INTRODUCTION À L'ANALYSE p-ADIQUE EXERCICE 10

Soit G un groupe. On définit *l'ensemble des commutateurs de longueur k* par induction de la façon suivante. Tout élément de G est un commutateur de longueur 0. Si Γ_k est l'ensemble des commutateurs de longueur k, alors Γ_{k+1} est défini par

$$\Gamma_{k+1} = \{ [a, \gamma] : a \in G, \gamma \in \Gamma_k \} \bigcup \{ [\gamma, a] : a \in G, \gamma \in \Gamma_k \}.$$
 (1)

Exercice 1. Soit *G* un groupe, pour tout $k \ge 1$, on définit l'application

$$co_k: G \times D^{(k-1)}(G) \to D^{(k)}(G)/D^{(k+1)}(G).$$
 (2)

Montrer qu'elle est bilinéaire (c'est à dire que c'est un homomorphisme de groupes en chaque variable) et que son image engendre $D^{(k)}(G)/D^{(k+1)}(G)$. En déduire les propriétés suivantes pour un groupe G engendré par une partie S.

- (1) Pour tout $k \ge 0$, le groupe $D^k(G)/D^{k+1}(G)$ est engendré par les commutateurs de longueurs k en les éléments de S.
- (2) Si G est finiment engendré, alors $D^k(G)/D^{k+1}(G)$ est finiment engendré.
- (3) Si G est nilpotent, alors $D^{\text{nilp}(G)-1}$ est engendré par les commutateurs de longueurs nilp(G) 1 en les éléments de S.

Exercice 2. Soit V un K-espace vectoriel et $T:V\to V$ une application linéaire diagonalisable. On note V_λ les sous-espaces propres de V. Soit $W\subset V$ un sous-espace vectoriel T-invariant. On veut montrer que

$$W = \bigoplus_{\lambda} (V_{\lambda} \cap W). \tag{3}$$

Pour se faire, prenons $w \in W$ et écrivons le

$$w = w_{\lambda_1} + \dots + w_{\lambda_r} \tag{4}$$

avec λ_i une valeur propre de T et $w_{\lambda_i} \in V_{\lambda_i} \setminus \{0\}$.

- (1) Calculer $T^i w$ pour $i = 0, \dots, r-1$.
- (2) En déduire que

$$\begin{pmatrix} w \\ \vdots \\ T^{r-1}w \end{pmatrix} = A \begin{pmatrix} w_{\lambda_1} \\ \vdots \\ w_{\lambda_r} \end{pmatrix}$$
 (5)

où A est une matrice de Vandermonde inversible.

(3) En déduire le résultat.

Exercice 3. Soit K un corps de caractéristique nulle, on définit l'algèbre de Lie $\mathfrak{gl}_n(K)$ par l'espace vectoriel $M_n(K)$ est matrices carré de taille à n à coefficient dans K muni du crochet de Lie [A,B] = AB - BA. On définit $\mathfrak{sl}_n(K) \subset \mathfrak{gl}_n(K)$ par

$$\mathfrak{sl}_n(K): \{A \in \mathfrak{gl}_n(K): \operatorname{Tr}(A) = 0\}. \tag{6}$$

(1) Montrer que $\mathfrak{sl}_n(K)$ est un idéal de $\mathfrak{gl}_n(K)$ et qu'on a la décomposition

$$\mathfrak{gl}_n(K) = \mathfrak{sl}_n(K) \oplus K \cdot \mathrm{id}$$
. (7)

- (2) Comme $K \cdot \text{id}$ est une sous-algèbre centrale de $\mathfrak{gl}_n(K)$ tout idéal I de $\mathfrak{sl}_n(K)$ se prolonge en un idéal de $\mathfrak{gl}_n(K)$. Pour montrer que $\mathfrak{sl}_n(K)$ est simple on prend un idéal non nul $I \subset \mathfrak{sl}_n(I)$ et on va montrer que $I = \mathfrak{sl}_n(K)$. On note E_{ij} la matrice élémentaire avec un 1 en ligne i et colonne j et des zéros partout ailleurs.
- (3) Soit $i \neq j$, montrer que si $k \neq i$

$$[E_{jk}, E_{ij}] = iE_{ik}. (8)$$

Et que si $k \neq j$, alors

$$[E_{ki}, E_{ij}] = E_{kj}. (9)$$

Montrer de plus que si $k \neq l$, alors

$$[E_{kl}, E_{lk}] = E_{kk} - E_{ll}. \tag{10}$$

- (4) En déduire que si $i \neq j$ et $E_{ij} \in I$, alors $I = \mathfrak{sl}_n(K)$.
- (5) On veut donc maintenant montrer qu'il existe $i \neq j$ tel que $E_{ij} \in \mathfrak{sl}_n(K)$. Prenons l'élément $s = \sum_{k=1}^n w^k E_{kk} \in \mathfrak{gl}_n(K)$. On considère l'application linéaire

$$ad(s) := [s, \cdot]. \tag{11}$$

Montrer que pour tout i, j,

$$ad(s)(E_{ij}) = (2^i - 2^j)E_{ij}. (12)$$

En déduire que ad(s) est diagonalisable sur $\mathfrak{gl}_n(K)$ et que son noyau est l'ensemble des matrices diagonales et que toutes les autres valeurs propres de ad(s) sont

$$\pm (2^i - 2^j), \quad 1 \leqslant j < i \leqslant n. \tag{13}$$

Montrer de plus que les valeurs propres non nulles sont toutes simples.

(6) Par l'exercice précédent on a que

$$I = (I \cap V_0) \bigoplus_{i \neq j} (V_{2^i - 2^j} \cap I). \tag{14}$$

Montrer que si $I \cap V_{2^i-2^j} \neq 0$, alors on a fini.

(7) On suppose que $I \cap V_0 \neq 0$, c'est à dire que I contient une matrice diagonale $t = \sum_k \lambda_k E_{kk}$ non nulle. Montrer qu'il existe $i \neq j, \lambda_i \neq \lambda_j$, calculer $[t, E_{ij}]$ et conclure.