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Intermittent search processes alternate between two different stochastic motions in order to reach
a given target. If the faster motion has a lower probability to detect the target, a question arises
concerning the efficiency of both processes, and it may be possible to minimize the search time
by a convenient choice of the parameters. This argument has been used to interpret observations
in molecular biology or to explain the behavior of animals when searching for food. It can also
have interesting consequences for the kinetics of reactions in heterogeneous media. In particular,
the reaction kinetics in a biological cell can be enhanced when the active molecules occasionally
bind to molecular motors that inactivate their reactivity and carry them far away. Here, we
present a synthesis of the recent results obtained on these topics, with new perspectives and
possible applications of intermittent behavior in reaction kinetics to be soon developed.
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1. Introduction

Search problems have been widely studied in
applied cases, such as the search for mines in the
Second World War, search for a lost submarine, res-
cue operations, and many other examples (see [Von
Hippel et al., 1989; Cox, 1983; O’Brien et al., 1990;
Bell, 1991]). The main question is how to find a
given target in the most efficient way. In fact, it is
often crucial to find the target as rapidly as pos-
sible: thus, we focus here on minimizing the time
needed to reach the target. In the case of hidden
targets, when they cannot be seen from a large dis-
tance and no information enables the definition of
a nonuniform target distribution probability, the
searcher has to follow an arbitrary trajectory to
prospect the territory until a target enters into the
action field of the sensors which can detect it. It
can be difficult to determine the best trajectory for
a systematic, deterministic exploration, and this is a

specific problem, which does not allow for a general
solution: thus, for practical reasons, the trajectory
is often stochastic.

Examples can be found in many fields and at
very different scales. For instance, eagles searching
for preys follow a stochastic trajectory (but not
any trajectory) as well as many predators whose
behavior has been carefully studied by ecologists.
People looking for lost, small objects (keys, rings,
money. . . ) often seem to walk or run randomly. On
the other hand, a person trying to recognize a word
or a group of letters in a text generally focuses on
a randomly moving point of the page. At a dif-
ferent scale, particles or bacteria that can attach
to a specific region of a vessel generally have no
proper locomotion and are subject to a random
walk or Brownian motion before reaching their
target. Similarly, reagents in a solution generally
diffuse till they meet and can react (see the theory
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of diffusion limited reactions, initiated by Smolu-
chowski [1916], and many related papers, such as
for instance [Noyes, 1961]).

A special, but widely widespread case of
stochastic research includes intermittent processes,
when the searcher alternates between two search
regimes. We now rapidly review the main results
of the first model where this behavior was studied
[Bénichou et al., 2005], which concerned foraging
animals: in fact, with relevant changes, it can be
adapted to model some chemical reactions. Then,
we summarize recent results on powered chemical
reactions in a cell [Loverdo et al., 2008], which are
based on extensions of the previous case and show
that reaction kinetics can be enhanced by intermit-
tent search.

2. Intermittent Search Processes:
The Example of Foraging Animals

Imperfect detectors cannot instantaneously recog-
nize the presence of a target in their range of action.
Their ability to detect a target decreases when they
move rapidly. This is often the case, for instance,
for seeing keys on a beach, or finding any hidden
target. Then, it may be favorable to adopt a slower
motion with higher probability for detecting a tar-
get when it enters into the sensors action range.
In the simplest case, the searcher may alternate
slow displacements with high detection abilities,
and fast motions with no possible detection which
allow for rapid displacements to new territories.
Such an intermittent strategy is in fact observed
with many foraging animals: numerous studies of
a broad range of animals show that they use an
intermittent, or saltatory behavior, when the preys
are difficult to find and sparsely distributed. Many
examples have been observed among birds, fishes,
lizards or insects [Bell, 1991; O’Brien et al., 1990;
Anderson et al., 1997].

A few years ago, several of us presented a one-
dimensional model of intermittent search [Bénichou
et al., 2005]. In this model, the predator P fol-
lows a one-dimensional motion (in fact, observa-
tions show that the turning angle between different
phases is usually small) including two phases: (i) the
search phase 1 is modeled as a diffusive motion with
diffusion coefficient D, the target being found as
soon as the predator reaches it during this phase,
and (ii) the motion phase 2 is a ballistic motion
at constant velocity v: during phase 2, the target
cannot be found. The durations of each phase i is

an exponential, stochastic variable Ti

P (Ti > t) = exp(−λit)

Preys are supposed to be regularly distributed
along a straight line, with an inter-distance L. Let
t(x, i) be the search time (mean first arrival time
to a prey) when P starts from position x and
phase i. The search time satisfies the (backward)
Chapman–Kolmogorov equations [Gardiner, 1985;
Redner, 2001]

D
∂2t(x, 1)

∂x2
+ λ1[t(x, 2) − t(x, 1)] = −1

v
∂t(x, 2)

∂x
+ λ2[t(x, 1) − t(x, 2)] = −1

which can be solved easily with relevant, periodic
boundary conditions [Bénichou et al., 2005]. The
average search time 〈T 〉 from an initial diffusive
state is obtained by averaging t(x, 1) on uniform dis-
tribution of initial position x in the interval (0, L).
It is found that in the low target density limit
L � vτ2,

√
Dτ1,Dτ1/vτ2 (where τi = 1/λi is the

mean duration of phase i, i = 1 or 2) the average
search time 〈T 〉 is

〈T 〉 =
L

2
√

D

(
1
λ1

+
1
λ2

)
τλ2

2 + 2λ1√
τλ2

2 + 4λ1

τ being the characteristic time τ = D/v2.
Thus, the average search time scales with the

distance of the preys as L instead of L2 as would be
the case for a purely diffusive search. Intermittence
is thus favorable for optimizing the search. Further-
more, it can be shown from the expression of 〈T 〉
that the search strategy is optimal when the mean
duration τ1 of the search phase 1 is as small as pos-
sible, and when the mean duration τ2 of the motion
phase 2 scales as the power 3/5 or 2/3 of τ1, depend-
ing on the regime. These nonintuitive conclusions
agree with experimental observations of a large class
of foraging animals [Anderson et al., 1997; Bénichou
et al., 2005].

Thus, the previous, elementary model is able
to capture some important features of intermit-
tent search processes, which makes it useful for
studying many phenomena, provided that they are
practically one-dimensional, and that the searcher
has spatial memory, i.e. it keeps memories of its
velocity in the fast, ballistic phase. Several other
models have been presented to improve it and to
address the phenomena which do not satisfy the
previous conditions [Coppey et al., 2004; Moreau
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et al., 2007; Bénichou et al., 2007]. We will now
focus on diffusion controlled chemical reactions,
when the “searcher” is a particle which has no mem-
ory and moves in a medium which can be one-,
two- or three-dimensional. The theory of intermit-
tent search is relevant in special cases only, but it
covers interesting, complex situations, when one of
the reactants can move either slowly with a high
reactivity, either rapidly without any probability to
react. Such examples are mainly found in heteroge-
neous media.

3. Chemical Reactions at an
Interface

If most chemical reactions, the reagent molecules
undergo Brownian motions till the moment when
they meet and react. In some cases, their motion can
be temporarily accelerated by external agents, and
intermittent reactivity may occur. We first focus on
a specific case which plays an important role in biol-
ogy and has been studied recently: the active trans-
port in a cell [Loverdo et al., 2008].

3.1. Powered reaction kinetics
in a biological cell

Active transport in cellular media can have a very
large impact on mechanical and chemical proper-
ties of the cell. It has been shown recently [Alberts
et al., 2002; Salman et al., 2005] that some tracers
can either diffuse freely in the cell and react with
specific reactants, or temporarily bind to a motor
protein which inhibits its reactivity, but carries it
rapidly through the cell. Let us study a recent model
[Loverdo et al., 2008] of such powered reaction

A + B → C

We suppose that

• a particle B (tracer) with time-dependent posi-
tion x diffuses in a n-dim medium X containing
immobile particles A (targets, or receptors), with
n = 1, 2 or 3.

• the range of interaction between A and B is a:
A and B react as soon as the distance between
them is smaller than or equal to a.

• however, B can temporarily bind to other par-
ticles (motors) which carry B according to their
own, independent fast motion, which can be, for
instance, a ballistic motion with absolute velocity
v, or consists of a “teleportation” (which restores

random distribution of final location, indepen-
dently of its initial position). Many other cases
can be considered. Later on, we assume that the
motors velocity has a constant absolute value v,
and is randomly reoriented as indicated below.

• in n-dim space, particle B (tracer) moves in a
sphere (b) with center A and radius b which is
the average distance between target particles A
in the actual medium. Sphere (b) contains only
one target A, represented as a concentric sphere
(a) with radius a(a � b).

Then B can obey two dynamical regimes: either it
diffuses freely with diffusion coefficient D (regime
1), or it undergoes a ballistic motion with constant
absolute velocity v (regime 2), randomly reoriented
when it touches the external sphere (b) or at the
beginning of each new phase 2. In regime 1, B reacts
instantaneously if it is at distance smaller than or
equal to a from particle A, whereas it cannot react
during regime 2. Again, we assume that the dis-
tribution of Ti, the duration of each regime i, is
exponential: P (Ti > t) = exp(−λit). We consider
that the outer boundary of sphere (b) is reflecting
for particle B, whereas the boundary of sphere (a)
is absorbing.

The reactant B experiments an intermittent
behavior (partially) without memory, since it keeps
no memory of its velocity orientations during the
previous ballistic phases (but it remembers its abso-
lute velocity).

3.2. Equations

Such a model can be solved exactly in one-dim,
and approximately in d-dimensions [Bénichou et al.,
2006]. As done previously, we define the stochas-
tic search time t(x, 1) for B to react with the tar-
get A at time t, if starting from position x and
regime 1, and similar to the stochastic search time
t(x,v, 2), which now depends on the initial velocity
v. The Chapman–Kolmogorov backward equations
for search times read

D∇2
xt(x, 1) +

1
τ1

[〈t(x,v, 2)〉v − t(x, 1)] = −1

with t(x, 1) = 0 if |x| ≤ a

v · ∇xt(x,v, 2) +
1
τ2

(t(x, 1) − t(x,v, 2)) = −1

They cannot be solved, except in very special cases.
However, we can define the reduced variables s(x) =
〈t(x,v, 2)〉v and d(x) = 〈vt(x,v, 2)〉v , the averages
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being taken on velocities v only. With the aid of a
decoupling approximation (exact in one-dim)

〈vivjt(x,v, 2)〉 ≈
(

v2

n

)
δijs(x)

and defining the effective diffusion coefficient
D = v2τ2/n, we obtain the approximate reduced
equations

D∇2
xt(x, 1) +

1
τ1

[s(x) − t(x, 1)] = −1

D∇2
xs(x) +

1
τ2

[t(x, 1) − s(x)] = −1

which are formally equivalent to two diffusions with
coefficients D and D . They can be solved exactly in
spherical geometry [Bénichou et al., 2007].

3.3. Two-dimension results

It is found that in two-dim

• if a < b � D/v, intermittence is not favorable for
minimizing search time

• if a � D/v � b, the intermittence is moderately
favorable and permits to minimize the search time
for certain finite values τ1min and τ2min of the
mean durations of regimes 1 and 2 such that the
diffusion length is of the order of the ballistic
length, and we have

〈t(x,1)〉min

〈t(x)〉dif
∼ 0.5

〈t(x)〉dif being the average search time in the pure
diffusive regime

• if D/v � a � b there is also an optimal inter-
mittent strategy for other values of the average
durations τ1min and τ2min, but now

〈t(x, 1)〉min

〈t(x)〉dif
→ 0 if v → ∞

Thus, in this case, intermittence can be very
efficient for minimizing the search time. These
results can be generalized to n dimensions as
follows.

3.4. Enhanced reactivity

We now specify the results [Loverdo et al., 2008]
of the previous model for the powered reaction

A + B → C:

(i) In three dimensions, which is the case of a generic
in vitro active solution, the reaction rate K3d can
be maximized if a ≥ ac ≡ D/v by choosing

τ1 ≈ 6D
v2

, τ2 ≈
√

3a
vx0

≈ 1.078
a

v

It is interesting to notice that τ2 is independent
of D.

The optimal rate is then

Kmax
3d ≈ cv

a

√
3(x0 − tanh(x0))

(x0)2
, where c =

(a

b

)n

corresponds to the concentration of A, x0 being the
solution of 2 tanh(x) − 2x + x tanh(x2) = 0.

The gain G can be defined by the ratio of
the maximum kinetic constant in the intermittent
regime to the kinetic constant for pure diffusion

G3d =
Kmax

3d

Kdif
3d

≈ 0.26
av

D

In standard cellular conditions, a typical value of
the gain is G3d ≈ 2.5 so that active transport
is (moderately) efficient for large tracers (vesicles)
with small D.

(ii) In two dimensions, a typical example is a reac-
tion in a cytoplasmic membrane. The reaction rate
K2d can be maximized if D/v � a � b by choosing

τ1 =
D

2v2

ln2

(
1√
c

)

2 ln
(

1√
c

)
− 1

, τ2 =
a

v

[
ln

(
1√
c

)
− 1

2

]1/2

Then the gain is

G2d =
Kmax

2d

Kpas
2d

≈ av

4D

√
ln

(
1√
c

)

It decreases if D or the concentration c of reactant
A increases. Thus active transport is efficient for
large tracers and low concentrations of A.

A typical value is G2d ∼ 8: in two-dim, the
gain due to intermittency is more significant than
in three-dim.

(iii) The one-dim case applies, for instance, to cel-
lular tubes such as axons or dendrites of neuron
cells. The model is then exactly solvable. The reac-
tion rate K1d is maximized if D/v � a � b by
choosing

τ1 =
1
48

D

v2c
, τ2 =

1√
3

a

vc1/2
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and the gain is

G1d =
Kmax

1d

Kpas
1d

≈
(

1
2
√

3

)
av

Dc1/2

It decreases with increasing concentrations c more
rapidly than in two-dim. A typical value is G1d ∼
100 so that the gain due to intermittency can be
very significant in one-dim, especially for low diffu-
sion coefficients and low concentrations.

3.5. Perspectives: Intermittent
reactivity and reactions at an
interface

It often happens that a chemical reaction can only
be completed in a given region of space, in partic-
ular, on an interface. This is the case, for instance,
for a catalytic reaction, if the catalyst stays on the
interface (heterogeneous catalysis), for instance, in
the celebrated catalytic oxidation of CO [Ertl et al.,
1982]

CO + O → CO2 catalyzed by Pt

It is also possible that one of the reacting species
lives on the interface, for instance, if one of the
reactants is grafted on a surface. This situation
can be produced artificially or it can be natural.
Many similar examples can be found in biology,
for instance in the detection of odorous molecules
by sensors anchored on olfactive filaments [Rospars
et al., 2003].

If one of the reactants is fixed on the interface,
the other one can be dragged by a flow in a con-
tiguous fluid, but it may be temporarily absorbed
by the interface and diffuse on it, till either it des-
orbs, or it meets the interfacial reactant and reacts
with it: this is an intermittent search problem and
intermittency can again enhance the reactivity in
this case, which will be studied elsewhere.

4. Conclusion

We have shown that intermittence can be a very
efficient strategy for optimizing the search, as to be
expected from the observed behavior of many for-
aging animals and from other natural phenomena.
It can also enhance the kinetics of certain reactions
in heterogeneous media. In the particular case of
powered reactions in cells, the gain due to inter-
mittence has been explicitly calculated in 1, 2 and
3 dimensions. It has been shown that its efficiency
is much greater in low dimensions. Since biology
offers many examples of restricted geometry and

low dimension phenomena, one can presume that
in many examples, intermittence should allow them
to obtain optimal conditions: this could explain why
it is so frequently observed.
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