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Classification

Definition

Let X be a measure space.

A sample is a finite collection (xi , yi )1≤i≤k , where
yi ∈ Y = {0; 1} and xi ∈ X .

A classifier is a measurable function f : X → Y
A learning rule takes a sample D as input and produces a
classifier G (D) : X → Y.

Let (X ,Y ) ∈ X × Y be a r.v. The excess risk of a classifier f ,
denoted `(f ∗, f ), equals

P(f (X ) 6= Y )− inf
g classifieur

P(g(X ) 6= Y )
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Cross-validation

Cross-Validation uses data to estimate the risk of a learning rule.

Definition

Dn a sample s.t |Dn| = n, T ⊂ {1, ..., n}.

HOT (G ) =
1

|cT |
|{j ∈c T : G ((xi , yi )i∈T )(xj) 6= yj}|

1 ≤ p ≤ n, T ⊂ {T ⊂ {1, ..., n} : |T | = p}

CVT (G ) =
1

|T |
∑
T∈T

HOT (G )
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Selection through Cross-Validation

Definition

Let G be a set of learning rules.

The hold out classifier is f̂ ho
T = Ĝho

T (DT
n ) where

Ĝho
T = argminG∈G HOT (G ).

A cross-validated classifier is defined as f̂ CVT = ĜCV
T (Dn)

where ĜCV
T = argminG∈G CVT (G )
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Aggregation and ensemble methods

Many classifiers ⇒ one prediction

Definition

Let (fi )i=1..V be classifiers.

maj (f1, . . . , fV ) = x → argmax
y∈{0;1}

|{i : fi (x) = y}|

Bagging:

Dn,G , T
(
G (DT

n )
)
T∈T f̂ bagT

train maj
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Aggregated cross-validation

The idea is to aggregate several hold-out classifiers.

Base method: hold out (not retrained).

The training set varies

Compared with CV: selection and averaging switched.

Compared with bagging: hold out computed from the whole
sample.
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A precise definition

Definition

T1, ...,TV i.i.d ∼ U ({T ⊂ {1, .., n} : |T | = n − p}).

f̂ agV = maj
(

(f̂ ho
Ti

)1≤i≤V

)
Parameters are V and τ = n−p

n

V-fold CV =⇒ V-fold aggregation.

CVT =⇒ f̂ agT .
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Comparison with cross-validation

Cross-validation:

Dn, (Gm)m∈M, T

(HOT1 (Gm))m∈M

(HOTi
(Gm))m∈M

(HOTV
(Gm))m∈M

(CVT (Gm))m∈M m̂ Gm̂(Dn)

...

...

mean argmin train

Agghoo:

Dn, (Gm)m∈M, T

(HOT1 (Gm))m∈M

(HOTi
(Gm))m∈M

(HOTV
(Gm))m∈M

m̂1

m̂i

m̂V

Gm̂1(DT1
n )

Gm̂i
(DTi

n )

Gm̂V
(DTV

n )

f̂ agT

argmin

argmin

argmin

train

train

train

...

...

...

...

...

...

maj
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Comparison with subbagging

Let ξi = (Xi ,Yi )
For T ∈ T ,

Subbagging ξi1 , . . . , ξik︸ ︷︷ ︸
T ′

, ξik+1
, . . . , ξil︸ ︷︷ ︸
T ′c︸ ︷︷ ︸

T

, ξil+1
, . . . , ξn︸ ︷︷ ︸
T c

DT c

n is unused

Agghoo ξi1 , . . . , ξik , ξik+1
, . . . , ξil︸ ︷︷ ︸

T

, ξil+1
, . . . , ξn︸ ︷︷ ︸
T c

DT c

n is used
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Theoretical analysis: selection

Benchmark:
inf
G∈G

`(f∗,G (Dn))

called oracle.
Hold out: oracle on DT

n :

inf
G∈G

`(f∗,G (DT
n ))

oracle inequality = bounding the risk by an affine function of the
oracle.
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Oracle performance: feasible?

Theorem

Let η(x) = P[Y = 1|X = x ] Suppose that

∀h ∈ [0; 1],P[|2η(X )− 1| ≤ h] ≤ chβ

(margin hypothesis). Then for Dn i.i.d ∼ (X ,Y ),

E[`(f∗, f̂
ho
T )] ≤ 1.5E[ inf

G∈G
`(f∗,G (DT

n ))] +
14.5c

1
β+2 log(e|G|)

p
β+1
β+2

where n − p = |T |
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Theoretical analysis: aggregation

Proposition

Let (fi )i=1...V be classifiers, and f maj = maj (f1, . . . , fV ). We obtain

`(f∗, f
maj) ≤ 2

V

V∑
i=1

`(f∗, fi )

In particular if the classifiers fi are equal in distribution,

E[`(f∗, f
maj)] ≤ 2E[`(f∗, f1)]
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Application to aggregated cross-validation

An oracle inequality for f̂ agV :

E[`(f∗, f̂
ag
V )] ≤ 3E[ inf

G∈G
`(f∗,G (DT

n ))] +
29c

1
β+2 log(e|G|)

p
β+1
β+2

Relevance:

The oracle is adaptative.

It is simultaneously minimax for well chosen G.

So is the hold-out if p
β+1
β+2 = o(oracle).
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Adaptation: an example

Definition

Let Pγ,L,β,c be the set of r.v (X ,Y ) such that:

η(x) = P[Y = 1|X = x ] is γ-Hölder with constant L.

∀h ∈ [0; 1],P(|2η(X )− 1| ≤ h) ≤ chβ

supp(X ) ⊂ [0; 1]d .

The following result is due to Audibert et Tsybakov:

Theorem

The minimax risk over Pγ,L,β,c is of order n
− γ(1+β)

γ(2+β)+d .
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Assessment of theoretical approach

No such guarantee for cross-validation.

Optimal up to a constant.

Importance of aggregation not shown

Why not hold-out?

Choice of parameters?
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Description of the simulation

monte carlo aggregated cross validation is compared to monte
carlo cross-validation and the oracle.

G = k-NN for 1 ≤ k ≤ n, k odd.

i.i.d sample, n = 500, with distribution

X ∼ U([0; 1]2)

P(Y = 1|X ) = σ

(
g(X )− b

λ

)
where σ(u) =

1

1 + e−u
,

g(u, v) = e−(u2+v)3
+ u2 + v2
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Picture of the distribution
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The Bayes risk is approximately 0.2418
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Excess risks as a function of τ
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An example in regression

Least squares, G contains regressograms with step
h ∈ { 1

k : 1 ≤ k ≤ n}
X ∼ U([0; 1])

Y ∼ t(X ) + ε where ε ∼ U([−2
√

3, 2
√

3]) indt of X

t(x) = 10(1− 2|x − 0.5|)
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Performance in least-squares regression
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Conclusion

Aggregation of hold-out estimators.

An alternative to cross-validation in classification and
regression.

Satisfies an oracle inequality in classification

Aggregation useful in practice, not in theory

Can beat the oracle!

More theory to understand aggregation
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