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Density estimation in Total Variation

Let (X1, . . . , Xn) be an independent sample with marginals P ?1 , . . . , P
?
n. Let

P
?
=

1

n

n∑
i=1

P ?i .

The aim is to estimate P ? using the sample. Error is quantified using total variation
distance

dTV (P,Q) = sup
A∈B(R)

|(P −Q)(A)|.

A shape constraint is assumed for P ? and imposed on the estimator P̂ , associ-
ated to a density model such as

Mcv(I) = {p is convex on I = supp(p)}
Mcv =

⋃
{Mcv(I) : I interval}

Mdec(I) = {p is non-increasing on I = supp(p)}
Mdec =

⋃
{Mcv(I) : I interval}

Mlcv = {p = eφ, φ : R→ R ∪ {−∞} concave}.

Motivation

Maximum likelihood (ML) is by far the most popular approach in the field. How-
ever, ML

• is undefined onMcv,Mdec (support must be known)

• Fails to be robust

– to model mis-specification

– or to outliers.

Our estimator overcomes these shortcomings of maximum likelihood.

TV-estimation

For any two pdfs p, q, let

tp,q = 1lq>p −
∫
{q>p}

p(x)dx.

Given a sample X = (X1, . . . , Xn), let

T (X, p, q) =
1

n

n∑
i=1

tp,q(Xi).

Given in addition a countable density model M, let

TM(X, p) = sup
q∈M

T (X, p, q).

A TV-estimator associated with the modelM and precision ε is some p̂M ∈ M
s.t.

TM (X, p̂M) ≤ inf
p∈M

TM (X, p) + ε.

Let also P̂M : A 7→
∫
A p̂M(x)dx.

Extremal point of a model

p ∈M is extremal inM with degree at most D (p ∈ O(D)) if

• {{q > p} : q ∈M} is VC with dimension ≤ D

• {{q < p} : q ∈M} is VC with dimension ≤ D.

For example,

• InMdec, if p is piecewise constant with D pieces, then p ∈ O(3D + 9)

• InMcv, if p is piecewise affine with D pieces, then p ∈ O(2D + 10).

Properties of p̂M

Theorem 1. For any p ∈M, let

B(n)(P ) = inf
D≥1

{
3 inf
P∈O(D)

dTV (P
?
, P ) + 48

√
D

n

}
.

For any ξ > 0, with probability greater than 1− e−ξ,

E
[
dTV

(
P̂M, P

?
)]
≤ Bn(P

?
) +

√
2(log 2 + ξ)

n
+
ε

n
.

Hence, P̂M

• converges at parametric rate
√
D
n if P ? ∈M (Adaptivity )

• Is robust

– To mis-specification: if P ? /∈M, P ∈M,

Bn(P
?
) ≤ Bn(P ) + 3dTV (P

?
, P ).

– To outliers: let P ?i = P , i ∈ I and P ?i = Qi, i ∈ O, then

dTV

(
P
?
, P
)
≤ 1

n

∑
i∈O

dTV (Qi, P ) ≤
|O|
n
.

It follows that

Bn(P
?
) ≤ Bn(P ) + 3

|O|
n
,

i.e the upper bound increases at most by 3
|O|
n .

Convergence rates

Let P ? have pdf p?. Let

I = supp(p?), L = |I|, V = sup
I
p? − inf

I
p?.

Assuming p? ∈M, we obtain the following rates.

ModelM E
[
dTV

(
P̂M, P

?
)]
≤ Optimal?

M =Mdec c1

(
log(1+V L)

n

)1/3
+ c2√

n
Yes

M =Mcv c1

(
log(1+

√
V L)

n

)2/5

+ c2√
n

Best known

M =Mlcv c1
n2/5

Yes

where c1, c2 are numerical constants.

Conclusion

The following table shows how TV-estimation compares to alternatives on the different
models.

Property TV-estimator MLE ρ−estimator[1] Piec. Poly [3]
Defined All Mdec(I),Mlcv All Mlcv

Robust All Mdec(I) no,Mlcv? All Mlcv

Adaptive All Mdec(I)[2],Mlcv[5] Mdec,Mlcv No
Optimal All Mdec(I)[2],Mlcv [4] Mdec (rate) Mlcv
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