
MORIWAKI HEIGHTS

1. INTRODUCTION

This is some lecture notes from the mini-course I gave on Moriwaki heights in Dijon in September 2025.
The purpose of these lectures was to introduce Moriwaki heights and to explain their usefulness for complex
dynamics.

Why is arithmetic dynamics interesting for complex dynamics ? Well I’ll motivate that by the following
introducting example.

Consider the transformation f : z ÞÑ z2 ` c over C where c P Q is a rational number. There are several
dynamical objects associated to f . For example its Green function.

G f ppq “
1
2n log` ∥ f nppq ∥ . (1)

We have that G f ppq “ 0 if and only if the orbit of p under f is bounded. Furthermore the measure

µ f “ ddcG f (2)

is the unique measure of maximal entropy of f . Its support is the Julia set of f . Now since c is in Q, f
induces a map also over Qp the space of p-adic rational numbers and also on Cp which is the completion
of the algebraic closure of Qp. The Green function G ` f , p of f can also be defined over Cp, the measure
mu f ,p “ ddCG f ,p can also be defined. Notice that for almost every prime p,G f ,p “ log` |z|p. This is an
adelic object. More precisely it is an adelic divisor. Now, for a point q P Q we can look at

h f ppq :“ G f ppq `
ÿ

p

G f ,qpqq. (3)

And we have the following result h f ppq “ 0 if and only if p is preperiodic. This is because h f is a height
that satisfies the Northcott property. Thus studying the dynamics of f for every prime p allows one to
detect preperiodic points. Furthermore Yuan’s arithmetic equidistribution results shows that for any generic
sequence ppnq of preperiodic points. The normalised sum of the Dirac measures over the Galois orbits of pn
converges towards the measure µ f over C and also over Cp.

Now all of this works the same if c P Q. However if c is transcendental, then there needs to be another
theory of heights. Namely the issue is that there infinitely many embeddings Qpcq ãÑ C and there is no
reason to pick one more than the others. One idea could be to use specialisation arguments. We view c as
a variable and then for every algebraic value we cover a dynamical system over Q and can apply the theory
of heights. But this approach is quite involved and is not well behaved in higher dimension. One other way
to tackle this is to use geometric heights. The field Qpcq is the function field of P1

Q. We can consider the
absolute value given by |¨|w “ e´ordw where w P P1

Q is a closed point and ordw is the order of vanishing at w.
We can define the Green function

Gd,wpqq “ lim
n

1
2n log` | f n pqq|w . (4)

The problem is that in general geometric height do not satisfy the Northcott property. Here it will hold
because of result on isotriviality of families on transformation for rational maps over P1 but these results are
also hard to obtain.

The idea I want to present here is to use Moriwaki heights. They are a generalisation of heights for finitely
generated fields over Q that were introduced by Moriwaki in [Mor00]. We still have a Northcott property
for thoses heights and an arithmetic equidistribution theorem. The purpose of these notes is to explain how

1



they work and how they are constructed. We will illustrate their use by proving the following result of Baker
and DeMarco. If f : X Ñ X is an endomorphism of a projective variety defined over a field K, we write
Preperp f q for the set of preperiodic points of f . That is

Preperp f q :“
␣

p P XpKq : Dn ‰ m, f nppq “ f mppq
(

. (5)

Theorem 1.1 ([BD11]). Let K be any field of characteristic zero. Let f ,g P Kpxq be two endomorphisms of
P1

K of degree ě 2. Then the following are equivalent.
(1) Preperp f q X Preperpgq is infinite.
(2) Preperp f q “ Preperpgq.

The initial proof of Baker and DeMarco goes like this. If K is a number field, one can construct the
canonical heights of f and g. By arithmetic equidistribution f and g have the same Julia set and equilibrium
measure for any absolute value over K and by the Northcott property this implies that Preperp f q “ Preperpgq.
If K is not a number field, then the proof uses geometric canonical heights and results about isotriviality to
conclude. We will give a new proof here using Moriwaki heights.

2. ABSOLUTE VALUES

2.1. Definitions. A general reference for this subsection is [Rob00, §2.1 and §2.2]. Let K be a field. An
absolute value over K is a map |¨| : K Ñ Rě0 such that

(1) |x| “ 0 ô x “ 0.
(2) |xy| “ |x| ¨ |y|.
(3) |x ` y| ď maxp|x| , |y|q.

We say that |¨| is non-archimedean if it satisfies the ultrametric inequality

|x ` y| ď maxp|x| , |y|q . (6)

It is archimedean otherwise. An absolute value defines a distance by setting

dpx,yq :“ |x ´ y| . (7)

And we say that two absolute values |¨|1 , |¨|2 are equivalent if they induce the same topology on K. This is
equivalent to the existence of α ą 0 such that

|¨|1 “ |¨|
α

2 . (8)

We give some examples.

Example 2.1. The trivial absolute value over K is defined at |0|triv “ 0 and @x P Kzt0u , |x|triv “ 1. It is
non-archimedean.

Example 2.2. Let K “ Q be the field of rational numbers. Then we have the classical absolute value |¨|8
which is the restriction of the complex absolute value. We also have arithmetic ones which are defined as
follows. Let p be a prime number. Then we define

@x P Q, |x|p :“ p´vppxq (9)

where vppxq is the p-adic valuation of x. It is a result of Ostrowski that every absolute value over Q is
equivalent to |¨|8. If p is a prime number. We define Qp as the completion of Q with respect to the absolute
value |¨|p. It is a field and the p-adic absolute value extends uniquely to Qp making it a non-archimedean
complete field.

Proposition 2.3 ([Rob00, Theorem in §2.3.4]). Let K{Qp be a finite Galois extension. Then, there exists a
unique extension of |¨|p to K. It is defined by

@x P K, |x|p “ |Npxq|
1{d
p (10)
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where d “ rK : Qps and Npxq is the norm of x defined by

Npxq :“
ź

σPGalpK{Qpq

σpxq. (11)

Furthermore, K is complete with respect to this metric.

Definition 2.4. Let K be a field. A place of K is an equivalence class of absolute values. We write M pKq

for the set of places of K. We say that v P M pKq is non-archimedean if every absolute value in v is non-
archimedean.

If Kv is a complete field with respect to a non-archimedean place v, then we write Ov for the subring of
elements of absolute value ď 1. It is a ring and its unique maximal ideal mv is the set of elements of absolute
value ă 1. The residue field of Ov is defined as

κv :“ Ov{mv. (12)

If v is discretely valued i.e log |K| is a discrete subgroup of R, then mv is a principal maximal ideal generated
by one element ω P Ov. This is the case for example for finite extensions of Qp.

Example 2.5. Let F be a function field over Q, i.e the function field of some normal projective variety B
over Q. If Γ Ă B is an irreducible codimension 1 subvariety, then it induces an absolute value over F defined
by

@ f P F, | f |
Γ

:“ e´ordΓp f q (13)

where ordΓ is the order of vanishing along Γ. Notice that it extends the trivial absolute value over Q and it
is non-archimedean.

2.2. Product formula. If K is a number field, we make the following normalisation. If v is an archimedean
place of K, then |¨|v is the complex modulus associated to the embedding K ãÑ C. If v is non-archimedean,
then we set

@λ P Kˆ, |λ|v “ p#κpvqq´ordmv pλq. (14)

With this normalisation we have the following relation which is called the product formula (see [Neu99,
Proposition II.1.3].)

@λ P Kˆ,
ÿ

vPM pKq

log |λ|v “ 0. (15)

Notice that |¨|v does not extend the p-adic absolute value but

|¨|

1
rKv:Qps

v (16)

does.
Suppose L{K is a finite extension of number fields. If v is a place of K, then there are finitely many places

w over L such that w extends v. Recall the normalisation of |¨|w and |¨|v. We study the relation between the
two. By Equation (16) and Proposition 2.3 we have that

|¨|

1
rLw:Qps

w “ |¨|

1
rKv:Qps

v . (17)

Thus, we infer

|¨|w “ |¨|

rLw:Qps

rKv:Qps

v “ |¨|
rLw:Kvs
v . (18)

And we also have the following formula
ÿ

w|v

rLw : Kvs “ rL : Ks. (19)

3



3. BERKOVICH SPACES

A general reference for Berkovich spaces is [Ber12]. Let A be an integral ring. A seminorm over A is
a function |¨| : A Ñ Rě0 satisfying the same axioms as an absolute value except that we can have nonzero
elements φ P A such that |φ| “ 0. The kernel of |¨| is the set

kerp|¨|q :“ tφ P A : |φ| “ 0u . (20)

It is a prime ideal.
Let Kv be a complete metrised field. Let X be a projective variety over Kv. The Berkovich analytification

of X is denoted by Xan. It is defined as follows. If U Ă X is an open affine subset with ring A, then Uan

consists of the set of seminorms over A extending the absolute value over Kv. Then, for any x P Uan and any
φ P A we define |φpxq| as

φpxq :“ |φ|x (21)
where |¨|x is the associated seminorm of x. It is equipped with the finest topology such that the evaluation
maps

evx : φ P A ÞÑ |φpxq| (22)
is continuous. If X “

Ť

Ui is an open affine cover of X , then the Uan
i glue together to define Xan. We have

that Xan is compact Hausdorff. There is the contraction map

c : Xan Ñ X (23)

defined on open affine subset as cpxq “ kerp|¨|xq. In particular, if Y Ă X is a closed subvariety, then

Y an “ c´1pY q. (24)

There is also a canonical map XpKvq Ñ Xan defined as follows. By Proposition 2.3, there is a canonical
extension of the absolute value of Kv to Kv. We still denote it by |¨|. It is Galois invariant by construction.
Let q P XpKvq, it is a closed point of X . Let U “ SpecA be an open affine neighbourhood of q, then q defines
a seminorm on A via

φ P A ÞÑ |φpqq| . (25)
Notice that the images of q and of any of its Galois conjugates are the same. We thus have an embedding

XpKvq{GalpKv{Kvq ãÑ Xan. (26)

And the image is dense. We will still write XpKvq for the image.

Example 3.1. If Kv “ C equipped with its usual archimedean absolute value, then

Xan “ XpCq. (27)

If Kv “ C equipped with the trivial absolute value, then Xan is related to the Riemann-Zariski space of X .

3.1. The reduction map. We give here an important construction for the notion of arithmetic divisors and
metrised line bundles. Let Kv be a non-archimedean non-trivially valued complete field with valuation ring
Ov. Let X be a projective variety over Kv. A model of X over Ov is a normal flat projective scheme X over
Ov such that the generic fiber of X is X . We write Xs for the special fiber of X . For any model X of X ,
we define the reduction map

rX : Xan Ñ Xs (28)
as follows.

We study the reduction map for points in Xan coming from XpKvq. If q P XpKvq, then its image is a closed
point of X . The closure of q in X is a curve over Ov which intersects the special fiber at a unique closed
point which is rX pqq.

We give an example. Let X “ P1
Qp

, a model of X over Zp is X “ P1
Zp

“ ProjZpru,vs. We study rX pqq

for q P XpQpq. A point q P XpQpq is of the form

q “ rx : ys (29)
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with x,y P Qp. We can assume that x,y P Zp such that x or y is not divisible by p. Then

rX pqq “ rx : ys P P1pFpq Ă Xs “ P1
Fp
. (30)

Proposition 3.2. Let Kv be a complete non-archimedean field with a discretely valued valuation. Let X be
a projective variety over Kv and X a model of X over Ov. For every codimension 1 irreducible component
E of the special fiber Xs, there is a unique point xE P Xan such that rX pxEq “ ηE the generic point of E.
Furthermore, xE is equivalent to

e´ordE . (31)

We call such points divisorial points.

3.2. For varieties over number field. Let K be a number field and let X be a projective variety over K. For
every v P M pKq we write Kv for the completion of K with respect to |¨|v. We define Xv “ X ˆSpecK SpecKv
and

Xan :“
ğ

vPM pKq

Xan
v . (32)

Furthermore, we write
XΣpCq :“

ğ

vPM8pKq

Xv “
ğ

KãÑC
XCpCq. (33)

4. ARITHMETIC DIVISORS AND METRISED LINE BUNDLES

4.1. Over C. Let X be a complex projective variety and D be a Cartier divisor over X . A Green function of
D is a function

g : XpCqzSuppD Ñ R (34)
such that for any q P SuppD, if ξ is a local equation of D at q, then

g ` log |ξ| (35)

extends to a continuous function at q.
An arithmetic divisor over X is the data of a Cartier divisor D over X and a Green function of D. A model

arithmetic divisor is an arithmetic divisor D “ pD,gq where g is smooth. If D “ divpPq is a principal divisor,
then it induces an arithmetic divisor

xdivpPq :“ pdivpPq,´ log |P|q . (36)

We call such arithmetic divisors principal. The space of arithmetic divisor is a group with respect to the
sum.

We say that an arithmetic divisor D is effective if its Green function is ě 0. This implies in particular that
the underlying divisor is effective.

Let L be a line bundle over X , a metric over L is a family of metric p|¨|xqxPXpCq over the space of local
section of L at x such that for every local section s of L, the map

x ÞÑ |s|x (37)

is continuous. A metrised line bundle L over X is the data of a line bundle L over X and a metric on it. The
space of metrised line bundle is a group where the group law is given by tensor product.

If L is a metrised line bundle and s is a rational section of L with divisor divpsq, then this yields an
arithmetic divisor xdivpsq given by

xdivpsq :“ pdivpsq, log |s|q . (38)
Conversely, if D “ pD,gq is an arithmetic divisor, then it yields a metrised line bundle OX pDq such that

|sD| “ g (39)
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where sD is the canonical rational section of OX pDq such that divpsDq “ D. If D1,D2 are linearly equivalent
then OX pD1q,OX pD2q are isometric.

The space of metrics over the trivial line bundle OX is given by the space of continuous function over
XpCq. The bijection is given by

M ÞÑ log |1|M . (40)

We put a distance on the space of metrics of a line bundle L as follows. If L1,L2 are two metrisations of L,
then L1 ´ L2 is a metrisation of the trivial line bundle OX and it is therefore given by a continuous function
φ12. We define

d8pL1,L2q :“ max
XpCq

|φ12| . (41)

Definition 4.1. A model metrised line bundle L is semipositive if L is nef and the metric of L is plurisubhar-
monic. A metrised line bundle L is semipositive if there exists a sequence of semipositive model metrised
line bundles Ln such that d8pLn,Lq Ñ 0.

If L is a semipositive metrised line bundle, then we can define its associated p1,1q-current c1pLq defined
locally by

c1pLq “
1

2π
ddc log |s| (42)

where s is a local non-vanishing section. It is a closed positive current. By the theory of Bedford and Taylor
if L1, . . . ,Ln are semipositive metrised line bundles, then the measure

c1pL1q ¨ ¨ ¨c1pLnq (43)

is well defined. It is a positive measure of total mass L1 ¨ ¨ ¨Ln.

Example 4.2. If X “ Pn
C and L “ Op1q then we can consider the Fubini-Study metric of L. We have that

c1pLq “ ωFS. (44)

We can also consider the Weil metric given by

∥ a0X0 ` ¨¨ ¨ ` anXn ∥“
|a0X0 ` ¨¨ ¨ ` anXn|

maxp|X0| , . . . , |Xn|q
. (45)

It is also semipositive and
c1pLqn (46)

is the normalised Lebesgue measure on the n-dimensional torus |X1| “ |X2| “ ¨ ¨ ¨ “ |Xn|.

4.2. Over a non-archimedean complete field. Over a non-archimedean complete field, the definitions
of arithmetic divisors and metrised line bundles are analogous. The space XpCq will be replaced by the
Berkovich analytification Xan. We just have to define what model metrics and model Green functions are.

Let Kv be a non-archimedean complete field and let X be a projective variety over Kv. A model of X is a
projective variety X over SpecOv. A model arithmetic divisor is the data of pX ,Dq where X is a model
of X and D is a Q-Cartier divisor over X . Every model arithmetic divisor induces a Green function of
D “ D|X over Xan as follows. If x P Xan, let ξ be a local equation of D at rX pxq, then

gDpxq :“ ´ log |ξpxq|v . (47)

It does not depend on the choice of the local equation ξ because the quotient of two such local equations is
a unit in Ov and thus has absolute value 1. We will write D for model arithmetic divisor to have coherent
notations. We say that D is semipositive if OX pDq is nef.

We have a similar definition for model metrised line bundles.
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Definition 4.3. An arithmetic divisor over X is the data of D “ pD,gq where D is a Q-Cartier divisor and
g is a continuous Green function of D over Xan. It is semipositive if it is the uniform limit of semipositive
model arithmetic divisors. It is effective if its Green function is ě 0.

A metrised line bundle over X is the data L of a Q-line bundle L over X and a continuous family of metrics
of the local sections of L over Xan. It is semipositive if it the uniform limit of semipositive model metrics of
L. It is effective if there exists D effective such that L “ OX pDq.

4.3. Chambert-Loir measures. To define a local intersection number in the same fashion as in the complex
case. We need to define the measure

c1pL1q ¨ ¨ ¨c1pLnq (48)

over Xan. There has been recent work on developping a pluripotential theory and a theory of differential
forms and currents on Berkovich spaces (see [CD12, GK16]). This allows to define the p1,1q-current c1pLq

for a semipositive metrised line bundle. However, I will not use this theory here. Before these works,
Chambert-Loir proposed a definition for the measure in (48) for model metrised line bundles which then can
be extended to integrable metrised line bundles by a limit argument, see [Cha03, Cha11]. Let L 1, . . .L n
be model metrised line bundles. We can assume that they are all defined over the same model X . Then, we
define

c1pL 1q ¨ ¨ ¨c1pL nq :“
ÿ

EĂXs

`

L1|E ¨ ¨ ¨Ln|E
˘

δxE . (49)

where the sum is over the codimension 1 irreducible components of the special fiber and δE is the Dirac
measure at the divisorial point xE associated to E.

Proposition 4.4. If L1, . . . ,Ln are semipositive metrised line bundles, then for any sequence pLi,kqkě0 of
semipositive model metrised line bundles converging towards Li the sequence of measures

c1pL 1,kq ¨ ¨ ¨c1pL n,kq (50)

converges over Xan to a measure c1pL1q ¨ ¨ ¨c1pLnq which does not depend on the choice of the sequences of
semipositive model metrised line bundles.

Thus the measure c1pL1q ¨ ¨ ¨c1pLnq is well defined for integrable metrised line bundles. Furthermore,

c1pL1q ¨ ¨ ¨c1pLnqpXanq “ L1 ¨ ¨ ¨Ln. (51)

4.4. Local intersection number. Let X be a projective variety over Kv. Let D0, . . . ,Dn be Cartier divisors
over X . We say that they intersect properly if for every J Ă t0, . . . ,nu,

dim
č

jPJ

SuppD j “ n ´ #J ` 1. (52)

If D0, . . . ,Dn are integrable arithmetic divisors over X that intersect properly, then following [Cha03] we
define their local intersection number by induction as

D0 ¨ ¨ ¨Dn “
`

D0 ¨ ¨ ¨Dn´1
˘

|SuppDn
`

ż

Xan
gnc1pD0q ¨ ¨ ¨c1pDn´1q. (53)

And if n “ 0, then D0 “ g0 P R.

Proposition 4.5 ([CM21, Proposition 3.5.5]). The intersection number is well defined. It is multilinear and
symmetric. Furthermore, if P P KvpXq, then

xdivpPq ¨ D1 ¨ ¨ ¨Dn “
ÿ

i

´ai log |Ppqiq| (54)

where D1 ¨ ¨ ¨Dn “
ř

aiqi as zero cycles.
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Proof. We prove the result by induction on n. If n “ 1, then D “
ř

i ai pi and

xdivpPq ¨ D “ pxdivpPqq|D `

ż

Xan,v
gDc1pxdivpPqq. (55)

The first term is the result we want and the integral vanishes because the measure c1pxdivpPqq “ 0. In the
complex case it is because log |P| is harmonic outside the support of divpPq and in the non-archimedean
case, OX pdivpPqq is the trivial line bundle so it has degree 0 over every irreducible component of the special
fiber on any model.

Now, by induction we have

xdivpPq ¨ D1 ¨ Dn “

´

xdivpPq ¨ D1 ¨ ¨ ¨Dn´1

¯

|Dn
`

ż

Xan,v
gDn

c1pxdivp f qq ¨ c1pD1q ¨ ¨ ¨c1pDn´1q. (56)

By induction the first term is the result we want to prove and the integral vanishes by the same argument as
in the case n “ 1 because OX pdivpPqq is the trivial line bundle. □

In particular, this proposition shows that the local intersection product is not well defined over metrised
line bundles. However, this issue disappears when we use global intersection number thanks to the product
formula.

If K1
v is a complete extension of Kv and D0, . . . ,Dn are arithmetic integrable divisor over X intersecting

properly then this remains true when doing the base change over XK1
v
. If D1

i is the pull-back by the base
change, then

D0 ¨ ¨ ¨Dn “ D1

0 ¨ ¨ ¨D1

n. (57)

5. ADELIC DIVISORS AND LINE BUNDLES

5.1. Model adelic divisors and line bundles. These are objects defined from Arakelov geometry. Let K
be a number field and X a projective variety over K.

A model adelic divisor over X is the data of a model X of X over OK and a Q-Cartier divisor D over X
together with a Green function of D “ D|X over XΣpCq. We denote such an object by D .

A model adelic line bundle over X is the data of a model X of X over OK and a Q-line bundle L over
X together with a metric of L “ L|X over XΣpCq. We denote such an object by L .

5.2. Definitions. Let K be a number field and let X be a projective variety over K. An adelic divisor
D “

´

D,pgvqvPM pKq

¯

over X is the data of a Q-Cartier divisor D over X and a Green function gv of Dv over

Xv such that there exists a sequence Dn of model adelic divisors such that Dn|X “ D and an open subset
U Ă SpecOK such that for every n ě 1

pXn|U ,Dn|U q “ pX1|U ,D1|U q. (58)

For the finitely many reminaining places v which are not in U (this includes the archimedean ones), the
Green functions gv are uniform limits of the Green functions gDn,v. It is semipositive if for every v the
induced arithmetic divisor is semipositive. We still write g for the data of pgvqv. We can view g as a function
on the disjoint union of the Berkovich analytifications of X with respect to all the places in M pKq. We say
that D is effective if g ě 0, this implies in particular that the Cartier divisor D over X is effective.

The definition for adelic line bundles is similar. If L is an adelic line bundle, then the height of a point
p P XpKq is given by

hLppq “
1

ˇ

ˇGalpK{Kq ¨ p
ˇ

ˇ

ÿ

qPGalpK{Kq¨pq

ÿ

v

´ log |spqq|v (59)

where s is a local regular section of L at p not vanishing at p. By the product formula it does not depend on
the choice of the local section s.
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We say that a model adelic line bundle L is nef if it is semipositive and for any point p P XpKq,hL ppq ě

0. An adelic line bundle is nef if it is the uniform limit of nef model adelic line bundles. An adelic line
bundle is integrable if it is the difference of two nef adelic line bundles.

5.3. Examples. Let K “ Q and X “ Pn
Q. Consider the line bundle H “ Op1q with the following metrics.

For v P MQ we set

∥ a0X0 ` ¨¨ ¨anXn ∥v“
|a0X0 ` ¨¨ ¨ ` anXn|v

maxp|X0|v ¨ ¨ ¨ |Xn|vq
. (60)

We call this family of metrics the Weil metric on Op1q. We write HW for this adelic line bundle.

Proposition 5.1. The adelic line bundle HW is a nef model adelic line bundle. We have that HW is Op1q|Pn
OK

with the Weil metric over the archimedean places. Furthermore, for v archimdean, c1pHW qn
v is the Lebesgue

measure on the n-dimensional torus |X0|8 “ |X1|8 “ ¨¨ ¨ “ |Xn|8. And for every v P M f pKq, the measure
c1pHW qn is the Dirac measure at the Gauss point of Pn,an

Kv
.

Proof. Indeed, consider the model Pn
OK

with the line bundle L “ Op1qPn
OK

, then HW “ L where the metric

at the archimedean place is given by the Weil metric. It is equivalent to show that the adelic divisors xdivpX0q

induced by the global section X0 are equal for both adelic line bundles. For simplicity we assume K “ Q and
we show the computation for Qp points. Over tX0 ‰ 0u “ An

Q, we have that the Green function of xdivps0q

for Hw is
gv “ log` maxp|x1|v , . . . , |xn|vq (61)

where xi “
Xi
X0

. The global section X0 is also a global section of Op1qPn
Z

and its zero divisor is D “ tX0 “ 0u Ă

Pn
Z. Fix a prime p and make the base change to Zp. Take a point q “ rq0 : ¨ ¨ ¨ : qns P PnpQq with q0 ‰ 0. We

know that its reduction is
rpqq “ rq0 : ¨ ¨ ¨ : qns P PnpFpq. (62)

where q0, . . . ,qn P Zp are not all divisible by p and qi is the reduction mod p. If q0 “ 1, then rpqq R SuppD

so that gDpqq “ 0 “ log` max
ˇ

ˇ

ˇ

qi
q0

ˇ

ˇ

ˇ
. Notice that in that case q0 P Zˆ

p . Otherwise, let i be an index such that qi

is not zero. This means that |qi|p “ 1 “ maxp|q j|pq. Then, rpqq P SuppD and X0
Xi

is a local equation of D at
rpqq. Then we have

gDpqq “ ´ log
ˇ

ˇ

ˇ

ˇ

q0

qi

ˇ

ˇ

ˇ

ˇ

p
“ log

ˇ

ˇ

ˇ

ˇ

qi

q0

ˇ

ˇ

ˇ

ˇ

p
“ log` max

ˆ
ˇ

ˇ

ˇ

ˇ

q j

q0

ˇ

ˇ

ˇ

ˇ

˙

. (63)

Notice in particular that the Green function of D is ě 0 so that the height function of HW is ě 0 on AnpQq.
Taking another global section Xi0 we get that the height function is ě 0 over Pn

Q. The line bundle L is
obviously nef, the Weil metric at the archimdean place is semipositive so that Hw is nef. In particular, the
height function of HW is the classical Weil height over Pn.

For the non-archimedean places. Notice that for every prime p, the fiber over p in P1
Z is irreducible and it

is actually P1
Fp

. So if Γ “ P1
Fp

, then Γ is a principal Cartier divisor equal to divppq. So what is ordΓpPq when
P P Qrx1, . . . ,xns ? Well it is equal to

ordΓpPq “ min
aPcoe f f pPq

vppaq “ ´pmax
a

´vppaqq. (64)

So using the right normalisation we get that e´plog pqordΓ is exactly the Gauss norm over Qppx1, . . . ,xnq. The
result follows from Op1qn

Pn
Fp

“ 1. □

Exercice 5.2. Let Dn be the model adelic divisor tX0 “ 0u Ă P1
Z but with complex Green function given by

gnpzq “ log`
ˇ

ˇ

ˇ

z
n

ˇ

ˇ

ˇ
. (65)

9



Show that
hO1

PpDnqp8q “ ´ logn. (66)

In particular, it is not nef when n ě 2 but it is semipositive.

We define another model adelic line bundle over Pn
Q that we denote by HFS. It is the model line bundle

OPn
Z
p1q equipped with the Fubini-Study metric at the archimedean place

∥ Xi ∥“
|Xi|C

´

|X0|
2

` ¨¨ ¨ |Xn|
2
¯1{2 . (67)

It is also a nef model adelic metric.

5.4. Global intersection number and heights. When L 0,L n are model adelic line bundles, the arith-
metic intersection number

L 0 ¨ ¨ ¨L n (68)
was first introduced by Gillet-Soulé in [GS90]. Then, Chambert-Loir in [Cha03] showed that the intersection
number can be given by the sum of the local intersection numbers introduced in §4.4. We explain this now.
Let L0, . . . ,Ln be model semipositive adelic line bundles over X . There exist rational sections si P Li such
that divps0q, . . . ,divpsnq intersect properly. Then we define

L0 ¨ ¨ ¨Ln “
ÿ

vPM pKq

´

xdivps0q ¨ ¨ ¨ xdivpsnq

¯

v
. (69)

This does not depend on the choice of the rational sections by Proposition 4.5 and (15). Notice that if
L 0, . . . ,L n are model adelic line bundles defined over the same model X , then by the definition of the
local intersection number, if s0 is a rational section of L0 we have

L 0 ¨ ¨ ¨L n “
`

L 1 ¨ ¨ ¨L n
˘

divps0q
`

ÿ

vPM pKq

ż

Xan
v

´ log |s0|L 0,v c1pL 1qv ¨ ¨ ¨c1pL nqv

“
ÿ

ΓĂXp1q

ordΓps0q
`

L 1|Γ ¨ ¨ ¨L n|Γ

˘

`
ÿ

EĂXs

CE ordEps0q
`

L1|E ¨ ¨ ¨Ln|E
˘

`

ż

XΣpCq

´ log |s0|L 0,C c1pL 1qC ¨ ¨ ¨c1pL nqC.

(70)

We see that the global intersection number can be decomposed into three separated contributions. The
first sum is over the codimension 1 subvarieties of X this is a contribution from the geometric absolute
values. The second one is over the codimension 1 subvarieties of X contained in a special fiber, this is a
contribution from the arithmetic absolute values.

This is important for the notions of Moriwaki heights and more generally for the notions of adelic curves
developped by Chen and Moriwaki. We are going to make the following definition. Let Γ Ă B be a
codimension 1 subvariety. If Γ “ Γhor where Γhor Ă X p1q then we set

pL 1|Γ ¨ ¨ ¨L n|Γq “ pL 1|Γhor ¨ ¨ ¨L n|Γhor q. (71)

Furthermore we have that s0 is also a rational section of L0 over X and we have that

ordΓps0q “ ordΓhor ps0q. (72)

If Γ “ E Ă Xs is vertical, then we define

L 1|E ¨ ¨ ¨L n|E :“ L1|E ¨ ¨ ¨Ln|E . (73)
10



Using this convention, which actually comes from the arithmetic intersection theory of Gillet-Soulé, we
have

L0 ¨ ¨ ¨Ln “
ÿ

ΓĂB

´ log ∥ s0 ∥Γ pL1|Γ ¨ ¨ ¨Ln|Γq `

ż

XpCq

´ log |s0|L0,C . (74)

Proposition 5.3. The global intersection number for model adelic line bundles is well defined. It is symmet-
ric and multilinear. Furthermore if L0, . . . ,Ln are nef, then

L 0 ¨ ¨ ¨L n ě 0. (75)

Theorem 5.4. If L0, . . . ,Ln are nef adelic line bundles then for any sequence of nef model adelic line bundles
pL i,kq converging towards Li we have

L0 ¨ ¨ ¨Ln “ lim
k

L 0,k ¨ ¨ ¨L n,k (76)

and the formulas (70) and (74) hold.

Example 5.5. Let HW be the nef model adelic divisor defined in the previous section. Then,

Hn`1
W “ 0. (77)

Indeed, we show the result by induction over n. If n “ 1, then

H2
W “ hHw

p8q `
ÿ

v

ż

P1,an
v

log` |z|v c1pHW qv. (78)

Now the Weil height of 8 “ r1 : 0s is zero. We analyse the sum of integrals. If v “ 8, then c1pHW q is the
Lebesgue measure on the unit circle and the function log` |z| is zero there, so this integral vanishes. If v “ p
is a prime number, then the integral is the evaluation of z at the Gauss point and therefore |z|p,Gauss “ 0 so

the integral vanishes as well and we get H2
W “ 0. Now, over Pn with n ě 2. We use the integration by parts

formula with global section Xn of Op1q. Notice that HW |X0“0 is exactly the Weil metric over Pn´1 after the
identification Pn´1 “ tX0 “ 0u. So that we get by induction

Hn`1
W “ Hn

W `
ÿ

v

ż

Pn´1,an
v

log` maxp|z1|v , ¨ ¨ ¨ , |zn|vqc1pHW qn
v . (79)

The arithmetic intersection number vanishes by induction and every integral vanishes because the function
integrated vanishes on the support of the measures (either the Lebesgue measure on the pn´1q-dimensional
torus or the Dirac at the Gauss point).

Exercice 5.6. Show that hHFS
p8q “ 0 and that H2

FS ą 0.

If Z Ă X is a closed subvariety and L is an integrable adelic line bundle, then the height of Z with respect
to L is given by

hLpZq :“
LdimZ`1

|Z

pdimZ ` 1qdegLpZq
(80)

whenever degLpZq ą 0. This extends the formula for points. In particular, if q P XpKq, then

hLpqq “
ÿ

vPM pKq

´ log |spqq|v . (81)

Furthermore, if Z is a closed subvariety of XK , then there exists a finite extension L of K such that Z is
defined over L. Let XL “ X ˆSpecK SpecL be the base change with the projection π : XL Ñ X . Then, if L is a
metrised line bundle over X , its pullback π˚L is a metrised line bundle over XL and

hLpZq :“ h
π˚LpZq. (82)

11



It does not depend on the choice of the completion L thanks to our choice of renormalisation from (16). In
particular if q P XpKq we recover the classical formula

hLpqq “
1

ˇ

ˇGalpK{Kq ¨ q
ˇ

ˇ

ÿ

vPM pKq

ÿ

pPGalpK{Kq

´ log |sppq|v . (83)

5.5. Zhang’s fundamental inequality. Let X be a projective variety over a number field K. Let L be a nef
adelic line bundle over X with L big. Then the fundamental inequality of Zhang states that

e1pX ,Lq ě hLpXq (84)

where

e1pX ,Lq “ sup
UĂX

in fqPU hLpqq. (85)

This motivates the following definition. We say that pqnq Ă XpKq is a sequence of small points if hL Ñ hX .

5.6. Positivity. Let X be a projective variety of dimension d over a number field K and let L be a line bundle
over X . If s is a global section of X and L is an adelic metrisation of L then we define

∥ s ∥sup:“ sup
vPM pKq

sup
XpKvq

|spxq|L,v . (86)

We say that s is small if ∥ s ∥supď 1. This corresponds to integral global sections of s. They are in bijection
with effective adelic divisors such that L “ OX pDq. We write H0pX ,Lq for the set of small global sections of
L. We define

ph0pX ,Lq “ log
ˇ

ˇH0pX ,Lq
ˇ

ˇ . (87)

We define the arithmetic volume of L by

xvolpLq “ lim
mÑ`8

d!
md

ph0pX ,mLq. (88)

We say that L is big if xvolpLq ą 0.

Theorem 5.7 (Arithmetic Hilbert-Samuel formula). Let L be a nef adelic line bundle, then

xvolpLq “ Ld`1
. (89)

Furthermore, if M is another nef adelic line bundle, then

xvolpX ,L ´ Mq ě Ld`1
´ Ld

¨ M. (90)

5.7. Functoriality. Let X ,Y be projective varieties over a number field K. Let f : X Ñ Y be dominant
morphism, then we have a pullback operator

f ˚
xPicpY q Ñ xPicpXq, f ˚

yDivpY q Ñ yDivpXq. (91)

This operator sends model adelic line bundles to model ones, preserves semipositivity and nefness and also
effectiveness. Furthermore if X ,Y have the same dimension then we have

f ˚L0 ¨ ¨ ¨ f ˚Ln “ pdeg f qL0 ¨ ¨ ¨Ln. (92)
12



5.8. Arithmetic equidistribution theorem. Let L be a nef adelic line bundle such that L is big. For any
v P M pKq, the equilibrium measure of L over Xan

v is the probability measure defined as

µL,v “
c1pLqn

v

Ln . (93)

It is in particular a probability measure.

Theorem 5.8. Let X be a projective variety over a number field K and let L be a semipositive adelic line
bundle such that L is big. Then, for any generic sequence ppnq Ă XpKq such that hLppnq Ñ hLpXq “ Ln`1,
the sequence of probability measures

δn :“
1

GalpK{Kq ¨ pn

ÿ

qPGalpK{Kq¨pn

δq (94)

weakly converges towards µL.

5.9. Canonical height associated to a polarised endomorphism. Let X be a projective variety over a
number field K and let f : X Ñ X be a dominant endomorphism. We say that f is polarised if there exists
an ample line bundle L such that f ˚L “ dL with d ě 2.

Theorem 5.9. There exists a unique semipositive adelic line bundle L with underlying line bundle L such
that

f ˚L “ dL. (95)

In particular, we have that Ln`1
“ 0 and p P Preperp f q ô hLppq “ 0.

Proof. Start with any semipositive adelic model metrisation L0 “ pX ,L q of L. For any n ě 0, let φn
be an isomorphism between 1

dn p f nq˚L and L. The sequence Ln “ 1
dn pφ˚

n qp f nq˚L is a sequence of model
semipositive adelic line bundles with underlying line bundle L. We show that it converges towards an adelic
line bundle L. There exists an open subset U Ă SpecOK such that f induces a dominant endomorphism
fU : XU Ñ XU and

f ˚
ULU “ dLU . (96)

In particular, for any finite place v above U the metric of Ln is induced by LU . Now pick v to be a place not
above U . The metrised line bundle Mv :“ L1,v ´ L0,v is vertical and we have

Ln`1,v ´ Ln,v “
1
dn p f nq˚M. (97)

Let C ą 0 be such that maxXan
v

gM ď C, then d8pLn`1,v,Ln,vq ď C
dn and this shows that the metrics converge

uniformly over Xan,v. It is clear that the limit L is semipositive and satisfies f ˚L “ dL.
Now we have

`

f ˚L
˘n`1

“ dtopp f qLn`1
“ dn`1Ln`1

. (98)

Since dtopp f q “ dn we get that Ln`1
“ 0.

Finally, we have that hL ˝ f “ dhL. This implies that p P Preperp f q ñ hLppq “ 0. Conversely, if hLppq “ 0,
then we have that for every k ě 0

hLp f kppqq “ 0 (99)

and by the Northcott property, this implies that p P Preperp f q. □
13



5.10. Proof of Theorem 1.1 in the number field case. Suppose f ,g P Kpxq are endomorphisms of P1

defined over a number field K that share infinitely many preperiodic points. We can extract a subsequence
of common preperiodic points which is generic. We call ppnq such a sequence. Both endomorphisms are
polarised with L “ Op1q. Thus we can contruct the canonical heights of f and g. The sequence ppnq is a
sequence of small points for both L f and Lg so that we can apply Theorem 5.8 to get that for every v P M pKq,

µ f ,v “ µg,v. (100)

We show that this implies that h f “ hg. Fix a place v. The metrised line bundles L f ,v and Lg,v are both
metrisation of the line bundle Op1q. Thus, the difference Mv is an integrable metrisation of the trivial line
bundle. Furthermore we have by construction that µ f ,v “ c1pL f ,vq “ c1pLg,vq “ µg,v. In particular, c1pMvq “ 0
and gMv

is harmonic. But since P1,an
v is compact we have by the maximum principle that gMv

is constant
equal to λv. In particular, if M “ L f ´ Lg, then the height function hM is constant since

@q P P1pKq, hMpqq “
1

|Galpqq|

ÿ

v

ÿ

pPGalpqq

gM,vppq “
ÿ

v

λv. (101)

But hMpqq “ 0 for any q P Preperp f q X Preperpgq. So we get the result.

6. MORIWAKI HEIGHTS

6.1. Absolute values over finitely generated fields. Let F “ Qptq. How can we describe say all the
archimedean absolute values of F ? They correspond exactly to field embedding Qptq ãÑ C which is char-
acterised by the image of t in CzQ. Now Qptq is also the function field of P1

Q and we have

Fan,C “ CzQ “ P1pCqzP1pQq ãÑ P1,an
Q “ P1pCq. (102)

Notice that for any semipositive metrised line bundle H over P1
C the set P1pQq is of c1pHq-measure zero.

More generally, let K be the algebraic closure of Q in F . It is a number field. Since K Ă F every absolute
value over F induces an absolute value over K so we have a decomposition.

M pFq “
ğ

vPM pKq

MvpFq
ğ

M0pFq. (103)

where MFpFq is the set of places of F extending v over K and MpFq is the set of places extending the trivial
absolute value over K.

Let B be a projective model of F over OK . That is a projective variety over SpecOK with function field
F . We explain how B induces elements of M pFq. Write B “ BK . First, every archimedean place v over K
corresponds to an embedding K ãÑ C. Fixing this embedding we have that

MvpFq “ BpCqz
ď

Y ĂB

Y pCq. (104)

We write
BΣpCq :“

ğ

KãÑC
BpCq. (105)

Now, let Γ Ă B be an irreducible codimension 1 subvariety. There are two possibilities. Either Γ is
horizontal, i.e it surjects onto SpecOK . In that case Γ is the closure of a prime divisor C Ă B and the
absolute value e´ordC “ e´ordΓ induces an element of M0pFq. If Γ is vertical, that is it lies on the fiber over
a maximal ideal mv of SpecOK . Then, the absolute value e´ordΓ is an arithmetic absolute value of F . And
there exists a unique CΓ ą 0 such that

|¨|
Γ

:“ e´CΓ ordΓ (106)

extends the absolute value |¨|v of K.
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6.2. First example. Let F be finitely generated field over Q of transcendence degree d ě 1. Let K be the
algebraic closure of Q in F . It is a number field. An arithmetic polarisation of F is the data of a projective
variety B over SpecOK with function field F and the data of nef model arithmetic line bundles H1, . . . ,Hn
over B. We write H for the data of H1, . . . ,Hn. Notice that an arithmetic polarisation H induces a measure
µH :“ c1pH1q ¨ ¨ ¨c1pHnq over BpCq. In particular, the measure µH gives zero measure to every algebraic
subvariety of B.

The naive height over Pn
F with respect to H is given by

@rx0 : ¨ ¨ ¨ : xns P PnpFq, hH
naiveprx0 : ¨ ¨ ¨ : xnsq “

ÿ

ΓĂB

logmaxp|x0|
Γ
, ¨ ¨ ¨ , |xn|

Γ
q
`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

`

ż

BΣpCq

logpmax |xipbq|qdµHpbq

There are several comments to be made about this formula. First, every point in p P PnpFq yields a rational
section p : B 99K Pn

B “ Pn ˆ B. The indeterminacy locus of this rational section is a closed subvariety of B
which has zero µH-measure which makes the integration formula well defined.

Secondly, this is well defined as for any f P F , using (74) we have

0 “ xdivp1{ f q ¨ H1 ¨ ¨ ¨Hn “
ÿ

ΓĂB

log | f |
Γ

`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

`

ż

BΣpCq

log | f |dµH . (107)

So that hH
naivepr f x0 : ¨ ¨ ¨ : f xnsq “ hH

naiveprx0 : ¨ ¨ ¨ : xnsq.

6.3. Definition. Let F be a finitely generated field over Q and let X be a projective variety over F . We need
to define the notion of adelic line bundles over X . We will first define model adelic line bundles and then
define a suitable topology for them. Adelic line bundles will then be limits of model adelic line bundles.
First we set B a projective variety over SpecZ such that the function field of B is F .

Definition 6.1. A projective model of X over B is the data of a projective variety X over B such that the
generic fiber is isomorphic to X Ñ SpecF .

Lemma 6.2. Two projective models X and X 1 of X over B satisfy the following property. There exists an
open subset V Ă B such that XV and X 1

V are isomorphic.

A model adelic line bundle over X is the data of a model adelic line bundle L over some projective model
of X over B.
The boundary topology. Let X be a projective model of X over B and fix an open subset V Ă B. A
boundary divisor E 0 of V is a model adelic divisor D such that SuppD “ BzV and for any archimdean
place v,gDv

ą 0.

If pX ,L q and pX 1,L
1
q are two model adelic line bundles such that there exists V Ă B satisfying

XV » X 1
V and LV » L 1

V using the same isomorphism, then the difference of the two adelic line bundles
yields an adelic divisor which supports is above BzV . Thus we define

dE 0
pL ,L

1
q “ inf

!

ε ą 0, ´εE 0 ď L ´L
1
ď εE 0

)

. (108)

This defines a topology over the space of model adelic line bundles L such that LV is isomorphic to a fixed
line bundle MV over XV . An adelic line bundle over X is a Cauchy sequence of such model adelic line
bundles. The notions of semipositivity, nefness and integrability follow.

Now how do we define the height of a point ? Fix a nef model adelic line bundle H over B. We call this
an arithmetic polarisation of F . Let L be a model adelic line bundle defined over a model X . Then, for
any point p P XpFq, the closure ∆p of p in X is a projective variety over SpecZ of same dimension as B.
Then the Moriwaki height with respect to H is defined as

@p P XpFq, hH
L

:“ L |∆p ¨

´

π
˚H |∆p

¯d
. (109)
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We explicit the formula for p P XpFq. Let s be a rational section of L over X such that p R Suppdivpsq. Then,
s to a rational section sppq :“ s|∆p of L|∆p . Using Formula (74), we get

hH
L

ppq “
ÿ

ΓĂB

´ log |sppq|
Γ

`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

`

ż

BpCq

´ log}spppbqq}L ,CdµHpbq. (110)

Proposition 6.3. Let X be a projective variety over a finitely generated field F. Let L be an integrable adelic
line bundle over X and pB,Hq an arithmetic polarisation of F, then for any sequence of model adelic line
bundles L n converging towards L and for any p P XpFq, the sequence hH

L n
ppq converges towards a number

hH
L ppq which does not depend on the choice of the sequence pL nq. Furthermore, the height formula 110

also holds for L.

Proof. It suffices to show the result when L is strongly nef. Let L n be a sequence of model adelic line
bundles over B converging towards L and let p P XpFq. Let s be a rational section of L over X having no
zeroes or poles at p. Define the model adelic divisor Dn “ xdivpsqL n

and let E 0 be a boundary divisor over
B. By definition of the boundary topology, there exists a sequence of positive rational numbers εn Ñ 0 such
that

@m ě n ą 0, ´εnE 0 ď Dn ´Dm ď εnE 0. (111)

If gn is the Green function of Dn, then we have

un :“ hH
L n

ppq “
ÿ

ΓĂB

gn,Γppq
`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

`

ż

BpCq

gnpppbqqdµHpCq. (112)

We can further assume that every g0 ě 0 by adding a suitable positive multiple of E 0 to D0. We are going to
apply Lebesgue’s dominated convergence theorem. Take the following measured space Ω “ tΓu

ΓĂB

Ů

BpCq

with the measure
µ :“

ÿ

Γ

`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

δΓ ` µH . (113)

For every n we have the measurable function gnppq : Ω Ñ R and un is the integral of gnppq with respect
to µ. Furthermore, the function g0ppq ě 0 is integrable and there exists a constant C ą 0 such that for all
n ě 0, |gnppq| ď g0ppq `CgE 0

ppq and the right hand side is integrable and ě 0 with respect to µ. Take for
example C “ maxεn. Now, the functions gnppq converges to gppq “ ´ log |sppq|L. So by the Lebesgue
dominated convergence theorem we have the result. □

The takeaway from this is that Moriwaki heights have a similar form as heights over number fields. We
have an infinite sum of local heights coming from non-archimedean places and the new feature is that the
contribution from the archimedean places is now an integral and not a finite sum anymore.

Proposition 6.4. If X “ Pn
B , L “ p˚

1 pOPn
Z
p1q,∥ ¨ ∥W q and H is an arithmetic polarisation of F over B,

then
hH

L
“ hH

naive. (114)

Proof. Let p P PnpFq. We assume that X0ppq ‰ 0 where X0, . . . ,Xn are the canonical global section of
Op1qPn

F
. By Proposition 6.3 and Formula (110) we have

hH
L

ppq “
ÿ

ΓĂB

´ log |X0ppq|
Γ

`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

`

ż

BpCq

´ log}X0pppbqq}L ,CdµHpbq. (115)

Now, the norm of the section X0 at a point is given by

∥ X0ppq ∥“
|X0ppq|

maxp|X0ppq|, ¨ ¨ ¨ , |Xnppq|q
. (116)
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This yields by the product formula

hL ppq “
ÿ

Γ

logmaxp|xi|Γq
`

H1|Γ ¨ ¨ ¨Hn|Γ

˘

`

ż

logmaxp|xipppbqq|qdµHpbq. (117)

□

Proposition 6.5 ([YZ23]). Let X be a projective variety over a finitely generated field F over Q. Let L be a
line bundle over X, then

(1) If L,L1 are two adelic metrisation of L, then

hH
L “ hH

L1 ` Op1q. (118)

(2) If H 1 is another arithmetic polarisation of F such that H 1

i ´ H i is effective, then

hH
L ď hH1

L . (119)

Proof. There exists an open subset V Ă B such that L and L1 are induced by Cauchy sequences of model
adelic divisor L n,L

1

n such that L n,V “ L
1

n,V . Thus, if E V is a boundary divisor of V we have that there
exists A ą 0 such that ´AE V ď L ´ L1

ď AE V . Thus,

´AE V ¨ H1 ¨ ¨ ¨Hd ď hH
L ´ hH

L1 ď AE V ¨ H1 ¨ ¨ ¨Hd . (120)

The complex measure c1pHW
1 q ¨ ¨ ¨c1pHW

d q is the normalised product Lebesgue measure on pS1qd . If P P

Crz1, . . . ,zds, its logarithmic Mahler measure is

mpPq :“
ż

r0,1sd
log

ˇ

ˇP
`

e2iπθ1 , . . . ,e2iπθd
˘
ˇ

ˇdθ1 ¨ ¨ ¨dθd . (121)

In particular, we have if d “ 1 that

mpPq “ log |a| `
ÿ

i

log` |αi| (122)

where P “ apz ´ α1q ¨ ¨ ¨ pz ´ αdegPq. Its Mahler measure is MpPq “ exppmpPqq. We also define

∥ P ∥“ max |coe f f pPq| . (123)

□

Proposition 6.6. For any m ě 1, let Cm “ maxk
`m

k

˘

. Then, for any P P Crz1, . . . ,zds

∥ P ∥ď Cdeg1pPq ¨ ¨ ¨Cdegd
pPqMpPq. (124)

In particular, the set
␣

P P Zrz1, . . . ,zds : mpPq ď A,@ j,deg jpPq ď B
(

is finite.

Proof. We prove the result by induction of d. The result is clear if d “ 1 because the coefficients of P are
obtained as the elementary symmetric functions of the αi’s.

Now assume d ě 2. Writing

Ppz1, . . . ,zdq “

degdpPq
ÿ

k“0

akpz1, . . . ,zd´1qzk
d (125)
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we have

mpPq “

ż

pS1qd´1

ˆ
ż

S1
log |P|dθd

˙

dθ1 ¨ ¨ ¨dθd´1 (126)

ě ´ logCdegdpPq ` max
ak‰0

ż

pS1qd´1
logp|akpz1, . . . ,zd´1q|qdθ1 ¨ ¨ ¨dθd´1 (127)

ě ´ logCdegdpPq ` max
ak‰0

´plogdeg1pakq ` ¨ ¨ ¨ ` logdegd´1pakqq` ∥ ak ∥ (128)

ě ´ logCdegdpPq ´ logdegd´1pPq ´ ¨ ¨ ¨ ´ logdeg1pPq ` log ∥ P ∥ . (129)

□

Now, we can write
p “ rP0pz1, . . . ,zdq : ¨ ¨ ¨ : Pdpz1, . . . ,zdqs (130)

such that Pi P Qrz1, . . . ,zds and they are coprime. We have

hHW
1 ,¨¨¨ ,HW

d
nv pPq “

ÿ

Γ

maxp´ordΓpPiqq `

ż

pS1qd
logmaxp|Pi|qdθ1 ¨ ¨ ¨dθd . (131)

The integral term is ě maxmpPiq. Now we study the sum, this is a sum of nonnegative term because since the
Pi’s are coprime polynomials with integer coefficients for every Γ there must exists Pj such that ordΓpPjq “ 0.
Let’s look at the term where Γ “ ∆ j “ P1

Z ˆ¨¨ ¨ˆP1
Z ˆt8uˆP1

Z ˆ¨¨ ¨ˆpP1
Zqd where t8u is at the j-th term.

Then, we have that HW
j |∆ j

is the vertical adelic line bundle over pP1
Zqd´1 with constant metric equal to 1 over

C and zero for every other places. It follows that

HW
1 |∆i

¨ ¨ ¨HW
d |∆ j

“ 1. (132)

Thus we get that

hHW
1 ,...,HW

d
nv pPq ě

ÿ

j

max
i

deg jpPiq ` maxmpPiq. (133)

Finally, let’s look at Γp Ă B the prime divisor induce by p “ 0. We have that Γp “ pP1
Fp

qd and therefore
H1|Γp ¨ ¨ ¨Hd |Γp “ 1. Furthermore, we have that

maxlogmaxp∥ Pi ∥Γpq “ log ∥ q ∥p (134)

where q is the point in a large enough projective space which coordinates are the coefficients of all the
polynomials Pi. Thus by Proposition 6.6 we have that

hHW
1 ,¨¨¨ ,HW

d
nv prP0 : ¨ ¨ ¨ : Pnsq ě

ÿ

j

maxdeg jpPiq `Chnvpqq. (135)

Thus we have a bound on the number of coefficients appearing in P0, . . . ,Pn and a bound on a naive height of
the induced point q in some projective space. By the Northcott property of the naive height over a number
field we have that the set

!

p P PnpQpz1, . . . ,zdqq : hH
nvppq ď A

)

(136)

is finite.
Now, to get the result for any big and nef arithmetic polarisation H1, . . . ,Hd we have that there exists an

integer Ni such that NiH i ´ HW
i is effective. So that

hHW
1 ,¨¨¨ ,HW

d
nv ď N1hH1,H

W
2 ,...,HW

d
nv ` Op1q ď ¨ ¨ ¨ ď N1 ¨ ¨ ¨NdhH1,...,Hd

nv ` Op1q. (137)
18



6.4. Arithmetic equidistribution.

Theorem 6.7 ([YZ23, CM]). Let L be an ample line bundle over a projective variety X and let L be a nef
adelic metrisation of L defined over XV Ñ BV . Let H be a big and nef arithmetic polarisation of F defined
over B. Suppose ppnq Ă XpFq is a generic sequence such that hH

L ppnq Ñ hH
L pXq, then

(1) For any Γ Ă B, the sequence of measures δn,Γ converges weakly towards c1pLqn
Γ
.

(2) For the archimedean place of Q we have over XV pCq the convergence of currents

δn ^ c1pHqd
C Ñ c1pLqn

C ^ c1pHqd
C. (138)

where δn is the integration current

δn “
1

ˇ

ˇGalpF{Fq ¨ pn
ˇ

ˇ

ÿ

qPGalpF{Fq¨pn

δ∆q (139)

where ∆q is the Zariski closure of q in XV pCq.

Remark 6.8. The statement here in this theorem is modeled from [CM, Theorem F]. In [YZ23] there is an
extra condition on the polarisation called the Moriwaki condition which was introduced in the first paper of
Moriwaki to prove an equidistribution theorem at the archimedean places. Chen and Moriwaki removed this
condition by showing the differentiability of the arithmetic volume function with respect to the polarisation
H.

6.5. Canonical Moriwaki heights for a polarised endomorphism. We follow §6.1.1 of [YZ23]. Let X be
a projective variety over a field F and let f be a polarised endomorphism with polarisation L. Let pX ,L q

be a nef model adelic metrisation of L over a base B. There exists an open subset V Ă B such that
(1) f restricts to a surjective endomorphism fV : XV Ñ XV .
(2) f ˚

V LV “ dLV .

This implies that for a boundary divisor E 0 of V , there exists a constant C ą 0 such that

´CE 0 ď
1
d

f ˚L ´L ď CE 0. (140)

Furthermore, f ˚E 0 “ E0 so that we get

´
C
dn E 0 ď

1
dn`1 p f n`1q˚L ´

1
dn p f nq˚L ď

C
dn E 0. (141)

So that this defines a Cauchy sequence with respect to the boundary topology. We write L f for the limit.

Theorem 6.9. The adelic line bundle L f is the unique strongly nef adelic metrisation of L such that

f ˚L f “ d ¨ L f . (142)

7. PROOF OF THEOREM 1.1

The proof is now very similar as in the number field case. Let F be a finitely generated field over Q such
that f and g are defined over F and share infinitely many preperiodic points in common. Let H be a big
and nef arithmetic polarisation of F over a model B over Z. Let L f ,Lg be the canonical adelic line bundles
associated to f and g respectively. By the Northcott property we have that

Preperp f q “

!

hH
f “ 0

)

. (143)

And the same formula holds for g. By the arithmetic equidistribution theorem we have the following.
(1) If Γ Ă B, then µ f ,Γ “ µg,Γ. Which implies that the local metrics of L f ,Γ and Lg,Γ differ by a constant

λΓ because their difference is a harmonic function over P1,an
Γ

.
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(2) For the archimedean places, they are contained in BpCq. We have that for c1pHqd
C-almost every

b P BpCq, the measures µ f ,b,µg,b are equal so that the metrics of L f ,b and Lg,b differ by a constant
λpbq.

We show the second statement at the end of the proof.
This implies that the Moriwaki heights hH

f and hH
f differ by a constant. Indeed, for any q P P1pFq, the set

of preperiodic points.

hH
L f

pqq ´ hLg
pqq “

ż

BpCq

λpbqdµH,Cpbq `
ÿ

ΓĂB

Hd
|ΓλΓ. (144)

For some nonnegative numbers nΓ ě 0. Since the heights coincide on common preperiodic points we have
that this constant is zero and the height functions are equal. Thus we get the equality of the set of preperiodic
points.

Proof of (2). The set XV pCq “ XV pCq is a complex analytic space containing Xan,C. Let ψ be a compactly
supported function over XV pCq. We show that

ż

Xb

ψµ f ,b “

ż

Xb

ψµg,b (145)

is of full measure with respect to c1pHqd
C. Introduce for ε ą 0 the set

Uε :“
"

b P V pCq :
ż

Xb

ψµ f ,b ě

ż

Xb

ψµg,b ` ε

*

. (146)

The U`
ε is measurable and since c1pHqd

C is a Radon measure there exists a compact subset Kδ and an open
subset Tδ such that

Kδ Ă Uε Ă Tδ Ă V pCq (147)
and

µHpUεq ´ δ ď µHpKδq ď µHpTδq ď µHpUεq ` δ. (148)
Now, there exists a compactly supported function φ over V pCq such that φ|Kδ

“ 1, φ|V pCqzTδ
“ 0 and 0 ď φ ď 1.

We have that
ż

V pCq

ˆ
ż

Xb

φpbqψpxpbqqdµ f ,b

˙

dµHpbq “

ż

V pCq

ˆ
ż

Xb

φpbqψpxpbqqdµg,b

˙

dµHpbq. (149)

If we call T the difference of the two sides we have

0 “ T ě εµHpKδq ´ 2δM ě εpµHpUεq ´ δq ´ 2δM. (150)

where M “ maxψ. Letting δ Ñ 0 we get that µHpUεq “ 0. Reversing the role of f and g we get that the set

Wε “

"

b P V pCq :
ˇ

ˇ

ˇ

ˇ

ż

Xb

ψµ f ,b ´

ż

Xb

ψµg,b

ˇ

ˇ

ˇ

ˇ

ą ε

*

(151)

has µH measure zero. Thus, we get

µH

˜

ď

εPQą0

Wε

¸

“ 0. (152)

Now, the space of compactly supported function over XV pCq is separable. So we take a dense sequence ψn,
By what we have proven we have that for µH-almost every b P V pCq

ż

Xb

ψnµ f ,b “

ż

Xb

ψnµg,b. (153)

By density, we get that (153) holds for any compactly supported function ψ over XV pCq. Now, for any
b P V pCq, the restriction ψ|Xb is a function with compact support over Xb. By the Stone-Weierstrass theorem,
the restrictions to Xb of compactly supported function over XV pCq is a dense subset of the set of continuous
functions over Xb. So that we we get for µH-almost every b P V pCq that µ f ,b “ µg,b.
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