INTRODUCTION À L'ANALYSE p-ADIQUE EXERCICE 8

Exercice 1. Montrer que si deux champs de vecteurs induisent la même dérivation, alors ils sont égaux. C'est à dire que si pour tout $f \in \mathbb{Z}_p \langle \mathbf{x} \rangle^d$ on a X(f) = Y(f), alors X = Y.

Exercice 2. Montrer que si $X = \sum_i u_i \partial_i$, alors

$$X(f)(x) = \frac{d}{dt}\Big|_{t=0} f(x_1 + tu_1(x), \dots, x_d + tu_d(x)).$$
 (1)

Exercice 3. Montrer que pour toute fonction analytique f et pour tout difféomorphisme analytique ϕ on a

$$\varphi^* X(f) = X(f \circ \varphi^{-1}) \circ \varphi. \tag{2}$$

Indication: utiliser l'exercice précédent.

Exercice 4. Soit Φ, Ψ deux flots analytiques et X, Y leurs champs de vecteurs associés. On veut montrer que $[X,Y]=0 \Leftrightarrow$ les flots Φ et Ψ commutent.

- (1) En utilisant la proposition 6.6, montrer que Ψ et Φ commutent si et seulement si pour tout $t \in \mathbf{Z}_p, \Phi_t^* Y = Y$.
- (2) Montrer que si $\Phi_t^* Y = Y$ pour tout $t \in \mathbb{Z}_p$, alors [X, Y] = 0. (Utiliser la proposition 6.8).
- (3) Supposons maintenant que [X,Y]=0. Calculer $\Phi_s^*[X,Y]$ et en déduire que la fonction $s\mapsto \frac{\partial}{\partial s}\Phi_s^*Y$ est constante égale à 0. En déduire que $\Phi_s^*Y=Y$ pour tout s et conclure.