Density estimation in Total Variation

Let (X_1, \ldots, X_n) be an independent sample with marginals $P_1^{\star}, \ldots, P_n^{\star}$. Let

$$\overline{P}^{\star} = \frac{1}{n} \sum_{i=1}^{n} P_i^{\star}.$$

The aim is to estimate \overline{P}^{\star} using the sample. Error is quantified using total variation distance

$$d_{TV}(P,Q) = \sup_{A \in \mathcal{B}(\mathbb{R})} |(P-Q)(A)|$$

A shape constraint is assumed for \overline{P}^{\star} and imposed on the estimator \hat{P} , associated to a density model such as

$$\begin{split} \mathcal{M}^{cv}(I) &= \{ \texttt{p} \text{ is convex on } I = \texttt{supp}(p) \} \\ \mathcal{M}^{cv} &= \bigcup \{ \mathcal{M}^{cv}(I) : I \text{ interval} \} \\ \mathcal{M}^{dec}(I) &= \{ \texttt{p} \text{ is non-increasing on } I = \texttt{supp}(p) \} \\ \mathcal{M}^{dec} &= \bigcup \{ \mathcal{M}^{cv}(I) : I \text{ interval} \} \\ \mathcal{M}^{lcv} &= \{ p = e^{\phi}, \phi : \mathbb{R} \to \mathbb{R} \cup \{ -\infty \} \text{ concave} \} \end{split}$$

Motivation

Maximum likelihood (ML) is by far the most popular approach in the field. However, ML

• is **undefined** on \mathcal{M}^{cv} , \mathcal{M}^{dec} (support <u>must be known</u>)

- Fails to be robust
 - to model mis-specification
 - or to outliers.

Our estimator overcomes these shortcomings of maximum likelihood.

TV-estimation

For any two pdfs p, q, let

$$t_{p,q} = 1 |_{q > p} - \int_{\{q > p\}} p(x) dx.$$

Given a sample $\mathbf{X} = (X_1, \ldots, X_n)$, let

$$T(\mathbf{X}, p, q) = \frac{1}{n} \sum_{i=1}^{n} t_{p,q}(X_i).$$

Given in addition a countable *density model* \mathcal{M} , let

$$T_{\mathcal{M}}(\mathbf{X}, p) = \sup_{q \in \mathcal{M}} T(\mathbf{X}, p, q).$$

A TV-estimator associated with the model \mathcal{M} and precision ε is some $\hat{p}_{\mathcal{M}} \in \mathcal{M}$ s.t.

$$T_{\mathcal{M}}(\mathbf{X}, \hat{p}_{\mathcal{M}}) \leq \inf_{p \in \mathcal{M}} T_{\mathcal{M}}(\mathbf{X}, p) + \varepsilon.$$

Let also $\hat{P}_{\mathcal{M}} : A \mapsto \int_A \hat{p}_{\mathcal{M}}(x) dx$.

ROBUST ESTIMATION IN TOTAL VARIATION DISTANCE UNDER A SHAPE CONSTRAINT Yannick Baraud, Hélène Halconruy, <u>Guillaume Maillard</u> University of Luxembourg

Extremal point of a model

 $\overline{p} \in \mathcal{M}$ is *extremal in* \mathcal{M} with degree at most D ($\overline{p} \in \mathcal{O}(D)$) if

- $\{\{q > \overline{p}\} : q \in \mathcal{M}\}$ is VC with dimension $\leq D$
- $\{\{q < \overline{p}\} : q \in \mathcal{M}\}$ is VC with dimension $\leq D$.

For example,

- In \mathcal{M}^{dec} , if p is piecewise constant with D pieces, then $p \in \mathcal{O}(3D+9)$
- In \mathcal{M}^{cv} , if p is piecewise affine with D pieces, then $p \in \mathcal{O}(2D + 10)$.

Properties of $\hat{p}_{\mathcal{M}}$

Theorem 1. For any $p \in \mathcal{M}$, let

$$\mathbb{B}_{(n)}(P) = \inf_{D \ge 1} \left\{ 3 \inf_{P \in \mathcal{O}(D)} d_{TV}(\overline{P}^{\star}, P) + 48\sqrt{\frac{D}{n}} \right\}.$$

For any $\xi > 0$, with probability greater than $1 - e^{-\xi}$,

$$\mathbb{E}\left[d_{TV}\left(\hat{P}_{\mathcal{M}}, \overline{P}^{\star}\right)\right] \leq \mathbb{B}_{n}(\overline{P}^{\star}) + \sqrt{\frac{2(\log 2 + \xi)}{n}} + \frac{\varepsilon}{n}.$$

Hence, $\hat{P}_{\mathcal{M}}$

- converges at parametric rate $\sqrt{\frac{D}{n}}$ if $\overline{P}^{\star} \in \mathcal{M}$ (Adaptivity)
- Is robust
 - To mis-specification: if $\overline{P}^{\star} \notin \mathcal{M}, \overline{P} \in \mathcal{M},$

$$\mathbb{B}_n(\overline{P}^{\star}) \le \mathbb{B}_n(\overline{P}) + 3d_{TV}(\overline{P}^{\star}, \overline{P}).$$

- To outliers: let $P_i^{\star} = \overline{P}, i \in I$ and $P_i^{\star} = Q_i, i \in O$, then $I = (\overline{D}^{\star}, \overline{D}) < \frac{1}{2} \sum_{n \in \mathbb{N}} I = (O, \overline{D}) < |O|$

$$d_{TV}\left(P^{\uparrow},P\right) \leq \frac{1}{n} \sum_{i \in O} d_{TV}(Q_i,P) \leq \frac{1}{n}$$

It follows that

$$\mathbb{B}_n(\overline{P}^\star) \le \mathbb{B}_n(\overline{P}) + 3\frac{|O|}{n},$$

i.e the upper bound increases at most by $3\frac{|O|}{n}$.

Convergence rates

Let \overline{P}^{\star} have pdf \overline{p}^{\star} . Let

$$I = \operatorname{supp}(\overline{p}^{\star}), L = |I|, V = \sup_{I} \overline{p}^{\star} - \inf_{I} \overline{p}^{\star}.$$

Assuming $\overline{p}^{\star} \in \mathcal{M}$, we obtain the following rates.

$$\begin{array}{|c|c|c|c|c|} \mbox{Model }\mathcal{M} & \mathbb{E}\left[d_{TV}\left(\hat{P}_{\mathcal{M}},\overline{P}^{\star}\right)\right] \leq & \mbox{Optimal?} \\ \mbox{$\mathcal{M}=\mathcal{M}^{dec}$} & c_1\left(\frac{\log(1+VL)}{n}\right)^{1/3} + \frac{c_2}{\sqrt{n}} & \mbox{Yes} \\ \mbox{$\mathcal{M}=\mathcal{M}^{cv}$} & c_1\left(\frac{\log(1+\sqrt{VL})}{n}\right)^{2/5} + \frac{c_2}{\sqrt{n}} & \mbox{Best know} \\ \mbox{$\mathcal{M}=\mathcal{M}^{lcv}$} & \frac{c_1}{n^{2/5}} & \mbox{Yes} \\ \end{array}$$

where c_1, c_2 are numerical constants.

Conclusion

The following table shows how TV-estimation compares to alternatives on the different models.

Property	TV-estimator	MLE	$\rho-\text{estimator}[1]$
Defined	All	$\mathcal{M}^{dec}(I), \mathcal{M}^{lcv}$	All
Robust	All	$\mathcal{M}^{dec}(I)$ no, \mathcal{M}^{lcv} ?	All
Adaptive	All	$\mathcal{M}^{dec}(I)$ [2], \mathcal{M}^{lcv} [5]	$\mathcal{M}^{dec}, \mathcal{M}^{lcv}$
Optimal	All	$\mathcal{M}^{dec}(I)$ [2], \mathcal{M}^{lcv} [4]	\mathcal{M}^{dec} (rate)

Bibliography

References

- [1] Baraud, Y. and Birgé, L. (2016). Rho-estimators for shape-restricted density estimation. Stochastic process. Appl.
- [2] Birgé, L. (1989). The Grenander estimator: a non-asymptotic approach. Annals of Statistics.
- [3] Chan, S. O., Diakonikolas, I., Servedio, R. A., and Sun, X. (2014). Efficient density estimation via piecewise polynomial approximation. Proceedings of the forty-sixth annual ACM symposium on Theory of computing.
- [4] Kim, A. K. H. and Samworth, R. J. (2016). Global rates of convergence in logconcave density estimation. Annals of Statistics
- [5] Kim, A. K. H., Guntuboyina, A., and Samworth, R. J. (2018). Adaptation in logconcave density estimation. Annals of Statistics.

logo_uni.jpg

In Piec. Poly [3] \mathcal{M}^{lcv} $|\mathcal{M}^{lcv}|$ No \mathcal{M}^{lcv}