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Density estimation in Total Variation

Extremal point of a model

Convergence rates

Let (X1,...,X;,) be an independent sample with marginals Py, ..., P). Let
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The aim is to estimate P~ using the sample. Error is quantified using total variation
distance

dry (P, Q) = A:%?R) (P —Q)(A)].

A shape constraint is assumed for P” and Imposed on the estimator P, associ-
ated to a density model such as

M(I) = {pis convex on I = supp(p)}
MEY — U {M(I) : I interval}

Mdec([) = {p is non-increasing on I = supp(p)}
Mdec _ U {M(I) : I interval}
MU =Ip=e? ¢:R—RU{—cx} concavel.

Maximum likelihood (ML) is by far the most popular approach in the field. How-
ever, ML
+ is undefined on M, M€ (support must be known)

e Fails to be robust

— to model mis-specification
— or to outliers.
Our estimator overcomes these shortcomings of maximum likelihood.

TV-estimation

For any two pdfs p, g, let

Given a sample X = (X1,..., X}), let

1 n
I'X,p.q) =~ > tpg(Xi),
i=1

Given in addition a countable density model M., let

Tm(X,p) = sup T(X,p,q).
geM
A TV-estimator associated with the model M and precision ¢ is some py, € M
S.1.
T (X,ppq) < inf Ty (X, p) + €.
peM

Letalso Py : A — [4ppm()da.

p € M is extremal in M with degree at most D (p € O(D)) if
« {{¢ > P} :qe M}is VC with dimension < D

« {{q <p}:qe M}is VC with dimension < D.

For example,

« In Mc_if p is piecewise constant with D pieces, then p € O(3D + 9)
« In MY, if p is piecewise affine with D pieces, then p € O(2D + 10).

Properties of »

Theorem 1. Forany p € M, let

. . 5 D
B(ﬂ)(P) — lljnzfl {3P€1(%12D> dTV<P ,P) + 48\/%} .

For any ¢ > 0, with probability greater than 1 — e,

B [ary (Pt P)] < Bu(P) 28240, €

n n
Hence, Py

« converges at parametric rate \/g if P~ e M (Adaptivity)
* |s robust
— To mis-specification: if P~ ¢ M, P € M,
B, (P") < B,(P) + 3dpry (P~ P).

— To outliers: let P* = P,i € I and P* = Q4,7 € O, then
O

n

N1 _
dry (?k, P) < Esz‘/(Qia P) <

€0
It follows that 0
B, (P") < B,(P) + 37—

[0]

i.e the upper bound increases at most by 3.

Let P~ have pdf p*. Let

I =supp(p"), L = |1],V = supP* — inf 7"
I

Assuming p~ € M, we obtain the following rates.

Model M | E |dpy (ﬁM,?*) < Optimal?
M = M€ ¢ (IOgOZVL) 7 NG Yes

M = M@ ¢ <1Og<1+nm>>2/5 — \j—% Best known
M = Mlev s Yes

where cy, co are numerical constants.

Conclusion

The following table shows how TV-estimation compares to alternatives on the different
models.

Property | TV-estimator MLE p—estimator[1]| Piec. Poly [3]
Defined Al Mdee(y, pmlev Al Mlev

Robust Al Mee(T) no, M7 Al Mlev
Adaptive Al Mdee(2], Mlevis] | mdee, plev INo

Optimal Al Mdee()[2], Mlev (4] M€ (rate) | Ml
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