INTRODUCTION À L'ANALYSE p-ADIQUE EXERCICE 4

Exercice 1. Soit $\phi : \mathbf{Z}_p^d \to \mathbf{Z}_p^d$ une isométrie.

- (1) Montrer que pour tout $k \ge 1$, ϕ permute les polydisques de rayon $1/p^k$.
- (2) En déduire que pour tout $k \ge 1$ on a une application

$$\operatorname{Isom}(\mathbf{Z}_p^d) \to \operatorname{Bij}((\mathbf{Z}/p^k\mathbf{Z})^d). \tag{1}$$

(3) Pour tout $\phi \in \text{Isom}(\mathbf{Z}_p^d)$ on note ϕ_k la bijection induite sur $\phi(\mathbf{Z}/p^k\mathbf{Z})^d$. On rappelle qu'on la projection canonique $\pi_{k+1}: \mathbf{Z}/p^{k+1}\mathbf{Z} \to \mathbf{Z}/p^k\mathbf{Z}$ qu'on étend à chaque facteur pour définir $\pi_{k+1}: (\mathbf{Z}/p^{k+1}\mathbf{Z})^d \to (\mathbf{Z}/p^k\mathbf{Z})^d$. Montrer que

$$\phi_{k+1} \circ \pi_{k+1} = \pi_k \circ \phi_k \tag{2}$$

et expliquer géométriquement ce que cette égalité signifie.

(4) Soit $W = \varprojlim_k \operatorname{Bij}((\mathbf{Z}/p^k\mathbf{Z})) = \{(\sigma_k)_k \in \prod_k \operatorname{Bij}((\mathbf{Z}/p^k/\mathbf{Z})^d) : \sigma_{k+1} \circ \pi_{k+1} = \pi_k \circ \sigma_k\}$. Montrer qu'on vient de définir une application

$$\operatorname{Isom}(\mathbf{Z}_p^d) \to W \tag{3}$$

et que c'est une bijection.

- (5) Montrer que la restriction de cette application à Diff^{an}(\mathbb{Z}_p^d) n'est pas surjective. (Indice: un difféomorphisme analytique qui vaut l'identité sur un ouvert est égal à l'identité).
- (6) Montrer que $\operatorname{Isom}(\mathbf{Z}_p^d) \to W$ est un homéomorphisme où on munit W de la topologie produit et $\operatorname{Isom}(\mathbf{Z}_p^d)$ de la topologie de la convergence uniforme donnée par $d(f,g) = \sup_{\mathbf{Z}_p^d} ||f g||$.
- (7) Montrer que la suite $h_n(x,y) = (x,y+p(x+x^2+\cdots+x^n))$ n'admet aucune sous-suite convergente dans Diff^{an}(\mathbb{Z}_p^d). Comme W est compact on sait que cette suite admet une sous-suite convergente dans W.

Exercice 2. Soit $\phi : \mathbb{N} \to M$ une fonction vers un groupe abélien. On pose ∇ l'opérateur qui à toute fonction ψ associe la fonction $\nabla \psi(x) = \psi(x+1) - \psi(x)$. Montrer par récurrence sur k que pour tout $k \ge 0$,

$$\nabla^k \phi(x) = \sum_{l=0}^k \binom{k}{l} (-1)^l \phi(x+k-l). \tag{4}$$

Exercice 3. Soit $f \in \text{Diff}^{\text{an}}(\mathbf{Z}_p^d)$. On note D(f) le terme linéaire de f (sa différentielle à l'origine). Montrer qu'il existe un entier N_0 tel que $f^{N_0}(0) = 0 \mod p^2$ et $D(f^{N_0}) = \text{id} \mod p$. En déduire que

$$g := \frac{1}{p} f^{N_0}(p\mathbf{x}) \in \mathbf{Z}_p \langle \mathbf{x} \rangle^d \tag{5}$$

et vérifie $g = id \mod p$.