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Classification

Let X be a measure space.
e A sample is a finite collection (x;, yi)1<i<k, where
yi € Y ={0;1} and x; € X.
@ A classifier is a measurable function f : X — Y

@ A learning rule takes a sample D as input and produces a
classifier G(D) : X — V.

o Let (X,Y) € X x )Y bear.v. The excess risk of a classifier f,
denoted ¢(f*, f), equals

B(f(X)# Y) = inf  P(g(X)#Y)

g classifieur
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Cross-validation

Cross-Validation uses data to estimate the risk of a learning rule.
Definition
D, a sample s.t |Dp| =n, T C {1,...,n}.

HO7 (G) = ‘Clﬂ 1€ T2 G((xiy)ier)(x) # vl

1<p<n Tc{Tc{l.,n}:|T|=p}
1

Vr(6) =i > HO7(G)
TeT
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Selection through Cross-Validation

Let G be a set of learning rules.
o The hold out classifier is f2° = (D) where
é-’,’-" = argmingcg HOT (G).
o A cross—valldated classifier is defined as fCV GCV(D,,)
where G = argmingcg CV7(G)
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Aggregation and ensemble methods

Many classifiers = one prediction

Definition

Let (f;)i=1..v be classifiers.

maj (f,...,fv) = x — argmax |{i : fi(x) = y}|
y€{0;1}

Bagging:

BreT (600D o} ™
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Aggregated cross-validation

The idea is to aggregate several hold-out classifiers.
@ Base method: hold out (not retrained).
@ The training set varies
o Compared with CV: selection and averaging switched.

@ Compared with bagging: hold out computed from the whole
sample.

Guillaume Maillard Aggregated cross-validation



A precise definition

Definition
Ti,.., Ty iid ~U{T Cc{1,..,n} : |T| = n—p}).

Fyf = maj <(fT},l-O)1§f§V)

Parameters are V and 7 = ”;P

V-fold CV = V-fold aggregation.

CVr = f2,
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Comparison with cross-validation

Cross-validation:

(HOT1 (Gm))me/\/[

| D, (Gem)merts T

(HOT, (o)) e |

(HO7, (Gm)) e ne

Agghoo:
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Comparison with subbagging

Let & = (X, Vi)
For TeT,

Subbagging &iv. .. &is v i s+ -1 &n D, is unused

T/ T/C TC
T
AgghOO €i17 B 7€fk7§ik+17 s 7€f/7§i/+17 B 7&” Dr;rc is used
7 ¥
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Theoretical analysis: selection

Benchmark:

inf ((f., G(Dy
Inf ((f., G(Dn))

called oracle.
Hold out: oracle on D,:

inf ¢(f., G(D]
gég( (Dy))

oracle inequality = bounding the risk by an affine function of the
oracle.
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Oracle performance: feasible?

Let n(x) = P[Y = 1|X = x] Suppose that

Yh e [0;1], P[|12n(X) — 1| < h] < ch®
(margin hypothesis). Then for D, i.i.d ~ (X, Y),

14.5¢c7+2 log(e|G])

B+1
p B+2

E[((f., f**)] < L5E[inf (£, G(D] )] +

where n — p = |T]|
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Theoretical analysis: aggregation

Let (f;)i=1..v be classifiers, and fmaj — maj(f,...,fv). We obtain

v
2

In particular if the classifiers f; are equal in distribution,

E[¢(f., f™)] < 2E[l(f., f,)]
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Application to aggregated cross-validation

; ; rag.
An oracle inequality for f,,°:

29cﬁ log(e|G])

B+l
pr+2

E[(f., £)] < 3E[inf (£, G(D))] +

Relevance:
@ The oracle is adaptative.

@ It is simultaneously minimax for well chosen G.

i
@ So is the hold-out if prﬂ = o(oracle).
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Adaptation: an example

Let P, 1 8,c be the set of r.v (X, Y) such that:
e 7n(x) =P[Y = 1|X = x] is y-Holder with constant L.

Vh e [0;1], P(|2n(X) — 1| < h) < ch®
e supp(X) C [0;1]7.

The following result is due to Audibert et Tsybakov:

__2(+pB)
The minimax risk over P, | g . Iis of order n= 7+5)+d
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Assessment of theoretical approach

No such guarantee for cross-validation.
Optimal up to a constant.
Importance of aggregation not shown

Why not hold-out?

Choice of parameters?

e 6 6 o o
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Description of the simulation

@ monte carlo aggregated cross validation is compared to monte
carlo cross-validation and the oracle.

@ G =k-NN for 1 < k <n, k odd.
@ i.i.d sample, n = 500, with distribution

u([o:11%)
P(Y =1|X) = < X))\ > where o(u) = 1 —|—1e“ ,
glu,v) = el

V)’ 42 42
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Picture of the distribution

Prédicteur de Bayes Echantillon




Excess risks as a function of 7
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An example in regression

Least squares, G contains regressograms with step
he{::1<k<n}
o X ~U([0;1])
o Y ~ t(X) + & where ¢ ~ U([-2V/3,2+/3]) indt of X
e t(x) =10(1 —2|x —0.5|)
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Performance in least-squares regression

Performance in least squares regression
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Conclusion

Aggregation of hold-out estimators.

An alternative to cross-validation in classification and
regression.

Satisfies an oracle inequality in classification
Aggregation useful in practice, not in theory
Can beat the oracle!

More theory to understand aggregation
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