturation
We actually can go further than simply adding rules to the ruleset. Consider for
a given ruleset R, the collection of subsets B = {Bi, i ∈ N}, and, as constructed
in section 2.3 on page 74, the graph in D+ so that (α(x, y), α(x, y′)) is an edge
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if, and only if, y and y′ are in the same Bi. This graph defines an equivalence
relation ∼R , which is obviously the same as the one defined in definition 3.2.1 on
page 133.

Now we can remark that we can change the actual graph (that is, the ruleset)
without changing the actual equivalence relation. An “sparse” graph, with few
edges and small Bi sets, was considered in section 2.3 on page 74, where the goal
was to simplify as much as possible the graph to ease computation. A “fuller”
graph with many edges and big sets, on the other hand, accelerates the invariant
dynamics, since they only jump along the edges of the graph. We will here attempt
to build, from a given ruleset, another one, with the same equivalence relation,
but with richer syntagm sets.

Let us first consider a small example to see how this works. Say we have in the
rules

[1ab
⊕ [2b⊕ [2c.

Such a set of rules will not be able to recognise Bac as a syntagm set, while it is a
Markov substitute set, easily obtained from these rules. Indeed, the set of rules

[1a]2
⊕ [2b⊕ [2c,

is still Markov (if the first one was, obviously), and does recognise ac. The missing
part is [1a]2, which may be obtained by parsing [1ab by [2b.

The question whether we should keep the original [1ab is open. It clutters a
bit the reference grammar, and any ab may still be parsed by [1a]2 and [2b, but
it may speed up the parses, and allows more leeway in the order in which the
different elements are parsed. Moreover, it may be smart to keep these elements
to maximize the number of parses we can find.

For example, consider the (supposed Markov) set of rules

[1abc⊕ [1d
⊕ [2ab⊕ [2e
⊕ [3bc⊕ [3f.

The following set would still be Markov:

[1]2c⊕ [1a]3 ⊕ [1d(⊕[1abc)
⊕ [2ab⊕ [2e
⊕ [3bc⊕ [3f.
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It should be clear here that both [1]2c and [1a]3 come from the same [1abc. If we
did not keep the original [1abc, we would only get, say, [1]2c, and af would not
be recognised as a syntagm. Running several classic parses (and deleting parsed
elements), and merging the results, will give some of the missed elements, but not
all (for example, those needing both [1]2c and [1a]3 to parse them, say [4]2ca]3).

Remark however that the redundant elements can always be removed after-
wards, by removing all elements that may be parsed by the grammar.

As mentioned, we do not want to modify the rules so that they generalize more,
as in the previous section. Rather, we want to keep the same syntactic classes.
This leads us to the following definitions.

Definition 3.4.1
A ruleset R is weakly smaller than another ruleset R ′ when, for any syntagm
type i, the set Bi of syntagms for R is contained in a set of syntagms B′j of R ′.

R . R ′ ⇐⇒ ∀i∃j; Bi ⊂ B′j.

Weak equality is of course the case when there is a bijection f : N 7→ N such that

∀i; Bi = B′f(i).

The weak order on ruleset is obviously a reflexive partial order.

Definition 3.4.2
A ruleset R is compatible with another R ′, when, the set of syntagms of any type
is included in a equivalence class of ∼R′:

R W R ′ ⇔ ∀i ∀a, b ∈ Bi; a ∼R′ b.

It is quite obvious that a ruleset weakly smaller than a compatible one is still
compatible, and that the relation W is transitive.

It follows from this definition and from lemma 3.2.6 on page 133 that any
ruleset compatible with a Markov ruleset, is also Markov.

Proposition 3.4.2
Let us take two rulesets R,R ′. Then we have the following

R . R ′ =⇒
(
∀s, s′ ∈ D+, s ∼R s′ =⇒ s ∼R′ s

′
)

R W R ′ =⇒
(
∀s, s′ ∈ D+, s ∼R s′ =⇒ s ∼R′ s

′
)
.

This means that a weakly bigger, compatible ruleset will define the same equivalence
relation.
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Proof. Suppose R . R ′, and s ∼R s′. By definition, we have a chain (xj, yj, y′j),
yj, y

′
j ∈ Bkj , so that s = α(x0, y0), α(xJ , y′J) = s′ and α(xj−1, y

′
j−1) = α(xj, yj).

By hypothesis, there are k′j so that Bkj ⊂ B′k′j
, and yj, y

′
j ∈ Bkj . This means

that s ∼R′ s
′.

Suppose now that R W R ′, and s ∼R s′. Again, we have a chain (xj, yj, y′j),
yj, y

′
j ∈ Bkj , so that s = α(x0, y0), α(xJ , y′J) = s′ and α(xj−1, y

′
j−1) = α(xj, yj).

This time, we know that yj ∼R′ y
′
j, so that again s ∼R′ s

′.

The goal now will be to build, from a given ruleset, a bigger, compatible one.
This can be done in the following way.

Proposition 3.4.3
Let R be a Markov ruleset. Consider the sequence of grammars (Ri)i:

− R0 = R,

− Ri+1 is a splitting of ∪j6iRj with reference grammar ∪j6iRj.

Then ∪iRi is weakly bigger and compatible, and will be called the saturated ruleset,
noted R.

Proof. Let us begin with the fact that R & R. This comes from the fact that
Ri+1 & Ri, which in turns comes from the fact that, if we put Bi the syntagm sets
of Ri, and B′i those of Ri+1, Bi ⊂ B′i.

Now let us consider the compatibility. We will prove the weaker result:

Lemma 3.4.4
For any ruleset R, for any [iα(x, y), [jy ∈ R, the ruleset R ′ = R ⊕ [iα(x, ]j) is
compatible with R.

Proof. Let us note Bi the syntagms sets for R, and B′i the syntagms sets for R ′.
Let us begin by taking a syntagm s ∈ By, and a parse s̆, Πy(s, s̆) > 0.

Take any syntagm a ∈ B′i, and a parse ă, Πi(a, ă) > 0.
Consider now all c, t such that ă = α(c, (jt)j) and [jς (t) = [iα(a, ]j). We will

prove by induction on the number of such splits that a is equivalent to a syntagm
of type i for G .

If there is none, then for all c, t such that ă = α(c, (jt)j), [jς (t) ∈ R, and
a ∈ Bi. This initializes the induction.

If not, let us consider one of the deepest such x, y. This means that for all x′, y′,
if t = α

(
x′, (ky′)k

)
, [kς (y′) ∈ R, so ϕ (t) ∈ Bk. Moreover, since ς (t) /∈ R,

ς (t) = α(x, ]j), and we can take (x′, y′) such that t = α(x′, y′), ς (x′) = ς (x),
and ϕ (y′) ∈ By. Obviously ϕ (y′) ∼ s, so that, if ă′ = α

(
c, (jα(x′, s̆))j

)
, ă′ is

still a syntagm for R ′, and a = ϕ
(
α
(
c, (jα(x′, y′))j

))
∼ ϕ (ă′). Since ă′ has one
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less (c, t), its realization is equivalent by hypothesis to a syntagm for R, and so
is a.

Thus any R ′-syntagm of type i is equivalent to a R-syntagm of type i. This
ends the proof.

Since the ruleset R is build by repetitive application of splits as in the lemma, the
result is compatible with the first ruleset.

Proposition 3.4.5
The process defined in proposition 3.4.3 on the preceding page is stationary in finite
time.

Proof. The saturated ruleset is obviously finite, since the lengths of its elements
are bounded by the maximum length of the elements of the original ruleset R0.
The dictionnary is finite since no new indices for brackets are created.

Since each step adds at least a new element to the saturated ruleset (or the
process ends), the process finishes a.s. in finite times. We could even compute
an explicit bound using this argument, but chances are it is much larger than the
best possible one.

3.4.4 Identification of labels
Nowhere in this study did we identify labels, except in the obvious case [i]j. How-
ever, if, at any point, we discover an element s ∈ Bi ∩ Bj, while parsing, or
simulating, for example, we can at once indentify the labels i and j.
Proposition 3.4.6
For any ruleset R, if Bi ∩Bj 6= ∅ for some i 6= j, then if we define the ruleset R ′

as the ruleset where all instances of j in R was replaced by i, R ′ W R.

Proof. Let us take s ∈ Bi ∩Bj. For any pair of parse trees (ka)k, (kb)k ∈ B̆k, we
will show, by induction on their maximal depth, that ϕ (a) ∼ ϕ (b).

− If their depth is 1, that is, a, b ∈ D+, either k 6= i and ϕ (a), ϕ (b) ∈ Bk,
hence the result, or k = i. In this case, by hypothesis, ϕ (a) ∼ s ∼ ϕ (b).

− Suppose their depth is less than n. Say a = α(x, (jy)j). By hypothesis, there
is y′ ∈ B̆j such that ϕ (a) ∼ ϕ (α(x, (jy′)j)). This means that there is t ∈ B̆′k,
ϕ (a) ∼ ϕ (t), and for any x, y, t = α(x, (jy)j) =⇒ y ∈ B̆k. The same holds
true for b, with a parse t′.
Now, if k 6= i, t, t′ ∈ B̆k, and ϕ (a) ∼ ϕ (t) ∼ ϕ (t′) ∼ ϕ (b). If k = i, then
t, t′ ∈ B̆i ∪ B̆j, and ϕ (a) ∼ ϕ (t) ∼ s ∼ ϕ (t′) ∼ ϕ (b).
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3.5 Toric grammars
The formalism we used to describe rulesets corresponds exactly to the definition of
toric grammars introduced in chapter 1, more precisely, reference grammars (since
we only consider local expressions), minus permutations. We will, in this section,
use the term reference grammar in place of ruleset.

The construction described in section 3.4 on page 144 may be used to obtain
the reference grammar needed for the communication model. Let us now study
the properties of this model.

3.5.1 Split and merge processes using parsing
The parsing framework we defined in section 3.1.3 on page 123 can be used to
define probabilities for the splitting part of a split-and-merge process, provided
the parsing extension kernels are well chosen.

Definition 3.5.1
For any bottom-up parsing extension kernel $ that depends only on the surface
structures, that is, for any x, x′ ∈ B̆e × B̆e′ , (iy)i, (iy′)i ∈ Bi,

$
(
α(x, y), α(x, (iy)i)

)
= $

(
α(x′, y′), α(x′, (iy′)i)

)
, (3.5.1)

we can define a splitting rule

β$(G ) =
{
G ′ ∈ G : G ′ = G ⊕ α

(
(e, e′), ]i)⊕ [ia	 α

(
(e, e′), a

)
,

[ia ∈ R,∃x ∈ B̆e × B̆e′ , y ∈ Ba, $
(
α(x, y), α(x, (iy)i)

)
> 0

}
⊂ βn(G ,R).

We can even define a distribution on β$(G ) as the unique value of $,

P
(
G ⊕ α(e, ]i)⊕ [ia	 α(e, a)

)
= $

(
α(x, y), α(x, (iy)i)

)
.

The split process thus defined will be noted S.
We can complete the definition of split-and-merge process by using the uniform

distribution on the merges α(G ).

Using this definition, there is a one-to-one correspondence between split processes
and a general parsing kernel.

Lemma 3.5.1
Given any string s, and a split G ∈ β∗n(s,R), there is a bijection

T : β∗n(s,R) −→
{
t ∈ T , s ∈ Bt

}
.
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Proof. Let us take a sequence of splits s = G0, . . . ,Gn, Gi ∈ βn(Gi−1,R). We can
reverse this process by building a sequence (Ği), such that ϕ

(
Ği
)

= Gi. We will
first let Ğn = Gn, and, given Ği, if

Gi = Gi−1 ⊕ α(e, ]i)⊕ [ia	 α(e, a),

put
Ği−1 = Ği 	 α(e, ]i)	 [iă⊕ α(e, (iă)i),

where ă is the expression corresponding to a in Ği.
This construction verifies the condition ϕ

(
Ği
)

= Gi, so in particular we have
that t = ϕ

(
Ğ0
)
∈ T and ϕ (t) = s.

We will now prove that this t does not depend on the actual sequence of splits.
This comes from the fact that the surface structure ς (y) of any substring y of t
must be in Gn. This means that we can define T (G ) = t. All that is left to prove
is that this is a bijection.

In order to do so, consider the converse construction. Take a parse tree t.
There is a sequence of parse trees s = t0, . . . , tn = t, such that there is, for any i,
a context x ∈ T 2, an expression a, [ia ∈ R and a tree y ∈ Ba, with ti = α(x, y),
ti+1 = α(x, (iy)i). This sequence defines a sequence of splits, with the rule

Gi+1 = Gi ⊕ α(x, ]i)⊕ [iy 	 α(x, y),

as mentioned before, and the end result G does not depend on the actual sequence,
since

G (t) = ς (t)⊕
⊕

[je∈R

χ(t, j, e)⊗ [je (3.5.2)

This obviously defines the inverse of T .

Remark that this lemma states also that, as soon as we have a parsing kernel
such that

Π(s, t) > 0⇔ βn(G (t),R) = ∅, t < s, (3.5.3)
we can simply use this parsing kernel to simulate a split process.

3.5.2 Reversible split and merge process
The results above showed that the (generalized) split and merge process could
be used to explore the communication classes of k. However, such a process will
probably distort the distribution, and can only be used to study the support
of the language. We will here propose a method to build a reversible crossing-
over dynamics, using the general Metropolis method described in section 3.D on
page 165, using split and merge processes.
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We will here work on texts, that is, on sums of Dirac masses at possibly repeated
sentences. As such, we will note T the set of texts of strings, T̄ that of texts of parse
trees, G for texts of expressions, Ḡ for texts of well-parenthesized expressions. The
length of texts, that is, their mass, is fixed at n.

We begin with a text S1:n ∈ T, and a reference grammar R ∈ G. The basic
idea is to split the text according to a parse of its sentences, and then to merge it
back, effectively crossing over constituents.

Let us then consider a general parsing kernel Π. We also have the splitting
kernel from parsing trees to toric grammars t 7→ G (t) defined in eq. (3.5.2) on the
facing page. We now want to build a production process that will merge back the
elements of G into a text.

Remark first that any text that can be obtained by regular merges (where we
merge any [iα(x, ]j) with any [jy) can also be obtained by merging only [0α(x, ]j)
with [jy, in left-to-right order. Indeed, given a merge result, we can simply follow
the order of merges given by taking outer parentheses first, in left-to-right order. If
we moreover index the global brackets [0 of the grammar, the order of parentheses
are fixed.

Consider now the merge transformations on grammars{
Mk(G ,G ′); G ′ = G 	 [k0α(x, ]i)	 [iy ⊕ [k0α(x, (iy)i)

}
.

We can take, for example,

Mk

(
G ,G 	 [k0α(x, ]i)	 [iy ⊕ [k0α(x, (iy)i)

)
= 1(x1 ∈ D̆∗)

G ([iS∗)
,

which corresponds to taking the closing brackets from left-to-right order in the kth
sentence of G (with weights), and a matching [iy.

If we put, for short,M(G ) =Mk(G ), where the merge is on the first incomplete
sentence, that is, k = min{m,G ([m0 D̆∗) = 0}, the Markov chain defined by the
kernel M is stationary in finite time, at most ∑i∈N\{0} G ([iS∗), since each steps
removes one [i. We can then define the production process as

P =M∞.

The trick of indexing the sentences allows us to have a deterministic order
of the merges, at least for the closing brackets, which means that for any two
grammars G ,G ′, if P(G ,G ′) > 0,

P(G ,G ′) =
∏
i

G ′([iS∗)!
G ([iS∗)!

·

Remark that the result of P is not necessarily a text (that is, a grammar with
no [i, i > 0 left). We will not explore how we could recover from this failure, and
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merge back the remaining elements, since we think this would be unnecessarily
complicated. We prefer to simply reject the result if G ′([+D+) 6= 0 and repeat
the merge until success. Failures will only happen when the grammar is recursive,
and be actually rare unless the grammar is strongly recursive. As we mentioned
in section 1.3.2 on page 28, this was indeed a rare occurrence in our experiments.

Since the Metropolis algorithm used to build the reversible dynamics already
uses some sort of rejection process, we can even integrate it to the chain using the
projection kernel

τ : Ḡ −→ M1(T̄)

G 7−→

δG if G ∈ T̄

δεn otherwise,

and conversely τ−1(t) = δt, t ∈ T̄.
We finally obtain the following chain, with which we can define a reversible

dynamics on texts, using section 3.D on page 165:

T
Π // T̄+ // T̄

τ−1
// Ḡ

S

��
G

P��
T T̄+oo T̄

ζ
oo Ḡτ

oo

Non-labelled arrows of course represent projections on the last or first element of
the string.
Proposition 3.5.2
The dynamics on texts defined by

SM(t, t′) =∑
t̃,t̃′∈T̄+

t̆,t̆′∈T̄
Ğ ,Ğ ′∈Ḡ

G∈G

Π(t, t̃)1(e(t̃) = t̆ = Ğ )S(Ğ ,G )P(G , Ğ ′)τ(Ğ ′, t̆′)ζ(t̆′, t̃′)1(t′ = b(t̃′))

×

 ζ(t̆, t̃)
Π(t, t̃)

τ(Ğ , t̆)
1(t̆ = Ğ )

P(G , Ğ )
S(Ğ ,G )

S(Ğ ,G ′)
P(G , Ğ ′)

1(t̆′ = Ğ ′)
τ(Ğ ′, t̆′)

Π(t′, t̃′)
ζ(t̆′, t̃′)

∧ 1


is reversible for P⊗nS .

Proof. As always, the expression of SM(t, t′) is symmetric in t, t′, so we only
have to prove that P⊗nS (t) = P⊗nS (t′).
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Given any sequence t̃, t̃′ ∈ T̄+, t̆, t̆′ ∈ T̄, Ğ , Ğ ′ ∈ Ḡ,G ∈ G with a positive
contribution to the sum, according to lemma 3.2.1 on page 125,

P⊗nS (t) =
n∏
k=1
PS
(
Bς(t̆k)

)
qBς(t̆k)(tk)

=
n∏
k=1

PS(Bς(t̆k)
)
Aς(t̆k)

∏
[je∈R

[
AeqBj

(
Be

)]χ(t̆k,j,e)


=

n∏
k=1

 ∑
[k0a∈G

PS
(
Ba

)
Aa

∏
[je∈R

[
AeqBj

(
Be

)]G ([je)


=

n∏
k=1

PS(Bς(t̆′k)
)
Aς(t̆′k)

∏
[je∈R

[
AeqBj

(
Be

)]χ(t̆′k,j,e)


=

n∏
k=1
PS
(
Bς(t̆′k)

)
qB

ς(t̆′k)
(t′k)

= P⊗nS (t′).

3.6 Estimating the language distribution
Let us remark that if B is a Markov substitute set such that B ∩ supp(PS) 6= ∅,
then B ⊂ supp(PS) and PS|S∈B = qB. As such, we can aim to identify a collection
of Markov substitute sets that will cover the entire distribution, and from their
relative frequencies, deduce the entire distribution.

If we put for any s ∈ D+, C(s) = supp(δs
∑∞
j=0 k

j) the syntactic category of s,
then C(s) is a Markov substitute set and

P(S) = E
(
qC(S)

)
,

so that
P̂ = 1

n

n∑
i=1

qC(Si)

is an unbiased estimate of PS.
This formula can be used to estimate the probability of any sentence, provided

we have access to the substitute measures qC(s).
Let us remark here that while

supp(δsk) =
⋃

e∈S+,s∈Be

Be
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is a context-free language (with multiple rewriting rules for the start symbols),
since Es = {e ∈ S+, s ∈ Be} is finite, this is not the case anymore for C(s),
because nothing prevents the number of surface structures of strings in C(s) to be
infinite. Differently put, the syntactic category of a string s is not necessarily a
context-free language, though it is still a countable union of context-free languages

C(s) =
⋃

e∈E(s)
Be,

with
E(s) =

{
e ∈ S+,

∞∑
j=0

kj(s, Be) > 0
}
.

For any fixed, finite set E, C(E) = ⋃
e∈E Be is still a context-free language, and

as such its substitute measure qC(E) may be estimated using the tools presented
in section 3.2.2 on page 127. This means that we can estimate E(s) by

Ê(s) =
{
e ∈ S+,

N∑
j=0

kj(s, Be) > 0
}
,

which is finite and whose substitute measure may be estimated. The error

PS

 ⋃
s∈supp(Ps)

C(s) \
n⋃
i=1

C(Ê(Si))


may be estimated using the missing mass estimator (see [Goo53,MO03]).
Another view is to remark that, for any string s, and any expression e ∈ S+,

such that s ∈ Be,
PS(s) = PS(Be)qBe(s).

The substitute measure qBe , as we have already seen, is easy to estimate. To
estimate PS(Be), we want to compute

1(s ∈ Be).

This function is a very simple parsing test, and is also very easy to compute. Thus
we can estimate the probability of a given sentence s by drawing one or better yet,
multiple parsing trees t1, . . . , tm, tk < s, which gives several expressions ek = ς (tk),
and set

P̂(s) = 1
m

m∑
k=1

1
n

n∑
i=1
1(Si ∈ Bek) qBek (s).

We thus obtain an estimator without bias of P(s), on the condition that we use a
split sample scheme to learn the substitute measures on a different sample.
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This approach can also be used as a grammaticality test. In this test we can
choose not to use the substitute measures qBek , since we know they must have by
construction a full support. We can indeed define the set of global structures of
the language as

{e ∈ S+,P(Be) > 0}.

We can then consider the set of maximal surface structures Eg for the inclusion
relation Be′ ⊂ Be. The support of PS can then be characterized by the property

PS(s) > 0⇐⇒ ∃e ∈ Eg, s ∈ Be.

For any string s ∈ D+, the set Eg(s) = Eg ∩ {e, s ∈ Be} is easy to compute from
parsing, and Eg can then easily be estimated by

Êg =
⋃
i

Eg(s),

and the error

PS

 ⋃
e∈Eg

Be \
⋃
e∈Êg

Be


may be once again estimated with the missing mass estimator.

3.A Support of the split and merge process and
substitutions

We will study in this section the action of the split and merge process on the
syntactic classes.

Let us consider a grammar R0, a corresponding reversible dynamics k0, and its
associated equivalence relation∼0. These can obviously be extended to texts. Take
a compatible reference grammar R, and let SMP be a split-and-merge process
with reference R, as defined in section 3.5.1 on page 151. We take a compatible
grammar, and not simply the same grammar, for the first result.

Proposition 3.A.1
For any pair of texts (t, t′) ∈ T,

SMP (t, t′) > 0 =⇒ t ∼0 t
′.

In particular, the split and merge process stays in the support of the language.
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Proof. We will focus in this proof on a single sentence, since the substitute
process is independent on the sentences. Let us take a sentence s, and its result,
s′. We may consider s′ as a syntactic tree s̆′, given by the merge operation sequence,
and we can to the same with s, its structure s̆ being given by the parse algorithm
used to split. The only common point between s̆ and s̆′ is their surface structure.

We want to prove that substitutions can link any two R-correct syntagms s̆
and s̆′, as soon as they share the same surface structure.

Since R is compatible, any two trees in the same B̆i are equivalent. Since s̆
and s̆′ share the same global structure, any tree inside a pair of outer parentheses
of s̆ has a counterpart in s̆′, and each may be substituted to its counterparts in s̆′,
which gives the result.

The converse is obviously not true. The simple compatibility is not sufficient
anymore, since the null grammar is compatible with any grammar, but has a
trivial split and merge process. So let us now suppose that R defines the same
equivalence relation. Under no further hypothesis, this is still not sufficient, since
we need at least all elements of Bi to be in the text to hope to obtain them after
a pass of the split and merge process.

However, if we define a slightly different split and merge process, we can get a
converse result.
Definition 3.A.1
We will define a generalized split and merge process GSMP as the result of a
split process, followed by a merge from the obtained global expressions, using the
elements of R, without any restriction on the number of uses. Such a merge will
be noted GMP .

The actual distribution of the merges may be taken as uniform on all possible
merges, but since we are here only interested in supports, the actual distribution is
not crucial.

Obviously, such a process is independent on each sentence of the text, and propo-
sition 3.A.1 on the preceding page is still true with this new process.

Such a definition, however, is still not sufficient to have the reverse implication,
as shown in the following example. Consider the reference grammar (compatible
with itself)

[1α⊕ [1ab ⊕
[2γ ⊕ [2bc.

Obviously, k2(αc, aγ) > 0. However,

GSMP (αc, ·) = 1
2δ(αc) + 1

2δ(abc),
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so that GSMP (αc, aγ) = 0.
Nonetheless, we have the following, if k is the invariant dynamics defined

from R.

Proposition 3.A.2
For any pair of sentences (s, s′),

k(s, s′) > 0 =⇒ GSMP (s, s′) > 0,

and as such, ∑
k

GSMP k(s, s′) > 0⇐⇒ s ∼ s′.

This means that, more than staying in the support of the language, the gener-
alized split and merge process will visit all sentences in each of the communication
classes of k, provided it begins in it.

Proof. The proof is actually quite straightforward: if k(s, s′) > 0, there are
two t, t′ ∈ Be for a certain expression e, and two chains t̃ and t̃′ from s to t and s′
to t′ respectively so that Π(s, t̃) > 0 and ζ(t̃′, s′) > 0. Obviously then S(s, e) > 0,
and GMP (e, s′) > 0, so GSMP (s, s′) > 0.

3.B Parsing using a ruleset
We will now describe how to build the different parses we used in chapter 3.
In order to do so, we will use a well-known parsing algorithm for context-free
grammar, the CYK algorithm.

The version of the CYK algorithm we will (briefly) outline here is that proposed
in [LL09], which works on a grammar in the Binary Normal Form, that is, a
grammar for which all right-hand sides of rules are of length at most 2.

Let us then take a set of context-free rules (D, ]R,R), where the rule index
set R ⊂ N is finite. Its size |R| is by definition the length of the concatenation
of all the rules in R. Its transformation to its binary normal form R ′ may be
obtained in time O(|R|), and the resulting grammar is of size O(|R|), and the size
of its non-terminal set is also O(|R|). The transformation is obtained by replacing
any rule of length more than 2, [iω1 . . . ωn by the rules

[iω1]i1 ; . . . ; [ij−1
ωj]ij . . . ; [in−1

ωn−1ωn.

Let us suppose that we also built the unit graph

U =
{

(]a, e), e ∈ D ∪ ]+, ([ae ∈ R
}
,
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which is built in time and space O(|R|), simply by adding the correct edges for
each unit rule. This makes the computation of U∗(]a) (the set of reachable states
from ]a in the graph U) possible in time O(|R|).

Given a string s1:n to parse, the algorithm will actually compute the sets

Tv = {x ∈ D ∪ ]+, v ∈ Bx}

for all substring v of s. These sets will be stored in a table T of size n2. Each
entry in this table is itself a boolean array indexed by pairs (]i, k), where i ∈ R
and k ∈ J0, nK (so the array is of size |R| × (n + 1)), and whose diagonal is filled
with the terminal symbols s1, . . . , sn.

The table is then filled so that T (i, j)(]a, 0) = 1 when there is one symbol b
such that si:j ∈ Ba ∪ Bb, [ab ∈ R, and T (i, j)(]a, k) = 1 when there are two
symbols b, c ∈ D ∪ ]+, such that si:k ∈ Bb, and sk+1:j ∈ Bc, where [abc ∈ R. In
particular, T (i, j)(]a, k) = 1 for some k means that si:j ∈ Ba.

The table is then filled so that si:j ∈ Ba, if, and only if, si:k ∈ Be1 , and
sk+1:j ∈ Be2 , where [ae1e2 ∈ R if, and only if, T (i, j)(]a, k) = 1.

This is done by the following algorithm, where all cells in T are initially set
to 0:

for i=1,...,n do
T(i,i)+=s_i
T(i,i)+=(U*(T(i,i)),0)

done
for j=2,...,n do

for i=1,...,j-1 do
for k=i,...,j-1 do

for all rule [a XY do
if T(i,k)(X,*)=1 and T(k+1,j)(Y,*)=1 then

T(i,j)+=(a,k)
done

done
done
T(i,j)+=(U*(T(i,j)),0)

done
done

with the notation T(i,j)+=A meaning that we change to 1 the value of each cell
of T (i, j) whose index is in A. Again, U*(T(i,j)) is the set of symbols produced
by the unitary rules of U whose left-hand side is equal to T(i,j) (seen as a list of
symbols). On the other hand, T(i,k)(X,*)=1 is the test that at least for one r,
T(i,k)(X,r)=1.
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This algorithm is in O(n4|R|) time, and we could make it O(n3|R|) (classical
complexity) if we do not need to keep the index k. However, the k is necessary to
be able to draw a certain parse from the table, which we’ll need in section 3.B.2
on the next page. The space requirement is O(n3|R|), O(n2|R|) if we do not need
the k.

With such a table, we can now present our parsing algorithms. As mentioned
before, we are working on rulesets, and not complete context-free grammars. We
are missing the start symbol. This means that we have two different approaches
to the parsing. In one case, we seek a parsing kernel Πe that stays inside the
context-free language B̆e, which is the classic framework. In the other, we are not
in a context-free language, but in the whole T . We do not have, in this case, a
start symbol (or rather, we have an infinity of them).

3.B.1 Parsing general syntagms
Parsing in T does not require the surface structure of the result to be of a partic-
ular form. This means that we can build the parse bottom-up.

Let us begin with the observation that any expression e such that t ∈ Be can
be described by a succession of cells (T (ik, jk, rk) > 0)16k6K , so that ik+1 = ik+jk,
i0 = 1, iK + jK = `(s). Indeed, in this case, e = ]i(r1) . . . ]i(rK). The lengths jk
are additional informations, corresponding, for s 4 t ∈ B̆e, to the lengths of the
contents of each outer parentheses of t.
Definition 3.B.1
For any parse tree t ∈ T , let us put

E(t) =
{
t′ = α(x, (iy)i), (x, y) ∈ T 3, t = α(x, y), ς (y) ∈ R

}
.

The general parsing extension is defined as

$(t, t′) = 1(t′ ∈ E(t))
|E(t)| ·

Proposition 3.B.1
The parsing kernel Π defined from the general parsing extension kernel is such that

supp(Π(t, ·)) =
{
t′ ∈ T , ϕ (t′) = ϕ (t), E(t′) = ∅

}
,

that is, Π charges all the maximal parses of t.

Proof. It is quite obvious that if Π(t, t′) > 0, t′ < t and E(t′) = ∅.
Conversely, let us prove that all maximal parses are charged by Π. Let us take

such a parse t′. Consider the sequence of trees t = t0 < . . . < tn = t′, where we
add the parentheses of t′ one pair at a time, following a left-to-right, bottom-up
path. It is quite obvious that $(t, t′) > 0 and supp($(t′, ·)) = ∅, so Π(t, t′) > 0.
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As before, we will be more interested in the general parsing kernel Π defined
from $, which keeps track of the whole sequence of trees built using $.

The set E(t) is quite easy to compute from the parse table of ϕ (t), so the
simulation and computation of Π(s, ·) is easy.

For the definition of reversible dynamics, we also need a converse kernel ζ that
removes parentheses. Given a tree T ∈ T , writing s = ϕ (T ), we will define the
parsing extensions relative to T .

Definition 3.B.2
For any parse tree t ∈ T , let us put

BT (t) =
{
t′ = α(x, (iy)i), (x, y) ∈ T 3, t = α(x, y), ς (y) ∈ R, T < t′

}
.

The general parsing extension is defined as

ρT (t, t′) = 1(t′ ∈ BT (t))
|BT (t)| ·

Once again, the set BT (t) is quite easy to compute from the parse table of ϕ (t),
so the simulation and computation of ζ(T, ·) = ρ∞T (T, ·) is easy.

The Metropolis algorithm will consider, for a sequence of trees t̃i, 0 6 i 6 m
the ratios

$(t̃i, t̃i+1)
ρt̃m(t̃i, t̃i+1) = |E(t̃i)|

|Bt̃m(t̃i)|
1(t̃i+1 ∈ E(t̃i)).

While these ratios are not necessarily close to 1, they do not depend on t̃i+1 (apart
the obvious requirement t̃i+1 ∈ E(t̃i)). The actual values of these ratios depend on
the ambiguity of the grammar, and a sentence for which only one maximal parse
exists will have all the ratios equal to 1.

3.B.2 Parsing inside syntagms of certain type
Section 3.2.3 on page 129 required that we had a parsing Πe inside of a particular
language Be. This is actually the main goal of standard parsing algorithms such
as CYK, but we need to go a little further, for we need an easy way to draw
such a parse, and to compute Πe(s, t) for any string s and tree t. This can easily
be done by keeping in the table cell T (i, j) pointers to the table cells T (i, i + k)
and T (i+ k, j) used to fill it, which can be done by adding k to the indices of the
array in T (i, j), as described before.

We have to consider, for any expression e, the set of incomplete parse trees
from e, that is

Te =
{
t ∈ D̆∗, ∃t′ ∈ B̆e, t

′ < t
}
.
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Definition 3.B.3
For any incomplete parse tree t ∈ Te, let us put

D(t) =
{
t′ = α(x, (k(iy)i(jy′)j)k), x ∈ ε× D̆∗, y, y′ ∈ D+,

t = α(x, (kyy′)k),∃(iy̆)i ∈ Bi, (j y̆′)j ∈ Bj,

[k]i]j ∈ R, ϕ (y̆) = y, ϕ (y̆′) = y′
}
.

The parsing extension from e is defined as

$(t, t′) = 1(t′ ∈ D(t))
|D(t)| ·

It is quite obvious that if t ∈ Te, Dt ⊂ Te. The set D(t) is, again, easy to compute
from the table, on the condition that pointers are kept as described above.

The parsing kernel may then be defined as

Πe(s, t) = $∞((0s)0, t)

= exp
− ∑

x∈(D̆∗)2,
y∈T ,k∈N

1
(
t = α(x, (ky)k)

)
log

(∣∣∣D(α(x, (kϕ (y))k)
)∣∣∣)
.

3.C Building crossing-over tree kernels
The construction of reversible dynamics defined in section 3.2.5 on page 134 re-
quires a crossing-over tree kernel

(
s(t, t′), t, t′ ∈ T̄

)
. We will present here one way

of building it.
In order to do so, it will be useful to index the parentheses of tree texts. We

will then use a new parenthetized dictionnary ˙̆
D = D ∪ {(ki , )

k
i , i ∈ N, k ∈ N}.

The i will still be called labels, and the new k, indices. We build as before the set
of trees Ṫ , with the additional requirement that matching parentheses have the
same index, and that no two opening or closing parentheses have the same index.
We of course define all the other sets as before, in particular ˙̄T = Ṫ n.

For any text t ∈ T̄, let t1 be the same tree with the parentheses indexed in
the order of the opening ones (left-to-right, depth first order). For any indexed
tree text ṫ ∈ ˙̄T, any permutation σ ∈ Sm, where m is the number of parentheses
in ṫ, let us write as ṫσ the text where the pair of parentheses in ṫ with index k
is instead indexed by σ(k), that is, if ṫi = α(x, (ky)k), ṫσi = α(x, (σ(k)y)σ(k)). It is
quite obvious that (tσ)σ

′
= tσ◦σ

′ , and we will expand this operator on non-indexed
tree texts with the notation tσ = (t1)σ.
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For any indexed tree text ṫ withm pairs of parentheses, let φ(t) be the tree itself,
without parenthesis indices, and σṫ ∈ Sm be the permutation such that ṫ = φ(ṫ)σṫ .

Let us begin by defining an indexing kernel

I(t, ṫ) = 1
m! , t ∈ T̄, ṫ ∈ ˙̄T, ṫ = tσ, σ ∈ Sm.

Consider, for any indexed tree text ṫ ∈ ˙̄T, the sets

AK(ṫ) =
{
ṫ′ ∈ ˙̄T,

ṫu = α(x, (kjy)kj ), ṫv = α(x′, (k′j y′)k
′

j ), ṫ′u = α(x, (k′j y′)k
′

j ), ṫ′v = α(x′, (kjy)kj ),

u, v ∈ N, j ∈ N \ {0}, x, x′ ∈
( ˙̆
D∗
)2
, y, y′ ∈ Ṫ , σ−1

ṫ
(k′) > σ−1

ṫ
(k) = K

}
,

BK(ṫ) =
{
ṫ′ ∈ ˙̄T,

ṫi = α
(
α(x, (kjy)kj ), (k

′

j y
′)k′j
)
, ṫ′i = α

(
α(x, (k′j y′)k

′

j ), (kjy)kj
)
,

i ∈ N, j ∈ N \ {0}, x, x′ ∈
( ˙̆
D∗
)2
, y, y′ ∈ Ṫ , σ−1

ṫ
(k′) > σ−1

ṫ
(k) = K

}
,

CK(ṫ) = AK(ṫ) ∪BK(ṫ).

We can now define the individual crossing-over kernels

sK(ṫ, ṫ′) =
1
(
ṫ′ ∈ CK(ṫ)

)
|CK(ṫ)| ·

These kernels simply swap the contents of the Kth pair of parentheses (that has
index σ(K)) with the contents of a pair of parentheses (with same label) further
in the text (but not inside the parentheses). We could add one to the numerator
if we wanted to allow no crossing-over to take place (and complete the kernel by
giving a positive probability to ṫ = ṫ′).

We can now define the crossing-over kernel s = s1 ◦ . . . ◦ sm. Simulation of s,
as seen, is easy. Moreover, it is apparent from the definition that for any pair of
indexed tree texts ṫ, ṫ′, s(ṫ, ṫ′) = s(ṫσ, ṫ′σ).

Hence, to calculate s(ṫ, ṫ′), we can go back to the case where σṫ = 1. In this
case, if s(ṫ, ṫ′) > 0, the pair of parentheses that were swapped with the kth pair
in ṫ was that of index σṫ′(k), and computing s(ṫ, ṫ′) is easy.

It is quite easy to check that s ◦ I verifies the eq. (3.2.4) on page 134.
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The invariant dynamics is then

K
(
s1:n, s

′
1:n

)
=

∑
t,t′∈T̄+,ṫ,ṫ′∈ ˙̄T

Π
(
s1:n, t

)
I(e(t), ṫ)s

(
ṫ, ṫ′

)
1(I(e(t)′, ṫ′) > 0)ζ

(
t′, s′1:n

)

×

 ζ
(
t, s1:n

)
Π
(
s1:n, t

) I(e(t)′, ṫ′)
I(e(t), ṫ)

s
(
ṫ, ṫ′

)
s
(
ṫ′, ṫ

)Π
(
s′1:n, t

′
)

ζ
(
t′, s′1:n

) ∧ 1
.

(remember that e(t) is the end tree of the sequence of trees t)
Remark that s(ṫ, ṫ′) > 0 implies that ṫ and ṫ′ have the same number of paren-

theses, so that I(e(t)′,ṫ′)
I(e(t),ṫ) = 1.

3.D Building general Metropolis reversible dy-
namics

The two reversible dynamics defined in section 2.2 on page 69 use a standard
Metropolis algorithm, with a single intermediate step, while those in sections 3.2.4
and 3.2.5 on page 131 and on page 134 use multiple intermediate steps. We
will here present a general method to define reversible dynamics, using as many
intermediate steps as needed.

Let A1, . . . , An be a sequence of sets, and consider accordingly a sequence of
Markov kernels πi ∈M1(Ai)Ai−1 , π′i ∈M1(Ai−1)Ai and ζ ∈M1(An)An .

A0 // A1 // . . . // An // An // . . . // A1 // A0

s0 π1
// s1 π2

// . . . πn
// sn ζ

// s′n π′n

// . . .
π′2

// s′1 π′1

// s′0

For any S = (s0, s1 . . . , sn) ∈ ∏n
i=0Ai, let Š = (sn, . . . , s1, s0).

Consider a distribution P on A0, and a function q : ∏n
i=0Ai ×

∏1
i=nAi → R

such that, for any S, S ′ ∈ ∏n
i=0 Ai

n∏
i=0

πi(Si−1, Si)ζ(Sn, S ′n)π′i(S ′i, S ′i−1) > 0 =⇒ P(S0)q(S, Š ′) = P(S ′0)q(S ′, Š).

(3.D.1)
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Proposition 3.D.1
Under eq. (3.D.1) on this page, the Markov kernel (K(s, s′)s, s′ ∈ A0) defined by

K(s, s′) =
∑

si,s
′
i∈Ai

06i6n

1(s = s0, s
′ = s′0)q(s0, s1, . . . sn, s

′
n, . . . , s

′
1, s
′
0)

n∏
i=0

πi(si−1, si)π′i(s′i, s′i−1)
(

n∏
i=0

π′i(si, si−1)
πi(si−1, si)

·
πi(s′i−1, s

′
i)

π′i(s′i, s′i−1) ∧ 1
)
,

is reversible with respect to P.

Proof. Simply remark that

PS(s)K(s, s′) =
∑

si,s
′
i∈Ai

06i6n

P(s0)q(s0:n, s
′
n:0)1(s = s0, s

′ = s′0)

×
(

n∏
i=0

π′i(si, si−1) · πi(s′i−1, s
′
i) ∧

n∏
i=0

πi(si−1, si) · π′i(s′i, s′i−1)
)

is obviously symmetric in s, s′.



Chapter 4

Conclusion

We would like here to comment on a few possible uses of the objects presented in
this work. We will focus on language analysis based on a corpus of independent
texts Si1:n, followed by some considerations on the scope of our model, and on
possible extensions and open questions.

4.1 Outline of possible uses of Markov substitute
sets in natural language processing

The central notion of this work is that of Markov substitute sets, which corresponds
to the notion of syntactic constituents in linguistics. Chapter 2 proposes some ways
of testing whether a certain set is a Markov substitute set.

The first step of our language analysis from a statistical sample is to build the
reference grammar, or a Markov ruleset, which is roughly equivalent to identifying
a collection of Markov substitute sets.

We begin by initializing a collection of Markov substitute sets

B0 = ({w}, w ∈ S),

and their substitute measures q{w} = δw, which would correspond to the trivial
reference grammar

R0 =
⊕
i

1⊗ [iwi.

We then use the sample to make the reference grammar grow, in the way
described in section 3.4 on page 144. This construction is recursive, using at each
step a new sample (to avoid dealing with dependency issues). Each iteration works
as follows:

167
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− Test as many rules as possible that we could add to the reference grammar,
using for example the simultaneous test proposed in section 2.7 on page 96,
and add those that passed the test,

− Saturate the resulting reference grammar,

− Estimate the substitute measures for each category of rules, as proposed
in section 3.2.2 on page 127.

Each step will use the parsing kernels corresponding to the current reference gram-
mar, whose constructions are described in section 3.B on page 159.

When we arrive at a point where no more Markov substitute sets can be identi-
fied, or when we do not have anymore samples, or when a missing mass estimator
tells us that the grammar we built so far produces surface structures covering
almost all of the support of the language distribution, we stop.

The resulting reference grammar can then give us some information on the
syntactic structure of the language, and help us define various reversible dynamics
on it.

We saw three main types of reversible dynamics. The first one, the most
powerful, but with an unknown off-model behaviour, is the substitute dynamics k,
using knowledge of the substitute measures to replace instances of them in the
initial sample. The second one is the crossing-over dynamics K, that avoids the
necessity of knowing the substitute measures at the price of keeping the same
number of each word as in the initial sample. When applied to a number of
replicas of the statistical sample growing to infinity, the crossing-over dynamics
computes the maximum likelihood estimator in a linear exponential family, and
therefore has a provable off-model robust behavior. The last dynamics, the split
and merge process, is quite similar to the crossing-over dynamics, and uses toric
grammars to deconstruct a text in its smaller syntactic components and rebuild
it.

Knowledge of a Markov reference grammar gives us parsing tools, that permit
us to analyse any string, and, ultimately, to estimate its probability in the context-
free language of sentences of the same type Be. Estimating the frequencies of each
type of sentences gives us finally a estimator of the whole language.

The support of the estimated language,

L̂ =
⋃
e∈Êg

Be,

is potentially larger than a context-free language, as a union of a possibly infi-
nite number of such languages. However, with a finite sample, we will never be
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able to obtain more than a finite number of surface structures. Nonetheless, the
dynamics k defines a slightly bigger support for the estimator of the language,

L̂ =
n⋃
i=1

C(Si),

which may be larger than a context-free language, though still recursively enumer-
able. The actual position of C(s) in the hierarchy of formal languages is still an
open question.

The split and merge process was also used in chapter 1 to define a communi-
cation model, which defines another notion of language, as the invariant measure
on each class of the communication chain.

If the reference grammar is fixed, we saw that each text was recurrent, and
thus that the language could be obtained back, without error, by a Monte-Carlo
simulation, from any text on its communicating class.

However, we could ask ourselves what happens when the reference grammar is
learnt anew at each generation. We saw that if the reference grammar is indeed
Markov for the language, the split and merge process stays in its support (and is
even at least weakly reversible). The communicating classes could nonetheless be
fragmented if the reference grammar is too poor.

In our study, we supposed that our tests for the Markov substitute property
were never wrong (at least, had a false acceptance probability close to zero). This
is obviously optimistic, and it would be interesting to study more precisely the
distortions introduced to the language when the reference grammar is not Markov.

Some other uses of the model can also be considered. An interesting possibility
is to define sub-models, focused on a certain type of texts, or topics, by restricting
the Markov substitute sets learnt in a large corpus to the expressions appearing in
a more specialized one.

Estimating the substitute measures on a smaller corpus could also be an inter-
esting tool, for example to obtain a statistical description of the style of a given
author.

4.2 Further considerations on the scope of the
model

The structure of the model presented in this work appears as an extension of the
conditional independence assumptions defining Markov random fields.

We saw that a B-Markov process can be parametrized as an exponential family,
with some sort of Markov field structure on a graph on D+. Two vertices are
neighbours if they differ only by two members of a Markov substitute set, the
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ratio of the weights depending only on the non-common part of the two nodes:

PS(α(x, y))
PS(α(x, y′)) = q(y)

q(y′) ·

In contrast to the description of the potential function of a Markov random field,
depending on a decomposition on cliques, we proposed here a description in terms
of minimal “free” edge types and anchor point on each connected component. The
number of free edges reflects the number of free parameters in the choice of the
substitute measures.

The edge structure considered here was defined using the Markov substitute
property, however, we could also obtain linear exponential families using a different
definition of the edges, that is of the probability ratios between pairs of states that
are constrained to be identical.

We could in particular add restrictive conditions on the context. We could also
constrain the probability ratio of states that are linked by a relation that is not a
substitution, but that is based on a different type of transformation, for instance
a movement of the form α(α(x, ε), y) ∼ α(α(x, y), ε).

We proved that the Markov substitute model is the thermodynamic limit of
a crossing-over dynamics. This crossing-over dynamics can be interpreted as a
communication process, which can be used to transmit a language distribution
from speaker to speaker in an error free way, using a limited amount of memory,
compared to the size of the support of the language.

This crossing-over dynamics is reversible with respect to the uniform measure
on memorized sentences. The fact that the language can be maintained from one
speaker to another by simple knowledge of the grammar, that is, the collection of
Markov substitute sets (without their substitute measures), hints that language
can be “stored” quite efficiently. This could give some insight for the “poverty
of stimulus” problem put forward by linguists. In other words, you do not need
to learn the parameters (the substitute measures), you need only to learn the
model (the set of substitute sets), and then, from a relatively small amount of
memorized sentences, you can generate a huge number of new sentences using
random crossing-overs, while outputting sentences with a probability distribution
close to the model distribution using the optimal model parameters (in terms of
likelihood based on what you have heard from others).

To come back to the two steps of the estimation of the language:

− learning the model (i.e. a generating set of Markov substitute sets),

− learning the parameters (the substitute measures),

the second step is simply solved by the crossing-over dynamics.
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Various scenarios can be imagined for learning the first step, ranging from
theoretical answers based on simultaneous tests, as described in this thesis, or
on penalized likelihood criteria available in a more generic way for collections
of exponential families, to more supervised learning scenarios, where a teacher,
supervising the output of a crossing-over dynamics, raises a red flag each time a
wrong sentence is produced (allowing the pupil to cancel the Markov substitute
pair involved in the crossing-over from its list of Markov substitute sets). However,
children seem to already know the language when they first go to school. Studies
in psycholinguistics, especially in children, hints that language learning is mostly
based on positive information, and negative feedback is, in the first stages at least,
virtually non-existent. Nonetheless, some sort of supervised school-like training
could be a way to refine (and homogenize) the model selection step of language
learning.
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