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Exchangeable weighted bootstrap

Let Z = h(Pn,P), for ex.

h(Pn,P) = |θ̂n − θ| = |θ(Pn)− θ(P)|

The bootstrap heuristic states that

L(h(Pn,P)) ≈ L
(
cW h(PW

n ,Pn)|Pn

)
where L(Y ),L(Y |X ) = law of Y , resp. law of Y knowing X ,

PW
n =

1

n

n∑
i=1

WiδXi

W exchangeable, independent from Pn,
∑n

i=1Wi = n.
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Bootstrapped supremum

Let ξi = Wi − 1 be exch. s.t.
∑n

i=1 ξi = 0,

g(X , ξ) = sup
f ∈F

{
n
(
PW
n − Pn

)
(f )

}
= sup

f ∈F

{
n∑

i=1

ξi f (Xi )

}

where X1, . . . ,Xn are independent, F a function class.
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Bootstrapped supremum: the point

By the bootstrap heuristic, cW g(X , ξ)|X estimates

sup
f ∈F

n∑
i=1

f (Xi )− E[f (Xi )]

in distribution, in particular

g(X ) = E [g(X , ξ)|X ] ≈ 1

cW
E

[
sup
f ∈F

{
n∑

i=1

f (Xi )− E[f (Xi )]

}]
.

=⇒ g(X ) should concentrate.
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Applications

Two-sample MMD tests (power analysis)

Confidence regions for the mean in high dimensions

Model selection (penalties)
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Justifying the bootstrap heuristic

Summary of known results:

Asymptotically true for Donsker F [6]

Weak convergence rate for VC F [2]

Bounds [4] comparing E[g(X , ξ)] with

Mn = E

[
sup
f ∈F

{
n∑

i=1

f (Xi )− E[f (Xi )]

}]

Open question: non-asymptotic concentration of g(X )/g(X , ξ)?
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Rademacher complexities

Remark: if ξ is replaced by i.i.d Rademacher ε, g with

h(X , ε) = sup
f ∈F

n∑
i=1

εi f (Xi )

the equivalent of g is

Rad (X) = E

[
sup
f ∈F

n∑
i=1

εi f (Xi )
∣∣X1, . . . ,Xn

]

the conditional Rademacher complexity, known to concentrate.
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A flaw of Rademacher complexity

ε is not centered, so

n∑
i=1

εi f (Xi ) ̸=
n∑

i=1

εi (f (Xi )− E[f (Xi )])

=⇒ E[f (Xi )
2] instead of Var(f (Xi )),

No translation invariance.
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Self-bounding function

Definition

Let X be a set and ϕ : X n → R+. ϕ is (a, b)−self-bounding if
there exists ϕi : X n−1 → R+ (1 ≤ i ≤ n) s.t. for all x ∈ X ,

0 ≤ ϕ(x)− ϕi (x(i)) ≤ 1 for all i∑n
i=1 ϕ(x)− ϕi (x(i)) ≤ af (x) + b

where x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).
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Concentration of self-bounding functions

Theorem (BLM 6.20,6.21 [1])

Let X1, . . . ,Xn be independent, valued in X . Let ϕ : X n → R be
(a, b)−self bounding with a ≥ 1

3 . Let Z = ϕ(X1, . . . ,Xn), then

Z ≤ E[Z ] +
√
2t (aE[Z ] + b) + t

(
a− 1

3

)
Z ≥ E[Z ]−

√
2t (aE[Z ] + b)

each with probability at least 1− e−t .
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Concentration of g

Theorem (GM,AS)

Let κ = E[|ξ1|] < +∞. Let X1, . . . ,Xn be independent, valued in
X . Let all f ∈ F take values in [−1; 1]. The function

g

κ
(
4− 3

n

) : X n → R+

is (a, 0)−self-bounding, with a = 3− 2
n .

Remark: Was known for Rad [1, Example 3.12].
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Proof idea

Let J ∈ {1, . . . , n} be uniform, let τi ,J = transposition of i , J.

g(x) = E

[
sup
f ∈F

n∑
k=1

ξτiJ(k)f (xk)

]

≥ E

[
sup
f ∈F

n∑
k=1

E
[
ξτiJ(k)|ξ

]
f (xk)

]

= E

sup
f ∈F


n∑

k ̸=i

ξk f (xk) +
1

n

n∑
j ̸=i

(ξi − ξj)f (xj)




= g i (x(i)).
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The two-sample testing problem

Let (X1, . . . ,Xn), (Y1, . . . ,Ym) two independent samples from P
and Q.

H0 : P = Q

H1 : P ̸= Q

Pbm: test H0 vs H1. Non-parametric.
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The MMD test

Let F be a symmetric function class, let

T = sup
f ∈F

1

n

n∑
i=1

f (Xi )−
1

m

m∑
j=1

f (Yj)

 .

The (general) MMD test uses T as test statistic. T estimates

dF (P,Q) = sup
f ∈F

∫
fdP −

∫
fdQ

(integral probability metric).

Guillaume Maillard Exchangeable bootstrap of empirical process suprema: concentration properties and an application to two-sample hypothesis testing



Examples:

Kolmogorov-Smirnov: F = ± indicators of half-lines

Kernel MMD: F = Unit ball of RKHS

Wasserstein 1

Others (dimension reduction . . .)
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Threshold using the bootstrap

Let Z = (X1, . . . ,Xn,Y1, . . . ,Ym). Let σ ∈ Sn+m a uniform
random permutation and

ξ = wσ, w =
(1
n
, . . . ,

1

n︸ ︷︷ ︸
n times

,− 1

m
, . . . ,− 1

m︸ ︷︷ ︸
m times

)
.

Let (ξ(b))b=1,...,B i.i.d copies of ξ, q̂αB = empirical 1− α quantile of

g(Z , ξ), g
(
Z , ξ(1)

)
, . . . , g

(
Z , ξ(B)

)
The test which rejects when T > q̂αB has level α [5].
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How much power?

For F valued in [−1; 1], define

σ2
F (R) = sup

f ∈F

{∫
f 2dR −

(∫
fdR

)2
}

Mk(R) = EZ∼R⊗k

[
sup
f ∈F

k∑
i=1

(f (Xi )−
∫

fdR)

]
.

We can show that when n = m, if

dF (P,Q) ≫ max

(
σF (P)√

n
,
1

n
Mn(P),

1

n
Mn(Q),

1

n

)
,

then the MMD test rejects H0 with high probability.
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Proof

T ≥ dF (P,Q)− ε(n,m) by Bernstein’s inequality

Bound E[g(Z )] (Jensen’s inequality)
Concentration of g(Z ).

Concentration of g(z , ξ) around g(z) (Tolstikhin-Talagrand
inequality [3, Theorem 5.6]) - var. parameter v+(z)

=⇒ upper bound on q̂αB given Z

Concentration of v+(Z ) (classical arguments).
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Concentration of g(x , ξ)?

Theorem

Let ξ = wσ where w ∈ [a; b]n,
∑n

i=1 wi = 0, σ ∈ Sn random.
With prob. ≥ 1− e−t ,

g(x , ξ) ≤ g(x) + 2(b − a)
√

tLnv+(x)

where

Ln = 2.32 log n +
4n

n − 1
+

2

n

v+(x) = sup
f ∈F

{
n∑

i=1

(
f (xi )−

1

n

n∑
k=1

f (xk)
)2

}
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Comments

Recovers Tolstikhin-Talagrand inequality [3] with 8 → Ln

The trick ξ → ξσ|ξ allows for general ξ

Proof: Method of exchangeable pairs (S. Chatterjee)

aka Stein’s method for concentration inequalities

Here the pair is (σ, σ ◦ τI ,J) (I , J uniform)
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