MORIWAKI HEIGHTS

1. INTRODUCTION

This is some lecture notes from the mini-course I gave on Moriwaki heights in Dijon in September 2025.
The purpose of these lectures was to introduce Moriwaki heights and to explain their usefulness for complex
dynamics.

Why is arithmetic dynamics interesting for complex dynamics ? Well I’ll motivate that by the following
introducting example.

Consider the transformation f : z — z> + ¢ over C where c € Q is a rational number. There are several
dynamical objects associated to f. For example its Green function.

1
Gr(p) = ;g [L/"(P) || - (1)
We have that G¢(p) = 0 if and only if the orbit of p under f is bounded. Furthermore the measure
pp = dd°G, @)

is the unique measure of maximal entropy of f. Its support is the Julia set of f. Now since c is in Q, f
induces a map also over Q,, the space of p-adic rational numbers and also on C,, which is the completion
of the algebraic closure of Q,. The Green function G + f, p of f can also be defined over C,, the measure
muyg , = dd°Gy , can also be defined. Notice that for almost every prime p,Gy,, = log™ |z - This is an
adelic object. More precisely it is an adelic divisor. Now, for a point g € Q we can look at

hy(p) :=Gr(p)+ Y Grq(q). 3)
p

And we have the following result 4(p) = 0 if and only if p is preperiodic. This is because Ay is a height
that satisfies the Northcott property. Thus studying the dynamics of f for every prime p allows one to
detect preperiodic points. Furthermore Yuan’s arithmetic equidistribution results shows that for any generic
sequence (p,) of preperiodic points. The normalised sum of the Dirac measures over the Galois orbits of p,
converges towards the measure uy over C and also over C,.

Now all of this works the same if ¢ € Q. However if c is transcendental, then there needs to be another
theory of heights. Namely the issue is that there infinitely many embeddings Q(c) < C and there is no
reason to pick one more than the others. One idea could be to use specialisation arguments. We view c as
a variable and then for every algebraic value we cover a dynamical system over Q and can apply the theory
of heights. But this approach is quite involved and is not well behaved in higher dimension. One other way
to tackle this is to use geometric heights. The field Q(c) is the function field of Pb. We can consider the

absolute value given by |-|,, = e~ %4 where w e Pb is a closed point and ord,, is the order of vanishing at w.
We can define the Green function

1
Ga.w(g) = lim -log™ /" ()], - @)

The problem is that in general geometric height do not satisfy the Northcott property. Here it will hold
because of result on isotriviality of families on transformation for rational maps over P! but these results are
also hard to obtain.

The idea I want to present here is to use Moriwaki heights. They are a generalisation of heights for finitely
generated fields over Q that were introduced by Moriwaki in [Mor0O]. We still have a Northcott property
for thoses heights and an arithmetic equidistribution theorem. The purpose of these notes is to explain how
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they work and how they are constructed. We will illustrate their use by proving the following result of Baker
and DeMarco. If f: X — X is an endomorphism of a projective variety defined over a field K, we write
Preper( f) for the set of preperiodic points of f. That is

Preper(f) := {pe X(K) :3n#m, f"(p) = f"(p)} - Q)
Theorem 1.1 ([BDI11]). Let K be any field of characteristic zero. Let f,g € K(x) be two endomorphisms of
P}< of degree = 2. Then the following are equivalent.
(1) Preper(f) nPreper(g) is infinite.
(2) Preper(f) = Preper(g).
The initial proof of Baker and DeMarco goes like this. If K is a number field, one can construct the
canonical heights of f and g. By arithmetic equidistribution f and g have the same Julia set and equilibrium
measure for any absolute value over K and by the Northcott property this implies that Preper( f) = Preper(g).

If K is not a number field, then the proof uses geometric canonical heights and results about isotriviality to
conclude. We will give a new proof here using Moriwaki heights.

2. ABSOLUTE VALUES
2.1. Definitions. A general reference for this subsection is [Rob00, §2.1 and §2.2]. Let K be a field. An
absolute value over K is a map |-| : K — Rxg such that
(1) |x] =0<x=0.
2) [xy[ = [x] - [y].
(3) [x+y[ < max(|x],[y]).
We say that |-| is non-archimedean if it satisfies the ultrametric inequality
x+y] < max (Jx],|) ©)
It is archimedean otherwise. An absolute value defines a distance by setting
d(x,y) = |x—yl. (7

And we say that two absolute values |-, ,|-|, are equivalent if they induce the same topology on K. This is
equivalent to the existence of o > 0 such that

=115 8)
We give some examples.

Example 2.1. The trivial absolute value over K is defined at |0|,;, = 0 and Vx € K\ {0}, |x|,;, = 1. Ttis
non-archimedean.

Example 2.2. Let K = Q be the field of rational numbers. Then we have the classical absolute value |-|
which is the restriction of the complex absolute value. We also have arithmetic ones which are defined as
follows. Let p be a prime number. Then we define

VxeQ, x|, :=p "t ©)

where v, (x) is the p-adic valuation of x. It is a result of Ostrowski that every absolute value over Q is
equivalent to |-| . If p is a prime number. We define Q,, as the completion of Q with respect to the absolute
value |- - Itis a field and the p-adic absolute value extends uniquely to Q, making it a non-archimedean
complete field.

Proposition 2.3 ([Rob00, Theorem in §2.3.4]). Let K/Q,, be a finite Galois extension. Then, there exists a
unique extension of |-, to K. It is defined by

WreK, |x|,=IN@))“ (10)
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where d = [K : Q| and N(x) is the norm of x defined by
Nx):= [] o). (11)

ceGal(K/Q,)

Furthermore, K is complete with respect to this metric.

Definition 2.4. Let K be a field. A place of K is an equivalence class of absolute values. We write M (K)
for the set of places of K. We say that v € M (K) is non-archimedean if every absolute value in v is non-
archimedean.

If K, is a complete field with respect to a non-archimedean place v, then we write O, for the subring of
elements of absolute value < 1. It is a ring and its unique maximal ideal m,, is the set of elements of absolute
value < 1. The residue field of O, is defined as

K, = 0,/m,. (12)

If v is discretely valued i.e log |K| is a discrete subgroup of R, then m, is a principal maximal ideal generated
by one element ® € O,. This is the case for example for finite extensions of Q.

Example 2.5. Let F' be a function field over Q, i.e the function field of some normal projective variety B
over Q. If I c B is an irreducible codimension 1 subvariety, then it induces an absolute value over F' defined
by

VfEF, |f]p:=e odrl) (13)
where ordr is the order of vanishing along I'. Notice that it extends the trivial absolute value over Q and it
is non-archimedean.

2.2. Product formula. If K is a number field, we make the following normalisation. If v is an archimedean
place of K, then ||, is the complex modulus associated to the embedding K — C. If v is non-archimedean,
then we set

YAe KX, ||, = (#K(v))”OMdm ), (14)

With this normalisation we have the following relation which is called the product formula (see [Neu99,
Proposition II.1.3].)

VAeK*, > log|A], =0. (15)
veM (K)
Notice that |-|, does not extend the p-adic absolute value but

1

[ (16)

does.

Suppose L/K is a finite extension of number fields. If v is a place of K, then there are finitely many places
w over L such that w extends v. Recall the normalisation of |-|,, and |-|,. We study the relation between the
two. By Equation (16) and Proposition [2.3| we have that

1

1
|‘|v[vaiQp] — |_|‘EK\'ZQp] . (17)
Thus, we infer
| s
[y = R = 5 (18)
And we also have the following formula
Ly K] =[L:K]. (19)

wlv
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3. BERKOVICH SPACES

A general reference for Berkovich spaces is [Berl12l]. Let A be an integral ring. A seminorm over A is
a function || : A — Ry satisfying the same axioms as an absolute value except that we can have nonzero
elements ¢ € A such that || = 0. The kernel of |-| is the set

ker(|-]) := {0 €A: 9] = 0}. (20)
It is a prime ideal.

Let K, be a complete metrised field. Let X be a projective variety over K,. The Berkovich analytification
of X is denoted by X?". It is defined as follows. If U < X is an open affine subset with ring A, then U*"
consists of the set of seminorms over A extending the absolute value over K. Then, for any x € U?" and any
¢ € A we define |¢(x)| as

0(x) := |0, @1
where |-|, is the associated seminorm of x. It is equipped with the finest topology such that the evaluation
maps

evy:heA— |0(x)] (22)
is continuous. If X = [ JU; is an open affine cover of X, then the U™ glue together to define X*". We have
that X*" is compact Hausdorff. There is the contraction map

ciX™ X (23)
defined on open affine subset as ¢(x) = ker(|-|,). In particular, if ¥ < X is a closed subvariety, then
yan = ¢ l(y). (24)

There is also a canonical map X (K,) — X" defined as follows. By Proposition there is a canonical
extension of the absolute value of K, to K,. We still denote it by |-|. It is Galois invariant by construction.
Let g€ X (K,), itis a closed point of X. Let U = SpecA be an open affine neighbourhood of ¢, then ¢ defines
a seminorm on A via

oA |0(q)]- (25)
Notice that the images of ¢ and of any of its Galois conjugates are the same. We thus have an embedding
X(K,)/Gal(K,/K,) — X*". (26)

And the image is dense. We will still write X (K,) for the image.

Example 3.1. If K, = C equipped with its usual archimedean absolute value, then
X" =X(C). (27
If K, = C equipped with the trivial absolute value, then X" is related to the Riemann-Zariski space of X.

3.1. The reduction map. We give here an important construction for the notion of arithmetic divisors and
metrised line bundles. Let K, be a non-archimedean non-trivially valued complete field with valuation ring
O,. Let X be a projective variety over K,. A model of X over O, is a normal flat projective scheme 2~ over
O, such that the generic fiber of 2" is X. We write 2 for the special fiber of :2". For any model 2~ of X,
we define the reduction map

ro XM — 25 (28)
as follows.

We study the reduction map for points in X*" coming from X (K,). If g € X (K, ), then its image is a closed
point of X. The closure of ¢ in 2 is a curve over O, which intersects the special fiber at a unique closed
point which is r4-(q).

We give an example. Let X = P1 , amodel of X over Z, is 2" = PlZ = ProjZ,[u,v]. We study rz(q)

for g€ X(Q,). A point g € X(Q,,) is ‘of the form

q=[x:y] (29)
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with x,y € Q,. We can assume that x,y € Z, such that x or y is not divisible by p. Then
ro(q)=[x:3]eP!(F,) c 2, =Py, (30)

Proposition 3.2. Let K, be a complete non-archimedean field with a discretely valued valuation. Let X be
a projective variety over K, and 2~ a model of X over O,. For every codimension 1 irreducible component
E of the special fiber Zs, there is a unique point xg € X such that r 9~ (xg) = Mg the generic point of E.
Furthermore, xg is equivalent to

e ordE, 31)

We call such points divisorial points.

3.2. For varieties over number field. Let K be a number field and let X be a projective variety over K. For
every v e M (K) we write K, for the completion of K with respect to |-|,. We define X, = X Xgpeck SpecK,
and

|_| X, (32)
veM (K
Furthermore, we write
|_| X, = |_| Xc(C (33)
vEMy (K K—C

4. ARITHMETIC DIVISORS AND METRISED LINE BUNDLES

4.1. Over C. Let X be a complex projective variety and D be a Cartier divisor over X. A Green function of
D is a function

g:X(C)\SuppD — R 34)
such that for any g € SuppD, if § is a local equation of D at g, then
g +1log|g| (35

extends to a continuous function at q.

An arithmetic divisor over X is the data of a Cartier divisor D over X and a Green function of D. A model
arithmetic divisor is an arithmetic divisor D = (D, g) where g is smooth. If D = div(P) is a principal divisor,
then it induces an arithmetic divisor

div(P) := (div(P),—1log|P|). (36)

We call such arithmetic divisors principal. The space of arithmetic divisor is a group with respect to the
sum.

We say that an arithmetic divisor D is effective if its Green function is > 0. This implies in particular that
the underlying divisor is effective.

Let L be a line bundle over X, a metric over L is a family of metric (|-|,).ex(c) over the space of local
section of L at x such that for every local section s of L, the map

x—|s|, (37)

is continuous. A metrised line bundle L over X is the data of a line bundle L over X and a metric on it. The
space of metrised line bundle is a group where the group law is given by tensor product.
If L is a metrised line bundle and s is a rational section of L with divisor div(s), then this yields an

arithmetic divisor (Tl;/(s) given by
div(s) := (div(s),log|s]|) . (38)
Conversely, if D = (D, g) is an arithmetic divisor, then it yields a metrised line bundle Ox (D) such that

lsp| = & (39)
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where sp is the canonical rational section of Ox (D) such that div(sp) = D. If Dy, D, are linearly equivalent
then Ox (D), Ox(D>) are isometric.
The space of metrics over the trivial line bundle Oy is given by the space of continuous function over
X(C). The bijection is given by
M — log|1|3. (40)
We put a distance on the space of metrics of a line bundle L as follows. If L, L, are two metrisations of L,

then L — L, is a metrisation of the trivial line bundle Ox and it is therefore given by a continuous function
012. We define

de(L1,Ly) := gl(glq)lzl- 4D

Definition 4.1. A model metrised line bundle L is semipositive if L is nef and the metric of L is plurisubhar-
monic. A metrised line bundle L is semipositive if there exists a sequence of semipositive model metrised
line bundles L, such that do,(L,,L) — 0.

If L is a semipositive metrised line bundle, then we can define its associated (1, 1)-current ¢y (L) defined
locally by

- 1
c1(L) = Eddc log|s| (42)
where s is a local non-vanishing section. It is a closed positive current. By the theory of Bedford and Taylor
if Ly,...,L, are semipositive metrised line bundles, then the measure
c1(Ly)---c1(Ly) (43)

is well defined. It is a positive measure of total mass L - - - L.

Example 4.2. If X = P{. and L = O(1) then we can consider the Fubini-Study metric of L. We have that

C](L) = OFs. (44)
We can also consider the Weil metric given by

laoXo + -+ - + an Xy

aoXo + -+ apX, ||= .
I nXo max (|Xo|,...,|X,|)

(45)

It is also semipositive and

c1(L)" (46)

is the normalised Lebesgue measure on the n-dimensional torus |X;| = |Xp| = -+ = |X,,|.

4.2. Over a non-archimedean complete field. Over a non-archimedean complete field, the definitions
of arithmetic divisors and metrised line bundles are analogous. The space X (C) will be replaced by the
Berkovich analytification X*". We just have to define what model metrics and model Green functions are.

Let K, be a non-archimedean complete field and let X be a projective variety over K,. A model of X is a
projective variety .2~ over Spec O,. A model arithmetic divisor is the data of (2", %) where 2 is a model
of X and Z is a Q-Cartier divisor over 2". Every model arithmetic divisor induces a Green function of
D = P|x over X*" as follows. If x € X*", let § be a local equation of Z at r5-(x), then

g7(x) = —log [£(v)],. 7)

It does not depend on the choice of the local equation & because the quotient of two such local equations is
a unit in O, and thus has absolute value 1. We will write & for model arithmetic divisor to have coherent
notations. We say that & is semipositive if Oz (2) is nef.

We have a similar definition for model metrised line bundles.
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Definition 4.3. An arithmetic divisor over X is the data of D = (D, g) where D is a Q-Cartier divisor and
g is a continuous Green function of D over X?". It is semipositive if it is the uniform limit of semipositive
model arithmetic divisors. It is effective if its Green function is > 0.

A metrised line bundle over X is the data L of a Q-line bundle L over X and a continuous family of metrics
of the local sections of L over X®". It is semipositive if it the uniform limit of semipositive model metrics of
L. It is effective if there exists D effective such that L = Ox (D).

4.3. Chambert-Loir measures. To define a local intersection number in the same fashion as in the complex
case. We need to define the measure

Cl (Z]) e C1 (En) (48)
over X*". There has been recent work on developping a pluripotential theory and a theory of differential

forms and currents on Berkovich spaces (see [CD12, [GK16]]). This allows to define the (1,1)-current ¢; (L)
for a semipositive metrised line bundle. However, 1 will not use this theory here. Before these works,
Chambert-Loir proposed a definition for the measure in for model metrised line bundles which then can
be extended to integrable metrised line bundles by a limit argument, see [[ChaO3l (Chall]. Let ZLi,... L
be model metrised line bundles. We can assume that they are all defined over the same model .2". Then, we
define

cl(Z1)-ct(Zn)i= Y. (Lijp Laje) S (49)

EcCZ;

where the sum is over the codimension 1 irreducible components of the special fiber and 8 is the Dirac
measure at the divisorial point xg associated to E.

Proposition 4.4. If L,,...,L, are semipositive metrised line bundles, then for any sequence (£ j)i=0 of
semipositive model metrised line bundles converging towards L; the sequence of measures
c1l(Z1a)-c1(ZLug) (50)

converges over X* to a measure cy(Ly) - --c1(L,) which does not depend on the choice of the sequences of
semipositive model metrised line bundles.

Thus the measure c¢1(L;)---c1(Ly,) is well defined for integrable metrised line bundles. Furthermore,

c1(Ly) - er (L) (X™) = Ly -+ L. (51)

4.4. Local intersection number. Let X be a projective variety over K,. Let Dy,...,D, be Cartier divisors
over X. We say that they intersect properly if for every J < {0,...,n},

dim(")SuppD; =n—#J+ 1. (52)
jeJ

If Dy,...,D, are integrable arithmetic divisors over X that intersect properly, then following [Cha03] we
define their local intersection number by induction as

Do-++Dy = (Do Do) g, + | _se1(D)-c1 (D). (53)
Xan

And if n = 0, then Dy = go € R.

Proposition 4.5 ([CM21], Proposition 3.5.5]). The intersection number is well defined. It is multilinear and
symmetric. Furthermore, if P € K,(X), then

div(P)-D; D, = Y, —a;log|P(q;)| (>4

1

where Dy ---D, = > a;q; as zero cycles.



Proof. We prove the result by induction on n. If n = 1, then D = ), a;p; and

&P D= @)+ | gper(@(r). (55)
The first term is the result we want and the integral vanishes because the measure ¢ ((TR/(P)) = 0. In the
complex case it is because log|P| is harmonic outside the support of div(P) and in the non-archimedean
case, Oy (div(P)) is the trivial line bundle so it has degree 0 over every irreducible component of the special
fiber on any model.

Now, by induction we have

&i\v(P)-Dl-Dn:(@(P)-El---bn_l)w +J gn.c1 @) -c1(D)-1(Duer). (56)
n xan,y

By induction the first term is the result we want to prove and the integral vanishes by the same argument as
in the case n = 1 because Oz (div(P)) is the trivial line bundle. O

In particular, this proposition shows that the local intersection product is not well defined over metrised
line bundles. However, this issue disappears when we use global intersection number thanks to the product
formula.

If K/ is a complete extension of K, and Dy, ..., D, are arithmetic integrable divisor over X intersecting
properly then this remains true when doing the base change over Xg:. If 5; is the pull-back by the base
change, then

Dy---D,=Dj---D,,. 67

5. ADELIC DIVISORS AND LINE BUNDLES

5.1. Model adelic divisors and line bundles. These are objects defined from Arakelov geometry. Let K
be a number field and X a projective variety over K.

A model adelic divisor over X is the data of a model .2 of X over Ok and a Q-Cartier divisor 4 over 2~
together with a Green function of D = Z|x over Xz (C). We denote such an object by 9.

A model adelic line bundle over X is the data of a model .2~ of X over Ok and a Q-line bundle .¥ over
2 together with a metric of L = Z|x over X5 (C). We denote such an object by .Z.

5.2. Definitions. Let K be a number field and let X be a projective variety over K. An adelic divisor
D= (D, (gv)veM( K)) over X is the data of a Q-Cartier divisor D over X and a Green function g, of D, over

X, such that there exists a sequence 9, of model adelic divisors such that -@n|x = D and an open subset
U < Spec Ok such that for every n > 1

(2w Znv) = (2, Z1v)- (58)

For the finitely many reminaining places v which are not in U (this includes the archimedean ones), the
Green functions g, are uniform limits of the Green functions gz . It is semipositive if for every v the
induced arithmetic divisor is semipositive. We still write g for the data of (gv)v- We can view g as a function
on the disjoint union of the Berkovich analytifications of X with respect to all the places in M (K). We say
that D is effective if g > 0, this implies in particular that the Cartier divisor D over X is effective.

The definition for adelic line bundles is similar. If L is an adelic line bundle, then the height of a point
p € X(K) is given by

P p—— > Z—log\s (59)

|Gal K/K p| geGal(K/K)-p) vV

where s is a local regular section of L at p not vanishing at p. By the product formula it does not depend on
the choice of the local section s.
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We say that a model adelic line bundle . is nef if it is semipositive and for any point p € X (K), h(p) =
0. An adelic line bundle is nef if it is the uniform limit of nef model adelic line bundles. An adelic line
bundle is integrable if it is the difference of two nef adelic line bundles.

5.3. Examples. Let K = Q and X = P,. Consider the line bundle H = O(1) with the following metrics.
For v e Mg we set

‘a()XQ + -+ aan‘v
max (|Xol, -+ [Xal,)

We call this family of metrics the Weil metric on O(1). We write Hy for this adelic line bundle.

HaoXO+-'~aan ||V= (60)

Proposition 5.1. The adelic line bundle Hy is a nef model adelic line bundle. We have that Hy is O(l)|P»g)
K

with the Weil metric over the archimedean places. Furthermore, for v archimdean, c{(Hw )" is the Lebesgue

measure on the n-dimensional torus |Xo|,, = |Xi|,, = -+ = |Xu|,- And for every v e My(K), the measure
ci(Hw)" is the Dirac measure at the Gauss point of Pg™".

Proof. Indeed, consider the model P, with the line bundle £ = O(1)pr, . then Hy = £ where the metric
at the archimedean place is given by the Weil metric. It is equivalent to show that the adelic divisors &R/(Xo)
induced by the global section Xy are equal for both adelic line bundles. For simplicity we assume K = Q and
we show the computation for Q, points. Over {X, # 0} = Ag, we have that the Green function of &i\v(so)
for H,, is

gv = logt max(|x1|,,...,[xa],) (61)
where x; = % The global section Xy is also a global section of O(1)py and its zero divisoris 7 = {Xp = 0} =
P’ Fix a prime p and make the base change to Z,. Take a point g = [qo : - - - : g»] € P"(Q) with go # 0. We
know that its reduction is

r(q) = [do: - : gu] € P'(F)). (62)
where qo, . ..,qn € Z,, are not all divisible by p and g; is the reduction mod p. If g, = 1, then r(gq) ¢ Supp 2

so that g7 (¢g) = 0 = log" max Z—(‘)’ Notice that in that case go € Z,; . Otherwise, let i be an index such that g

r(q). Then we have
qj

q0

is not zero. This means that |g;|, = 1 = max(|g;],). Then, r(g) € Supp Z and % is a local equation of & at
= log i

) . (63)
qilp 91,

Notice in particular that the Green function of & is = 0 so that the height function of Hy is > 0 on A*(Q).
Taking another global section X;, we get that the height function is > 0 over Pg. The line bundle Z is

= log* max <

obviously nef, the Weil metric at the archimdean place is semipositive so that H,, is nef. In particular, the
height function of Hyy is the classical Weil height over P".

For the non-archimedean places. Notice that for every prime p, the fiber over p in PlZ is irreducible and it
is actually P%p. SoifI'= P%p, then I is a principal Cartier divisor equal to div(p). So what is ordr(P) when

PeQlxy,...,x,| ? Well it is equal to

ordr(P) = min = —(max — . 64

e(P)= _min v,(@) = ~(max—v,(a) (64)

So using the right normalisation we get that e~ (1°27)ordr jg exactly the Gauss norm over Q,(x1,...,x,). The

result follows from O(l)ﬁ% =1. O
P

Exercice 5.2. Let 9, be the model adelic divisor {Xy = 0} = PlZ but with complex Green function given by
Z
gn(z) =log" ’;‘ :
9
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Show that
h%(@n)(w) = —logn. (66)

In particular, it is not nef when n > 2 but it is semipositive.

We define another model adelic line bundle over P’é that we denote by Hrs. It is the model line bundle
Op%(l) equipped with the Fubini-Study metric at the archimedean place

|Xilc

1/2°
(1ol +---1%./°)

| Xi |I= (67)

It is also a nef model adelic metric.

5.4. Global intersection number and heights. When .2, .7, are model adelic line bundles, the arith-
metic intersection number

Lo Zn (68)

was first introduced by Gillet-Soulé in [GS90]. Then, Chambert-Loir in [Cha03]] showed that the intersection
number can be given by the sum of the local intersection numbers introduced in §4.4] We explain this now.
Let Lo, ..., L, be model semipositive adelic line bundles over X. There exist rational sections s; € L; such
that div(sp), ...,div(s,) intersect properly. Then we define

Lo--Li= ) (&i\v(so)---dTv(sn)). (69)
veM (K) Y

This does not depend on the choice of the rational sections by Proposition [4.5] and (T5). Notice that if
Zo,...,-Z, are model adelic line bundles defined over the same model 2, then by the definition of the
local intersection number, if s is a rational section of Ly we have

Lo Zo= (L1 Do)y + D j 10 ol €1 (Z 1)y -1 (Z)y

veM (K)
- Z ordr(so) (L1 Znr)
rexM 70
+ Z Ceordg(so) (Liig -+ Le)

EcCZ;
+J —log|so|z, cc1(Z1)c-c1(Zn)c
X=(C) '

We see that the global intersection number can be decomposed into three separated contributions. The
first sum is over the codimension 1 subvarieties of X this is a contribution from the geometric absolute
values. The second one is over the codimension 1 subvarieties of .2~ contained in a special fiber, this is a
contribution from the arithmetic absolute values.

This is important for the notions of Moriwaki heights and more generally for the notions of adelic curves
developped by Chen and Moriwaki. We are going to make the following definition. Let I' = % be a
codimension 1 subvariety. If ' = I, where I,,, € X () then we set

(L Zar) = (L0, L nily)- (71)
Furthermore we have that s is also a rational section of %, over 2~ and we have that
Ordr(S()) = Ordrhor (So). (72)

IfI" = E c %, is vertical, then we define

§1|E"'§H\E ::$|E"'$1|E- (73)
10



Using this convention, which actually comes from the arithmetic intersection theory of Gillet-Soulé, we
have

Z()“-Zn: Z —logHso ”r (LIF"'LnF)"'J —1Og’S0’zo_’C. (74)
I'cs X(©)
Proposition 5.3. The global intersection number for model adelic line bundles is well defined. It is symmet-
ric and multilinear. Furthermore if Ly, . .., L, are nef. then
Lo Lp=0. (75)

Theorem 5.4. If Lo, ...,L, are nef adelic line bundles then for any sequence of nef model adelic line bundles
(&L k) converging towards L; we have

Z() o Zn = lilgnyo’k o 'yn,k (76)
and the formulas and (74)) hold.

Example 5.5. Let Hy be the nef model adelic divisor defined in the previous section. Then,

" =o0. (77)

Indeed, we show the result by induction over n. If n = 1, then
72 _
Hy, = hy () *ZJI, log™ |z|, c1 (Hw),y- (78)
. Pv,(\n

Now the Weil height of oo = [1: 0] is zero. We analyse the sum of integrals. If v = o0, then ¢ (Hy ) is the
Lebesgue measure on the unit circle and the function log™ |z| is zero there, so this integral vanishes. If v = p

is a prime number, then the integral is the evaluation of z at the Gauss point and therefore |z] p.Gauss — 0 SO

the integral vanishes as well and we get Ha, = 0. Now, over P" with n > 2. We use the integration by parts
formula with global section X,, of O(1). Notice that ﬁw‘ x,—0 1 exactly the Weil metric over P! after the
identification P"~! = {X; = 0}. So that we get by induction

— 1 — P
i = Hy e X | tog max (al, oo el () 19
v v

The arithmetic intersection number vanishes by induction and every integral vanishes because the function
integrated vanishes on the support of the measures (either the Lebesgue measure on the (n — 1)-dimensional
torus or the Dirac at the Gauss point).

Exercice 5.6. Show that iz, (o) = 0 and that Hy > 0.

If Z < X is a closed subvariety and L is an integrable adelic line bundle, then the height of Z with respect
to L is given by

Fdimz+1
|z
hi(Z) := 80
rl2) (dimZ + 1) deg; (2) (80)
whenever deg; (Z) > 0. This extends the formula for points. In particular, if g € X(K), then
h(q)= ), —logls(q)l,. (81)
veM (K)

Furthermore, if Z is a closed subvariety of X%, then there exists a finite extension L of K such that Z is
defined over L. Let X;, = X X speck Spec L be the base change with the projection 7t : X; — X. Then, if Lis a
metrised line bundle over X, its pullback T*L is a metrised line bundle over X; and

hz(Z) = hn*Z(Z)' (82)
11



It does not depend on the choice of the completion L thanks to our choice of renormalisation from (I6). In
particular if g € X (K) we recover the classical formula

"4) = G K 4l K/K Z 2 —logls(p)l, (83)

9 (K) peGal (R/K)

5.5. Zhang’s fundamental inequality. Let X be a projective variety over a number field K. Let L be a nef
adelic line bundle over X with L big. Then the fundamental inequality of Zhang states that

e1(X,L) > hz(X) (84)
where
e1(X,L) = sup infyeyhr(q). (85)
UcX

This motivates the following definition. We say that (¢,) < X (K) is a sequence of small points if hy — hy.

5.6. Positivity. Let X be a projective variety of dimension d over a number field K and let L be a line bundle
over X. If s is a global section of X and L is an adelic metrisation of L then we define

|'s llsup:="sup sup |s(x)|Z,v- (86)
veM (K) X (K)

We say that s is small if || s ||sup<< 1. This corresponds to integral global sections of s. They are in bijection
with effective adelic divisors such that L = Ox (D). We write H’(X, L) for the set of small global sections of
L. We define

h(X,L) = log |[H*(X,L)|. (87)

We define the arithmetic volume of L by

vol(L) = lim d—hO(X mL). (88)

m——+0o0 md
We say that L is big if vol(L) > 0.

Theorem 5.7 (Arithmetic Hilbert-Samuel formula). Let L be a nef adelic line bundle, then

vol(Z) =" (89)
Furthermore, if M is another nef adelic line bundle, then
vol(X,L—M) =L -I" - M. (90)

5.7. Functoriality. Let X,Y be projective varieties over a number field K. Let f : X — Y be dominant
morphism, then we have a pullback operator

F*Pic(Y) - Pic(X), f*Div(Y) — Div(X). o1

This operator sends model adelic line bundles to model ones, preserves semipositivity and nefness and also
effectiveness. Furthermore if X,Y have the same dimension then we have

f*Lo-+ f*L, = (deg f)Lo- - Ly. 92)

12



5.8. Arithmetic equidistribution theorem. Let L be a nef adelic line bundle such that L is big. For any
ve M (K), the equilibrium measure of L over X" is the probability measure defined as
ci(L)y

L

ML, = 93)

It is in particular a probability measure.

Theorem 5.8. Let X be a projective variety over a number field K and let L be a semipositive adelic line
bundle such that L is big. Then, for any generic sequence (p,) < X (K) such that hy(p,) — hp(X) = [ans

the sequence of probability measures

1
Spim———— >, (94)
Gal(K/K)Pr &) p,

weakly converges towards yr.

5.9. Canonical height associated to a polarised endomorphism. Let X be a projective variety over a
number field K and let f : X — X be a dominant endomorphism. We say that f is polarised if there exists
an ample line bundle L such that f*L = dL with d > 2.

Theorem 5.9. There exists a unique semipositive adelic line bundle L with underlying line bundle L such
that

f*L = dL. (95)
In particular, we have that ' = 0and p € Preper(f) < hy(p) =0.

Proof. Start with any semipositive adelic model metrisation Ly = (2°,Z) of L. For any n > 0, let ¢,
be an isomorphism between - (f")*L and L. The sequence L, = = (0})(f")*L is a sequence of model
semipositive adelic line bundles with underlying line bundle L. We show that it converges towards an adelic
line bundle L. There exists an open subset U < Spec Ok such that f induces a dominant endomorphism

fU . %U — %U and
fiLy =d%y. (96)

In particular, for any finite place v above U the metric of L, is induced by .. Now pick v to be a place not
above U. The metrised line bundle M, := L; , — Lo, is vertical and we have

_ _ 1 __
Ln+l,v - Ln,v = ﬁ(fn)*M (97)

Let C > 0 be such that maxxan g57 < C, then dy (Zn+17v,L,,7v) < d% and this shows that the metrics converge
uniformly over X2V, It is clear that the limit L is semipositive and satisfies f*L = dL.
Now we have

(f*z)n+1 _ dtop(f)szrl _ dnJrlZnJrl. (98)
Since diop(f) = d" we get that ' =o.

Finally, we have that i o f = dhy. This implies that p € Preper(f) = hz(p) = 0. Conversely, if iz (p) =0,
then we have that for every k > 0

h(f5(p)) =0 (99)

and by the Northcott property, this implies that p € Preper(f). O
13



5.10. Proof of Theorem in the number field case. Suppose f,g € K(x) are endomorphisms of P!
defined over a number field K that share infinitely many preperiodic points. We can extract a subsequence
of common preperiodic points which is generic. We call (p,) such a sequence. Both endomorphisms are
polarised with L = O(1). Thus we can contruct the canonical heights of f and g. The sequence (p,) is a
sequence of small points for both Ly and L, so that we can apply Theoremto get that for every ve M (K),

Hfy = Hgy- (100)

We show that this implies that Ay = hg. Fix a place v. The metrised line bundles L, and Lg, are both
metrisation of the line bundle O(1). Thus, the difference M, is an integrable metrisation of the trivial line
bundle. Furthermore we have by construction that uy, = c¢1(Ly,,) = ¢1(Lg ) = tg,. In particular, ¢ (M,) =0
and gg7 1s harmonic. But since PL™ is compact we have by the maximum principle that gg; is constant
equal to A,. In particular, if M = Ly — L,, then the height function hy; is constant since

VgePY(K), hylq) = |Gal |Z > ng (P) =DM\ (101)

v peGal(g

But A3;(g) = 0 for any ¢ € Preper(f) n Preper(g). So we get the result.

6. MORIWAKI HEIGHTS

6.1. Absolute values over finitely generated fields. Let F = Q(7). How can we describe say all the
archimedean absolute values of F' ? They correspond exactly to field embedding Q(z) < C which is char-
acterised by the image of # in C\Q. Now Q(¢) is also the function field of Pb and we have

F€ = C\Q =P'(C)\P'(Q) — P = P'(C). (102)

Notice that for any semipositive metrised line bundle H over P, the set P!(Q) is of ¢ (H)-measure zero.
More generally, let K be the algebraic closure of Q in F. It is a number field. Since K < F every absolute
value over F induces an absolute value over K so we have a decomposition.

= || 8| |mo(F) (103)

ved (K)

where Mg (F) is the set of places of F extending v over K and QV[(F ) is the set of places extending the trivial
absolute value over K.

Let A be a projective model of F over Okg. That is a projective variety over Spec Ox with function field
F. We explain how % induces elements of M (F). Write B = Hx. First, every archimedean place v over K
corresponds to an embedding K <— C. Fixing this embedding we have that

O\ [ JY(O). (104)

YcB

We write
By(C):= | | B(C). (105)
K—C
Now, let I' © % be an irreducible codimension 1 subvariety. There are two possibilities. Either I is
horizontal, i.e it surjects onto Spec Ok. In that case I is the closure of a prime divisor C < B and the
absolute value e~ "¢ = ¢=°Mr induces an element of My(F). If T is vertical, that is it lies on the fiber over
a maximal ideal m, of Spec Ok. Then, the absolute value e~ ordr s an arithmetic absolute value of F. And
there exists a unique Cr > 0 such that

|| 1= e~ CTordr (106)

extends the absolute value ||, of K.
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6.2. First example. Let F be finitely generated field over Q of transcendence degree d > 1. Let K be the
algebraic closure of Q in F. It is a number field. An arithmetic polarisation of F is the data of a projective
variety 2 over Spec Og with function field F and the data of nef model arithmetic line bundles Hy,...,H,
over . We write H for the data of H1,...,H,. Notice that an arithmetic polarisation H induces a measure
pgr = c1(Hy)---c1(H,) over B(C). In particular, the measure uy gives zero measure to every algebraic
subvariety of B.

The naive height over P/ with respect to H is given by

Vito: - ixa € PUE), Wy ([xo - xa]) = > logmax (ol [alp) (- o)
I'cB

" f log (max xi(b)]) g (b)
By (C)

There are several comments to be made about this formula. First, every point in p € P"(F) yields a rational
section p : B --» P = P" x B. The indeterminacy locus of this rational section is a closed subvariety of B
which has zero uz-measure which makes the integration formula well defined.

Secondly, this is well defined as for any f € F, using we have

0=div(l/f)-H, --Hy, = Z 1ogyf\r(hn|r--.mr)+f log | f| dug. (107)
T'c%® Bx(C)

Sothat K. ([fxo:-: fxa]) = . ([xo:---:x4]).

6.3. Definition. Let F be a finitely generated field over Q and let X be a projective variety over F'. We need
to define the notion of adelic line bundles over X. We will first define model adelic line bundles and then
define a suitable topology for them. Adelic line bundles will then be limits of model adelic line bundles.
First we set & a projective variety over Spec Z such that the function field of £ is F'.

Definition 6.1. A projective model of X over 4 is the data of a projective variety 2~ over .Z such that the
generic fiber is isomorphic to X — SpecF'.

Lemma 6.2. Two projective models % and 2" of X over B satisfy the following property. There exists an
open subset V' < 9B such that Zy and Z,) are isomorphic.

A model adelic line bundle over X is the data of a model adelic line bundle % over some projective model
of 2" over A.
The boundary topology. Let 2 be a projective model of X over & and fix an open subset ¥ < #. A
boundary divisor &y of ¥ is a model adelic divisor Z such that Supp 2 = %\ and for any archimdean
place v, g7 > 0.

If (2,%) and (2 ,?l) are two model adelic line bundles such that there exists ¥ < Z satisfying
Ly ~ 2y and Ly ~ £ using the same isomorphism, then the difference of the two adelic line bundles
yields an adelic divisor which supports is above %\ ¥ . Thus we define

ds (2,7 = inf{e >0, —efy<Z-7 < e?o} . (108)

This defines a topology over the space of model adelic line bundles .Z such that .% is isomorphic to a fixed
line bundle .#y over Zy. An adelic line bundle over X is a Cauchy sequence of such model adelic line
bundles. The notions of semipositivity, nefness and integrability follow.

Now how do we define the height of a point ? Fix a nef model adelic line bundle H over . We call this
an arithmetic polarisation of F. Let .Z be a model adelic line bundle defined over a model .2". Then, for

any point p € X (F), the closure A, of p in 2 is a projective variety over SpecZ of same dimension as 4.
Then the Moriwaki height with respect to H is defined as

_ — o d
VpeX(F), WL:=2Z, . (n*H‘AJ . (109)
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We explicit the formula for p € X(F). Let s be a rational section of L over X such that p ¢ Suppdiv(s). Then,
s to a rational section s(p) := 5|5, of £ . Using Formula (74), we get

WL(p)= ), —10g|S(p)|r(H1|r--~Hn|r)+f —log||s(p(b)) |z cdum (b)- (110)
I'c# B(C)

Proposition 6.3. Let X be a projective variety over a finitely generated field F. Let L be an integrable adelic
line bundle over X and (%,H) an arithmetic polarisation of F, then for any sequence of model adelic line

bundles £, converging towards L and for any p € X (F), the sequence hg (p) converges towards a number

hzﬁ(p) which does not depend on the choice of the sequence (£,). Furthermore, the height formula m
also holds for L.

Proof. It suffices to show the result when L is strongly nef. Let .%, be a sequence of model adelic line
bundles over % converging towards L and let p € X (F). Let s be a rational section of L over X having no
zeroes or poles at p. Define the model adelic divisor &, = cfi;(s)yn and let &, be a boundary divisor over
2. By definition of the boundary topology, there exists a sequence of positive rational numbers €, — 0 such
that

Vm=n>0, —€,80<Pp— Dm<Eb. (111)
If g, is the Green function of 9, then we have
up =% (p) = Z gnr(p) (Hir--Hupr) +J gn(p(b))duz(C). (112)
! I'cs B(C)

We can further assume that every gy > 0 by adding a suitable positive multiple of & to 2. We are going to
apply Lebesgue’s dominated convergence theorem. Take the following measured space Q = {I'}-_ 4| | B(C)
with the measure

.U::Z(HI\F"'HMF)SF"‘.UH- (113)

T

For every n we have the measurable function g,(p) : Q — R and u, is the integral of g,(p) with respect
to u. Furthermore, the function go(p) = 0 is integrable and there exists a constant C > 0 such that for all
n=0,[g:(p)| < go(p) +Cgz,(p) and the right hand side is integrable and > 0 with respect to u. Take for
example C = maxg,. Now, the functions g,(p) converges to g(p) = —log|s(p)|;. So by the Lebesgue
dominated convergence theorem we have the result. O

The takeaway from this is that Moriwaki heights have a similar form as heights over number fields. We
have an infinite sum of local heights coming from non-archimedean places and the new feature is that the
contribution from the archimedean places is now an integral and not a finite sum anymore.

Proposition 6.4. If 2" =P, £ = p{(Opy(1),| - |lw) and H is an arithmetic polarisation of F over %,
then
H 1 H
WL = h (114)

naive*

Proof. Let p € P"(F). We assume that Xo(p) # 0 where Xp,...,X, are the canonical global section of
O(1)pz. By Proposition [6.3|and Formula (TT0) we have

WL(p) = —log|Xo(p)lr (Hir+Hur) +L(C)—log\Xo(P(b))Hg,chH(b)- (115)
T'c#®

Now, the norm of the section Xy at a point is given by

[Xo(p)|

max(|X0(p)\,' o 7‘Xn(p)’).
16
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This yields by the product formula
hz) = Zlogmax(|x,-|r) (Hyjr---Hyr) + flogmax(|x,-(p(b))|)d,uH(b). (117)
r

0

Proposition 6.5 ([YZ23]]). Let X be a projective variety over a finitely generated field F over Q. Let L be a
line bundle over X, then

(1) IfL,L are two adelic metrisation of L, then
Wl = hli+0(1). (118)
(2) If H' is another arithmetic polarisation of F such that H; — H; is effective, then

H "
W < hll. (119)

Proof. There exists an open subset ¥ — % such that L and L' are induced by Cauchy sequences of model
adelic divisor ?n,yz such that &, y = y;y Thus, if &y is a boundary divisor of ¥ we have that there
exists A > 0 such that —A&y < L—L <A&y. Thus,

~A&y -Hy--Hg <h! -1l <A&y -H,--Hy. (120)

The complex measure cl(ﬁ‘lv) i ~c1(ﬁ‘d}v) is the normalised product Lebesgue measure on (S!)¢. If P e
Clz1,...,z4], its logarithmic Mahler measure is

m(P) ::f log |P (*™,...,e*™1)|d0; - db,. (121)
[0,1)¢

In particular, we have if d = 1 that

m(P) = log|a| + ) log™ |t (122)

1

where P = a(z—0) -+ (2 — Olgegp). Its Mahler measure is M(P) = exp(m(P)). We also define

| P ||= max|coef f(P)|. (123)
]

Proposition 6.6. For any m > 1, let C,, = maxy (). Then, for any P€ Clzy,...,z4]
| P 1< Cusgy )+~ (PIM(P). (124

In particular, the set {P € Z|zy,...,z4] : m(P) < A,Vj,deg;(P) < B} is finite.

Proof. We prove the result by induction of d. The result is clear if d = 1 because the coefficients of P are
obtained as the elementary symmetric functions of the o;’s.
Now assume d > 2. Writing

deg,(P)

P(z1,...,24) = Z ar(z1,- -5 2a-1)2h (125)
=0
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we have

m(P) = f (J 10g |P|d9d) d91 o -ded,l (126)
(shyd-1 \Js!
> —10gCeg, (p) +maxj log (|ax(z1,---y2a—1)|)dO1 -+ -dO4—; (127)
a#0 (Styd—1
> —1og Cyeq, (P) —l—zn%—(logdegl(ak) + -+ logdeg, (ax))+ || ax || (128)
k
> —logCye, ,(p) — logdeg, | (P) — - —logdeg, (P) +1log || P | . (129)
]
Now, we can write
p=I[Po(z1,--,2a) s -+ Pa(z1,-- -, 2a)] (130)
such that P; € Q[zy,...,z4] and they are coprime. We have
=W =W
M8 (p) = 3 max(— ordr(P) + f logmax(|P)d0 ---db,. a3
r (sh)

The integral term is > maxm(P;). Now we study the sum, this is a sum of nonnegative term because since the
P;’s are coprime polynomials with integer coefficients for every I there must exists P; such that ordr(P;) = 0.
Let’s look at the term where ' = Aj = P}, x - -+ x P} x {00} x P} x - - x (P} )9 where {00} is at the j-th term.

W . - . .
Then, we have that H a, 18 the vertical adelic line bundle over (P})“~! with constant metric equal to 1 over
J

C and zero for every other places. It follows that
=W =W
Hy | Hyp, =1 (132)

Thus we get that
=W

=W

w7 (P) > ) maxdeg;(Py) + maxm(F). (133
- 1
J

Finally, let’s look at I', — % the prime divisor induce by p = 0. We have that I', = (P{?p)d and therefore
H, Ir," ‘Hd\rp = 1. Furthermore, we have that

maxlogmax(|| 7 |[r,) = log [ ¢ [l (134)

where ¢ is the point in a large enough projective space which coordinates are the coefficients of all the
polynomials P;. Thus by Proposition [6.6] we have that
=W =W
hod [Pyt P]) =) maxdeg (P) + Chin(q). (135)
J
Thus we have a bound on the number of coefficients appearing in Py, ..., P, and a bound on a naive height of

the induced point g in some projective space. By the Northcott property of the naive height over a number
field we have that the set

{PePQ,..20)) WL (p) <A} (136)
is finite.
Now, to get the result for any big and nef arithmetic polarisation Hy, ..., H, we have that there exists an

integer N; such that N;H; — H v

; 1s effective. So that

—W —= =W =W -
< N2 L o(1) <o <Ny - NghlToHa - 0(1). (137)
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6.4. Arithmetic equidistribution.

Theorem 6.7 ([YZ23|,[CMI). Let L be an ample line bundle over a projective variety X and let L be a nef
adelic metrisation of L defined over %'y — By . Let H be a big and nef arithmetic polarisation of F defined
over BB. Suppose (p,) = X (F) is a generic sequence such that hi! (p,) — h%{ (X), then

(1) ForanyI' 2B, the sequence of measures 8, converges weakly towards ci(L){..

(2) For the archimedean place of Q we have over Xy (C) the convergence of currents

Sy Act(H)E — ci(D)E A e (H)E. (138)

where &, is the integration current

1
o 5 (139)
‘Gal(F/F) : p"! qeGal(;/F)‘pn q

where A, is the Zariski closure of q in Xy (C).

Remark 6.8. The statement here in this theorem is modeled from [[CM| Theorem F]. In [YZ23] there is an
extra condition on the polarisation called the Moriwaki condition which was introduced in the first paper of
Moriwaki to prove an equidistribution theorem at the archimedean places. Chen and Moriwaki removed this
condition by showing the differentiability of the arithmetic volume function with respect to the polarisation
H.

6.5. Canonical Moriwaki heights for a polarised endomorphism. We follow §6.1.1 of [YZ23]. Let X be
a projective variety over a field F and let f be a polarised endomorphism with polarisation L. Let (Z,.%)
be a nef model adelic metrisation of L over a base Z. There exists an open subset ¥ — % such that

(1) f restricts to a surjective endomorphism fy : 2y — 2.
Q) f3 Ly =dZy.
This implies that for a boundary divisor & of ¥, there exists a constant C > 0 such that

[
—C&y < Ef*$—$<cgo. (140)

Furthermore, f*&o = & so that we get

C— 1
_ﬁ 0S dn+l

. | . C—
()L = ()L < 6o (141)

So that this defines a Cauchy sequence with respect to the boundary topology. We write Ly for the limit.

Theorem 6.9. The adelic line bundle Ly is the unique strongly nef adelic metrisation of L such that
FL=d-L. (142)

7. PROOF OF THEOREM [I.1]

The proof is now very similar as in the number field case. Let F be a finitely generated field over Q such
that f and g are defined over F and share infinitely many preperiodic points in common. Let H be a big
and nef arithmetic polarisation of F over a model 8 over Z. Let Ly, L, be the canonical adelic line bundles
associated to f and g respectively. By the Northcott property we have that

Preper(f) = {h? - 0} . (143)

And the same formula holds for g. By the arithmetic equidistribution theorem we have the following.

(1) If I' c A, then usr = u, r- Which implies that the local metrics of Zf’r and Zg,r differ by a constant
Ar because their difference is a harmonic function over Plla’a“.
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(2) For the archimedean places, they are contained in % (C). We have that for ¢ (ﬁ)dc—almost every
b e #(C), the measures u r.b>Mg » are equal so that the metrics of Zﬁb and Zg,b differ by a constant
A(D).
We show the second statement at the end of the proof.
This implies that the Moriwaki heights h? and h? differ by a constant. Indeed, for any g € P! (F), the set
of preperiodic points.

h (q) = hz,(q) = J Mb)dug c(b) + Y Hiphr. (144)
#(C) I'cs
For some nonnegative numbers nr > 0. Since the heights coincide on common preperiodic points we have
that this constant is zero and the height functions are equal. Thus we get the equality of the set of preperiodic
points.
Proof of (2). The set 27y (C) = Xy (C) is a complex analytic space containing X*“C. Let y be a compactly
supported function over Xy (C). We show that

Wirs = | Wigs (145)
X, X,

is of full measure with respect to ¢ (H)%. Introduce for € > 0O the set

Ue := {beV(C) :J I >J wg,b+e}- (146)
Xp Xp

The Ug" is measurable and since c; (ﬁ)% is a Radon measure there exists a compact subset K5 and an open
subset T5 such that
KscUsc Ty < V(C) (147)
and
g (Us) — 8 < u(Ks) < pug(Ts) < ug(Ue) + 6. (148)
Now, there exists a compactly supported function ¢ over V(C) such that ¢x, = 1, ¢y (c)7; =0and 0 < 0 < 1.

We have that
JV(C) <Lb¢(b)w(x(b))duf’,,> duz(b) = fv o ( qu)( WW(x(b))dus, h) dug (b). (149)

If we call T the difference of the two sides we have
0="T = eug(Ks) —20M = €(um(Us) — &) —20M. (150)
where M = maxy. Letting § — 0 we get that uz(Us) = 0. Reversing the role of f and g we get that the set

We = {b eV(C): U WL b —J WYig,b
X, X,

has uz measure zero. Thus, we get
,,1H< U W8> = 0. (152)

£€Q~o
Now, the space of compactly supported function over Xy (C) is separable. So we take a dense sequence V,,,
By what we have proven we have that for pz-almost every b € V(C)

Vats = | Vit (153)
Xp

> s} (151)

Xp
By density, we get that (I53) holds for any compactly supported function y over Xy (C). Now, for any
b e V(C), the restriction yy, is a function with compact support over X;,. By the Stone-Weierstrass theorem,
the restrictions to X} of compactly supported function over Xy (C) is a dense subset of the set of continuous

functions over X,. So that we we get for ug-almost every b € V(C) that uyp = iy .
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