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This review examines intermittent target search strategies, which combine phases of slow motion,

allowing the searcher to detect the target, and phases of fast motion during which targets cannot be

detected. It is first shown that intermittent search strategies are actually widely observed at various

scales. At the macroscopic scale, this is, for example, the case of animals looking for food; at the

microscopic scale, intermittent transport patterns are involved in a reaction pathway of DNA-

binding proteins as well as in intracellular transport. Second, generic stochastic models are

introduced, which show that intermittent strategies are efficient strategies that enable the minimi-

zation of search time. This suggests that the intrinsic efficiency of intermittent search strategies

could justify their frequent observation in nature. Last, beyond these modeling aspects, it is

proposed that intermittent strategies could also be used in a broader context to design and accelerate

search processes.
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I. INTRODUCTION

A. General scope and outline

What is the best strategy for finding a missing object?
Anyone who has ever lost keys has already faced this prob-
lem. This everyday life situation is a prototypical example of
a search problem, which under its simplest form involves
a searcher—a person, an animal, or any kind of organism or
particle—in general able to move across the search domain
and one or several targets. Even if it is schematic, the search
problem as stated turns out to be a universal question, which
arises at different scales and in various fields, and has

generated an increasing amount of work in recent years,
notably in the physics community.

Theoretical studies of search strategies can be traced back
to World War II, during which the U.S. Navy tried to effi-
ciently hunt for submarines and developed rationalized search
procedures (Champagne et al., 2003; Shlesinger, 2009).
Similar search algorithms have since been developed and
utilized in the context of castaway rescue operations (Frost
and Stone, 2001), or even for the recovery of an atomic bomb
lost in the Mediterranean Sea near Palomares in 1966. One
example is the rescue of the Scorpion, a nuclear submarine
lost near the Azores in 1968 (Richardson and Stone, 1971). At
the macroscopic scale, other important and widely studied
examples of search processes concern animals searching for a
mate, food, or shelter (Charnov, 1976; O’Brien et al., 1990;
Bell, 1991; Viswanathan et al., 1999; Bénichou et al., 2006;
Shlesinger, 2006; Edwards et al., 2007), which will be
discussed in more detail in this review. Even prehistoric
migrations, apart from classical archaeological literature,
have also been studied as a search problem, in which human
groups search for new profitable territories (Flores, 2007). At
the microscopic scale, search processes naturally occur in
the context of chemical reactions, for which the encounter
of reactive molecules—or, in other words, the fact that one
searcher molecule finds a reactive target site—is a required
first step. An obvious example is the theory of diffusion-
controlled reactions, initiated years ago by the work of von
Smoluchowski (1917) and developed by innumerable re-
searchers [see, for instance, the review by Hanggi et al.
(1990)]. More recently this field has regained interest in the
context of biochemical reactions in cells, where the some-
times very small number of reactive molecules makes this
first step of the search for a reaction partner crucial for the
kinetics. Consider, for instance, reactions involved in ge-
nomic transcription, a representative example of which is
the search for specific DNA sequences by transcription fac-
tors (Berg et al., 1981; Von Hippel, 2007; Bonnet et al.,
2008; Gorman and Greene, 2008; Mirny, 2008).

In all these examples, the time needed to discover a target
is a limiting quantity, and consequently minimization of this
search time often appears as essential. In order to gain
intuition into what could be an efficient search strategy on
general grounds, let us go back to the everyday-life example
mentioned above (see Fig. 1). We consider a searcher who
lost a small object—for instance, a key—on a large sandy
beach, where the key is so small that it cannot be detected if

FIG. 1. Intermittent reaction paths illustrated by an everyday-life example of a search problem. The searcher looks for a target. The searcher

alternates fast relocation phases, which are not reactive as they do not allow for target detection, and slow reactive phases, which permit

target detection.
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the searcher passes by too fast. In addition, we assume that
the searcher has no prior information on the position of the
key, except that the key is in a bounded domain (the beach).
What is then the best strategy for the searcher to find the key
as fast as possible? A first strategy consists in a slow and
careful exploration (to make sure that the key will be detected
upon encounter) of the sand all along the beach. In the case of
a very large beach, the search time can then be very long. An
alternative strategy consists in interrupting the slow and care-
ful exploration of the sand by displacement phases, during
which the searcher relocates on the beach very fast, but
without even trying to detect the key (typically the searcher
‘‘runs’’). Hereafter the term ‘‘intermittent search strategies’’
is used for such processes that combine two distinct phases: a
phase of slow displacement that enables target detection, and
a phase of faster motion during which the target cannot be
detected [note that the word ‘‘intermittent’’ has also been
used recently by Bartumeus (2009) with another definition].

The efficiency of such intermittent strategies results from a
trade-off between speed and detection and can be qualita-
tively discussed. Intuitively, the advantage of the fast reloca-
tion phases for the searcher is to reach unvisited regions.
The drawback is, however, that during these phases time
is consumed without any chance of detecting the target.
Determination of the net efficiency of this strategy is there-
fore not trivial, and in recent years many works have focused
on the following questions: (i) Can phases of fast motion that
disable detection make the global search more efficient? (ii) If
so, is there an optimal way for the searcher to share the time
between the two phases? (iii) Are these intermittent search
patterns relevant to the description of real situations?

The goal of this article is to review these works while
giving explicit answers to these questions. More precisely, it
is first shown that intermittent transport patterns are actually
widely observed at various scales. At the macroscopic scale,
this is, for example, the case of foraging animals (see Sec. II);
at the microscopic scale, intermittent transport patterns are
shown to be involved in the reaction pathway of DNA-
binding proteins as well as in intracellular transport (see
Sec. III). Second, generic stochastic models are used to
show that intermittent strategies are efficient strategies that
allow minimization of the search time (see Secs. II, III, and
IV), and therefore suggest that this efficiency might justify
their frequent observation in nature. Last, beyond these mod-
eling aspects, it is proposed that intermittent strategies could
also be used in a broader context to design and accelerate
search processes.

B. General framework and first definitions

The search problem can take multiple forms (da Luz et al.,
2009); in this section we define more precisely the framework
of this review—namely, random intermittent search strat-
egies—and introduce the main hypothesis that will be made.

1. Searching with or without cues

Although in essence in a search problem the target location
is unknown and cannot be found from a rapid inspection of
the search domain, in practical cases there are often cues that
restrict the territory to be explored or give indications of how

to explore it. A classical example is chemotaxis (Berg, 2004),
which keeps raising interest in the biological and physical
communities [see, for example, Park et al. (2003), Kafri and
Da Silveira (2008), and Tailleur and Cates (2008)]. Bacteria
like E. coli swim with a succession of ‘‘runs’’ (approximately
straight moves) and ‘‘tumbles’’ (random changes of direc-
tion). When they sense a gradient of chemical concentration,
they swim up or down the gradient by adjusting their tum-
bling rate: When the environment is becoming more favor-
able, they tumble less, whereas they tumble more when their
environment is degrading. This behavior results in a bias
toward the most favorable locations of high concentration
of chemoattractant, which can be as varied as, for example,
salts, glucose, amino acids, or oxygen. Recently it has been
shown that a similar behavior can also be triggered by other
kinds of external signal such as temperature gradients (Maeda
et al., 1976; Salman et al., 2006; Salman and Libchaber,
2007) or light intensity (Sprenger et al., 1993).

Chemotactic search requires a well-defined gradient of
chemoattractant and is therefore applicable only when the
concentration of cues is sufficient. In contrast, at low con-
centrations cues can be sparse, or even discrete signals that do
not allow for a gradient-based strategy. This is, for example,
the case of animals sensing odors in air or water, where the
mixing in the potentially turbulent flow breaks up the chemi-
cal signal into random and disconnected patches of high
concentration. Vergassola et al. (2007) proposed a search
algorithm, which they called ‘‘infotaxis,’’ designed to work in
this case of sparse and fluctuating cues. This algorithm, based
on a maximization of the expected rate of information gain,
produces trajectories such as ‘‘zigzagging’’ and ‘‘casting’’
paths, which are similar to those observed in the flight of
moths (Balkovsky and Shraiman, 2002).

This review focuses on the extreme case where no cue is
present that could lead the searcher to the target. This as-
sumption applies to targets that can be detected only if the
searcher is within a given detection radius a which is much
smaller than the typical extension of the search domain. In
particular, this assumption covers the case of search problems
at the scale of chemical reactions and, more generally, the
case of searchers whose motion is independent of any exterior
cue that could be emitted by the target.

2. Systematic versus random strategies

Whatever the scale, the behavior of a searcher relies
strongly on its ability, or incapability, to keep memories of
its past explorations. Depending on the searcher and on the
space to be explored, this kind of spatial memory can play
a more or less important role (Moreau et al., 2009). In an
extreme case the searcher, for instance, human or animal, can
have a mental map of the exploration space and can thus
perform a systematic search. Figure 2 presents several sys-
tematic patterns: lawn mower, expanding square, and spiral
[for more patterns, see, for example, Champagne et al.
(2003)]. These types of searches have been extensively
studied, in particular, for designing an efficient search oper-
ated by humans (Dobbie, 1968; Stone, 1989).

In the opposite case where the searcher has low—or
no—spatial memory abilities the search trajectories can be
qualified as random, and the theory of stochastic processes

Bénichou et al.: Intermittent search strategies 83

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011



provides powerful tools for their quantitative analysis (for a
reminder on random walks, see Appendix A). This is obvi-
ously the case for ‘‘molecular’’ searchers at the microscopic
scale that are subject to thermal Brownian motion, but also at
larger scales of animals with low cognition skills. This review
is mainly focused on random search problems, and effects of
spatial memory will be discussed in the last section.

Note that we use the word ‘‘strategy’’ for animals with low
cognitive abilities and even for molecules, although such
searchers are not able to design strategies themselves since,
of course, their dynamics are simply governed by the laws of
physics. In the context of proteins searching for targets on
DNA, we mean that the search time depends on parameters
such as the ionic strength or the protein-DNA affinity, which,
if varied, can lead to a minimization of the search time. In the
case where the search kinetics is a limiting constraint, such
good or even optimal values of these parameters might have
been selected in the course of evolution. This very fact that
physical parameters can be tuned (implicitly by evolution) to
optimize a biological function is termed ‘‘strategy.’’ Note,
however, that the real optimization problem depends on many
parameters and constraints. The models studied in this review
are restricted to kinetic constraints, which can be dominant at
both the microscopic and macroscopic scales, as discussed in
Secs. II and III. This key assumption will be used throughout
the review.

3. Framework

To summarize, this review focuses on intermittent search
strategies for targets that emit no cue. The searchers will be
assumed to have no (or low) memory skills, so that their
trajectories are intermittent random walks. Depending on the
example to be treated, different quantities can be used to
assess the efficiency of search strategies, such as the energy
necessary for reaching the first prey, the number of preys
collected in a given time, or the time taken to encounter the
first prey. In this review we discuss the efficiency of search
strategies uniquely from a kinetic point of view. We mainly
consider the mean first-passage time to a target as a quanti-
tative measure of the search efficiency and study the mini-
mization of this quantity. Note that the full distribution
of the first-passage time is a priori needed to quantify the
search kinetics on all time scales. However, in most of
the situations considered in this review, it can be checked
numerically that the distributions of the search time can be
well approximated by an exponential, which means that
the kinetics is fully characterized by the mean first-passage
time.

II. INTERMITTENT SEARCH STRATEGIES AT THE

MACROSCOPIC SCALE

Searching for a randomly located object is one of the most
frequent tasks of living organisms, be it for obtaining food, a
sexual partner, or a shelter (Bell, 1991). In these examples,
the search time is generally a limiting factor that has to be
optimized for the survival of the species. The question of
determining the efficiency of a search behavior is thus a
crucial problem of behavioral ecology, which has inspired
numerous experimental (O’Brien et al., 1989; O’Brien et al.,
1990; Bell, 1991; Kramer and McLaughlin, 2001) and theo-
retical (Viswanathan et al., 1996; Viswanathan et al., 1999;
Bénichou et al., 2005b; Bénichou et al., 2006; Boyer et al.,
2006; Lomholt et al., 2008) works. In this context, Lévy walk
strategies have been proved to play a crucial role in such
optimization problems. In this section, we first discuss why
these Lévy walks are advantageous with respect to simple
random walks when searching randomly, as first mentioned
by Shlesinger and Klafter (1986). We recall the pioneering
model of Viswanathan et al., which has played a major role in
the development of ideas on random search strategies. We
also show how intermittent strategies are naturally involved
as soon as hidden targets are considered and define a basic
model relying on intermittent strategies, introduced to ac-
count for the search behavior of ‘‘saltatory’’ animals. This
one-dimensional model is then extended to a bidimensional
model, which is shown to be a minimal model optimizing
the search time. Last, we discuss the relationships between
these two main classes of search strategies—Lévy and
intermittent—and return to the well-known ‘‘albatross story.’’

A. The Lévy strategies

1. The advantage of Lévy walks with respect to simple random

walks

The ballistic phases interspersed with turns of animal
trajectories have often been interpreted as Lévy walks
(Viswanathan et al., 1999; Viswanathan et al., 2008).
Actually, Shlesinger and Klafter (1986) first reported that,
due to their weak oversampling properties (see Fig. 3), Lévy
walks could be an efficient way to explore space and could be
used to model, in particular, trajectories of foraging animals.
In fact, the mean number of distinct sites visited in n steps—
which is a measure of the territory explored—is known to
behave for a standard random walk like n in dimension d > 2
and like nd=2 if d � 2. This is less efficient in low dimensions
than a Lévy walk, which has jump probability in dimension d
of the form pðrÞ / r���1 (where � is the index of the walk),
for which the mean number of distinct sites visited in n steps
behaves like n, as long as �< d. From the point of view of
the territory extension explored after a given number of steps,
the advantage of Lévy walk patterns over standard random
walks is thus clear, and this effect turns out to be as strongly
marked as the number of searchers involved in the process is
high (Viswanathan et al., 1996).

2. Optimizing the encounter rate with Lévy walks: How and

when?

These observations led Viswanathan et al. (1999) to
propose the following Lévy search model, in the presence

FIG. 2. Examples of patterns for systematic exploration of space.
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of fixed targets randomly and sparsely distributed: Consider a
searcher performing a ballistic step at constant speed and
detecting targets closer than rv. A target is found when the
searcher encounters it for the first time. The step lengths are
drawn from a Lévy distribution pðlÞ / l��, with 1<�< 3.
For � � 1, the probability distribution is not defined.
For 1<� � 2, the distribution has no mean and no
variance. For 2<�< 3, the distribution has a mean but no
variance. For � � 3, the distribution has both a mean and
a variance; thus it obeys the central limit theorem: After
enough steps, the probability distribution of the difference
between the starting point and the last position is a Gaussian,
as if the process were diffusion, with the mean square dis-
tance scaling linearly with time.

Viswanathan et al. (1999) are interested in the mean
number of targets detected after a large observation time t.
More precisely, they asked the following question: Is it
possible to optimize this number with respect to the exponent

� characterizing the motion of the searcher? To answer,
they actually considered two different types of target, which
lead to two different optimal strategies.

(i) In the first case of what they call ‘‘revisitable tar-

gets’’—meaning that, as soon as detected, a target
reappears at the same location—they rely on a mean-
field approximation of the problem and find that the
encounter rate is optimized for a Lévy exponent � ’ 2.

(ii) In the second case of ‘‘nonrevisitable targets’’ (or
destructive search) where each target can be found
only once or there is a single available target, the
optimal strategy proposed by Viswanathan et al.
(1999) is no longer of Lévy type, but reduces to a
simple linear ballistic motion.

Several extensions of this pioneering model have been

proposed. Bartumeus et al. (2002) studied the case of

nonrevisitable moving targets. They showed that a Lévy

strategy with � ¼ 2 is often better than a ‘‘Brownian’’ one

(� � 3). However, James et al. (2008) extended the study

to ballistic motion, which outperformed these Lévy

strategies.
An intermediate situation between revisitable and nonre-

visitable targets has been studied by Raposo et al. (2003) and

Santos et al. (2004). In these works, the immobile target is

destroyed upon encounter, but regenerates after a time � at the
same place (for example, a plant bearing new fruits after

previous fruits have been eaten). Two regimes are found.

When � is large [> �c, a critical time evaluated by Raposo

et al. (2003) and Santos et al. (2004)], the simple ballistic

motion remains the best strategy. When � < �c, the best � is

between 1 and 2. However, it could be argued that in this

regime the simple strategy where the searcher does not move

but waits for the renewal of the target outperforms a search

for a hypothetical other target.
In the work of Bartumeus and Levin (2008), the targets

are in patches (such as fish schools) or are Lévy distributed.

Even if the targets are destroyed upon encounter, finding a

target means that the presence of other targets in the vicinity

is likely, which is close to the case of revisitable targets.

Hence, as for revisitable targets, the optimum is achieved for

a Lévy distribution, with � ’ 2.
In the work of Reynolds and Bartumeus (2009), the opti-

mum for destructive targets is � ! 1 except in two cases

(where 1<�opt � 2). On the one hand, the optimum is not

ballistic when the searcher can fail in capturing a detected

target. On the other hand, for targets destroyed upon encoun-

ter, and for the specific one-dimensional case, because the

measure of efficiency is the number of targets captured during

a long time, the searcher is after some time in a situation with

a target close on one side, but the next target on the other side

very far away: a pure ballistic motion is not favored because it

can take the wrong direction.
Finally, in the case of revisitable targets and the related

cases (regenerating targets, patches, failed capture), the Lévy

strategy � ¼ 2 emerges as a compromise between trajecto-

ries returning always to one and the same target zone, and

straight ballistic motion, which is, indeed, the best way to

explore space. Note, however, that, as stated above, in this

case the strategy that consists simply in waiting for target

renewal performs even better. In the case of nonrevisitable

targets—the generic situation considered hereafter—the best

strategy for the searcher is a mere ballistic motion without

reorientations.
In all these Lévy walks models, the searcher is assumed

to be able to detect targets all along its trajectory.

Qualitatively, it corresponds to the case of targets ‘‘not

too difficult’’ to detect. However, as it was the case with

the example of the lost small key given in the Introduction,

it is evident that in some situations the velocity degrades

the perception. What happens if the targets are really

‘‘hidden,’’ that is to say more precisely, if searching and

moving are incompatible? In recent years, many works

have been devoted to answering this question. Most of them

rely on the following simple two-state model, historically

FIG. 3. Example of Lévy walks, with � ¼ 1:5 (not present on the

zoom), � ¼ 2, and � ¼ 3. The total path length is the same for the

three examples.
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introduced to account for the search behavior of the ‘‘salta-
tory animals.’’

B. A basic model of intermittence

1. Observations: The case of saltatory animals

Anyone who has ever lost keys knows that an intermittent
behavior combining local scanning phases and relocating
phases is often adopted instinctively. Indeed, numerous stud-
ies of foraging behavior of a broad range of animal species
show that such intermittent behavior is commonly observed
and that the durations of search and displacement phases
vary widely (O’Brien et al., 1990; Bell, 1991; Kramer and
McLaughlin, 2001). The spectrum, which goes from cruise
strategy (for large fishes that swim continuously, such as tuna)
to ambush or sit-and-wait search, where the forager remains
stationary for long periods (such as a rattlesnake), has re-
mained uninterpreted for a long time. As explained in the
Introduction, the interest of this type of intermittent strategy,
often referred to as ‘‘saltatory’’ (O’Brien et al., 1990; Kramer
and McLaughlin, 2001) in the context of foraging animals,
can be understood intuitively when the targets are ‘‘difficult’’
to detect and sparsely distributed, as is the case for many
foragers (such as ground foraging birds, lizards, planktivo-
rous fish1): Since a fast movement is known to significantly
degrade perception abilities (O’Brien et al., 1990; Kramer
and McLaughlin, 2001), the forager must search slowly.
Then, it has to relocate as fast as possible in order to explore
a previously unscanned space, and search slowly again.

Even though numerous models based on optimization
of the net energy gain (Knoppien and Reddingius, 1985;
O’Brien et al., 1989; Anderson et al., 1997) predict an
optimal strategy for foragers, the large number of unknown
parameters used to model the complexity of the energetic
constraints renders a quantitative comparison with experi-
mental data difficult. In the model presented in this section,
the search time is assumed to be the relevant quantity opti-
mized by the forager in order to obtain a sufficient daily
amount of food and to precede other competing foragers. The
energy cost is treated only as an external constraint that sets
the maximal speed of the animal. As explained in the next
sections, this purely kinetic model of target search captures
the essential features of saltatory search behavior observed
for foragers in experiments (Kramer and McLaughlin, 2001),
when the predator has no information about the prey location.

2. Model

The central point of this schematic model (Bénichou et al.,
2005b) is that it relies on the explicit description of searching
trajectories as intermittent. In the following it is assumed
that the searcher displays alternately two distinct attitudes
(see Fig. 4):

(i) A scanning phase, named phase 1, during which the
sensory organs of the searcher explore its immediate
vicinity. This phase is modeled as a ‘‘slow’’ diffusive
movement (a continuous random walk with diffusion

coefficient D). The target is found when this movement
reaches the target location for the first time. As focus-
ing and processing the information received by sensory
organs require a minimum time, the scan phase cannot
be too short, which implies a minimal mean time spent
in this phase, �min

1 .

(ii) A motion phase, named phase 2, during which the
searcher moves ‘‘fast’’ and is unable to detect targets.
These relocating moves are characterized by a ballistic
motion (at constant velocity V). In the case of animals,
there are usually correlations in the angles between
two successive ballistic phases (O’Brien et al., 1990).
We limit ourselves here to the case of high correla-
tions, which allow us to consider an effective one-
dimensional problem for both phases, with phase 2
always in the same direction.

Next, it is assumed that the searcher randomly switches from
phase 1 (2) to phase 2 (1) with a fixed rate per unit time, �1

(�2), that is, with no temporal memory. It leads to exponen-
tially distributed phase durations, in agreement with numer-
ous experimental studies (Pierce-Shimomura et al., 1999;
Hill et al., 2000; Fujiwara et al., 2002; Li et al., 2008), the
mean duration of phase i being �i ¼ 1=�i. Last, the preys are
assumed to be immobile (see Sec. V.D for a discussion of
moving versus immobile targets).

3. Equations

We now evaluate the average time needed to find a target.
The chosen geometry is a single target in x ¼ 0 on a segment
of size Lwith periodic boundary conditions. This geometry is
equivalent to the case of regularly spaced targets or to the
case of one target centered in a finite domain with reflective
boundaries. L is thus the typical distance between targets, or
the size of the search domain. The instantaneous state of the
searcher can be described by its position x on the segment
and by an index i, which specifies its motion: 1 corresponds to
the slow detection phase, and 2 to the ballistic nonreactive
phase. The survival probability piðt; xÞ that, when the
searcher starts at time t ¼ 0 from x and in state i, the target
has not yet been found at time t is known to satisfy the
backward Chapman-Kolmogorov differential equations
(Gardiner, 1996; Redner, 2001):

D
@2p1

@x2
þ 1

�1
½p2ðt; xÞ � p1ðt; xÞ� ¼ @p1

@t
; (1)

FIG. 4. Basic model for intermittent search.

1Note that there are counterexamples such as birds of prey that

can detect targets even at large velocities.
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� V
@p2

@x
þ 1

�2
½p1ðt; xÞ � p2ðt; xÞ� ¼ @p2

@t
: (2)

Since tiðxÞ, the mean first-passage time at the target, starting
from x in phase i, is given by

tiðxÞ ¼ �
Z 1

0
t
@piðt; xÞ

@t
dt ¼

Z 1

0
piðt; xÞdt; (3)

it is easily found from Eqs. (1) and (2) to satisfy

D
d2t1
dx2

þ 1

�1
½t2ðxÞ � t1ðxÞ� ¼ �1; (4)

� V
dt2
dx

þ 1

�2
½t1ðxÞ � t2ðxÞ� ¼ �1: (5)

These differential equations have to be completed by bound-
ary conditions. Since we have periodic boundary conditions
and the target at x ¼ 0 can be found only in state 1, we get
t1ð0Þ ¼ t1ðLÞ ¼ 0, t2ð0Þ ¼ t2ðLÞ.

4. Results

The average search time hti is defined as the average of
t1ðxÞ over the initial position x of the searcher, which is
uniformly distributed over the segment ½0; L�, as the searcher
initially does not know the target’s location. It is found to be
given by Bénichou et al. (2005b):

hti¼ ð�2þ�1Þ
0
@L
2

ðe�þ��1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4r

p þð1þ2rÞðe��e�Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4r

p ðe��1Þðe��1Þ�2V

�1

r
�1

1
A; (6)

with

r ¼ �22V
2

D�1
; (7)

� ¼ L

2

0
@� 1

�2V
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�22V
2
þ 4

1

D�1

s 1
A; (8)

� ¼ �L

2

0
@ 1

�2V
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�22V
2
þ 4

1

D�1

s 1
A: (9)

In the limit of L � V�2;
ffiffiffiffiffiffiffiffiffi
D�1

p
; D�1=V�2, this simplifies:

hti ’ Lð�2 þ �1ÞðD�1 þ 2�22V
2Þ

2�2V
ffiffiffiffiffiffiffiffiffi
D�1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�1 þ 4�22V

2
q : (10)

Note that, because of intermittence, hti / L, whereas for
diffusion alone the mean detection time is tdiff ¼ L2=12D.
Intermittence is thus favorable (meaning that the gain, de-
fined as tdiff=hti is greater than 1), at least for L large enough.

Intermittence is favorable and the strategy can even
be optimized. The mean search time is minimized for
�
opt
1 ¼ �min

1 and �
opt
2 , satisfying the relation [see Bénichou

et al. (2005c) for details]

�31 þ 6
�21�

2
2

�
� 8

�52
�2

¼ 0; (11)

where � ¼ D=V2 is an extra characteristic time, depending
on the searcher’s characteristics. This minimum takes a
simple form in two different regimes.

(i) If �1 � �, the minimum of the search time is for
�1 ¼ �min

1 and

�
opt
2 ¼

�
3��21
4

�
1=3

: (12)

In this regime, denoted by ‘‘S’’ for ‘‘searching,’’ one
has �1 > �2: The searcher spends more time scanning
than moving.

(ii) If �1 � �, the minimum of the search time is for
�1 ¼ �min

1 and

�
opt
2 ¼

�
�2�31
8

�
1=5

: (13)

In this regime, denoted by ‘‘M’’ for ‘‘moving,’’ one has
�1 < �2, which means that the searcher spends more
time moving than scanning.

5. Comparison with experimental data

These results have been compared to experimental data
from O’Brien et al. (1990) and Kramer and McLaughlin
(2001), who provided the average duration of detection and
ballistic phases, characterizing the saltatory behavior of 18
different species, as various as planktivorous fish, ground
foraging birds, and lizards. The optimal strategy obtained
above is shown to account reasonably well for these data
[see Fig. 5 and Bénichou et al. (2005b); Bénichou et al.
(2005c); Bénichou et al. (2005d) for further details].

FIG. 5. Log-log plot of experimental data (O’Brien et al., 1990;

Kramer and McLaughlin, 2001; Bénichou et al., 2005b) of saltatory

search behaviors and their linear regression. Here fi ¼ 1=�i.
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These results show that the saltatory patterns observed are
a way to optimize the search, and that it is probably a reason
why this type of pattern is observed so often, as it could have

been favored by natural selection.

C. Two-dimensional intermittent search processes:

An alternative to Lévy strategies

1. Motivation

The model of intermittent search presented previously was

one dimensional, with ballistic phases infinitely correlated, in
the sense that the direction taken is always the same. Here we
present a model of intermittent search strategies in dimen-
sion 2 (Bénichou et al., 2006; Bénichou et al., 2007), which
encompasses a much broader field of applications, in particu-

lar, for animal or human searchers. It is shown that bidimen-
sional intermittent search strategies do optimize the search
time for nonrevisitable targets, i.e., targets that are destroyed
upon discovery (see Sec. II.A.2). The optimal way to share

the time between the phases of nonreactive displacement
and of reactive search is explicitly determined. Technically,
this approach relies on an approximate analytical solution
based on a decoupling hypothesis, which proves to reproduce
quantitatively numerical simulations over a wide range of

parameters.

2. Model

Following the previous model, we consider a two-state
searcher (see Fig. 6) of position r that performs slow reactive
phases (denoted 1), randomly interrupted by fast relocating
ballistic flights of constant velocity V and random direction

(phases 2). The duration of each phase i is assumed to be
exponentially distributed with mean �i. As fast motion usu-
ally strongly degrades perception abilities, we consider again
that the searcher is able to find a target only during reactive

phases 1. The detection phase involves complex biological
processes that we do not aim at modeling accurately here.
However, we put forward here two modes of detection. The
first one, referred to in the following as the ‘‘diffusive mode,’’

corresponds to a diffusive modeling (with diffusion coeffi-
cient D) of the search phase as in the previous model, in
agreement with observations for vision (Huey, 1968), tactile
sense, or olfaction (Bell, 1991). The detection is assumed to
be infinitely efficient in this mode: A target is found as soon
as the searcher-target distance is smaller than the reaction
radius a. On the contrary, in the second mode, denoted as the
‘‘static mode,’’ the reaction takes place with a finite rate k, but
the searcher is immobile during search phases. Note that this
description is commonly adopted in reaction-diffusion sys-
tems (Rice, 1985) or operational research (Frost and Stone,
2001). A more realistic description is obtained by combining
both modes and considering a diffusive searcher with diffu-
sion coefficientD and finite reaction rate k. In order to reduce
the number of parameters and to extract the main features of
each mode, we study them separately by taking successively
the limits k ! 1 and D ! 0 of this general case. More
precisely, in these two limiting cases, we address the follow-
ing questions: What is the mean time it takes the searcher
to find a target? Can this search time be minimized? And, if
so, for which values of the average durations �i of each
phase?

3. Basic equations

We now present the basic equations combining the two
search modes introduced above in the case of a pointlike
target centered in a spherical domain of radius b with
reflexive boundary. Note that this geometry mimics both
relevant situations of a single target and of infinitely many
regularly spaced nonrevisitable targets. As in the previous
model, the mean first-passage time to a target satisfies the
backward equations (Redner, 2001) (see Sec. IV.B.2 for
derivation):

Dr2
rt1þ 1

2��1

Z 2�

0
ðt2� t1Þd�V�kIaðrÞt1¼�1; (14)

V � rrt2 � 1

�2
ðt2 � t1Þ ¼ �1; (15)

phase 2

V

a

phase 1

k

Static mode. The slow reactive phase is static 
and detection takes place with finite rate k.

phase 2

V

phase 1

Da

Diffusive mode.The slow reactive phase is
diffusive and detection is infinitely effcient.

FIG. 6. Two models of intermittent search: The searcher alternates slow reactive phases (regime 1) of mean duration �1 and fast nonreactive
ballistic phases (regime 2) of mean duration �2.
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where t1 is the mean first-passage time starting from state 1 at
position r, and t2 is the mean first-passage time starting from
state 2 at position r with velocity V, of direction character-
ized by the angle �V . Here IaðrÞ ¼ 1 if jrj � a and IaðrÞ ¼ 0
if jrj> a. In the present form, these integro-differential
equations do not seem to allow for an exact resolution with
standard methods. We thus resort to an approximate decou-
pling scheme, which relies on the following idea. If the
searcher initially starts in phase 2, and if the target is close,
its initial direction matters. But as soon as the initial position
is far from the target, there are numerous reorientations
before finding the target, implying that the initial direction
does not matter. Consequently, if b � a and once the mean
search time has been averaged over the starting position, the
effect of the initial direction can be neglected. This allows us
to make an approximation and solve the system [for more
technical details, see Appendix B and Bénichou et al. (2006);
Bénichou et al. (2007)].

4. Results for the diffusive mode of detection

For the diffusive mode of detection (k ! 1), an analytical
approximation for the search time can be obtained (see
Appendix B). In the case of low target density (a � b),
which is most relevant for hidden-target search problems,
three regimes arise. In the first regime a � b � D=V, the
relocating phases are not efficient and intermittence is use-
less. In the second regime a � D=V � b, it can be shown
(see Appendix A.2.b) that the intermittence can significantly
speed up the search (typically by a factor of 2), but that it does
not change the order of magnitude of the search time. On the
contrary, in the last regime D=V � a � b, the optimal
strategy, obtained for

�
opt
1 � D

2V2

ln2ðb=aÞ
2 lnðb=aÞ � 1

;

�
opt
2 � a

V
½lnðb=aÞ � 1=2�1=2;

(16)

leads to a search time arbitrarily smaller than the noninter-
mittent search time when V ! 1. Note that this optimal
strategy corresponds to a scaling law

�
opt
1

�
opt
2

� D

a2
1

½2� 1= lnðb=aÞ�2 ; (17)

which does not depend on V.

5. Results for the static mode of detection

We now turn to the static mode (D ! 0) (see
Appendix B.1). In this case, intermittence is trivially neces-
sary to find the target, and the optimization of the search
time leads for b � a to

�1;min ¼
�
a

Vk

�
1=2

�
2 lnðb=aÞ � 1

8

�
1=4

; (18)

�2;min ¼ a

V
½lnðb=aÞ � 1=2�1=2; (19)

corresponding to the scaling law �2;min ¼ 2k�21;min, which still

does not depend on V.

6. Conclusion

This bidimensional two-state model of search processes for
nonrevisitable targets closely relies on the experimentally
observed intermittent strategies adopted by foraging animals.
Using a decoupling approximation numerically validated, it
can be analytically solved, allowing us to draw several con-
clusions. (i) The mean search time hti presents a global
minimum for finite values of the �i, which means that inter-
mittent strategies constitute optimal strategies, as opposed to
Lévy walks, which are optimal only for revisitable targets.
(ii) The optimal �

opt
1 values obtained for two modes of

detection are different and depend explicitly on D and k,
leading to different scaling laws that are susceptible to dis-
criminate between the two search modes. (iii) A striking and
nonintuitive feature is that both modes of search studied lead
to the same optimal value of �

opt
2 . As this optimal time does

not depend on the specific characteristics D and k of the
search mode, it seems to constitute a general property of
intermittent search strategies. The robustness of these con-
clusions will be discussed further in Sec. IV in the framework
of a more general model.

D. Should foraging animals really adopt Lévy strategies?

As seen before, intermittent strategies are an alternative to
Lévy walks (defined in Sec. II.A) for interpreting trajectories
of foraging animals. However, the Lévy walks are often
thought to be optimal and widespread in nature. Is this really
true?

1. The albatross story

Many foraging animals, including albatrosses, deer, and
bumblebees to name a few, have long been thought to adopt
Lévy strategies described in the pioneering work of
Viswanathan et al. (1999). These foraging behaviors were
repeatedly accounted for by stating in the more general
framework of search processes that Lévy walks are optimal
search strategies, as they constitute the best way to explore
space. Recently Edwards et al. (2007) reanalyzed these data,
completed by newly gathered data on foraging albatrosses,
and showed that, in fact, there was no experimental evidence
for the Lévy walk behavior.2 This study questions the inter-
pretation of several experimental works, but also raises a new
important and puzzling question: Why do animals not adopt
the Lévy walk strategy which has, however, been reported to
be an optimal search strategy? Here we clarify this apparently
paradoxical situation.

2. Do animals really perform Lévy walks?

As the optimality of Lévy strategies crucially requires
conditions on the targets (regenerated at the same place,

2Albatrosses’ behavior was followed by a humidity sensor on the

birds. Flights were taken as the ‘‘dry‘‘ phases, interspersed with

humid phases, when the birds touched the ocean. Very long

’’flights’’ eventually proved to be rest time, when the bird was in

its nest. Once these misinterpreted dry phases were removed, the

distribution of flights’ durations is no longer a power law.
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patched, or not easily captured) and conditions on the

searcher (no switch when a target is found, which is a very

simple form of memory), it cannot be taken as a general rule

even if realistic for certain species. On the contrary, we argue

that the general question of determining the best strategy

for finding a single hidden target belongs to the situation

of destructive search, where, in the framework of the

Viswanathan et al. (1999) model, the most efficient way to

find a randomly hidden target is simply a linear ballistic

motion and not a Lévy strategy (see Sec. II.A). As a conse-

quence, there is no paradox: The reason that Lévy walks are

not observed in the work of Edwards et al. (2007) is probably

because they do not constitute robust optimal search

strategies.
And what about other experimental observations? Among

experimental studies analyzing organisms’ trajectories as a

succession of segments interspersed with turns, an important

proportion reports times between turns distributed exponen-

tially [a list of examples, far from exhaustive: C. Elegans

worm (Pierce-Shimomura et al., 1999; Fujiwara et al.,

2002), fish (Hill et al., 2000), plankton in some of the

conditions studied by Bartumeus et al. (2003), amoebae

(Li et al., 2008), etc.]. However, apart from the controversial

albatross study (Edwards et al., 2007), there is a boom in

articles claiming that Lévy behavior is observed for some

animal species. Some of them can be dismissed as evidence

of Lévy behavior. On the one hand, as explained in detail in

Edwards et al. (2007), due to experimental limitations, most

data cover only a very limited range, which makes difficult a

reliable identification of power laws. On the other hand,
patterns and processes should not be confused, as emphasized
by Benhamou (2007). The same observed patterns can often
be explained by different models. It is not because a trajectory
is similar to Lévy walk trajectories that the underlying pro-
cess is necessarily a Lévy walk. For example, a composite
classical random walk can look very similar to a Lévy walk
for a short enough time (see Fig. 7). Nonetheless, not all
studies should be discarded, since limited studies neither
prove nor rule out Lévy strategies. [See Viswanathan et al.
(2008) for a review.] As underlined by Viswanathan et al.
(2008), other selection pressures could be predominant. For
example, when a target’s location is known, exploitation
could be optimized instead of search, and Lévy walks could
emerge from interactions between the environment and the
searcher [see Boyer et al. (2006), Santos et al. (2007), and
Jiang et al. (2009)].

E. Conclusion on animal foraging

Lévy walks are a fashionable model for interpreting tra-
jectories of foraging animals. However, on the one hand, there
is controversy about at least some of the experimental data
that were thought to support Lévy walks. On the other hand,
the conditions in which Lévy walks are optimal are very
restrictive. However, this does not rule out any contribution
of Lévy statistics in the context of search processes. For
example, as discussed by Lomholt et al. (2008) and in
Sec. V.C.2, Lévy statistics can be advantageously used in
the context of intermittent trajectories. Additionally, we argue
that some animals cannot detect their target when they are
moving ballistically, and, in fact, alternate these fast but blind
phases with detection phases. The mean search time with
intermittence can be smaller than with a detection phase
alone, and it can be minimized by tuning the mean durations
of each phase. Intermittent search strategies, because they
rely on the experimental observation that speed degrades
perception, and because they prove optimal and robust, are
good candidates for interpreting animal trajectories.

III. INTERMITTENT SEARCH STRATEGIES AT THE

MICROSCOPIC SCALE

It was shown in the previous section that intermittent
search strategies are observed at the macroscopic scale.
They are also observed at the microscopic scale. In the
following, we focus on two examples: the localization by a
protein of a specific DNA sequence and the active transport
of vesicles in cells.

A. Protein-DNA interactions

1. Biological context

Various functions of living cells—and therefore at larger
scales of living organisms—are regulated by coordinated
chemical reactions between specific molecules, which are
often present in only a few copy numbers. The importance
of the kinetics of such search processes between reaction
partners can be illustrated by the bacterial restriction and
modification system (Wilson and Murray, 1991), which in-
volves couples of methyltransferase and restriction enzymes

FIG. 7. Comparison between a Lévy walk and a composite ran-

dom walk: They are not easy to distinguish at short time scales.
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that recognize the same sequence on DNA [for example,

EcoRV recognizes the sequence GATATC (Taylor and

Halford, 1989)]. Methyltransferase enzymes methylate this

specific sequence on the bacterial DNA in order to protect it

from restriction enzymes, whose function is the opposite—to

cut the DNA at this specific sequence. This function is first

aimed at impairing any intruder viral DNA that enters the cell

and that is very likely to contain the target sequence. Indeed,

this sequence, typically 4–8 base pairs, is very short as

compared to the viral genome, which, depending on the virus,

can be made of 103–106 base pairs (typically 5	 104 for

bacteriophages). The infected bacterium then faces a vital

search problem: Restriction enzymes must find their target

sequence on the viral DNA reliably to inactivate the virus

before it exploits the bacteria machinery and kills it.
More generally, it is well established that some sequence-

specific proteins find their target site in a remarkably short

time. For the lac repressor, for example, Riggs et al. (1970)

measured association rates orders of magnitude larger than

those expected for reactions limited by the classical three-

dimensional diffusion [results confirmed by Hsieh and

Brenowitz (1997) at different salt concentrations, ruling out

electrostatic effects as the only explanation]. Halford (2009)

argued that, in fact, only a few enzymes react significantly

faster than the three-dimensional (3D) diffusion limit.

However, this study underlined that many enzymes react at

rates close to the diffusion limit, and that this observation is

still impressive. Indeed, classical experiments are performed

with a considerable excess of DNA, which is likely to contain

sequences similar to the target sequence which therefore

act as traps, slowing down the enzymes in their search. In a

series of seminal articles, Berg et al. (1981), Winter and Von

Hippel (1981), and Winter et al. (1981), proposed that 3D

diffusion (or ‘‘hopping’’ or ‘‘jumping’’) was not the only

motion available to the protein, even if no energy is consumed

(unlike some enzymes, which consume energy to scan the

DNA molecule sequentially). They suggested that, in some

cases, proteins could bind nonspecifically to DNA due to a

weak electrostatic interaction and diffuse along the chain

in a process named sliding [see Von Hippel (2007) and

Dahirel et al. (2009)] for more details on the weak electro-

static interaction). It was then argued that the combination of

sliding and 3D diffusion, i.e., facilitated diffusion, can make

the search for a sequence two orders of magnitude faster than

3D diffusion alone and henceforth sufficiently efficient [see

also Adam and Delbruck (1968)].
This search mechanism actually can be classified as inter-

mittent, in the general meaning defined in the Introduction.

Indeed, on the one hand, three-dimensional diffusion off the

DNA molecule is fast, but it does not allow for target detec-

tion. On the other hand, sliding is a phase of motion along

DNA, which therefore enables target detection, but which is

much slower due to a higher effective friction.
The pioneering studies on facilitated diffusion (Riggs

et al., 1970; Berg et al., 1981; Winter et al., 1981; Winter

and Von Hippel, 1981) are based on ensemble measurements,

which were for a long time the only way to experimentally

access protein-DNA interactions. Recently developed tech-

niques make possible the observation of this interaction at the

level of a single molecule, with a resolution in space and time

still improving [for a review on the experimental results, see

Gorman and Greene (2008)]. It is now confirmed directly

that many proteins searching for a specific sequence on DNA

combine hopping or jumping and sliding (see Fig. 8). Sliding

phases have been clearly identified [both in vitro (Kabata

et al., 1993) and in vivo (Bakk and Metzler, 2004; Wang

et al., 2006; Elf et al., 2007)], as well as hopping or jumping

phases (Gowers et al., 2005; Bonnet et al., 2008; Komazin-

Meredith et al., 2008; van den Broek et al., 2008).
With these new single-molecule experiments, theoretical

models have bloomed too. First, we present here a stochastic

approach to a simplified version of the problem, which shows

that it is the intermittent nature of the trajectories that makes

possible such high reaction rates. This minimal model per-

mits one to calculate explicitly the mean search time for such

intermittent reaction paths and shows that reactivity can even

be optimized by properly tuning simple dynamic parameters

of intermittent trajectories. Next, we discuss the different

directions of extension of recent theoretical models.

2. Minimal model of intermittent reaction paths

We present here a simple model of intermittent reaction

paths with minimal ingredients (Coppey et al., 2004). We

first define the model, then explain the main steps of the

calculation, and eventually give the results.

a. Definition of the model

We consider a generic protein searching for its target site

on a DNAmolecule (see Fig. 9). The pathway followed by the

protein, considered as a pointlike particle, is a succession of

1D diffusions along the DNA strand (sliding phases denoted

phases 1) and 3D excursions in the surrounding solution

FIG. 8. Artistic view of a DNA-protein interaction, which com-

bines one-dimensional sliding phases and three-dimensional relo-

cation phases. From Virginie Denis, Pour la Science 352, February

2007.
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(denoted phases 2, during which the target is not accessible).
In this minimal model we assume that the target site is a
perfect reactive point of the DNAmolecule, which means that
reaction occurs as soon as the target is reached by the protein.
Note that in this case the protein can find the target site only
by diffusing along DNA, and therefore follows the scheme
of intermittent search presented in the Introduction. The key
quantity that we evaluate in this section is the search time, or
reaction time, defined as the mean first-passage time (Redner,
2001; Condamin et al., 2005a; Condamin et al., 2005b;
Condamin et al., 2007; Condamin et al., 2007; Condamin
et al., 2007; Bénichou and Voituriez, 2008; Condamin et al.,
2008) of the protein at the target, here denoted by hTi. This
quantity gives direct access in a mean-field approximation
to the first-order reaction constant K ¼ 1=hTi (Berg and
Blomberg, 1976).

We now introduce further ingredients of the model. The
time spent by the protein on DNA during each sliding phase
is assumed to follow an exponential law with dissociation
frequency �1. The probability density that the protein leaves
the DNA at a random time t is then given by �1 expð��1tÞdt,
and the mean duration of a sliding event reads �1 ¼ 1=�1.

The one-dimensional motion on DNA during sliding
phases 1 is modeled by a continuous Brownian motion with
diffusion coefficient D. We assume that the ends of the DNA
chain act on the protein as reflecting boundaries [see, for
instance, Jeltsch and Pingoud (1998)], but in practice
this assumption is unimportant for long DNA molecules.
Moreover, the case of circular DNA, such as plasmids, is
readily obtained by taking the particular case L ¼ R. We next
assume that the 3D excursions of phase 2 are uncorrelated
in space. This means that, after dissociation from DNA, the
protein will rebind the DNA at a random position indepen-
dently of its starting position. This is justified when the DNA
is in a random coil conformation, as in this case even short 3D
excursions can lead to a long effective translocation of the
linear position of the protein on DNA. We further assume that
the probability density P3DðtÞ of the duration t of such 3D
excursions is exponentially distributed, and write P3DðtÞ ¼
�2 expð��2tÞ. This assumption is justified, at least for the tail
of the distribution, as long as the 3D excursions of the protein
are confined in a closed volume, for instance, an experimental
volume in vitro or in vivo the cell or a cell compartment. The
mean time �2 ¼ 1=�2 spent in the surrounding solution in
phase 2 can then be shown to be proportional to the confining
volume ( Kac, 1959; Blanco and Fournier, 2003; Bénichou
et al., 2005a; Condamin et al., 2005a; ; Condamin et al.,
2007; Bénichou et al., 2008).

We next introduce P1DðtjxÞ, which is the conditional
probability density that the protein, being on the DNA at

position x and at time t ¼ 0, will dissociate at time t before
any encounter with the target site. We rewrite this quantity as

P1DðtjxÞ ¼ �1 expð��1tÞQðtjxÞ; (20)

where QðtjxÞ is the conditional probability density that the
protein, starting from the position x, does not meet the target
site during a single sliding event. The probability density
jðtjxÞ of the first passage to the target site position at time t
without dissociation is then related to QðtjxÞ according to
QðtjxÞ ¼ 1� R

t
0 jðt0jxÞdt0.

Last, we introduce �P1DðtjxÞ, which is the conditional
probability density that the protein, being on DNA at position
x at time t ¼ 0, will find the target site for the first time at
time t within a single sliding phase 1, without leaving the
DNA:

�P1DðtjxÞ ¼ expð��1tÞjðtjxÞ: (21)

Given these quantities, we show below that the first-
passage density of the protein to the target site, and conse-
quently the reaction constant, can be calculated explicitly.

b. First-passage density

By calculating the first-passage density, we obtain the
mean reaction time, as well as all associated moments. We
assume that the protein starts at t ¼ 0 in state 1 (bound to the
DNA) at position x. We consider a generic event whose
number of 3D excursions is n� 1, denote the duration of
successive sliding phases t1; . . . ; tn, and denote the duration
of successive 3D excursions �1; . . . ; �n�1. The probability
density of such an event, for which the protein finds the target
site for the first time at time t ¼ P

n
i¼1 ti þ

P
n�1
i¼1 �i is

PnðtjxÞ ¼ �P1DðtnÞP3Dð�n�1ÞP1DðtnÞ � � �P1Dðt2Þ
	 P3Dð�1ÞP1Dðt1jxÞ; (22)

where P1DðtÞ and �P1DðtÞ are averaged over the initial
position of the protein: P1DðtÞ ¼ hP1DðtjxÞix and �P1DðtÞ ¼
h �P1DðtjxÞix. We denote by L the DNA length on the ‘‘left’’
side of the target site and by R the length on the ‘‘right’’ side
of the target site. The average of a function f over the initial
position x is given by hfðtjxÞix 
 1

LþR

R
R
�L fðtjxÞdx.

To obtain the density of first passage to the target site
FðtjxÞ, we sum over all possible numbers of excursions,
and we integrate over all intervals of time, ensuring that
t ¼ P

n
i ti þ

P
n�1
i �i. The average over the initial position

of the protein FðtÞ ¼ hFðtjxÞix, can be expressed as follows:

FðtÞ ¼ X1
n¼1

Z 1

0
dt1 � � � dtnd�1 � � � d�n�1

	 �

0
@Xn

i¼1

ti þ
Xn�1

i¼1

�i � t

1
A	

2
4Yn�1

i¼1

P3Dð�iÞ
3
5

	
2
4Yn�1

i¼1

P1DðtiÞ
3
5 �P1DðtnÞ: (23)

Taking the Laplace transform of FðtÞ, F̂ðsÞ ¼ R1
0 dte�stFðtÞ,

we obtain

FIG. 9. A model of intermittent transport for DNA-protein inter-

actions.
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F̂ðsÞ ¼ hĵð�1 þ sjxÞix
8<
:1� 1� hĵð�1 þ sjxÞix

ð1þ s=�1Þð1þ s=�2Þ

9=
;

�1

;

(24)

where ĵðsjxÞ is the Laplace transform of jðtjxÞ. This expres-
sion completely solves the problem for any 1D motion. We
see next that the main quantities of physical interest can be
extracted from this formula.

c. Optimal search strategy

The relevant quantity to describe the protein-DNA asso-
ciation reaction is the mean time hTi necessary for the protein
to find the target site (see above). This mean time is obtained
from the derivative of the first-passage density by the follow-
ing relation:

hTi ¼ �
�
@F̂ðsÞ
@s

�
s¼0

; (25)

which combined with Eq. (24) gives

hTi ¼ 1� hĵð�1jxÞix
hĵð�1jxÞix

�
1

�1

þ 1

�2

�
: (26)

This expression is general and holds for any 1D motion in the
slow phase 1. Now, we calculate this quantity in the case
where phase 1 is a free 1D diffusion. The one-dimensional
Laplace transform of the first-passage probability density is
well known [see Redner (2001)] and leads, after averaging
over the starting position x to

hTi¼
�
1

�1

þ 1

�2

�8<
:

ffiffiffiffi
�1

D

q
ðLþRÞ

tanhð
ffiffiffiffi
�1

D

q
LÞþ tanhð

ffiffiffiffi
�1

D

q
RÞ

�1

9=
;; (27)

where D is the diffusion coefficient. This defines as a by-
product the association constant of the reaction as K ¼
1=hTi. Two initial comments are in order. (i) First, as soon
as the length of the DNA strand is large enough (more

precisely, as soon as
ffiffiffiffiffiffiffiffiffiffiffiffi
�1=D

p
L � 1 or

ffiffiffiffiffiffiffiffiffiffiffiffi
�1=D

p
R � 1), hTi

grows linearly with the length of the DNA. This mirrors the
efficiency of intermittent reaction paths, as compared to the
quadratic growth obtained in the case of pure sliding. In
particular, the boundary effects are negligible for this quantity
as soon as the overall length is large enough. (ii) Second, this
expression is valid for a large class of 3D motions. More
precisely, it holds as soon as the mean first return time �2
corresponding to the 3D motion is finite and independent of
the departure and arrival points.

We now come to an important question recently addressed
by Coppey et al. (2004) and Slutsky and Mirny (2004), which
concerns the optimization of such intermittent reaction paths.
We assume here that the mean search time is a limiting
quantity that might have been minimized in the course of
evolution. In this context, we consider �1 ¼ 1=�1, which
characterizes the protein-DNA affinity, as the adjustable
parameter. Indeed, this quantity depends strongly both on
the structure of the protein and on physiological conditions
such as the ionic strength, and therefore could widely vary
from one protein to another. In contrast, �2 ¼ 1=�2 depends
mostly on the properties of the environment, such as the DNA

conformation, which is itself subject to very stringent con-
straints and therefore much less likely to be varied. Another
adjustable parameter is the 1D diffusion coefficient D.
Optimization of the search time with respect to this parameter
is trivial: It is found that D should be as large as possible
(assuming that D and �1 are independent), but obviously one
should keep in mind thatD is controlled by the hydrodynamic
radius of the protein, which cannot be too small. For these
reasons we focus here on �1.

It can be seen qualitatively that hTi is large for both �1 very
large (in the limit of infinite �1, the protein is never on the
DNA) and �1 very small (the pure sliding limit which gives a
quadratic growth with the DNA length), and could therefore
be minimized for an intermediate value of �1. The sign of the
derivative of the mean search time at �1 ¼ 0 shows that it can
indeed be minimized provided that

�2 > 15D
L2 þ R2 � LR

L4 þ R4 þ 4LRðL2 þ R2Þ � 9R2L2
: (28)

This condition means that bulk excursions, to be favorable,
should be shorter than a fraction of the typical time needed to
scan the full DNA molecule by 1D diffusion. In particular, it
requires that the DNA length is long enough. If this condition
is satisfied, the search time can indeed be minimized (see
Fig. 10). A careful analysis of the implicit equation satisfied
by �1 at the optimum leads to the following expansion for
large ‘ ¼ Lþ R:

FIG. 10. Mean first-passage time of a DNA-binding protein to its

target site, renormalized by the mean first-passage time by diffusion

alone (Tdiff), as a function of �1=�2. Tdiff=�2 ¼ 1 (dash-dotted line),

Tdiff=�2 ¼ 10 (dashed line), Tdiff=�2 ¼ 100 (dotted line), and

Tdiff=�2 ¼ 1000 (solid line). For a small DNA length ‘ (and there-

fore small Tdiff) (dash-dotted line), the reaction constant depends

monotonically on �1 and intermittent reaction paths are inefficient.

For larger values of ‘ (other curves), the reaction rate can be

optimized as a function of �1. Here we averaged over the initial

position of the target.
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�1 ¼ �2 � 4

ffiffiffiffiffiffiffiffiffi
D�2

p
‘

� 8D

‘2
� 40D3=2ffiffiffiffiffiffi

�2

p
‘3

þO

�
1

‘4

�
: (29)

Equations (28) and (29) refine the result of Slutsky and Mirny
(2004), which predicts that the optimal strategy is realized
when �1 ¼ �2. This result actually holds in the large-‘ limit,

or more precisely for
ffiffiffiffiffiffiffiffiffiffiffiffi
�1=D

p
‘ � 1. For intermediate values

of ‘, boundary effects become important and the minimum
can be significantly different.

The hTi value at the minimum is particularly interesting.
We compare it to the case of pure sliding where hTsi ¼
‘2=3D:

hTi
hTsi ¼

6

‘

ffiffiffiffiffiffi
D

�1

s
: (30)

The efficiency of the 3D mediated strategy is therefore much
more important when the DNA chain is long. For example,
using standard values for �1 (a few 10�2 s) and D (typically
10�2 �m2=s) and for a DNA substrate of length 106 base
pairs (bp), the mean reaction time is three orders of magni-
tude smaller than for a pure sliding strategy. Beyond the
importance of such results for understanding the kinetics of
gene transcription, this first minimal model shows that inter-
mittent reactive paths are indeed very efficient, and that they
can even allow optimization of the reaction kinetics.

3. Toward a more realistic modeling

The model introduced above provides a simple way to
discuss the minimization of the search time. Further ap-
proaches have been developed to model target search by
proteins. We present below the main models used in the
literature and discuss their relevance to real target search
problems by proteins in cellular conditions.

a. Main approaches

Generally speaking, theoretical models of facilitated dif-
fusion rely on the basic assumption that the protein alternates
phases of 1D diffusion along the DNA and phases of free
diffusion when the protein is desorbed from the DNA. The
existence of two such distinct states, whose dynamics is
usually characterized by association-dissociation rates, is
supported by direct experimental observations as discussed
above. Additionally, molecular dynamics simulations taking
into account the electrostatic interaction between the nega-
tively charged DNA and the locally positively charged protein
[see, for example, Dahirel et al. (2009) and Florescu and
Joyeux (2009)] have shown that these two states naturally
arise on the basis of the electrostatic interaction only, sug-
gesting the robustness of the facilitated diffusion mechanism.
Such studies at the molecular scale could serve as a tool to
calculate the association-dissociation rates used in the models
of facilitated diffusion discussed in this section, which all
take into account effectively only the molecular interactions.

i. Stochastic modeling. The minimal model presented in
Sec. III.A.2 relies on the statistical analysis of the trajectory
of a single protein and can henceforth be qualified as a
stochastic model. Similar stochastic methods have been
used and complemented in Lomholt et al. (2005), Eliazar
et al. (2007), Lomholt et al. (2007), Eliazar et al. (2008),

Bénichou et al. (2009), Lomholt et al. (2009), and Meroz
et al. (2009)), and have the advantage, when solvable, of
giving access to the full distribution of the search time,
yielding refined information on the search kinetics.
Moreover, they can be adapted in some cases to take into
account anomalous transport in both the 1D and 3D phases, as
discussed below.

ii. Kinetic approach. The main alternative to the stochas-
tic approach is given by what can be called kinetic models,
which assume a steady-state homogeneous concentration
of proteins, in contrast with the single-protein description
of stochastic models. Such models therefore rely on a mean-
field approximation, which proves to be efficient evaluating
the mean search time thanks to scaling arguments. A first
example is given by Halford and Marko (2004), where scaling
arguments are used to roughly estimate the time for the
protein to find the DNA coil, and then the time to find the
target inside the coil, which eventually yields an optimal
sliding length. More generally, the key ingredient of kinetic
models, developed mainly by Hu and Shklovskii (2006),
Hu et al. (2006), and Hu et al. (2008), is that the system
is assumed to be in a stationary state. Under this hypothesis,
the flux of particles delivered by the 3D diffusion into the
sphere of influence of the target, whose size is defined as the
‘‘antenna length’’ 	a, must be equal to the flux of particles
delivered by 1D diffusion into the target. Such a balance
equation generically reads

J �D3cfree	a �D1cads=�a; (31)

where the concentrations of free (cfree) and adsorbed (cads)
proteins are assumed to be at equilibrium, i.e., satisfying
cfree=cads ¼ K with K the equilibrium constant associated
with the association-dissociation rates. It is important that
the antenna length, defined as the typical scale below which
the dominant transport is sliding instead of 3D diffusion, has
size 	a when measured in 3D space, but takes another value
�a when measured along the DNA. Making assumptions on
the DNA conformation (for instance, random coil or fractal
globule), different scaling laws between �a and 	a can be
proposed. Equation (31) then permits one to determine 	a and
henceforth to give the scaling of the mean search time 1=J.
The advantage of this method is that it permits, through
the relation between �a and 	a, various models of DNA
conformation to be taken into account, which is much harder
to achieve in the stochastic approach. Such models, whose
results are compatible with the stochastic approach, provide
in addition a useful picture of facilitated diffusion. Indeed, in
these models the effect of sliding can be seen as effectively
making the target of the size of the antenna length, which is
much larger than the real target size, and therefore speeding
up the search.

Finally, these two approaches are quite complementary and
both require as an input the modeling of 1D and 3D phases.
The minimal model of Sec. III.A.2 describes the 1D phase as
regular diffusion, while 3D phases are assumed to result in
completely random relocations over the DNA. Beyond this
minimal model, the specific description of these two phases
has motivated numerous works and many refinements have
been discussed in the literature. We review in the next
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sections the main models that have been proposed to provide
a more realistic description of 1D and 3D phases.

b. Descriptions of the 1D phase (sliding and recognition)

i. Anomalous diffusion in the sliding phase. As stated
above, the phase of one-dimensional nonspecific interaction
of a protein with DNA, sliding, is generally described as
Brownian diffusion as in the minimal model of Sec. III.A.2.
If this hypothesis seems to be confirmed by in vitro experi-
ments (Kabata et al., 1993; Bonnet et al., 2008), it cannot
always be the case, in particular, in vivo. A first limitation of
this simple description appears in the case of many proteins
binding to DNA, as is the case in vivo, which are likely to
create traffic jams (Sokolov et al., 2005; Li et al., 2009).
Such crowding effects in one dimension are known to poten-
tially lead to subdiffusive behavior. Additionally, even in
the case of a single protein, it should be kept in mind that
the DNA sequence is not homogeneous, and the disorder
in the sequence can also impact sliding. The heterogeneity
in the sequence is often modeled by a disordered energy
landscape, whose distribution is Gaussian (Barbi et al.,
2004; Hu and Shklovskii, 2006; Wunderlich and Mirny,
2008). Barbi et al. (2004) showed that in this case sliding
is not purely diffusive: At short times, the protein will be
trapped in local minima, leading to subdiffusive behavior.
The diffusive behavior is recovered only at larger times, or
equivalently for sliding lengths longer than 100 bp.

Anomalous diffusion in the sliding phase has been dis-
cussed theoretically by Eliazar et al. (2007) [see also Eliazar
et al. (2008) and Meroz et al. (2009)], who extended the
minimal model of facilitated diffusion (Coppey et al., 2004)
summarized in Sec. III.A.2. In particular, the Laplace-
transformed search time distribution is obtained for several
non-Brownian sliding motions such as ballistic, self-similar,
or halted motions (in particular, when halt durations are
widely distributed, leading to subdiffusive behavior), there-
fore covering standard models of anomalous diffusion. It is
important that Eliazar et al. (2007) found that, whatever the

model of sliding, there are always regimes in which inter-
mittence is favorable, similarly to the case of Brownian
sliding. They further showed that in the case of 3D excursions
with finite mean durations, the mean search time with an
arbitrary sliding mechanism remains of order proportional
to ‘. This indicates that for long enough DNA, intermittence
is favorable for a wide range of sliding motions, either normal
or anomalous, which supports the robustness of the facilitated
diffusion mechanism.

ii. Target recognition. A simplification that is often used
in the literature consists in assuming that the target is per-
fectly reactive, i.e., that reaction occurs with probability 1 at
the very first passage of the protein to the target sequence.
Slutsky and Mirny (2004), however, stressed that if there is an
activation barrier at the target site, the protein has a chance to
pass the target without entering the recognition process, and
therefore to miss it. The roughness 
 of the energy landscape
of the sequence can then play a crucial role. If 
 is of order
1kBT, Slutsky and Mirny (2004) found that the sliding diffu-
sion is fast, but that the protein has a high chance to miss the
target. On the contrary, if 
 is of order 5kBT, the recognition
probability is high, but the sliding diffusion coefficient is very
low, leading to a long search time. Such a result seems to set
conflicting constraints on the search, since an efficient target
search process requires both speed and reliability in target
recognition. To overcome this paradox, Slutsky and Mirny
(2004) proposed on the basis of direct structural observations
(Kalodimos et al., 2004) that the protein can perform con-
formational changes in the sliding phase, and switches be-
tween a fast search state (with low 
) and a slow recognition
state (with high 
) (see Fig. 11). They showed that if the
two energy landscapes are strongly correlated, it is possible
to reconcile high speed and efficient recognition. Similar
models of two-state proteins in the sliding phase have been
studied more quantitatively in the frameworks of both the
kinetic [see Hu et al. (2008)] and the stochastic approaches
[see Bénichou et al. (2009)], confirming that such a mecha-
nism indeed permits a fast search with reliable recognition.

c. Descriptions of the 3D phase (jumping or hopping)

We now review the different descriptions of the 3D phase
(see Fig. 12). Most of the facilitated diffusion models im-
plicitly require the knowledge of the probability �ðxjx0Þ that
a protein which desorbs the DNA at position x0 will even-
tually rebind for the first time to the DNA at position x, where
the coordinate x measures the distance along the chain. This
quantity depends both on the dynamics of the protein and on
the conformation of the DNA, and in practice can be deter-
mined explicitly only in the case of an ideal infinite cylindri-
cal DNA (see below), which makes assumptions necessary
in realistic situations. Depending on the relocation length
jx� x0j, 3D excursions have been given different names in
the literature, mainly either hops (referring to ‘‘small’’ jx�
x0j) and jumps (referring to ‘‘large’’ jx� x0j). Since the
definitions of jumps and hops may vary according to authors,
the limit between both being somewhat arbitrary, we give
below the one that will be used in this review.

i. Jumps. We define as jumps the 3D excursions whose
starting and ending points on the DNA sequence are uncorre-
lated, i.e., such that the relocation probability �ðxjx0Þ is

FIG. 11. Sliding is often represented by diffusion with perfect

reactivity on the target. The two main directions shown for a more

realistic description of the 1D phase: On the one hand, the sliding is

not necessarily diffusive, and on the other hand, the 1D phase could

be, in fact, a combination of two phases, one fast, but with low

recognition, and another slow (or immobile), but with high recog-

nition of the target.
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independent of x. This definition, of course, depends on the

DNA conformation and makes sense only for dense enough

conformations such as a random coil (for instance, for free

DNA in solution) or even denser packings that can be ex-

pected in vivo [such as fractal globule structures (Grosberg

et al., 1988)]. In such structures, sequences that are far apart

along the DNA chain can be actually very close in the 3D

space. Hence, 3D excursions whose relocation length is larger

than the typical distance between DNA segments are likely to

end at any remote location on the DNA sequence, and should

therefore be considered as jumps according to our definition.

The lower bound of the relocation length of jumps therefore

strongly depends on the DNA conformation and is in practice

hard to evaluate. In the case of interest of a confined DNA (as

in cellular conditions), the typical distance between DNA

segments can be estimated by the DNA density-density cor-

relation length 	c. This suggests an alternative and equivalent

definition of jumps as 3D excursions whose relocation length

is larger than 	c. Awidespread assumption used, for example,

in the minimal model of Sec. III.A.2 [see also Hu et al.

(2006) at scales larger then the antenna size or Coppey et al.

(2004), Eliazar et al. (2007), and Bénichou et al. (2009)]

consists in taking all 3D excursions as jumps, i.e., as random

uniform relocations over the DNA. Even if not exact, this

assumption has been checked numerically on the example of

a quenched self-avoiding DNA and has proved to be very

satisfactory (Sheinman and Kafri, 2009) at high enough DNA

concentration. Interestingly, this definition of jumps high-

lights the importance of the effect of the local DNA concen-

tration on the search efficiency, as observed in van den Broek

et al. (2008); Lomholt et al. (2009): the more densely packed

the DNA, the smaller the correlation length 	c, and therefore

the higher the probability of jumps enabling the protein to

explore previously unscanned areas, and the less the time

spent in 3D phases.
The assumption that all excursions of relocation length

larger than the typical distance between DNA segments lead

to a completely uniform relocation over the DNA is, however,

not exact. Indeed, large-scale correlations in the 3D confor-

mation of the DNA chain may exist, as in the model case of a

free random coil conformation. In particular, in eukaryotes,

where DNA is packed in the nucleus, recent studies such as

that of Lieberman-Aiden et al. (2009) support a hierarchical

structure of DNA that could induce long-range correlations in

the conformation and therefore a nonuniform relocation

probability. The impact of DNA conformation on the reloca-

tion probability has been tested on the example of an an-

nealed wormlike chain polymer by Dı́az de la Rosa et al.

(2010) who found that at short times, three-dimensional

excursions of approximately the DNA persistence length

are actually less abundant than both shorter and slightly larger

relocations: by definition, closer sequences along the DNA

are closer in 3D space, but sequences farther than the persis-

tence length can take advantage of loops and actually be even

closer in 3D space. More generally, the loop statistics impacts

on the relocation probability and can lead to a nonuniform

relocation probability �ðxjx0Þ. Lomholt et al. (2005) argued

that since polymers form loops whose linear size x is distrib-

uted according to pðxÞ � jxj�1�� (for instance, � ¼ 0:5 for

Gaussian chains; � ’ 1:2 for self-avoiding walks), reloca-

tions distributed according to the same law are favored and

should also be taken into account. In an annealed version of

such a model, they showed that depending on � the optimal

strategy can vary widely. It should be added that loops can

enable another relocation mechanism for proteins with mul-

tiple binding sites called intersegmental transfer [see Hu and

Shklovskii (2007) and Sheinman and Kafri (2009)], which

can be shown for modeling purposes to be widely equivalent

to 3D excursions. Finally, the approximation of uniform

random relocations has proved to be useful and can be

validated numerically for simple DNA conformations

(Sheinman and Kafri, 2009), but a better knowledge of the

in vivo conformation of DNA would be necessary to assess

more precisely the relocation probability.
ii. Hops. Echoing the definition of jumps, we define hops

as 3D excursions whose starting and ending points on the

DNA sequence are correlated, or equivalently as 3D excur-

sions whose relocation length is smaller than the typical

distance between DNA segments, which is given by the

correlation length 	c for confined DNA. Because of their

local character, hops are often effectively taken into account

in the sliding mechanism [see, for example, Hu et al. (2006)].

Although this assumption is useful in practice, it also raises

additional questions. (i) First, hops do not continuously ex-

plore the DNA, and a protein performing hops have higher

chances to miss the target (note that hops permit as a counter-

part the bypassing of obstacles on the DNA), and this non-

perfect reactivity has to be taken into account. (ii) Second,

if hops are included in an effective sliding mechanism,

then the effective diffusion coefficient has to be determined,

as well as the effective transition rate from this effective

sliding state to the jumping state. This last point amounts in

practice in calculating the relocation probability �ðxjx0Þ of
hops, which gives as a by-product the probability that after

desorption from DNA the protein performs a jump rather

than a hop.
This problem, which has been studied numerically by

Wunderlich and Mirny (2008), can actually be studied

Hop

Jump

Loop effect

FIG. 12. Description of 3D excursions. Jumps are 3D excursions

whose starting and ending points on the DNA sequence are un-

correlated. In practice, for confined DNA conformations as in a

cellular medium, jumps have a span (measured along the DNA

contour) larger than the density-density correlation length 	c of

DNA. Conversely, hops are 3D excursions whose starting and

ending points on the DNA sequence are correlated, or equivalently

3D excursions whose relocation length is smaller than the correla-

tion length 	c.
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analytically (Loverdo et al., 2009), since at the scale of hops,
which are smaller than the DNA persistence length 	p, the

DNA can be simply modeled as a cylinder of effective radius
a ¼ RDNA þ Rprotein (see Fig. 13, left). Denoting by D the 3D

diffusion coefficient of the protein (assumed pointlike), the
density probability �ðxjr0Þ of being adsorbed on the DNA at
the longitudinal abscissa x, starting from the point r0, then
satisfies [for further details on derivation, see Berg and
Blomberg (1976), Levitz et al. (2008), Loverdo et al.
(2009), Chechkin et al. (2009), and Bénichou et al. (2010,
2011) for similar analyses]:

�r0�ðxjr0Þ ¼ 0: (32)

Assuming a radiative boundary condition on the cylinder
surface to account for the adsorption rate on DNA,

@r0�ðxjr0Þðr0 ¼ aÞ ¼ ��ðxjr0Þðr0 ¼ aÞ; (33)

one can show that

�ðxjr0Þ ¼ 1

�

Z 1

0
cosðkxÞ K0ðkr0Þ

K0ðkaÞ þK1ðkaÞk=�dk; (34)

where Ki are Bessel functions. This relocation distribution, in
good agreement with experimental data from Bonnet et al.
(2008) obtained on an extended DNA molecule, enables one
to address the questions of point (ii) above. First, Eq. (34)
gives the analytical distribution of hops, since for x < 	c the
DNA can be well approximated by a cylinder. In turn, as
shown by Loverdo et al. (2009), this gives access to the
effective diffusion coefficient of a combined motion of slid-
ing and hops. Second, according to our definition, all reloca-
tions with x > 	c will be jumps. Thus, the probability that a
3D relocation is a jump rather than a hop is given by the
complementary cumulative distribution

Cðx¼	cÞ¼
Z
jxj>	c

�ðxjr0Þdx� lnðr0=aÞþ1=�a

lnð	c=aÞ : (35)

Returning to the search problem, in regimes where jumps
are favorable, decreasing the correlation length speeds up the
search process, as found by van den Broek et al. (2008).

iii. Crowding effects. In both prokaryotes and eukaryotes,
the cellular medium is very crowded, and 3D excursions of

proteins are likely to be hindered. The normal or anomalous

nature of transport in cellular medium is still debated. For
instance, Dix and Verkman (2008) supported the idea that 3D

motion is mostly normal diffusion, whereas Malchus and

Weiss (2010) suggested that there is more and more evidence
for subdiffusion. Experimentally, it is found that some tracers

exhibit transient behavior (subdiffusive at small time scales,
diffusive at larger time scales): Measures, however, depend

on the size and nature of the tracer, on the time and length

scales covered, and on other experimental conditions, which
may explain the lack of consensus on the problem. The

influence of subdiffusion on the target search will depend

on the microscopic mechanism at play. There are three
main mechanisms leading to subdiffusion, as outlined in

Appendix A: random walk on a fractal medium, random
walk with long waiting times (CTRW) [continuous-time

random walks], or random walk with long-range correlations

such as fractional Brownian motion (FBM). Which of these
possibilities best describes transport in crowded environ-

ments such as the cellular medium is, however, still unclear

[see He et al. (2008), Bancaud et al. (2009), Szymanski and
Weiss (2009), or Tejedor et al. (2010) for various opinions on

the subject].
Lomholt et al. (2007) explored the effect of a crowded

environment with subdiffusion hr2ðtÞi / t� (0<�< 1)
caused by waiting times distributed as pðtÞ � ��=t1þ�.

They argued that because of these waiting times, the proba-
bility that the protein has not yet left the DNA at time t and
the probability that an unbound protein has not yet bound to

DNA after a time t both scale as 1=t1þ�. Their results have
two main practical implications. On the one hand, in an

experiment, since proteins can remain stuck for very long
times, ensemble averages do not lead to the same results as

time averages as was also highlighted by He et al. (2008). On

the other hand, since proteins would slide for a longer time
and since it would take them a very long time to return to

the DNA, the genes’ coding for transcription factors should

be close to their target sequences, as also outlined by
Wunderlich and Mirny (2008). Analytical determination of

the relocation distribution above can be extended to a fractal
medium (Loverdo et al., 2009). In this case, using the

O’Shaughnessy and Procaccia (1985) formalism, the

large-x behavior of the relocation distribution is obtained as

�ðxjr0Þ � r
dw�d?

f

0 =x1þdw�d?
f , where dkf is the dimension of the

projection of the fractal on the axis parallel to the cylinder

(Loverdo et al., 2009). Hence, the relocation distribution
always decays faster than in the case of normal diffusion

�1=ðzln2ðz=aÞÞ. As a consequence, the proportion of jumps

in the case of random conformation of DNA in the fractal

type crowding scales as Cð	Þ � 	�dwþd?
f : it is much smaller

than for regular diffusion, which shows that fractal crowding

favors hops and changes the overall intermittent search.

d. Beyond the mean: Variability of the search time

Minimizing the mean search time is the optimization
procedure most often used [see, for example, Coppey et al.

(2004)]. However, the entire distribution of the search time is

needed to assess the search kinetics on all time scales. In the
case of simple exponential distributions of the search time,

FIG. 13. Facilitated diffusion of a protein on DNA. Left:

Schematic definition of sliding, hopping, and jumping. Hops are

3D excursions whose starting and ending points on the DNA

sequence are correlated, or equivalently 3D excursions whose

relocation length is smaller than the typical distance between

DNA segments. In the case of confined DNA, this distance is

estimated by the DNA density-density correlation length 	c.

Right: Model parameters.
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the mean is sufficient to describe the full dynamics. Several

models discussed below have shown that the search time

distribution is not always a single exponential. Departure

from an exponential distribution can have important conse-

quences, such as large fluctuations of the search time, which

could be an extra source of variability in gene expression.
i. Effect of trapping sequences. A first possible source of

fluctuations in the search time could come from the existence

of trapping sequences along the DNA. Since a target sequence

is typically 10 bp long, similar sequences are statistically

unavoidable and can be expected to be local minima in the

protein-DNA interaction energy landscape. Bénichou et al.

(2009) proposed a model in which the protein can be stuck on

such sequences that are similar to the target. The correspond-

ing trapping times naturally introduce new time scales in the

problem, which potentially could be very long. In the frame-

work of this model, it is shown that the search time distribu-

tion is best described by two exponentials. In particular, the

mean search time is controlled by long trapping events even

when they are very unlikely, and it can be orders of magnitude

larger than the median search time, which is controlled by the

trajectories that do not fall into the traps. The main outcome

of such a model is that it reconciles the possibility of having

long-lived stable complexes (i.e., deep traps), and very fast

typical search times, which were cast so far as paradoxical

requirements.
ii. Effect of n searchers. The influence of the number

of searchers has been discussed by several groups (Sokolov

et al., 2005; Eliazar et al., 2007; Eliazar et al., 2008; Meroz

et al., 2009). It is important, as stressed by Bénichou et al.

(2009), that the mean time for n independent searchers is

simply given by the mean time divided by the number of

searchers only if the search time distribution for a single

searcher is a single exponential. In the case of nonexponential

distributions (e.g., a sum of weighted exponentials) it can be

shown that the effect of the number of searchers can be much

stronger, since the weight of long time scales decreases

exponentially with increasing n, selecting only the shorter

time scale of the problem for n large enough [see Bénichou

et al. (2009)]. Moreover, if the concentration of searchers

increases considerably, searchers cannot be considered as

independent any longer and will act as ‘‘roadblocks’’ along

the DNA molecule. These roadblocks will decrease the ef-

fective sliding length, and may also hide the target, overall

slowing down the search process. This results in a trade-off,

as stressed by Li et al. (2009). On the one hand, the more

proteins, the more searchers for the target, and the quicker

the search. On the other hand, the more proteins, the more

crowding, and the less efficient the search of a single protein.

They predicted that the optimum is obtained for 104–105

DNA-binding proteins for E. Coli, which is close to the

experimental value of 30 000 proteins.
iii. Dependence on the starting point:

Colocalization. Another origin of the search time fluctua-

tions can be due to its dependence on the starting position of

the protein. Wunderlich and Mirny (2008) showed that a

target that is close to the starting point of the protein can be

found within a single sliding phase, which yields a very short

search time and a rather low variability. In contrast, if the

target is far away from the starting point of the protein, it is

found after numerous 3D excursions. The mean search time is

then much longer, and the spread of the distribution of the

search time is larger. Kolesov et al. (2007) and Wunderlich

and Mirny (2008) then argued that for increasing the effi-

ciency of the transcription factor, its coding sequence (i.e., its

starting position) should be colocalized with its target se-

quence [see also Bénichou et al. (2008) and Bénichou and

Voituriez (2009) for a further optimization of this colocaliza-

tion effect with respect to the diffusion coefficient of the

protein]. Colocalization is indeed observed in real prokaryote

genomes. This mechanism can, however, be invoked only in

prokaryotes, where there are no cell compartments separating

protein production from DNA.
More generally, geometric effects on search kinetics have

been discussed by Bénichou et al. (2010), where it is shown

that low-dimensional effects, such as sliding or diffusion on

fractals, can lead to nonexponential distributions that depend

strongly on the starting position of the searcher. Such a

mechanism could be important for eukaryotes (Bénichou

et al., 2011). Indeed, in eukaryotes, DNA is packed inside

the nucleus in what is called the chromatin, and some DNA

regions might be more or less accessible depending on the

chromatin configuration. For example, the DNA close to the

nuclear pores is much more accessible to incoming proteins

than the DNA buried deep inside the nucleus, leading poten-

tially to different search times. Kampmann (2005) argued

qualitatively that proteins binding to DNA could take advan-

tage of the heterogeneities of the chromatin and, depending

on the searched sequence, adopt different optimal strategies.

The geometric effect can be particularly important in the case

of genes that need to be activated simultaneously. Indeed,

their colocalization in the nucleus permits sharing the tran-

scription material, since the search time for a transcription

factor going from one to the other will be much smaller than

in the case of a random localization in the nucleus.

4. Conclusion on protein-DNA interactions

The mechanism of facilitated diffusion of proteins on DNA

is intrinsically intermittent in the general meaning defined in

this review: It is a combination of one-dimensional motion

in close interaction with DNA, called sliding, which enables

target detection, and faster 3D excursions. From the theoreti-

cal point of view, this further example of an intermittent

process has been shown to significantly speed up the search.

Over the past few years, strong experimental evidence has

been obtained, showing that this mechanism is indeed at play.

Interestingly, in this case in the fast phase the searcher is

not able to detect the target not because of a lowering of its

perception abilities, but simply because the motion takes

place in a geometrical space that does not contain the target.

Most of the microscopic realizations of intermittence fall in

this case as we will see in the next section with a further

example.

B. Active transport of vesicles in cells

After this first microscopic example of intermittent search,

we turn to another example: active transport of vesicles

reacting at specific locations in cells.
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1. Active transport in cells

Various motor proteins such as kinesins or myosins are
able to convert the chemical fuel provided by adenosine
triphosphate (ATP) into mechanical work by interacting
with the semiflexible oriented filaments (mainly F-actin and
microtubules) of the cytoskeleton (Alberts, 2002). Because
many molecules or larger cellular organelles such as vesicles,
lysosomes, or mitochondria (hereafter referred to as tracer
particles) can randomly bind and unbind to motors, the over-
all transport of a tracer in the cell can be described as
alternating phases of standard diffusive transport (sometimes
subdiffusive), and phases of active directed transport powered
by motor proteins (Alberts, 2002; Salman et al., 2005), see
Fig. 14. In particular, Huet et al. (2006) studied the rate of
transitions between ballistic, diffusive, and ‘‘on the target’’
states of vesicles, and found that the vesicles studied are much
more likely to react in the free diffusive phase than when
bound to motors. Active transport in this case is therefore
clearly a further example of intermittent behavior. Active
transport in cells has been extensively studied both experi-
mentally, for instance, by single particle tracking methods
(Sheetz and Spudich, 1983; Howard et al., 1989; Caspi et al.,
2000; Caspi et al., 2002), and theoretically by evaluating the
mean displacement of a tracer (Shlesinger and Klafter, 1989;
Ajdari, 1995; Salman et al., 2005), or stationary concentra-
tion profiles (Nedelec et al., 2001). This transport is impor-
tant, for example, for dynamically regulating the distribution
of proteins such as membrane receptors.

Most cell functions are regulated by coordinated chemical
reactions that involve low concentrations of reactants (such as
ribosomes or vesicles carrying targeted proteins), and that are
therefore limited by transport. An analytical model based on
the idea of intermittence has been introduced by Loverdo
et al. (2008) [see also Mirny (2008) and Loverdo et al.
(2009a)], enables the determination of the kinetic constant
of transport limited reactions in active media, and further
shows that the kinetic constant can be optimized. We give
below the main results of the model; further details can be
found in Appendix B.

2. Model

The model relies on the idea of intermittent search strat-
egies and has important similarities with the models of

Sec. II, which are discussed in Sec. IV. We consider a tracer
particle evolving in a d-dimensional space (in practice d ¼
1; 2; 3), which performs thermal diffusion motions of diffu-
sion coefficient D (denoted phases 1), randomly interrupted
by ballistic excursions bound to motors (referred to as
phases 2) of constant velocity V and direction pointing in
the solid angle !V (see Fig. 15). The distribution of the
filaments’ orientation is denoted by �ð!VÞ and will be taken
as either disordered or polarized (see Figs. 15, 17, and 19),
which schematically reproduces the different states of the
cytoskeleton (Alberts, 2002). The random duration of each
phase i is assumed to be exponentially distributed with mean
�i. The tracer T can react with reactants R (supposed immo-
bile) during free diffusion phases 1 only, as T is assumed to be
inactive when bound to motors. Reaction occurs with a finite
probability per unit of time k when the tracer-reactant dis-
tance is smaller than a given reaction radius a. In what
follows the kinetic constant K of the reaction T þ R ! R is
explicitly determined.

3. Methods

We now present the basic equations in the case of a
reactant centered in a spherical domain of radius b with
reflecting boundary. This geometry both mimics the
relevant situation of a single target and provides a mean-field

FIG. 14. Transport options for vesicles inside cells.

FIG. 15. Vesicle transport in the bulk (three dimensions).
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approximation of the general case of randomly located reac-
tants with concentration c ¼ ad=bd, where b is the typical
distance between reactants. We start from a mean-field ap-
proximation of the first-order reaction constant (Berg and
Blomberg, 1976) and writeK ¼ 1=hti, where the key quantity
of our approach is the reaction time hti, which is defined as
the mean first-passage time (Redner, 2001; Condamin et al.,
2007) of the tracer at a reactant position uniformly averaged
over its initial position. t1 is defined as the mean reaction time
if the tracer starts in phase 1 at position r, and t2 is defined as
the mean reaction time if the tracer starts in phase 2 at
position r with velocity v. For the active intermittent dynam-
ics defined above, t1 and t2 satisfy the following backward
equations (Redner, 2001) (see Sec. IV for derivation):

D�rt1 þ 1

�1

Z
ðt2 � t1Þ�ð!VÞd!V � kIaðrÞt1 ¼ �1;

V � rrt2 � 1

�2
ðt2 � t1Þ ¼ �1; (36)

where �r and rr are the Laplacian and the gradient at the
initial position, and Ia is the indicator function of the sphere
of radius a. As these Eqs. (36) are of integro-differential type,
standard methods of resolution are not available for a general
distribution �.

In the case of a disordered distribution of filaments
[�ð!vÞ ¼ 1=�d, where �d is the solid angle of the
d-dimensional sphere], these equations can be solved exactly
in dimension 1. In dimensions 2 and 3, an approximate
scheme has to be introduced; the details of the calculation
are given in Appendix B. We present here simplified expres-
sions of the resulting kinetic constant by taking alternately the
limit k ! 1, which corresponds to the ideal case of perfect
reaction, and the limitD ! 0, which allows us to isolate the k
dependence.

4. Active transport in the cytoplasm

We first discuss the d ¼ 3 disordered case (see Fig. 15),
which provides a general description of the actin cytoskeleton

of a cell in nonpolarized conditions, or of a generic in vitro
active solution. An analytical form of the mean first-passage
time hti ¼ 1=K3d is given in Appendix B and plotted in
Fig. 16. Strikingly, K3d can be maximized as soon as the
reaction radius exceeds a threshold ac ’ 6D=V for the fol-
lowing value of the mean interaction time with motors:

�
opt
2;3d ¼

ffiffiffi
3

p
a

Vx0
’ 1:078

a

V
; (37)

where x0 is the solution of 2 tanhðxÞ � 2xþ x tanhðxÞ2 ¼ 0.
The �1 dependence is very weak, but one can roughly esti-
mate the optimal value by �

opt
1;3d ’ 6D=V2. This gives in turn

the maximal reaction rate

Km
3d ’ cV

a

ffiffiffi
3

p ½x0 � tanhðx0Þ�
x20

; (38)

so that the gain with respect to the reaction rate Kp
3d in a

passive medium is G3d ¼ Km
3d=K

p
3d ’ CaV=D with C ’ 0:26.

Several comments are in order. (i) First, �
opt
2;3d depends

neither on D nor on the reactant concentration. A similar
analysis for finite k (in the D ! 0 limit) shows that this
optimal value does not depend on k either (see Sec. IV),
which proves that the optimal mean interaction time with
motors is widely independent of the parameters characteriz-
ing the diffusion phase 1. (ii) Second, the value ac should be
discussed. In standard cellular conditions D ranges from
’10�2 �m2 s�1 for vesicles to ’10 �m2 s�1 for small pro-
teins, whereas the typical velocity of a motor protein is
V ’ 1 �ms�1, a value that is widely independent of the
size of the cargo (Alberts, 2002). This gives a critical reaction
radius ac ranging from ’10 nm for vesicles, which is smaller
than any cellular organelle, to ’10 �m for single molecules,
which is comparable to the whole cell dimension. Hence, this
shows that in such a three-dimensional disordered case active
transport can optimize reactivity for sufficiently large tracers
such as vesicles, as motor-mediated motion permits a fast
relocation to unexplored regions, whereas it is inefficient for
standard molecular reaction kinetics, mainly because at the

FIG. 16. Optimization of the reaction rate for intermittent active transport. Gain of reactivity due to active transport in three dimensions as a

function of �2 for different values of the ratio b=a (logarithmic scale). The analytical form (the mean detection time with diffusion alone

divided by the mean detection time with intermittence) (plain lines) is plotted against numerical simulations (symbols) for the following

values of the parameters (arbitrary units): a ¼ 1 (h), a ¼ 5 ( ? ), a ¼ 7 ( � ), a ¼ 10 (þ ), a ¼ 14 (	 ), a ¼ 20 (�), with �1 ¼ 6, V ¼ 1,
and D ¼ 1. G3d presents a maximum only for a > ac ’ 4.
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cell scale molecular free diffusion is faster than motor-

mediated motion. This could help justify the idea that many

molecular species in cells are transported in vesicles.

Interestingly, in standard cellular conditions �
opt
2;3d is of order

0:1 s for a typical reaction radius of order 0:1 �m. This value

is compatible with experimental observations (Alberts, 2002)

and suggests that cellular transport is close to optimum.

(iii) Last, the typical gain for a vesicle of reaction radius

a * 0:1 �m in standard cellular conditions is G3d * 2:5 (see
Fig. 16) and can reach G3d ’ 10 for the fastest types of

molecular motors [V ’ 4 �ms�1; see Sheetz and Spudich

(1983) and Alberts (2002)], independently of the reactant

concentration c. As we shall see below, the gain will be

significantly higher in lower-dimensional structures such as

axons.

5. Active transport at membranes

We now come to the d ¼ 2 disordered case (see Fig. 17).

Striking examples in cells are given by the cytoplasmic

membrane, which is closely coupled to the network of cort-

ical actin filaments, or the lamellipodium of adhering cells

(Alberts, 2002). In many cases the orientation of filaments

can be assumed to be random. It can be shown that as for

d ¼ 3 (see Sec. IV), the reaction rate K2d can be optimized in

the regime D=V � a � b. Remarkably, the optimal interac-
tion time �

opt
2;2d takes one and the same value in the two limits

k ! 1 and D ! 0:

�
opt
2;2d ’

a

V
ffiffiffi
2

p ½lnð1=cÞ � 1�1=2; (39)

which indicates again that �
opt
2;2d does not depend on the

parameters of the thermal diffusion phase, through either D
or k. In the limit k ! 1 one has

�
opt
1;2d ¼

D

8V2

ln2ð1=cÞ
lnð1=cÞ � 1

;

and the maximal reaction rate can then be obtained:

Km
2d ’ cV

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1=cÞp : (40)

Comparison of this expression to the case of passive transport

yields a gain G2d ¼ Km
2d=K

p
2d ’ aV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=cÞp

=4D
ffiffiffi
2

p
. As in

the d ¼ 3 case, this proves that active transport enhances
reactivity for large enough tracers (with a critical reaction
radius ac ’ D=V of the same order as in the d ¼ 3 case), such
as vesicles. However, here the gain G2d depends on the
reactant concentration c, and can be more significant: With
the same values of D, V, and a as given above in standard
cellular conditions, and for reactants with low concentration
(such as specific membrane receptors) with a typical distance
between reactants b * 10 �m, the typical gain is G2d * 8
and reaches 10 for single reactants (such as examples of
signaling molecules; see Fig. 18).

6. Active transport in tubular structures

The case of nematic order of the cytoskeletal filaments,
which depicts, for instance, the situation of a polarized cell
(Alberts, 2002), can be shown to be equivalent in a first
approximation to the one-dimensional case, which is exactly
solvable (for calculations, see Appendix B); see Fig. 19. The
d ¼ 1 case is also important on its own in cell biology

FIG. 17. Planar structures such as membranes and lamellipodia

(d ¼ 2).

FIG. 18. Optimization of the reaction rate for intermittent active transport. Gain of reactivity due to active transport G2d in two dimensions

as a function of �1 or �2 (logarithmic scale). The analytical form [the mean detection time with diffusion alone divided by the mean detection

time with intermittence (B50)] (plain lines) is plotted against numerical simulations (symbols) for the following values of the parameters

(arbitrary units): a ¼ 20, b ¼ 2000 ( ? ); a ¼ 10, b ¼ 1000 (h); a ¼ 10, b ¼ 100 (þ ); a ¼ 2:5, b ¼ 250 ( � ); with V ¼ 1 and D ¼ 1.
These curves represent standard cellular conditions (as discussed in the text).
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as many one-dimensional active structures such as axons,
dendrites, or stress fibers are present in living cells (Alberts,
2002). As an illustration, we take the example of an axon,
filled with parallel microtubules pointing their plus end in a
direction e. We consider a tracer particle interacting with both
kinesins (+ end directed motors, of average velocity Ve) and
dyneins (� end directed motors, of average velocity �Ve)
with the same characteristic interaction time �2 (see Fig. 1).
For this type of tracer, the mean first-passage time satisfies
Eqs. (36) with an effective nematic distribution of filaments
�ð!VÞ ¼ 1

2 ½�ðV � eÞ þ �ðV þ eÞ�. The reaction rate K1d is

maximized in the regime D=V � a � b for the following
values of the characteristic times (see Fig. 20):

�
opt
1;1d ¼ 1

48

D

V2c
; �

opt
2;1d ¼ 1ffiffiffi

3
p a

Vc1=2
; (41)

for k ! 1. The maximal reaction rate Km
1d is then given by

Km
1d ’

ffiffiffi
3

p
Vc3=2

2a
; (42)

and the gain is G1d ¼ Km
1d=K

p
1d ’ aV=ð2 ffiffiffi

3
p

Dc1=2Þ, which

proves that active transport can optimize reactivity as in
higher dimensions. Interestingly the c dependence of the
gain is much more important than for d ¼ 2; 3, which shows

that the efficiency of active transport is strongly enhanced in
one-dimensional or nematic structures at low concentration.
Indeed, with the same values of D, V, and a as given above in
standard cellular conditions, and for a typical distance be-
tween reactants b * 100 �m (such as low-concentration
axonal receptors), one obtains a typical gain G1d * 100
(see Fig. 20). In the limit of finite reactivity (k finite and
D ! 0) one has

�
opt
1;1d ¼

ffiffiffiffiffiffi
a

Vk

r �
2 lnð1=cÞ � 1

8

�
1=4

and the same optimal value (41) of �
opt
2;1d. As in higher

dimensions �
opt
2;1d depends neither on the thermal diffusion

coefficient D of phases 1 nor on the association constant k,
which shows that the optimal interaction time with motors
�
opt
2 presents remarkable universal features. Furthermore, this

approach permits an estimate of �
opt
2 compatible with obser-

vations in standard cellular conditions, which suggests that
cellular transport could be close to optimum.

7. Conclusion on intermittent active transport

Starting from the observation of vesicles alternating free
diffusion and phases bound to motors performing ballistic
motion, and from the observation that (at least in some cases),
vesicles can react only in the free phase, a model for inter-
mittent active transport has been proposed. The reaction rate,
which can be approximated by the inverse of the mean first-
passage time, can be explicitly calculated in this model for
various cellular geometries (bulk cytoplasm, membranes, and
tubular structures). This shows that intermittent transport
can indeed increase reaction rates for large objects such as
vesicles, and, in particular, in low dimensions. The model for
the reactive phase is either diffusive or static (with a reaction
rate), and both lead to the same optimal duration of the
ballistic phase. The latter point is investigated in more detail
in the next section.

FIG. 19. Tubular structures in cells, such as axons and dendrites

(d ¼ 1).

FIG. 20. Optimization of the reaction rate for intermittent active transport. Gain of reactivity due to active transport G1d in one dimension as

a function of �1 or �2 (logarithmic scale). The analytical form [the mean detection time with diffusion alone divided by the mean detection

time with intermittence (B23)] is plotted against the exact solution (symbols), for the following values of the parameters (arbitrary units):

D ¼ 1; V ¼ 1 for all curves and a ¼ 10; b ¼ 104 (þ ); a ¼ 10; b ¼ 103 ( � ); a ¼ 2:5; b ¼ 103 (h). Standard cellular conditions (as

discussed in the text) correspond to � and þ curves.
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IV. INTERMITTENT SEARCH: A ROBUST STRATEGY

As shown, intermittent search strategies are observed at
the macroscopic scale (foraging animals) as well as at the
microscopic scale (localization of a DNA sequence by a
protein, vesicle transport in cells). The models we have
used to interpret these findings, in particular, in Secs. II.C
and III.B, present similar general features.

Loverdo et al. (2009b) introduced a generic model of
intermittent search based on these general features and
studied systematically in one, two, and three dimensions,
and for three different modelings of the detection phase.
This rather technical section (completed by Appendix B)
gathers the main tools usually involved in the calculation of
first-passage properties of intermittent random walks, and
utilized throughout this review. Finally, general conclusions
on intermittent random walks can be drawn from this system-
atic study and are summarized in Table I.

A. Introduction

The generic model presented in this section follows the
original definition of intermittence given in the Introduction
and relies on a succession of slow phases with detection, and
ballistic phases without detection, without direction correla-
tion between ballistic phases. This model is minimal in the
sense that the searcher has low memory skills. Indeed, with-
out correlations between ballistic phases, there is no spatial
memory. We also assume a Markovian searcher, i.e., one with
no temporal memory. As previously, we address the following
main questions: Is it beneficial for the search to include such
fast but nonreactive phases? Is it possible, by properly tuning
the kinetic parameters of trajectories (such as the durations
of each of the two phases), to minimize the search time?
We develop in what follows a systematic analytical study of
intermittent random walks in one, two, and three dimensions
and fully characterize the optimal regimes. Overall, this
systematic approach allows us to identify robust features of
intermittent search strategies. In particular, the slow phase
that enables detection is often hard to characterize experi-
mentally. Here we propose and study three distinct modelings
for this phase, which allows us to assess to what extent our
results are robust and model independent. Our analysis covers
in detail intermittent search problems in one, two, and three
dimensions and is aimed at giving a quantitative basis—as
complete as possible—to model real search problems involv-
ing intermittent searchers.

We first define the model and introduce the methods.
Then we summarize the results for the search problem in
dimensions 1, 2, and 3, for different types of motion in the
slow phase. Eventually we synthesize the results in Table I
where all cases, their differences, and their similarities are
gathered. This table finally leads us to draw general
conclusions.

B. Model and notations

1. Model

We consider an intermittent searcher that switches between
two phases. The switching rate �1 (�2) from phase 1 to

phase 2 (from phase 2 to phase 1) is time independent, which

assumes that the searcher has no temporal memory and

implies an exponential distribution of durations of each phase

i of mean �i ¼ 1=�i.
Phase 1 denotes the phase of slow motion, during which

the target can be detected if it lies within a distance from the

searcher that is smaller than a given detection radius a, which
is the maximum distance within which the searcher can get

information about target location. We propose three different

modelings of this phase, in order to cover various real-life

situations (see Fig. 21).
(i) In the ‘‘static mode,’’ the searcher is immobile and

detects the target with probability k per unit time if it

lies at a distance less than a.
(ii) In the second modeling, called the ‘‘diffusive mode,’’

the searcher performs a continuous diffusive motion,

with diffusion coefficient D, and finds the target im-

mediately if it lies at a distance less than a.
(iii) In the last modeling, called the ‘‘ballistic mode,’’ the

searcher moves ballistically in a random direction

with constant speed vl and reacts immediately with

the target if it lies at a distance less than a. We note

that this mode is equivalent to the model of Lévy

walk searches proposed by Viswanathan et al. (1999),

except for the law of the time between reorientations

(see Sec. II.A). It was shown that for destructive

search, i.e., targets that cannot be revisited, the opti-

mal strategy is obtained for a straight ballistic motion,

without reorientations (see Sec. II.A). In what follows

it is shown that if another motion, ‘‘blind’’ (i.e.,

without detection) but with higher velocity, is avail-

able, there are regimes outperforming the straight line

strategy.

Some comments on these different modelings of the slow

phase 1 are in order. First, these three modes schematically

cover experimental observations of the behavior of animals

searching for food (O’Brien et al., 1990; Bell, 1991), where

the slow phases of detection are often described as static,

random, or having slow velocity. Several real situations are

also likely to involve a combination of two modes. For

instance, the motion of a reactive particle in a cell not bound

to motors can be described by a combination of the diffusive

and static modes. For simplicity, these modes are treated

independently, and this approach can therefore be considered

as a limit of more realistic models. Finally, combining these

three schematic modes covers a wide range of possible

motions, from subdiffusive (even static), diffusive, to super-

diffusive (even ballistic). Beyond the modeling of real-life

systems, studying different detection modes enables us to

assess the robustness of the results.
Phase 2 denotes the fast phase during which the target

cannot be found. In this phase, the searcher performs a

ballistic motion at a constant speed V in a random direction,

redrawn for each new phase 2, independently of previous

phases. In real examples correlations between successive

ballistic phases could exist, as observed for foraging animals

(O’Brien et al., 1990). If correlations are very high, it is close

to a one-dimensional problem with all phases 2 in the same

direction, a different problem already treated in Sec. II.B.
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TABLE I. Recapitulation of main results of the generic intermittent search model: strategies minimizing the mean first-passage time on the target. In each cell, validity of the regime, optimal �1,
optimal �2, minimal tm (tm with �i ¼ �opti ). The values of �opt2 independent of the description of the slow detection phase 1 are given in bold. Results are given in the limit b � a.
The complement to the intermediate regime for the diffusive mode in two dimensions is c ¼ 4½� lnð2Þ� with  the Euler constant; w is a solution of 2Vb

wD ln½4 lnðwÞ � 5þ c� ¼ �8ðlnwÞ2þ
½6þ 8 lnðb=aÞ� lnðwÞ � 10 lnðb=aÞ þ 11� c½c=2þ 2 lnða=bÞ � 3=2�; in this regime we have toptm ’ b2

D lnðbaÞ 1
4 lnðwÞ�5 ½1þ wDð4 lnðwÞ�7Þ

bV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 lnðwÞ�5

p �½1þ 2 lnðwÞ lnð b
awÞ�. Adapted from Loverdo et al. (2009b).
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We consider here the limit of low correlation, that is, of a
searcher with no memory skills.

We assume that the searcher evolves in a d-dimensional
spherical domain of radius b, with reflective boundaries
and with one centered immobile target of radius a. As the
searcher does not initially know the target’s location, we start
the walk from a random point of the d-dimensional sphere
and average the mean target detection time over the initial
position. This geometry models the case of a single target in a
finite domain and also provides a good approximation of an
infinite space with regularly spaced targets. Such a regular
array of targets corresponds to a mean-field approximation
of random distributions of targets, which can be more realistic
in some experimental situations.

2. Methods

We explain here the general methods and introduce the
notation.

We define siðr; tÞ as the probability that the searcher has
not yet found the target at t, starting from r in state i, where
state i ¼ 1 is the slow-motion phase with detection and state
i ¼ 2 is the fast-motion phase without target detection. Note
that in dimension 1, the space coordinate will be denoted by
x, and in the case of a ballistic mode for phase 1, the upper
index in ti stands for ballistic motion with directionx. The
survival probability siðr; tÞ is the solution of the following
standard backward differential Chapman-Kolmogorov equa-
tions (Gardiner, 1996):

Ly
i siðr; tÞ þ

1

�i
½sjðr; tÞ � siðr; tÞ� � ksiðr; tÞIaðrÞ�ði� 1Þ

¼ @siðr; tÞ
@t

; (43)

with IaðrÞ ¼ 1 when r < a, and 0 else, and Ly
i the adjoint

operator of the transport operator. For example, Ly
i ¼ D� for

diffusion and Ly
i ¼ v � r for a ballistic motion of velocity v.

The mean first-passage time to the target tiðrÞ for a searcher
starting in the phase i from point r is then given by

tiðrÞ ¼ �
Z 1

0
t
@siðr; tÞ

@t
dt ¼

Z 1

0
siðr; tÞdt: (44)

Consequently, for each phase i, tiðrÞ is the solution of

Ly
i tiðrÞ þ

1

�i
½tjðrÞ � tiðrÞ� � ktiðrÞIaðrÞ�ði� 1Þ ¼ �1:

(45)

We assume that the searcher starts in phase 1, and to take into
account the fact that it does not initially know the target’s
location, we average the mean detection time over the starting
point, leading to the following definition of the mean search
time:

tm ¼ 1

Vð�dÞ
Z
�d

t1ðrÞdr; (46)

with �d the d-dimensional sphere of radius b and Vð�dÞ its
volume. Unless specified, we consider the low-target-density
limit a � b.

Our general aim is to minimize tm as a function of the
mean durations �1; �2 of each phase and, in particular, to
determine under which conditions an intermittent strategy
(with finite �2) is faster than the usual single-state search
in phase 1 only, which is given by the limit �1 ! 1. In the
static mode, intermittence is necessary for the searcher to
move and is therefore always favorable. In the diffusive
mode, we compare the mean search time with intermittence
tm to the mean search time for a single-state diffusive
searcher tdiff and define the gain as gain ¼ tdiff=tm.
Similarly, in the ballistic mode, we compare tm to the mean
search time for a single-state ballistic searcher tbal and
define the gain as gain ¼ tbal=tm. The upper index ‘‘opt’’ is
used to denote the value of a parameter or variable at the
minimum of tm.

Calculations are exact in dimension 1, whereas approxi-
mation schemes (which can be checked numerically) are
needed in dimensions 2 and 3. The main calculation steps
are given in Appendix B, and further technical details can be
found in Loverdo et al. (2009b). We now summarize the
main results for each dimension.

C. Dimension 1

Besides the fact that it involves more tractable calculations,
the one-dimensional case is also interesting to model real
search problems. As discussed, at the microscopic scale

phase 2

V

a

phase 1

k

phase 2

V

phase 1

Da

phase 1

V

phase 2

a v
l

Static mode Diffusive mode Ballistic mode

FIG. 21. The three different descriptions of phase 1 (the phase with detection), here represented in two dimensions.
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tubular structures of cells such as axons or dendrites in
neurons can be considered as one dimensional (Alberts,
2002). The active transport of reactive particles, which alter-
nate between diffusion phases and ballistic phases when
bound to molecular motors, can be schematically captured
by this generic model with diffusive mode (Loverdo et al.,
2008). At the macroscopic scale, one could cite animals such
as ants (Dussutour et al., 2005), which tend to follow tracks
or one-dimensional boundaries. More generally, borderlines
between different habitats, such as a shoreline, can be con-
sidered as one dimensional.

It is shown in Appendix B that intermittent search strat-
egies in dimension 1 share similar features for the static,
diffusive, and ballistic detection modes. In particular, all
modes show regimes where intermittence is favorable and
lead to a minimization of the search time. Strikingly, the
optimal duration of the nonreactive relocation phase 2 is
quite independent of the modeling of the reactive phase:

�
opt
2 ¼ a

3V

ffiffiffiffiffiffiffiffiffi
b=a

p
for the static mode, for the ballistic mode

(in the regime vl < vc
l ’ V

2

ffiffiffiffiffiffiffiffiffiffiffi
3a=b

p
), and for the diffusive

mode (in the regime b > D
V and a � D

V

ffiffiffiffiffiffiffiffiffi
b=a

p
). This shows

the robustness of the optimal value �
opt
2 .

D. Dimension 2

As discussed, the two-dimensional problem is particularly
well suited to model animal behaviors; it is also relevant to
the microscopic scale, since it mimics, for example, the case
of cellular traffic on membranes (Alberts, 2002). While in
dimension 1 the mean search time can be calculated analyti-
cally, in dimension 2 (and later in dimension 3) approxima-
tion schemes are necessary and can be checked by numerical
simulations.

Remarkably, for the three different modes of detection
(static, diffusive, and ballistic), there is a regime where
intermittence minimizes the search time for one and the

same �
opt
2 , given by �

opt
2 ¼ a

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðb=aÞ � 1=2

p
. As in dimen-

sion 1, this indicates that optimal intermittent strategies
are robust and widely independent of the details of the
description of the detection mechanism.

E. Dimension 3

The three-dimensional case is also relevant to biology. At
the microscopic scale, it corresponds, for example, to intra-
cellular traffic in the bulk cytoplasm of cells, or at larger
scales to animals living in dimension 3, such as plankton
(Bartumeus et al., 2003) or Caenorhabditis elegans in its
natural habitat (soil) (Kiontke and Sudhaus, 2005). As was
the case in dimension 2, different assumptions have to be
made to obtain analytical expressions of the search time. Such
assumptions can be checked by numerical simulations using
the same algorithms as in dimension 2.

For the three possible modelings of the detection mode
(static, diffusive, and ballistic) in dimension 3, there
is a regime where the optimal strategy is intermittent.
Remarkably, and as was the case in dimensions 1 and 2, the
optimal time to spend in the fast nonreactive phase 2 is
independent of the modeling of the detection mode and

reads �
opt
2 ’ 1:1 a

V . Additionally, while the mean first-passage

time to the target scales as b3, the optimal values of the

durations of the two phases do not depend on the target

density a=b.

F. Discussion and conclusion

To summarize, the methods of calculation developed

in this section and in Appendix B allow one to show that

the mean search time of intermittent random walks can be

minimized under broad conditions. Table I summarizes the

main results of this minimization. This study shows that the

optimal durations of the two phases and the gain of inter-

mittent search (as compared to a single-state search) do

depend on the target density in dimension 1. In particular,

the gain can be very high at low target concentration.

Interestingly, this dependence is smaller in dimension 2 and

vanishes in dimension 3. The fact that intermittent search

is more advantageous in low dimensions (1 and 2) can be

understood as follows. At large scale, the intermittent

searcher effectively performs a random walk, and therefore

scans a space of dimension 2. In an environment of dimen-

sion 1 (and marginally of dimension 2), the searcher therefore

oversamples the space, and it is favorable to perform large

jumps to go to previously unexplored areas. In contrast, in

dimension 3, the random walk is transient, and the searcher

on average always scans previously unexplored areas, which

makes large jumps less beneficial.
Additionally, these results show that, for various modeling

choices of the slow reactive phase, there is one and the

same optimal duration of the fast nonreactive phase, which

depends only on the space dimension. This further supports

the robustness of optimal intermittent search strategies.

Such robustness and efficiency could explain why intermit-

tent trajectories are observed so often, as well as in various

forms.

V. EXTENSIONS AND PERSPECTIVES

Far from closing the problem, the generic model presented

in Sec. IV opens interesting perspectives. In this section, we

highlight a few promising directions: (i) The influence of the

targets’ distribution; and (ii) the effect of taking into account

a more involved searcher, enjoying now some orientational

and temporal memory. Indeed, in the generic model of

Sec. IV, the searcher has minimal memory skills. On the

one hand, the phase duration distribution is exponential,

which means that there is no temporal memory: The effect

of other duration distributions is studied in Sec. V.C. On the

other hand, the direction of each new ballistic blind phase is

taken at random, independently of the previous phases, mean-

ing that there is no orientational memory: We study the effect

of correlations in Sec. V.B. (iii) The effects of moving targets,

which can be more realistic at both the microscopic and

macroscopic scales. Next, we review in Sec. V.E similar

models of intermittent search, which have been proposed

recently in other contexts, and finally discuss how further

models could also be applied to design efficient searches

instead of interpreting biological systems (see Sec. V.F).
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A. Influence of the target distribution on the search time

We first study the influence of target distribution on

the previous results. For simplicity, we study the one-

dimensional model of Sec. II.B.

1. How are real targets distributed?

In the context of foraging animals, target distributions are

often described as regular, random, or patched; (Bell, 1991);

see Fig. 22. In the models presented, the chosen geometry

can be interpreted as one target in a finite domain, or as an

infinite array of regularly spaced targets. The regular distri-

bution is representative of the real-life case of targets that

repel each other, thus being as far from each other as

possible. This distribution is also a mean-field approximation

of other distributions. As the regular distribution has al-

ready been studied, we discuss the other representative

distributions.
If targets are in patches, for example, when they attract

each other, when a target is found it is likely that other targets

are present in the immediate surroundings. Thus a simple

strategy is to switch behavior when a target is encountered,

as proposed, for example, by Benhamou (1992). The search

is then in two steps: finding a patch, and exploiting it.

For the first step, previous results are still valid, except for

the density of targets, which has to be replaced by the density

of patches.
In the following we focus on the last case of Poissonian

targets, which corresponds to situations of noninteracting

targets.

2. Analytical results in the case of a Poissonian distribution of

targets

In the case of a one-dimensional Poissonian distribution

of targets, the distance between two consecutive targets is

exponentially distributed. Except for this change, the other

parameters remain as defined in the model of Sec. II.B.
The mean search time is, in general, difficult to calculate

for a Poissonian target distribution, which can be seen as

frozen disorder. However, estimates (for L � D=V) can be

given in three regimes [see Moreau et al. (2007) and Moreau

et al. (2009) for details]:
(i) In the large-ballistic-displacements limit (when V�2 �ffiffiffiffiffiffiffiffiffi

D�1
p

), two successive diffusive phases can be consid-

ered as nonoverlapping. It can be shown that in this

regime

hti ’ L
�1 þ �2
2

ffiffiffiffiffiffiffiffiffi
D�1

p : (47)

(ii) In the small-ballistic-displacements limit (when
V�2 �

ffiffiffiffiffiffiffiffiffi
D�1

p
), successive diffusive phases often over-

lap. This leads to

hti ’ L
�1 þ �2
V�2

: (48)

(iii) The most interesting situation is the intermediary
regime. Indeed, in the first case (large ballistic dis-
placements), relocations are too long and overshoot
the target; and in the second case (small ballistic
displacements), there are often repetitive scans of
the same areas. In the intermediary regime, the
mean first-passage time to the target can be approxi-
mated by

hti ’ L
�1 þ �2
V�2

ð1þ �Þ2ð1þ ��Þ
1þ 4�þ 2��2

; (49)

with � ¼ V�2=
ffiffiffiffiffiffiffiffiffi
D�1

p
and � ¼ ffiffiffiffiffiffiffiffiffi

D�1
p

=L.

This last regime enables a discussion of the efficiency of the
intermittent search. The efficiency can be quantified by com-
paring htiopt, the mean search time with intermittence at
minimum, with �diff ¼ L2=ð2DÞ, the mean search time with
diffusion alone. It can be shown that intermittence decreases
the search time in the limit of low target density, and that the
mean search time is minimized for �1 as small as possible.
The optimization with respect to �2 leads to two regimes,
depending on the minimal value of �1 as compared to the
previously introduced time scale � ¼ D=V2, characteristic of
the searcher.

(i) When �1 � �,

�
opt
2

�
�

ffiffiffi
7

4

s �
�1
�

�
3=4

: (50)

At the optimum, the mean search time is

htiopt � L

2V

ffiffiffiffiffi
�1
�

r
; (51)

and the gain is

G� Lffiffiffiffiffiffiffiffiffi
D�1

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
2�diff
�1

s
; (52)

where �bal ¼ L=V is the typical time needed to travel in
the ballistic mode the distance between two consecu-
tive targets. As we shall see in the following, in this
regime the approximations are very accurate.

(ii) When �1 � �,

�
opt
2

�
� 1

2

ffiffiffiffiffi
�1
�

r
: (53)

At the optimum, the mean search time is

htiopt � 3L

4V
¼ 3

4
�bal; (54)

regular distribution

Poissonian distribution

patched distribution

FIG. 22. Examples of target distributions.
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and the gain is

G� 2LV

3D
¼ 4�diff

3�bal
: (55)

As we shall see in the following, the approximations
are qualitatively good in this regime, but not as precise
as in the other regime. Indeed, the gain obtained here
would mean that the mean first-passage time to the
target is smaller than �bal, which is the minimal mean
time to travel to the target (except if �bal > �diff).
In fact, as shown in Fig. 25, simulations predict that
htiopt ! �bal. This means that very fast intermittence
enables the searcher to retain the best of the two
phases: the reactivity of phase 1 and the motion of
phase 2.

Figure 23 represents the mean search time hti as a function
of �1 and �2 for typical values of the other parameters. It
allows a comparison of the numerical results with the ap-
proximations (47) and (48), and with the intermediary ap-
proximation (49). It shows that the approximations of large
and small ballistic displacements are valid in the expected
conditions, and the intermediary approximation (49) cor-
rectly reproduces the existence and the position of the mini-
mum of hti. Figure 24 supports the scaling laws relating �1
and the corresponding optimal waiting time �2 at the opti-
mum. The exponent 3=4 of the theoretical scaling law (50) for
� � �1 is well confirmed by the simulations. This is not the
case for the law (53) for � � �1, which indicates that the
approximations should be handled with care for short waiting
times �1,�2, although their results are qualitatively correct.
Figure 25 shows the gain as a function of �1 for different
possible conditions. This supports the conclusions of the
theoretical study and, indeed, confirms that the gain due to
intermittence can be important if �diff � �bal.

3. Conclusion

In the case of a Poissonian distribution of targets, inter-
mittence remains valid as a strategy minimizing the search

time. The optimal strategy still consists in taking �1 as small
as possible. However, �

opt
2 is different from that in the case

of regularly spaced targets. The optimal mean duration of

ballistic flights scales as
ffiffiffiffiffiffiffiffiffiffiffið7=4Þp ð�31�Þ1=4 in the limit �1 �

� ¼ D=V2. In this regime, at the optimum, hti ’ 1
2

L
V

ffiffiffiffiffiffiffiffiffiffiffiffi
�1=�2

p
,

with a gain compared to diffusion alone proportional to
L=

ffiffiffiffiffiffiffiffiffi
D�1

p
.

FIG. 23. Validity of the approximations. Mean first-passage time to the target, renormalized by the mean first-passage time without

intermittence. Small-ballistic-displacements approximation (48) (dashed line). Large-ballistic-displacements approximation (47) (dotted

line). Intermediary approximation (49) (line). Numerical simulations (symbols). D ¼ 1, V ¼ 1, L ¼ 103.

FIG. 24. lnð�opt2 Þ as a function of lnð�1Þ. Small-�1 analytical

prediction (53) (dashed line). Large-�1 analytical prediction (50)

(solid line). Numerical values (symbols), for L ¼ 10 (h), L ¼ 103

(þ ), and L ¼ 105 ( � ). D ¼ 1, V ¼ 1.
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B. Taking into account partial correlations in ballistic phases

1. Motivation

The models developed in Secs. II.B and IVare very similar.

The searcher alternates between a slow reactive phase and a

fast ballistic blind phase. The main difference is that in

Sec. II.B, ballistic phases are always in the same direction,

whereas, on the contrary, in Sec. IV, the direction of each new

ballistic phase is random and independent of the previous

ballistic phase.
In the case of animal trajectories, the successive directions

of ballistic phases are usually correlated (O’Brien et al.,

1990). We have considered so far two extreme cases: no

correlation or infinite-range correlations. In both cases, there

are regimes where intermittence is favorable. However, in the

case of infinite-range correlations, the shorter the duration of

each phase, the smaller the search time. In contrast, in the

case without any correlation, the minimal search time is

obtained for finite values of �1 and �2, which even diverge

with the system size. In the intermediate case of finite range

correlations, determination of the nature of the minimum is

an interesting theoretical question. In addition, as real bio-

logical systems often present correlations, it is important to

take into account correlations in the generic model of inter-

mittence. We present in what follows the simplest case of the

static mode of detection in dimension 1.

2. Model

The searcher is either in the reactive phase 1 (where it is

immobile and finds the target with probability k per unit time

if the target is at a distance smaller than a) or in the ballistic

phase 2, of velocity V. For each new ballistic phase, the
direction of V is the same as in the previous ballistic phase
with probability p, and in the opposite direction with proba-
bility 1� p. The distribution of the duration of the phases
is exponential, of mean �i, and the distance between two
targets is 2b.

In the case of no correlations (p ¼ 1=2) the mean search
time has been calculated in Appendix B.1 [see Eq. (B13)],

where it was shown that the optimum is obtained for �
opt
1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða=VkÞp ðb=12aÞ1=4 and �

opt
2 ¼ a=V

ffiffiffiffiffiffiffiffiffiffiffi
b=3a

p
.

In the general case, the methods of Sec. IV can be adapted
to calculate analytically the mean search time starting from a
random position in state 1, which can be written as

tm ¼ ð�2 þ �1Þ
�
1

k�1
þ b� a

b

�
2

3

ð1� pÞðb� aÞ2
�22V

2
þ 1

þ 1

k�1
þ uðb� aÞffiffiffiffiffiffiffiffi

k�1
p

�2V
coth

� ffiffiffiffiffiffiffiffi
k�1

p
ua

�2Vð1þ k�1Þ
���

; (56)

with u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� pÞ þ k�1

p
.

3. Minimization of the mean search time

a. Case of infinite-range correlation p ¼ 1

It can be shown that the mean search time is minimized for
�1 and �2 tending to 0, with �1 ¼ ��2. We define w ¼ ak=v,
and depending on this parameter,

(i) w< 1: �opt ’ ð 3
2w2Þ1=3,

(ii) 1<w<w�: �opt ’ lnð4wÞ
2w ,

(iii) w> w�: �opt ’
ffiffiffiffiffi
2a
wb

q
.

w� is defined as the solution of lnð4w�Þ=2w� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a=w�b

p
.

These expressions are in good agreement with the numerical
minimization of the exact expression of the mean search time
(see Fig. 26).

b. Case of intermediate correlations

The mean search time obtained in (56) is difficult to
optimize. An important question raised is to determine
whether the mean search time is minimized for finite �1
and �2 (as in the case p ¼ 0:5), or for �1 and �2 tending
to 0 (as in the case p ¼ 1). An answer can be obtained
by noticing that a lower bound of the mean search time is
given by

tm � ð�1 þ �2Þ
�
1

k�1
þ ðb� aÞ3

b

2ð1� pÞ
3�22V

2

�
: (57)

Supposing that the minimum is realized for at least the case
of �i ! 0, three cases arise.

(i) �1 ! 0 with �1 � �2. In this case tm � �2=k�1 ! 1.

(ii) �2 ! 0 with �2 � �1. In this case tm � �1
ðb�aÞ3

b 	
2ð1�pÞ
3�2

2
V2 ! 1.

(iii) �1 � �2 and both ! 0. In this case tm � �2
ðb�aÞ3

b 	
2ð1�pÞ
3�2

2
V2 � 1=�2 ! 1.

Finally, this shows that the minimum is realized for finite
values of �1 and �2 as soon as p < 1. Actually, it can be

FIG. 25. lnðGÞ as a function of lnð�1Þ (�2 taken optimal). Small-�1
analytical prediction (55) (dotted line). Large-�1 analytical predic-

tion (52) (solid line). Numerical simulations (points). L ¼ 101 (h),

L ¼ 103 (þ ), and L ¼ 105 ( � ). D ¼ 1, V ¼ 1.
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shown that, except for p close to 1, the minimum of the
search time is obtained for

�
opt
1 ¼

ffiffiffiffiffiffi
a

Vk

r �
b

a

ð1� pÞ
6

�
1=4

(58)

and

�
opt
2 ¼ a

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

a

2ð1� pÞ
3

s
: (59)

Interestingly, note that the relation �
opt
2 ¼ 2kð�opt1 Þ2 obtained

initially in the case of the absence of correlations (see Table I)
still holds in this case.

These expressions are in agreement with the numerical
minimization of the exact expression of the mean search time
(see Fig. 27), except when 1� p is very small.

4. Conclusion

In the simple case of the static mode in one dimension,
the influence of correlations on the mean search time and its
minimization can be studied. An exact expression for the
mean search time shows that it is minimized for finite values
of �1 and �2 as soon as p < 1. When 1� p � a=b, the
optimal durations �

opt
1 and �

opt
2 can be explicitly given, and

they are in continuity with the case without correlation,
p ¼ 0:5.

C. Other distributions of phase durations

The model presented in Sec. IV is minimal in the sense that
the searcher has no memory. As seen in the previous section,
one possibility is to add orientational memory. Another pos-
sibility is to add temporal memory. In the generic model, we
have considered a ‘‘Markovian’’ searcher, in the sense that
the rate of switching from one phase to the other is constant.
It leads to an exponential distribution of the durations of
the phases. In the following, we study the influence of the
distribution of the duration of the phases [see also Chechkin
et al. (2009), Meerschaert et al. (2009), and Tejedor and
Metzler (2009) for other types of correlation]. A first possi-
bility is to study the effect of distributions that are peaked
around the mean duration, or even deterministic (Bénichou
et al., 2007). A second possibility is to study the case of
Lévy-distributed blind phases as in Lomholt et al. (2008).

1. Deterministic durations of the phases

In the generic model described, we considered exponential
durations of phases, which correspond to searchers with no
temporal memory. In the opposite case, a searcher with full

FIG. 26. Minimization of the mean search time for the static

mode with infinite correlation (p ¼ 1). �opt as a function of w.
Theoretical expression for small w (dots), for intermediate w (solid

line), and for large w (dashed lines). Optimization of the exact

expression (with �2 ! 0 and �1 ¼ ��2) (symbols). b ¼ 100 (h),

b ¼ 103 (þ ), b ¼ 104 (�), and b ¼ 105 ( ? ). a ¼ 1, V ¼ 1.

FIG. 27. �opt as a function of 2ð1� pÞ. Theoretical value of �opt1 (58) (dashed line) and theoretical value of �
opt
2 (59) (solid lines), compared

to the numerical minimization of the full exact mean search time, leading to �opt1 (filled symbols) and �opt2 (empty symbols). a ¼ 0:01, b ¼ 1

(4); a ¼ 0:01, b ¼ 100 (h); a ¼ 1, b ¼ 100 (�); a ¼ 1, b ¼ 104 (w); a ¼ 100, b ¼ 104 (5); a ¼ 100, b ¼ 106 (e). k ¼ 1, V ¼ 1.
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memory skills could, for example, switch from one phase to
the other at deterministic instead of exponentially distributed
times. The corresponding problem is no longer Markovian,
which makes its analytical resolution much more complex.
We present here a summary of a numerical study of the
effect of such temporal memory for a searcher with the static
mode of detection in dimension 2 [see Bénichou et al. (2007)
for details and Bénichou et al. (2006) for a semianalytical
treatment in one dimension]. First, this study shows that
the optimal �

opt
1 and �

opt
2 are larger than in the case without

memory, but are of the same order of magnitude (see Fig. 28).
Second, such temporal memory decreases the mean search
time. Indeed, a deterministic duration of the relocation phase
avoids both the very short and very long relocations, which
are inefficient. Third, and importantly, the gain from this
temporal memory is quite low (less than 40% in an extended
range of parameters, and decreasing with increasing b=a) as
compared to the case with no memory (see Fig. 28).

2. Lévy distribution of the fast phase durations

Lomholt et al. (2008) studied analytically and numerically
a one-dimensional intermittent random walk where the dura-
tion of relocation phases is taken from a Lévy law [pðlÞ /
l���1, with 1<�< 2]. Apart from this distribution of the
duration of ballistic phases, this model is identical to the
generic model presented in Sec. IV [see also Bénichou et al.
(2006)], in the case of a diffusive mode of detection
in one dimension (in the particular case of a pointlike target
a ! 0).

The mean search time is evaluated with the exact formula
[Eq. (9) of Lomholt et al. (2008)]

hti ¼ X1
n¼1

2ð�1 þ �2Þ
D�1k

2
n þ 1� �ðknÞ

; (60)

with kn ¼ 2�n=L, where L is the distance between targets,
and � is the characteristic function of the distribution: �ðkÞ ¼
expð�
�jkj�Þ. The relation between 
, �, the velocity V,
and �2 (the mean duration of phase 2, which is defined since
� > 1) is given by [Eq. (10) of Lomholt et al. (2008)]


 ¼ �V�2
2�ð1� 1=�Þ : (61)

A more tractable approximate expression of the mean search
time can be derived [Eq. (14) of Lomholt et al. (2008)]:

hti ¼ 2ð�1 þ �2Þ
�

L

4
ffiffiffiffiffiffiffiffiffi
D�1

p þ
�

L

2�


�
�
�ð�Þ

�
; (62)

where �ð�Þ ¼ P1
n¼1 n

�� is the Riemann � function.

As compared with the generic model of Sec. IV, this model
introduces an extra parameter �, which, as could be expected,
enables a further minimization of the mean search time.
Lomholt et al. (2008) claimed that Lévy laws are more
efficient than exponential laws because they have no second
moment and therefore are not bound to the central limit
theorem.

The Lévy distribution, however, is not the optimal distri-
bution of the duration of ballistic phases, and distributions
with a finite second moment can perform even better,
as opposed to what is claimed by Lomholt et al. (2008).
Indeed, relocations larger than the distance between two
targets L cannot be profitable, and power-law distributions
are therefore inefficient in the regime of long times t > L=V.
A simple example is given by a Lévy distribution with
an upper cutoff at L (see Fig. 29). For L ¼ 104, numerical
simulations show that the optimum without cutoff is realized
for � ’ 1:4, with tm ’ 195 000, and the optimum with a
cutoff at L is realized for � ’ 1:3, with tm ’ 188 000, that
is, ’ 3:7% lower. For L ¼ 105, the optimum without cutoff is
realized for � ’ 1:3, tm ’ 3 260 000; the optimum with a
cutoff of L is realized for � ’ 1:2, tm ’ 3 060 000, that is,
’ 6:5% lower. Truncated distributions with a well-defined
second moment therefore outperform Lévy distributions.
Hence, intermittent random walks with Lévy-distributed re-
locations decrease the mean search time more efficiently than
in the case of exponentially distributed relocations, but it is
not because of their infinite variance, and other distributions
with a second moment can perform even better.

Another point discussed by Lomholt et al. (2008) is the
robustness of the strategy: If L is misevaluated, the efficiency
of the intermittent search with exponential relocation dura-
tions decreases more than for the Lévy distribution. The
truncated Lévy distribution is probably of intermediate
robustness.

D. The point of view of the target: Pascal principle

In this review, we have addressed the question of determin-
ing optimal search strategies. One could also consider the
opposite point of view and try to determine optimal survival
strategies of targets. In the case where the target’s motion is
independent of the searcher’s motion, the response is actually
given simply by the so-called Pascal principle (Moreau et al.,
2003; Moreau et al., 2004) for a broad class of situations.

FIG. 28. Comparison between the search without ( � ) and with

temporal memory (h). Static mode in two dimensions. tm as a

function of �2. k ¼ 1, V ¼ 1, b ¼ 113, a ¼ 10, �1 ¼ 2:6.
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More precisely, suppose that the motion of the searcher is
time and space homogeneous and that it satisfies the follow-
ing property: Starting from a position x (different from the
target position), the transition probability to be at position y at
time t > 0 is always maximum for y ¼ x. Assume that the
target can perform any stochastic motion, independently of
the searcher, which is assumed to perform a stochastic mo-
tion. Then the Pascal principle states that the survival proba-
bility of the target is maximum if the target remains immobile
at its initial position. Of course, the validity of the Pascal
principle is restricted to special motions of the searcher: It
holds for a diffusive motion, but not, for instance, if the
searcher undergoes a ballistic motion with constant velocity.
However, the validity conditions are satisfied if the searcher
undergoes ballistic motions with symmetrically distributed
stochastic velocities, or if the displacements consist in tele-
portations, which are distributed symmetrically with respect
to the initial position. In these cases, the best strategy for the
target is to remain immobile.

E. Other models of intermittent search

In the past few years, several models relying on the
mechanism of intermittent search have been developed in
different contexts. We review here these models, which are
in essence similar to the generic case discussed in Sec. IV, and
which broaden the field of application of intermittent search.

1. Oshanin et al. (2007, 2009)

Oshanin et al. (2007, 2009) proposed a model similar to
the diffusive mode in one dimension of the generic model of
Sec. IV, but in discrete space, on an infinite lattice. At each
time step, with probability �, the searcher jumps to the
neighboring node of the line (with equal probabilities for
each side, which corresponds to diffusion). With probability
1� �, it stays off lattice during a time T and after this time, it
lands at a distance L from its initial position (once again, with
equal probabilities for each side); see Fig. 30. This phase is
equivalent to a ballistic nonreactive phase. Its duration is

exactly T, whereas the duration of the diffusive phase with
target detection is exponentially distributed, with mean dura-
tion 1=ð1� �Þ. There is one target, but an infinite set of

searchers, initially randomly distributed. The quantity maxi-
mized is the probability, that at a given time t, the target has
already been found by any of the searchers. Oshanin et al.

found an optimal �, but dependent on t. If L and T are fixed,
then the optimization with respect to � leads to �opt / t1=3,
which can be very small. If T only is fixed, the optimization

with respect to both � and L gives �opt ¼ 0:5 and Lopt �ffiffi
t

p
= lnðtÞ. Note that in the case T ¼ 1, at the optimum the time

has to be equally shared between the two phases, which is

reminiscent of the result obtained in the framework of the
simple model of facilitated diffusion (Sec. III.A.2). Last, if
V ¼ L=T is fixed, it is found that Lopt � ffiffi

t
p

= lnðtÞ,�opt � 1�
4V lnðtÞ=3 ffiffi

t
p

, which means that the mean duration of the
nearest-neighbor phase is 3=4 the duration of a large move.
This model can actually be seen as the lattice version of the

model given by Bénichou et al. (2006), where similar results
were obtained: (i) the existence of a global minimum of the

search time, (ii) the ratio of times spent in both phases at the
minimum is given by a numerical constant, and (iii) this
numerical constant is equal to 1=2 in Bénichou et al.

(2006) (where the time spent off the lattice is exponentially
distributed) instead of the 3=4 given above (for deterministic
times off lattice).

FIG. 29. tm as a function of �1, with 
 at the theoretical minimum [numerical minimization of Eq. (62)]. Lines: analytical formula (62).

	: simulations without cutoff.þ: simulations with cutoff at L. D ¼ 1, V ¼ 1. Left: L ¼ 104, � ¼ 1:6; � ¼ 1:5; � ¼ 1:4; � ¼ 1:3; � ¼ 1:2.
Right: L ¼ 105, � ¼ 1:6; � ¼ 1:5; � ¼ 1:4; � ¼ 1:3; � ¼ 1:2.

FIG. 30. Model used by Oshanin et al. (2007, 2009).
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2. Rojo et al. (2009)

Rojo et al. (2009) proposed a model that displays some
similarities with the previous model (see Fig. 31). The search
domain is a one-dimensional discrete infinite lattice with one
target, there is also an infinite set of searchers, and the
quantity optimized is also the probability that the target is
found by any of the searchers at a given t. The detection phase
consists of jumps to the nearest neighbors, with a given
frequency. Such a rule is equivalent to diffusion. The non-
reactive phase consists of jumps to the next nearest neighbors.
It is again diffusion, but if the jump frequency is the same as
in the other phase, it is a faster diffusion. In both phases, there
is a fixed rate of switch to the other phase, leading to
exponentially distributed durations of the phases. If one of
the mean durations is fixed, the probability that the target is

already found at t is minimized for a finite duration of the
other phase. But the optimum is for infinitely short phases,
enabling the searcher to combine the faster diffusion of one
phase and the detection capacities of the other phase.

3. Reingruber and Holcman (2009)

Reingruber and Holcman (2009) proposed a model that is
also diffusive-diffusive (see Fig. 32). They studied this model
first in one dimension: The searcher’s starting point is at one
extremity of a segment, a reflecting boundary. The target is at
the other end of the segment. However, in phase 1 (diffusion
of coefficientD1), the target can be found, whereas in phase 2
(diffusion of coefficient D2), both extremities are reflecting.
There are fixed rates of switching from one phase to another.
The results showed that there are two regimes: If D1 >D2,

straightforwardly, the optimum for the searcher is to be in

phase 1 only; if D2 >D1, the optimum is to switch very

rapidly between the two phases, so as to spend almost all the

time in the faster phase 2, but not to miss the target. This

model is extended to a three-dimensional ball (the initial

position is almost without importance in this geometry), but

with a target of radius a on the border (which is reflecting

everywhere else). The two phases are defined as in one

dimension. Reingruber and Holcman (2009) gave two limits

in this case. Note that the expression we obtained in the

generic model of Sec. IV for the diffusive mode in three

dimensions [see Loverdo et al. (2009b)] could be used, with

3V2�22 ¼ D2�2. In fact, these calculations use a ‘‘diffusive-

diffusive’’ approximation, with an effective Deff
2 ¼ 3V2�2.

The optimization will be quite different, because the depen-

dence on �2 is dramatically changed if instead of a fixed D2,

D2 is a function of �2. Indeed, the optimum for the generic

model is for finite �1 and �2, whereas, even if not explicitly

calculated, it is probable that the optimum for diffusion-

diffusion in three dimensions is similar to that in the

one-dimensional case, i.e., for phase durations as small as

possible. The goal of this model is to study cellular signaling,

with a ligand binding to a target that will transmit a signal.

4. Bressloff and Newby (2009); Newby and Bressloff (2009)

Bressloff and Newby (2009) presented another model

applied to intracellular transport, more precisely here to the

transport of mRNA granules inside neurons. They presented a

model in one dimension, standing, for example, for an axon

with little branching. The starting point is at one extremity,

which is reflecting: It models granules produced in the soma

of the neuron and that have to be exported to the axon. The

target, a synapse, is somewhere in the segment. The other end

of the segment is an absorbing boundary, representing that the

vesicles containing the mRNA can be degraded, or that there

can be other targets farther away in the axon that can absorb

the searcher. To complete the idea that there are several

targets that are not equivalent, and that these targets are in

competition, they also calculated explicitly the probability

that the searcher finds a target more often than the others. In

this model, there are three states (see Fig. 33): an immobile

detection phase, similar to the static mode, switching to

ballistic modes with probability � per unit time; a ballistic

phase in directionþ, with speed vþ, and with a transition rate

target

FIG. 31. Model used by Rojo et al. (2009).

FIG. 32. Model used by Reingruber and Holcman (2009).
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to the detection mode �þ; a ballistic phase in direction �,
with speed v�, and with a transition rate to the detection
mode ��. During the two ballistic phases, the searcher
cannot detect the target. Movement is biased to the direction
þ if vþ=�þ > v�=��.

The results are based on the fact that on the segment there
are two contradicting constraints: maximizing the hit proba-
bility (as the searcher can be degraded before finding the
target), and minimizing the time to find the target when the
target is found. Indeed, if there is more bias, the target will be
missed more often, but when found, the search time will be
smaller. With a fixed hit probability, the mean first-passage
time to the target (on the condition that the target is found) is
minimized when there is more bias. In other words, unidirec-
tional motion is better than bidirectional motion in this case.

Newby and Bressloff (2009) extended this problem to the
case of a directed tree. In this case, unidirectional motion has
a drawback: A wrong branch can be taken, annihilating any
possibility of finding the target. Biased bidirectional motion
can be seen as an effective combination of a ballistic and a
diffusive motion. It exists as a critical hit probability p�. If the
mean first-passage time to the target is minimized given
that the probability of finding the target is a given p < p�,
unidirectional motion is better; but if the given probability is
p > p�, there is an optimal finite bias that minimizes the
mean search time in case of success.

5. Ramezanpour (2007)

Intermittence in networks is an interesting extension.
Ramezanpour (2007) proposes (see Fig. 34) to explore a

network in which the degree (equal to the number of neigh-

bors) distribution is pðkÞ / k�3, constructed as proposed by

Barabasi and Albert (1999), or with some modifications. On

this finite network, at each time step the searcher chooses

randomly one of the edges connected to the node where it is,

and goes to the node connected by this edge. Every tw, the
searcher jumps to a completely random node. The question is

whether the mean time to cover the nodes and the edges of the

network can be optimized as a function of tw. For the nodes,
the random jumping is a way to visit all the nodes with equal

probability; thus tw should be as small as possible. For the

edges, there is an optimal finite tw. Indeed, if tw is small, most

edges visited will emanate from low-connected nodes (as the

low-connected nodes are the more numerous nodes, such

edges are more likely to be visited after a random jump),

but if tw is large, the searcher will spend most of its time on

the edges connecting high-degree nodes, and will take time

to explore the whole network, especially for remote edges

connecting nodes of low degree.

F. Designing efficient searches

As seen, intermittent reaction paths are involved in

various search problems involving biomolecules at the micro-

scopic scale, as well as biological organisms at the macro-

scopic scale. Simple analytical models show that intermittent

transport can actually minimize the search time. A reason

why such intermittent trajectories are widely observed could

be simply that they constitute generic optimal search strat-

egies, and consequently they could have been selected by

evolution.
Beyond modeling what is observed in real-life biological

examples, such intermittent strategies could also be used to

design searches, at the microscopic and macroscopic scales.

We discuss here potential applications at the microscopic

scale [for more details see Bénichou et al. (2008)].
Heterogeneous chemical reactions, where the reactive tar-

gets are located at an interface, either one dimensional

(polymer) or two dimensional (surface), are intrinsically

intermittent. Indeed, the reactants can either diffuse in the

bulk volume, where the target cannot be found, or bind to the

interface and diffuse more slowly (see Fig. 35, left).
Beyond obvious optimizations (increasing the target and

the reactant concentrations, increasing the diffusion coeffi-

cients of the reactant in the bulk or at the interface, etc.), the

mean durations of the phases (free or bound to the interface)

are the main adjustable parameters enabling minimization

FIG. 33. Model used by Bressloff and Newby (2009) and Newby and Bressloff (2009).

edge
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FIG. 34. Model presented by Ramezanpour (2007).
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of the mean search time, and therefore maximization of the
reaction rate. The main idea is that in the ‘‘teleportation’’
approximation (see Sec. III.A.2), after a bulk excursion, the
distance between the reactant landing point on the surface and
its starting point is larger than the typical distance between
targets. In such a regime, each new bound phase is indepen-
dent of the previous one, and the trajectory overlap is limited,

which enhances the reactivity.
The mean durations of the phases can actually be tuned in

real systems. First, the mean time a reactant remains bound to
the interface depends on its affinity with the interface, which
could be tuned. Second, the mean time spent in the bulk is
mainly controlled by the confinement volume (Blanco and
Fournier, 2003; Bénichou et al., 2005a; Condamin et al.,
2007). The confinement volume has therefore to be as small
as possible, but it should be large enough to make the tele-
portation approximation valid. This constraint defines a criti-
cal volume and can actually be bypassed by applying a
hydrodynamic flow parallel to the surface, which makes the

teleportation approximation valid even for very short bulk
excursions, provided that the velocity of the flow is high
enough (see Fig. 35, right). In this regime it can be shown
(Bénichou et al., 2008) that the reaction rate can be opti-
mized by tuning the affinity of the reactant for the interface
in a similar way as in Sec. III.A.2.

At the molecular level, we stress that intermittent transport
could also be useful for in vitro chemistry. Indeed, we have
shown that intermittent transport naturally pops up in the
context of reaction at interfaces, where reactants combine
surface diffusion phases and bulk excursions, and could
permit the enhancement of reactivity. In this case, chemical
adjustment of the typical association time of the reactants

with the interface makes it possible to optimize the reaction
rate.

VI. CONCLUSION

Intermittent search strategies rely on a simple mechanism:
The searcher alternates between two phases, one during
which the target can be detected, but with slow motion, and
another of faster motion but without target detection. This
mechanism of intermittence has emerged from the observa-
tion of real-life biological searches at various scales. At the

macroscopic scale, a given example is animals searching for

hidden food, which alternate between fast ballistic relocation

phases with no target detection and phases of slower motion

aimed at detecting the target. A simple model based on this

observation permits an analytical demonstration that the

mean search time can be minimized as a function of the

phases’ mean duration. There is one single way to share

time between the two phases in order to find the target as

fast as possible. This intermittent search is then an optimal

search strategy. In this respect, this model is an alternative

to the famous Lévy walk model, which is optimal only in

restrictive conditions.
Intermittence is also observed at the microscopic scale.

Indeed, for some biochemical reactions in cells, which in-

volve a very low concentration of reactants, reaction path-

ways are not always simple Brownian trajectories. They can

rather be qualified as intermittent, since they combine slow

diffusion phases, on the one hand, and a second mode of

faster transport, on the other hand, which can be either a faster

diffusion mode as in the case of DNA-binding proteins or a

ballistic mode powered by molecular motors in the case of

intracellular transport. Analytical models actually show that

such intermittent trajectories are very efficient, since they

significantly reduce reaction times. Interestingly, it is shown

that reaction rates can even be maximized by adjusting simple

biochemical parameters. The gain is small in dimension 3, but

for lower-dimensional structures, such as membranes (2D)

or polymers or tubular structures (1D), the gain can be very

large at low target concentration. Such efficiency—and

optimality—could explain why intermittent transport is ob-

served in various forms in the context of reactions in cells.
Since these intermittent search strategies are observed at

various scales, one could suggest that they constitute a ge-

nerically efficient search mechanism. Systematic analysis

of a generic model in the framework of intermittent random

walks, in one, two, and three dimensions, and for three

different descriptions of the slow reactive phase, permits a

quantitative assessment of the robustness of this mechanism.

In fact, this study shows that the optimality of these search

strategies is a widely robust result. Finally, if intermittent

random walks are observed in real biological systems at

various scales, it is probably because they do constitute an

efficient search strategy. Beyond these modeling aspects, one

FIG. 35. Design of heterogeneous chemical reactions, with targets (disks) here fixed on a two-dimensional surface. The reactant either

diffuses in the volume (thin lines) or diffuses on the surface (thick lines). The flow is represented by arrows.
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can suggest that such intermittent strategies could also be
used to design optimizable search strategies.

ACKNOWLEDGMENTS

The support of ANR Grant DYOPTRI is acknowledged.

APPENDIX A: REVIEW OF RANDOM WALKS AND LéVY

PROCESSES

Regular random walks obey Gaussian statistics and have
a mean square displacement growing linearly with time:
hr2ðtÞi � t�, with � ¼ 1. Inversely, transport processes char-
acterized by nonlinear scalings with time of the mean square
displacement are termed ‘‘anomalous,’’ either subdiffusive if
�< 1 or superdiffusive if �> 1. In this review, we make use
of standard models of subdiffusion (continuous-time random
walks, diffusion on fractals, and fractional Brownian motion)
and superdiffusion (Lévy flights and Lévy walks), whose
definitions are repeated here for consistency [see, for in-
stance, Ben-Avraham and Havlin (2000) for a complete
discussion].

1. Subdiffusion

a. Continuous-time random walks

A first class of models leading to subdiffusion stems
from continuous-time random walks (CTRWs) and their
continuous-space limit described by fractional diffusion
equations. The anomalous behavior in these models origi-
nates from a heavy-tailed distribution of waiting times: At
each step the walker lands on a trap, where it can remain for
extended periods of time. Technically, the CTRW is a stan-
dard random walk with random waiting times, drawn from a
probability density function c ðtÞ. The CTRW model has a
normal diffusive behavior if the mean waiting time is finite.
For heavy-tailed distributions, such that

c ðtÞ / 1

t1þ�
at large times; (A1)

the mean waiting time diverges for �< 1 and the walk is
subdiffusive with � ¼ �.

When dealing with a tracer particle, traps can be out-of-
equilibrium chemical binding configurations, and the waiting
times are then the dissociation times; traps can also be
realized by the free cages around the tracer in a dense hard
spherelike crowded environment, and the waiting times are
the lifetimes of the cages (Saxton, 1996; Saxton, 2007;
Condamin et al., 2008).

b. Diffusion on fractals

Another kind of model for subdiffusion relies on spatial
inhomogeneities as exemplified by diffusion in deterministic
(such as Sierpinski gasket) or random fractals (such as critical
percolation clusters). The subdiffusive behavior is in this case
caused by the presence of fixed obstacles that create numer-
ous dead ends, as illustrated by de Gennes’s ant in a labyrinth
(de Gennes, 1976; Saxton, 1994). This results in an effective
subdiffusion in the embedding space, with an exponent

� < 1, whose value depends on the fractal structure
(d’Auriac et al., 1983; Bunde and Havlin, 1991; Ben-
Avraham and Havlin, 2000).

c. Fractional Brownian motion

Fractional Brownian motion (FBM) is a third model of
subdiffusion (Mandelbrot and van Ness, 1968; Metzler and
Klafter, 2000), usually defined for systems in dimension 1. It
was introduced to take into account correlations in a random
walk: The state of the system at time t is influenced by the
state at time t0 < t. More precisely, it is a Gaussian process
with autocorrelation function of the form

hXðt1ÞXðt2Þi / t2H1 þ t2H2 � jt1 � t2j2H; (A2)

with 0<H < 1=2, so that � ¼ 2H < 1 (FBM can also be
defined for 1=2<H < 1, but in this case it leads to super-
diffusion). Note that Brownian diffusion is recovered for
H ¼ 1=2. FBM is used to describe the motion of a monomer
in a polymer chain or single-file diffusion. Recently, it has
also been proposed to underlie the diffusion in a crowded
environment (Szymanski and Weiss, 2009).

2. Superdiffusion

a. Lévy flights

Lévy flights are random walks such that, at each step t, the
walker jumps in some random uniformly distributed direc-
tion, to a distance r drawn from a probability density function

pðrÞ / 1

r1þ�
: (A3)

It can be shown that, if �< 2, superdiffusion emerges, with
� ¼ 2=�, while, if �> 2, regular diffusion is recovered.

b. Lévy walks

Lévy walks differ from Lévy flights in that, now, the time
to make a step of size r is taken to be proportional to r
(Shlesinger et al., 1987). Physically, a Lévy walk can be
described as a random walker performing jumps still drawn
from the probability density function

pðrÞ / 1

r1þ�
; (A4)

but this time at a constant velocity. The resulting mean square
displacement can be given by

hr2i /

8>>>>>><
>>>>>>:

t2 if 0<�< 1;
t2= lnt if � ¼ 1;
t3�� if 1<�< 2;
t lnt if � ¼ 2;
t if �> 2:

(A5)

Applications of Lévy walks are given in the main text,
in the context of random search problems. Note that, in this
context, the terms ‘‘Lévy walks’’ and ’’Lévy flight’’ are often
used interchangeable to designate Lévy walks.
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APPENDIX B: MEAN FIRST-PASSAGE TIMES OF

INTERMITTENT RANDOM WALKS

1. Dimension 1

a. Static mode

In this section we assume that the detection phase is
modeled by the static mode. Hence the searcher does not
move during the reactive phase 1 and has a fixed reaction rate
k per unit time with the target if it lies within its detection
radius a (see Fig. 21). It is the limit of a very slow searcher in
the reactive phase.

i. Equations. Outside the target (for x > a), we have the
following backward equations for the mean first-passage
time:

V
dtþ2
dx

þ 1

�2
ðt1 � tþ2 Þ ¼ �1; (B1)

� V
dt�2
dx

þ 1

�2
ðt1 � t�2 Þ ¼ �1; (B2)

and

1

�1

�
tþ2 þ t�2

2
� t1

�
¼ �1: (B3)

Inside the target (x � a), the first two equations are identical,
but the third one is written

1

�1

tþ2 þ t�2
2

�
�
1

�1
þ k

�
t1 ¼ �1: (B4)

We introduce t2 ¼ ðtþ2 þ t�2 Þ=2 and td2 ¼ ðtþ2 � t�2 Þ=2. Then
outside the target we have the following equations:

V
dt2
dx

� 1

�2
td2 ¼ 0; (B5)

V2�2
d2t2
dx2

þ 1

�2
ðt1 � t2Þ ¼ 0; (B6)

1

�1
ðt2 � t1Þ ¼ �1: (B7)

Inside the target the first two equations are identical, but the
last one is written

1

�1
t2 �

�
1

�1
þ k

�
t1 ¼ �1: (B8)

Because of the symmetry x $ �x, we can restrict the study
to the areas x 2 ½0; a� and x 2 ½a; b�. This symmetry also
implies

dtin2
dx

��������x¼0
¼ 0; (B9)

dtout2

dx

��������x¼b
¼ 0: (B10)

In addition, continuity at x ¼ a for tþ2 and t�2 gives

tin2 ðx ¼ aÞ ¼ tout2 ðx ¼ aÞ; (B11)

td;in2 ðx ¼ aÞ ¼ td;out2 ðx ¼ aÞ: (B12)

This set of linear equations enables us to explicitly determine
t1, t2, and td2 inside and outside the target.

ii. Results. An exact analytical expression for the mean
first-passage time to the target is then given by

tm ¼ �1 þ �2
b

�
b

k�1
þ ðb� aÞ3

3V2�22
þ�ðb� aÞ2

V�2
coth

�
a

V�2�

�

þ ðb� aÞ�2

�
; (B13)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk�1Þ�1 þ 1
p

.
We obtain in the limit b � a

tm ¼ ð�1 þ �2Þ
�

b2

3V2�22
þ

�
1

k�1
þ 1

�
b

a

�
: (B14)

This approximation is accurate (see Fig. 36).
We use this approximation (B14) to find �1 and �2 values

minimizing tm:

�
opt
1 ¼

ffiffiffiffiffiffi
a

Vk

r �
b

12a

�
1=4

; (B15)

�
opt
2 ¼ a

V

ffiffiffiffiffiffi
b

3a

s
: (B16)

It is important that the optimal duration of the relocation
phase does not depend on k, i.e., on the description of the
detection phase.

b. Diffusive mode

We now turn to the diffusive modeling of the detection
phase. The detection phase 1 is now diffusive, with immedi-
ate detection of the target if it is within a radius a from the
searcher (see Fig. 21).

i. Equations. Along the same lines, the backward equations
for the mean first-passage time read outside the target (x > a)

V
dtþ2
dx

þ 1

�2
ðt1 � tþ2 Þ ¼ �1; (B17)

� V
dt�2
dx

þ 1

�2
ðt1 � t�2 Þ ¼ �1; (B18)

D
d2t1
dx2

þ 1

�1

�
tþ2
2
þ t�2

2
� t1

�
¼ �1; (B19)

and inside the target (x � a)

V
dtþ2
dx

� 1

�2
tþ2 ¼ �1; (B20)

� V
dt�2
dx

� 1

�2
t�2 ¼ �1; (B21)

and

t1 ¼ 0: (B22)

Boundary conditions result as previously from continuity and
symmetry.
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ii. Results. Standard but lengthy calculations lead to an
exact expression of the mean first-detection time of the target
tm given by Loverdo et al. (2009b). Three regimes can be
identified.

(i) In the first regime (b < D=V) intermittence is not
favorable.

(ii) For b > D=V and bD2=a3V2 < 1 intermittence is fa-
vorable. In the low-target-density limit (b � a), the
following approximation of the mean first-passage
time around its minimum can be obtained:

tm ¼ ð�1 þ �2Þb
�

b

3V2�22
þ 1ffiffiffiffiffiffiffiffiffi

D�1
p

�
: (B23)

This expression gives a good approximation of tm in
this regime, in particular, around the optimum (see
Fig. 37). The simplified tm expression (B23) is mini-
mized for

�
opt
1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
2b2D

9V4

3

s
; (B24)

�
opt
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2b2D

9V4

3

s
; (B25)

t
opt
m ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35

24
b4

DV2

3

s
: (B26)

This compares to the case without intermittence
according to

gainopt ¼ tdiff

t
opt
m

’
ffiffiffiffiffi
24

38
3

s �
bV

D

�
2=3 ’ 0:13

�
bV

D

�
2=3

:

(B27)

(iii) For b > D=V and 1 � bD2=a3V2 intermittence is
favorable.

In this regime, the mean search time is given by

tm ’ b

a
ð�1 þ �2Þ

�
a

aþ ffiffiffiffiffiffiffiffiffi
D�1

p þ ab

3V2�22

�
: (B28)

This expression gives a good approximation of tm, at least
around the optimum (see Fig. 38), which is characterized by

�
opt
1 ¼ Db

48V2a
; (B29)

�
opt
2 ¼ a

V

ffiffiffiffiffiffi
b

3a

s
; (B30)

t
opt
m ’ 2a

V
ffiffiffi
3

p
�
b

a

�
3=2

; (B31)

FIG. 36. Static mode in one dimension. Exact expression of tm (B13) (lines) compared to the approximation of tm (B14) (symbols), both

rescaled by t
opt
m . �

opt
1 from (B15), �

opt
2 from (B16). V ¼ 1, k ¼ 1. b=a ¼ 10 (h), b=a ¼ 100 ( � ), and b=a ¼ 1000 (þ ).
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gain ’ 1

2
ffiffiffi
3

p aV

D

ffiffiffi
b

a

s
: (B32)

Note that the gain can be very large at low target density and
that the value obtained for �

opt
2 is the same as in the static

mode.

c. Ballistic mode

We now treat the case where the detection phase 1 is
modeled by the ballistic mode (see Fig. 21). This model
schematically accounts for the general observation that speed
often degrades perception abilities. Our model corresponds to
the extreme case where only two modes are available: either
the motion is slow and the target can be found or the motion is
fast and the target cannot be found. Note that this model can
be compared to the model of Viswanathan et al. (1999),
where there is only the detection phase.

i. Equations. The backward equations read outside the
target (x > a)

vl

dtþ1
dx

þ 1

�1

�
tþ2
2
þ t�2

2
� tþ1

�
¼ �1; (B33)

� vl

dt�1
dx

þ 1

�1

�
tþ2
2
þ t�2

2
� t�1

�
¼ �1; (B34)

V
dtþ2
dx

þ 1

�2

�
tþ1
2
þ t�1

2
� tþ2

�
¼ �1; (B35)

and

� V
dt�2
dx

þ 1

�2

�
tþ1
2
þ t�1

2
� t�2

�
¼ �1: (B36)

Inside the target (x � a), one has tþ;in
1 ðxÞ ¼ t�;in

1 ðxÞ ¼ 0,
and

V
dtþ;in

2

dx
� 1

�2
tþ;in
2 ¼ �1; (B37)

� V
dt�;in

2

dx
� 1

�2
t�;in
2 ¼ �1: (B38)

FIG. 37. Diffusive mode in one dimension. tm=tdiff , exact expression (line), and approximation in the regime of favorable intermittence and

bD2=a3V2 � 1 (B23) (symbols). a ¼ 1, b ¼ 100 ( � ); a ¼ 1, b ¼ 104 (þ ); a ¼ 10, b ¼ 105 (h). D ¼ 1, V ¼ 1. �opt1 is from Eq. (B24),

and �opt2 is obtained from Eq. (B25).

FIG. 38. Diffusive mode in one dimension. tm=tdiff , exact expression (line), and approximation in the regime of favorable intermittence

and bD2=a3V2 � 1 (B28) (symbols). a ¼ 10, b ¼ 100 ( � ); a ¼ 10, b ¼ 1000 (þ ); a ¼ 100, b ¼ 104 (h). D ¼ 1, V ¼ 1. �opt1 is from

Eq. (B29), and �opt2 is obtained from Eq. (B30).
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ii. Results. In the case where phase 1 is modeled by the
ballistic mode in one dimension, we have calculated the exact
mean first-passage time tm at the target. tm can be minimized
as a function of �1 and �2, yielding two possible optimal
strategies:

(i) for vl > vc
l ¼ Vð ffiffiffi

3
p

=2Þð ffiffiffiffiffiffiffiffiffi
a=b

p Þ, intermittence is not

favorable: �
opt
1 ! 1, �

opt
2 ! 0,

(ii) for vl < vc
l ¼ Vð ffiffiffi

3
p

=2Þð ffiffiffiffiffiffiffiffiffi
a=b

p Þ, intermittence is favor-

able, with �
opt
1 ! 0 and

�
opt
2 ’ a

V

ffiffiffiffiffiffi
b

3a

s
:

The gain reads

gain �
ffiffiffi
3

p
2

V

vl

ffiffiffi
a

b

r
: (B39)

This shows that the gain is larger than 1 for vl < vc
l ¼

V
ffiffi
3

p
2

ffiffi
a
b

p
, which defines the regime where intermittence

is favorable.
Note that the model studied by Viswanathan et al. (1999)

showed that when targets are not revisitable, the optimal
strategy for a single-state searcher is to perform a straight
ballistic motion. This strategy corresponds to �1 ! 1 in
our model. Our results show that if a faster phase without
detection is allowed, this straight line strategy can be
outperformed.

d. Conclusion in one dimension

Intermittent search strategies in one dimension share simi-
lar features for the static, diffusive, and ballistic detection
modes. In particular, all modes show regimes where inter-
mittence is favorable and leads to a minimization of the
search time. Strikingly, the optimal duration of the nonreac-
tive relocation phase 2 is quite independent of the modeling

of the reactive phase: �
opt
2 ¼ ða=3VÞð ffiffiffiffiffiffiffiffiffi

b=a
p Þ for the static

mode, for the ballistic mode (in the regime vl < vc
l ’

ðV=2Þð ffiffiffiffiffiffiffiffiffiffiffi
3a=b

p Þ), and for the diffusive mode (in the regime

b > D=V and a � ðD=VÞð ffiffiffiffiffiffiffiffiffi
b=a

p Þ). This shows the robustness
of the optimal value �

opt
2 .

2. Dimension 2

a. Static mode

We study here the case where the detection phase is
modeled by the static mode: The searcher does not move
during the detection phase and has a finite reaction rate
with the target if it is within its detection radius a (see
Fig. 21).

i. Equations and results. The mean first-passage time at a
target satisfies the following backward equations (Redner,
2001):

1

2��1

Z 2�

0
½t2ð~rÞ � t1ð~rÞ�d� ~V � kIað~rÞt1ð~rÞ ¼ �1;

(B40)

~V � rrt2ð~rÞ � 1

�2
½t2ð~rÞ � t1ð~rÞ� ¼ �1: (B41)

The function Ia is defined by Iað~rÞ ¼ 1 inside the target (if
j ~rj � a) and Iað~rÞ ¼ 0 outside the target (if j~rj> a). In the
present form, these integro-differential equations (completed
with boundary conditions) do not seem to allow for an exact
resolution with standard methods. t2 is the mean first-passage

time to the target, starting from ~r in phase 2, with speed ~V, of
angle �V, and with projections on the axes Vx,Vy. i and j can

take either x or y as a value. The following decoupling
assumption is introduced:

hViVjt2i�V ’ hViVji�V ht2i�V (B42)

and leads to the following approximation of the mean search
time, which can be checked by numerical simulations (see
Fig. 39):

tm¼�1þ�2
2k�1y

2

�
1

x
ð1þk�1Þðy2�x2Þ2 I0ðxÞ

I1ðxÞþ
1

4
f8y2

þð1þk�1Þ½4y4 lnðy=xÞþðy2�x2Þðx2�3y2þ8Þ�g
�
;

(B43)

FIG. 39. Static mode in two dimensions. Simulations (symbols) and analytical approximation (B43) (lines). k ¼ 1, V ¼ 1, b ¼ 56; a ¼ 10
(þ ) (�opt1 ¼ 2:41, �opt2 ¼ 11:2); a ¼ 1 ( � ) (�opt1 ¼ 0:969, �opt2 ¼ 1:88); a ¼ 0:1 (h) (�opt1 ¼ 0:348, �opt2 ¼ 0:242). Left: mean search time tm
as a function of �2=a, with �1 ¼ �opt1 . Right: mean search time tm as a function of �1, with �2 ¼ �opt2 .
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where

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k�1

1þ k�1

s
a

V�2
and y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k�1

1þ k�1

s
b

V�2
: (B44)

In that case, intermittence is trivially necessary to find the
target. In the regime b � a, the optimization of the search
time (B43) leads to

�
opt
1 ¼

�
a

Vk

�
1=2

�
2 lnðb=aÞ � 1

8

�
1=4

; (B45)

�
opt
2 ¼ a

V
½lnðb=aÞ � 1=2�1=2; (B46)

and the minimum search time is given in the large-volume
limit by

toptm ¼ b2

a2k
� 21=4ffiffiffiffiffiffiffiffiffiffiffi

Vka3
p ða2 � 4b2Þ lnðb=aÞ þ 2b2 � a2

½2 lnðb=aÞ � 1�3=4 �
ffiffiffi
2

p
48ab2V

	 ð96a2b2 � 192b4Þln2ðb=aÞ þ ð192b4 � 144a2b2Þ lnðb=aÞ þ 46a2b2 � 47b4 þ a4

½2 lnðb=aÞ � 1�3=2 : (B47)

b. Diffusive mode

We now assume that the searcher diffuses during the
detection phase (see Fig. 21). For this process, the mean
first-passage time to the target satisfies the following back-
ward equation (Redner, 2001):

Dr2
rt1ð~rÞ þ 1

2��1

Z 2�

0
½t2ð~rÞ � t1ð~rÞ�d�V ¼�1; (B48)

~V � rrt2ð~rÞ � 1

�2
½t2ð~rÞ � t1ð~rÞ� ¼ �1; (B49)

with t1ð~rÞ ¼ 0 inside the target (r � a). The same decoupling
assumption as for the static case is used (B42). It eventually
leads to the following approximation of the mean search time,
which can be checked by numerical simulations (see Fig. 40):

tm¼ð�1þ�2Þ1�a2=b2

ð�2D�1Þ2
8<
:a�ðb2=a2�1Þ M

2Lþ
�L�
Lþ

��2D�1

8 ~D�2

½3�4lnðb=aÞ�b4�4a2b2þa4

b2�a2

9=
;; (B50)

with

L ¼ I0

0
@ affiffiffiffiffiffiffiffiffi

~D�2

q
1
AðI1ðb�ÞK1ða�Þ � I1ða�ÞK1ðb�ÞÞ

 �
ffiffiffiffiffiffiffiffiffi
~D�2

q
I1

0
@ affiffiffiffiffiffiffiffiffi

~D�2

q
1
A½I1ðb�ÞK0ða�Þ

þ I0ða�ÞK1ðb�Þ�; (B51)

and

M ¼ I0

0
@ affiffiffiffiffiffiffiffiffi

~D�2

q
1
A½I1ðb�ÞK0ða�Þ þ I0ða�ÞK1ðb�Þ�

� 4
a2

ffiffiffiffiffiffiffiffiffi
~D�2

q
�ðb2 � a2Þ2 I1

0
@ affiffiffiffiffiffiffiffiffi

~D�2

q
1
A½I1ðb�ÞK1ða�Þ

� I1ða�ÞK1ðb�Þ�; (B52)

where � ¼ ½1=ðD�1Þ þ 1=ð ~D�2Þ�1=2 and ~D ¼ V2�2. The
minimization as a function of �1 and �2 is as follows.

i. a < b � D=V: Intermittence is not favorable. In this
regime, intermittence is not favorable. Indeed, the typical
time required to explore the whole domain of radius b is of
order b2=D with diffusive motion, which is shorter than the
corresponding time b=V with ballistic motion. As a conse-
quence, it is never useful to interrupt the diffusive phases by
merely relocating ballistic phases. The mean first-passage
time to the target in this optimal regime of diffusion only is
obtained using standard methods (Redner, 2001) and reads
in the limit b � a

tdiff ¼ b2

8Deff

�
�3þ 4 ln

b

a

�
: (B53)

ii. a � D=V � b: First regime of intermittence. In this
second regime, one can use the following approximate
formula for the search time:

tm ¼ b2

4DV2�2

�1 þ �2
�1�

2
2

�
4 lnðb=aÞ � 3

� 2
ðV�2Þ2
D�1

½lnð�aÞ þ � ln2�
�
; (B54)

with  the Euler constant. An approximate criterion to de-
termine whether intermittence is useful can be obtained by
expanding tm in powers of 1=�1 when �1 ! 1 (�1 ! 1
corresponds to the absence of intermittence), and requiring
that the coefficient of the term 1=�1 is negative for all
values of �2. Using this criterion, we find that intermittence
is useful ifffiffiffi

2
p

expð�7=4þ ÞVb=D� 4 lnðb=aÞ þ 3> 0: (B55)

In this regime, using Eq. (B54), the optimization of the
search time leads to

�
opt
1 ¼ b2

D

4 lnw� 5þ c

w2ð4 lnw� 7þ cÞ ;

�
opt
2 ¼ b

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 lnw� 5þ c

p
w

;

(B56)

where w is the solution of the implicit equation w ¼
2VbfðwÞ=D with
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 lnw� 5þ c

p
fðwÞ ¼ �8ðlnwÞ2 þ ½6þ 8 lnðb=aÞ� lnw

� 10 lnðb=aÞ þ 11

� c½c=2þ 2 lnða=bÞ � 3=2� (B57)

and c ¼ 4½� lnð2Þ�, with  the Euler constant. A useful
approximation for w is given by

w ’ 2Vb

D
f

�
Vb

2D lnðb=aÞ
�
: (B58)

The gain for this optimal strategy reads

gain ¼ tdiff

t
opt
m

’ 1

2

4 lnb=a� 3þ 4a2=b2 � a4=b4

4 lnb=a� 3þ 2ð4 lnwÞ lnðb=awÞ
	

�
1

4 lnw� 5
þ wD

bV

4 lnw� 7

ð4 lnw� 5Þ3=2
��1

: (B59)

If intermittence significantly speeds up the search in this
regime (typically by a factor of 2), it does not change the
order of magnitude of the search time.

iii. D=V � a � b: ‘‘Universal’’ regime of intermittence.
In the last regime D=V � a � b, the optimal strategy is
obtained for

�
opt
1 ’ D

2V2

ln2ðb=aÞ
2 lnðb=aÞ � 1

;

�
opt
2 ’ a

V
½lnðb=aÞ � 1=2�1=2;

(B60)

and the gain reads

gain ¼ tdiff

t
opt
m

’
ffiffiffi
2

p
aV

8D

0
@ 1

4 lnðb=aÞ � 3

	 I0ð2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðb=aÞ � 1

p Þ
I1ð2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðb=aÞ � 1

p Þ
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðb=aÞ � 1

p
1
A�1

:

(B61)

Here the optimal strategy leads to a significant decrease of the
search time, which can be rendered arbitrarily smaller than
the search time in the absence of intermittence.

c. Ballistic mode

In this case, the searcher has access to two different speeds:
One (V) is fast but prevents the searcher from finding its
target, and the other (vl) is slower but enables the searcher to
detect the target (see Fig. 21).

i. Simulations. Since an explicit expression of the mean
search time is not available, a numerical study is performed.
Exploring the parameter space numerically allows identifica-
tion of the regimes where the mean search time is minimized.
Then, for each regime, approximation schemes are developed
to provide analytical expressions for the mean search time.
The numerical results presented in Fig. 41 suggest two
regimes defined according to a threshold value vc

l of vl to

be determined later on:
(i) for vl > vc

l , tm is minimized for �2 ! 0,
(ii) for vl < vc

l , tm is minimized for �1 ! 0.
ii. Regime without intermittence (�2 ! 0, �1 ! 1).

Qualitatively, it is rather intuitive that for vl large enough
(the precise threshold value vc

l will be determined next),

phase 2 is inefficient since it does not allow for target
detection. The optimal strategy is therefore �2 ! 0 in this
case. In this regime, the searcher performs a ballistic motion,
which is randomly reoriented with frequency 1=�1. Along the
same lines as in Viswanathan et al. (1999) (where, however,
the times between successive reorientations are Lévy distrib-
uted), it can be shown that the optimal strategy to find a target
(which is assumed to disappear after the first encounter) is to
minimize oversampling and therefore to perform a purely
ballistic motion. In our case this means that in the regime
�2 ! 0, the optimal �1 is given by �

opt
1 ! 1.

In this regime, we can propose an estimate of the optimal
search time tbal. The surface scanned during �t is 2avl�t. pðtÞ
is the proportion of the total area that has not yet been
scanned at t. If we neglect correlations in the trajectory,
pðtÞ is the solution of

FIG. 40. Diffusive mode in two dimensions. Simulations (symbols) versus analytical approximate (B50) (line) of the search time, rescaled

by the value in the absence of intermittence tdiff as a function of �2 (left) and lnð�1Þ ¼ (right), for D ¼ 1, V ¼ 1, b ¼ 226. Left: a ¼ 10,
�1¼1:37 (h); a ¼ 1, �1 ¼ 33:6 ( � ); a¼0:1, �1¼213 (þ ). Right: a ¼ 10, �2 ¼ 15:9 (h); a ¼ 1, �2 ¼ 13:7 ( � ); a ¼ 0:1, �2 ¼ 22 (þ ).
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dp

dt
¼ � 2avlpðtÞ

�b2
: (B62)

Then, given that pðt ¼ 0Þ ¼ 1, we obtain

pðtÞ ¼ exp

�
� 2avl

�b2

�
; (B63)

and the mean first-passage time to the target in these con-
ditions is

tbal ¼ �
Z 1

0
t
dp

dt
dt ¼ �b2

2avl

: (B64)

This expression yields good agreement with numerical simu-
lations. Note, in particular, that tbal / 1=vl.

iii. Regime with intermittence (�1 ! 0). In this regime
where vl < vc

l , the numerical study shows that the search

time is minimized for �1 ! 0 (see Fig. 41). We determine
here the optimal value of �2 in this regime. To proceed, we
approximate the problem by the case of a diffusive mode
previously studied (B50), with an effective diffusion coeffi-
cient

D ¼ v2
l �1
2

: (B65)

This approximation is very satisfactory in the regime �1 ! 0
(see Fig. 41).

We can then use the results of the previous section for the
diffusive mode in the �1 ! 0 regime and obtain

tm ¼ �2

�
1� a2

b2

��
1� 1

4

½3þ 4 lnða=bÞ�b4 � 4a2b2 þ a4

�22V
2ðb2 � a2Þ

þ a

V�2
ffiffiffi
2

p
�
b2

a2
� 1

�
I0ða

ffiffiffi
2

p
=�2VÞ

I1ða
ffiffiffi
2

p
=�2VÞ

�
: (B66)

The calculation of �
opt
2 minimizing tm then gives

�
opt
2 ¼ a

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
b

a

�
� 1

2

s
: (B67)

Finally the gain reads

gain ¼ tbal

t
opt
m

’ �V

4vl

�
ln

�
b

a

���0:5
: (B68)

iv. Determination of vc
l . Note that an estimate of vc

l can be

obtained from (B68) as the value of vl for which gain ¼ 1:

vc
l ’

�V

4

�
ln

�
b

a

���0:5 / Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðb=aÞp : (B69)

It is noteworthy that intermittence becomes less favorable
with increasing b. This effect is similar to the one-
dimensional case, even though it is less important here. It
can be understood as follows: at very large scales the inter-
mittent trajectory is reoriented many times and therefore
scales as diffusion, which is less favorable than the non-
intermittent ballistic motion.

d. Conclusion in dimension 2

Remarkably, for the three different modes of detection
(static, diffusive, and ballistic), we find a regime where
intermittence minimizes the search time for one and the

same �
opt
2 , given by �

opt
2 ¼ ða=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðb=aÞ � 1

2

q
. As in one

dimension, this indicates that optimal intermittent strategies
are robust and widely independent of the details of the
description of the detection mechanism.

3. Dimension 3

a. Static mode

We study in this section the case where the detection phase
is modeled by the static mode, for which the searcher does not
move during the detection phase, and has a finite reaction rate
with the target if it is within a detection radius a (see Fig. 21).

i. Equations. Denoting by t1ðrÞ the mean first-passage time
to the target starting from a distance r from the target in
phase 1 (detection phase), and by t2;�;�ðrÞ the mean first-

passage time to the target starting from a distance r from the

FIG. 41. Ballistic mode in two dimensions. lnðtmÞ as a function of lnð�2Þ. Simulations (symbols), diffusive-diffusive approximation (B50)

with (B65) (lines), �1 ! 0 limit (B66) (line), �1 ! 1 (no intermittence) (B64) (dotted line). b ¼ 30, a ¼ 1, V ¼ 1. �1 ¼ 0 ( ? ), �1 ¼ 0:17
( � ), �1 ¼ 0:92 (�), �1 ¼ 5:0 (	 ), �1 ¼ 28 ( � ), �1 ¼ 150 (þ ), �1 ¼ 820 (h).
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target in phase 2 (relocation phase) with a ballistic motion in
a direction characterized by � and �, we obtain

~V � ~5t2;�;� þ 1

�2
ðt1 � t2;�;�Þ ¼ �1: (B70)

Then outside the target (r > a)

1

�1

�
1

4�

Z �

0
d� sin�

Z 2�

0
d�t2;�;� � t1

�
¼ �1; (B71)

and inside the target (r � a)

1

�1

1

4�

Z �

0
d� sin�

Z 2�

0
d�t2;�;� �

�
1

�1
þ k

�
t1 ¼ �1:

(B72)

Defining t2 ¼ 1
4�

R
�
0 d� sin�

R
2�
0 d�t2;�;�, one obtains out-

side the target (r > a)

1

�1
ðt2 � t1Þ ¼ �1; (B73)

and inside the target (r < a)

1

�1
t2 �

�
1

�1
þ k

�
t1 ¼ �1: (B74)

Making a similar decoupling approximation as in two dimen-
sions leads finally to

V2�2
3

�t2 � 1

�2
ðt1 � t2Þ ¼ �1: (B75)

These equations are solved inside and outside the target,
using the following boundary conditions:

dtout2

dr

��������r¼b
¼ 0; (B76)

tout2 ðaÞ ¼ tin2 ðaÞ; (B77)

dtout2

dr

��������r¼a
¼ dtin2

dr

��������r¼a
; (B78)

and the condition that tin2 ð0Þ should be finite.

ii. Results. The following approximate expression of the
mean search time is found in the low-density limit:

tm ¼ b3ð�2 þ �1Þ
a

�ð1þ k�1Þ
�1ka

2
þ 6

5�22V
2

�
: (B79)

This expression of tm can be minimized for

FIG. 42. Static mode in three dimensions. lnðtmÞ as a function of lnð�2Þ for different values of �1, a, and b=a. Comparison among

simulations (symbols), analytical expression (line), and its asymptotics for b � a obtained by Loverdo et al. (2009b) (small dots), and

simple expression for b � a and small � (B79) (dashed line). �1 ’ �
opt
1 ’ 0:74

ffiffiffiffiffiffiffiffiffiffiffiffi
aV=k

p
(B80) (þ ), �1 ¼ 0:25

ffiffiffiffiffiffiffiffiffiffiffiffi
aV=k

p
( � ), �1 ¼ 2:5

ffiffiffiffiffiffiffiffiffiffiffiffi
aV=k

p
(h). V ¼ 1, k ¼ 1.
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�
opt
1 ¼

�
3

10

�
1=4

ffiffiffiffiffiffi
a

Vk

r
; (B80)

�
opt
2 ¼ ffiffiffiffiffiffiffi

1:2
p a

V
; (B81)

and the minimum mean search time finally reads

t
opt
m ¼ 1ffiffiffi

5
p 1

k

b3

a3

� ffiffiffiffiffiffi
ak

V

s
241=4 þ 51=4

�
2
: (B82)

Data obtained by numerical simulations (Fig. 42) are in
good agreement with the analytical expression (B79) except
for small �2 or small b, where a refined analytical expression
can be obtained [see Loverdo et al. (2009b)]. In particular,
the position of the minimum is very well approximated, and
the error on the value of the mean search time at the minimum
is close to 10%.

With the static detection mode, intermittence is always
favorable and leads to a single optimal intermittent strategy.
As in one and two dimensions, the optimal duration of the
relocation phase does not depend on k, i.e., on the description
of the detection phase. In addition, this optimal strategy does
not depend on the typical distance between targets b.

Note that for the static mode in the three cases studied

(1, 2, and 3 dimensions), we have �
opt
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
opt
2 =ð2kÞ

q
. This

relation between the optimal durations of the two phases is
independent of the dimension.

b. Diffusive mode

We now study the case where the detection phase is
modeled by a diffusive mode. During the detection phase,
the searcher diffuses and detects the target as soon as its
respective distance is less than a (see Fig. 21).

i. Equations. Outside the target (r > a), one has

~V � ~5t2;�;� þ 1

�2
ðt1 � t2;�;�Þ ¼ �1; (B83)

D�t1 þ 1

�1

�
1

4�

Z �

0
d� sin�

Z 2�

0
d�t2;�;� � t1

�
¼ �1;

(B84)

and inside the target (r � a)

~V � ~rt2;�;� � 1

�2
t2;�;� ¼ �1; (B85)

t1 ¼ 0: (B86)

With t2 ¼ 1
4�

R
�
0 d� sin�

R
2�
0 d�t2;�;�, one obtains outside

the target (r > a)

D�tout1 þ 1

�1
ðtout2 � tout1 Þ ¼ �1: (B87)

The decoupling approximation described previously then
yields outside the target

V2�2
3

�tout2 þ 1

�2
ðtout1 � tout2 Þ ¼ �1; (B88)

and inside the target (r � a)

V2�2
3

�tint2 � 1

�2
tint2 ¼ �1: (B89)

These equations are completed by the following boundary
conditions:

dtout2

dr

��������r¼b
¼ 0; (B90)

tout2 ðaÞ ¼ tint2 ðaÞ; (B91)

dtout2

dr

��������r¼a
¼ dtint2

dr

��������r¼a
: (B92)

ii. Results in the general case. Through standard
but lengthy calculations the above system can be solved
and leads to an analytical approximation of tm [see Loverdo
et al. (2009b)]. In the regime b � a and

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1DÞ�1 þ 3ð�2vÞ�2

p � 1, one obtains

tm ¼ b3�4
2ð�1 þ �2Þ
�1

	 tanhð�2aÞ þ �1=�2

�1�
2
2�1Da½tanhð�2aÞ þ �1=�2� � tanhð�2aÞ

(B93)

with �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22V

2 þ 3�1D
q

=�2V
ffiffiffiffiffiffiffiffiffi
D�1

p
and �2 ¼

ffiffiffi
3

p
=V�2. It

can be shown that tm only weakly depends on �1, which
indicates that this variable will be less important than �2 in
the minimization of the search time. The relevant order of
magnitude for �

opt
1 can be evaluated by comparing the typical

diffusion length Ldiff ¼
ffiffiffiffiffiffiffiffiffi
6Dt

p
and the typical ballistic length

Lbal ¼ Vt. An estimate of the optimal time �
opt
1 can be given

by the time scale for which those lengths are of the same
order, which gives

�
opt
1 � 6D

V2
: (B94)

In turn, the minimization of tm leads to

�
opt
2 ¼

ffiffiffi
3

p
a

Vx
; (B95)

with x the solution of

2 tanhðxÞ � 2xþ x tanhðxÞ2 ¼ 0: (B96)

This finally yields

�
opt
2 ’ 1:078

a

V
: (B97)

It is important that this approximate expression is very

close to the expression obtained for the static mode (�
opt
2 ¼

ð ffiffiffiffiffiffiffiffi
6=5

p Þða=VÞ ’ 1:095ða=VÞ) (B81), and there is no depen-
dence on the typical distance between targets b. The simpli-
fied expression for the minimal tm can then be obtained as

t
opt
m ¼ b3x2ffiffiffi

3
p

a2V
½x� tanhðxÞ��1 ’ 2:18

b3

a2V
; (B98)

and the gain reads
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gain ¼ tdiff

t
opt
m

’ 0:15
aV

D
; (B99)

where the search time without intermittence is given by
tdiff ’ b3=3Da for b � a (Redner, 2001).

There is a range of parameters for which intermittence
is favorable, as indicated by Fig. 43. Both the analytical
expression for t

opt
m in the regimes without intermittence and

with intermittence (B98) scale as b3. However, the depen-
dence on a is different. In the diffusive regime tm / a�1,
whereas in the intermittent regime tm / a�2. This enables
us to define a critical ac, such that when a > ac, intermittence
is favorable: ac ’ 6:5D=V is the value for which the gain
(B99) is 1.

c. Ballistic mode

We now discuss the last case, where the detection phase 1
is modeled by a ballistic mode (see Fig. 21). Since an explicit
analytical determination of the search time seems out of
reach, a numerical exploration of the parameter space is
needed to identify the regimes where the search time can
be minimized. Approximation schemes are then developed
in each regime to obtain analytical expressions [more details
are given in Loverdo et al. (2009b)].

i. Numerical study. The numerical analysis performed by
Loverdo et al. (2009b) puts forward two strategies minimiz-
ing the search time, depending on a critical value vc

l to be

determined later on:
(i) When vl > vc

l , �
opt
1 ! 1 and �

opt
2 ! 0. In this regime

intermittence is not favorable.
(ii) When vl < vc

l , �
opt
1 ! 0 and �

opt
2 is finite. In this

regime the optimal strategy is intermittent.
ii. Regime without intermittence (single-state ballistic

searcher): �2 ! 0. Following the same argument as in two
dimensions, without intermittence the best strategy is ob-
tained in the limit �1 ! 1 in order to minimize oversampling
of the search space. Following the derivation of (B64) [see
Loverdo et al. (2009b) for details], it is found that the search
time reads

tbal ¼ 4b3

3a2vl

: (B100)

iii. Regime with intermittence. In the regime of favorable
intermittence, the numerical study suggests that the best
strategy is realized for �1 ! 0. In this regime �1 ! 0, phase 1
can be well approximated by diffusion with an effective
diffusion coefficient Deff ¼ v2

l �1=3. The analytical expres-

sion tm derived in (B93) can then be used and yields for
�1 ¼ 0 and b � a

tm ¼ b3
ffiffiffi
3

p
V2�22

2
4

ffiffiffi
3

p
a

V�2
� tanh

0
@

ffiffiffi
3

p
a

V�2

1
A
3
5�1

: (B101)

Then one finds straightforwardly that �
opt
2 ¼ ffiffiffi

3
p

a=Vx, where
x is the solution of x tanhðxÞ2 þ 2 tanhðxÞ � 2x ¼ 0, that is,
x ’ 1:606. Using this optimal value of �2 in the expression
of tm, one finally obtains

t
opt
m ¼ 2ffiffiffi

3
p x

tanhðxÞ2
b3

a2V
’ 2:18

b3

a2V
: (B102)

These expressions show good agreement with numerical
simulations [see Loverdo et al. (2009b)].

iv. Discussion of the critical value vc
l . The gain is given by

gain ¼ tbal

t
opt
m

’ 0:61
V

vl

: (B103)

As in two dimensions, it is trivial that vc
l < V, and the critical

value vc
l can be defined as the value of vl such that gain ¼ 1.

This yields

vc
l ’ 0:6V: (B104)

Importantly, vc
l depends on neither b nor a. Simulations are in

good agreement with this result, except for a small numerical
shift.

FIG. 43. Diffusive mode in three dimensions. tm=tdiff as a function of �2 for different values of the ratio b=a (logarithmic scale). The full

analytical form given in Loverdo et al. (2009b) (plain lines) is plotted against the simplified expression (B93) (dashed lines), the simplified

expression with �1 ¼ 0 (dotted line), and numerical simulations (symbols) for the following values of the parameters (arbitrary units): a ¼ 1
(h); a ¼ 5 ( ? ); a ¼ 7 ( � ); a ¼ 10 (þ ); a ¼ 14 (	 ); a ¼ 20 (�). �1 ¼ 6 everywhere except for the small dots, V ¼ 1, D ¼ 1. tm=tdiff
presents a minimum only for a > ac ’ 4.
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d. Conclusion in dimension 3

For the three possible modelings of the detection mode
(static, diffusive, and ballistic) in three dimensions, there
is a regime where the optimal strategy is intermittent.
Remarkably, and as was the case in one and two dimensions,
the optimal time to spend in the fast nonreactive phase 2 is
independent of the modeling of the detection mode and reads
�
opt
2 ’ 1:1a=V. Additionally, while the mean first-passage

time to the target scales as b3, the optimal values of the
durations of the two phases do not depend on the target
density a=b.
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Voituriez, C. Escudé, W. Wende, A. Pingoud, and P. Desbiolles,

2008, Nucleic Acids Res. 36, 4118.

Boyer, D., G. Ramos-Fernandez, O. Miramontes, J. L. Mateos, G.

Cocho, H. Larralde, H. Ramos, and F. Rojas, 2006, Proc. R. Soc.

B 273, 1743.

Bressloff, P., and J. Newby, 2009, New J. Phys. 11, 023033.

Bunde, A., and S. Havlin, 1991, Fractals and Disordered Systems

(Springer, Berlin).

Caspi, A., R. Granek, and M. Elbaum, 2000, Phys. Rev. Lett. 85,

5655.

Caspi, A., R. Granek, and M. Elbaum, 2002, Phys. Rev. E 66,

011916.

Champagne, L., R. G. Carl, and R. Hill, 2003, Proceedings of The

2003 Winter Simulation Conference 1–2, p. 991, http://ieeexplor-

e.ieee.org/xpls/abs_all.jsp?arnumber=1261521&tag=1.

Charnov, E. L., 1976, Theor. Popul. Biol. 9, 129.

Chechkin, A.V., M. Hofmann, and I. V. Sokolov, 2009, Phys. Rev. E

80, 031112.

Chechkin, A.V., I.M. Zaid, M.A. Lomholt, I.M. Sokolov, and R.

Metzler, 2009, Phys. Rev. E 79, 040105.

Condamin, S., O. Bénichou, and J. Klafter, 2007a, Phys. Rev. Lett.

98, 250602.

Condamin, S., O. Bénichou, and M. Moreau, 2005a, Phys. Rev. E

72, 016127.

Condamin, S., O. Bénichou, and M. Moreau, 2005b, Phys. Rev.

Lett. 95, 260601.

Condamin, S., O. Bénichou, V. Tejedor, R. Voituriez, and J. Klafter,

2007b, Nature (London) 450, 77.

Condamin, S., V. Tejedor, and O. Bénichou, 2007c, Phys. Rev. E 76,

050102.

Condamin, S., V. Tejedor, R. Voituriez, O. Bénichou, and J. Klafter,

2008, Proc. Natl. Acad. Sci. U.S.A. 105, 5675.

Coppey, M., O. Bénichou, R. Voituriez, and M. Moreau, 2004,

Biophys. J. 87, 1640.

Dahirel, V., F. Paillusson, M. Jardat, M. Barbi, and J.-M. Victor,

2009, Phys. Rev. Lett. 102, 228101.

da Luz, M., A. Grosberg, E. Raposo, and G. Viswanathan, 2009, J.

Phys. A 42.

d’Auriac, J., A. Benoit, and A. Rammal, 1983, J. Phys. A 16, 4039.

de Gennes, P., 1976, La Recherche 7, 919, http://www

.larecherche.fr/content/recherche/article?id=14386.

Bénichou et al.: Intermittent search strategies 127

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011

http://dx.doi.org/10.1209/0295-5075/31/2/002
http://dx.doi.org/10.1093/beheco/8.3.307
http://dx.doi.org/10.1093/beheco/8.3.307
http://dx.doi.org/10.1016/S0014-5793(04)00249-2
http://dx.doi.org/10.1073/pnas.192393499
http://dx.doi.org/10.1073/pnas.192393499
http://dx.doi.org/10.1038/emboj.2009.340
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevE.70.041901
http://dx.doi.org/10.1103/PhysRevE.70.041901
http://dx.doi.org/10.1111/j.1600-0706.2009.17313.x
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1073/pnas.0801926105
http://dx.doi.org/10.1073/pnas.0801926105
http://dx.doi.org/10.1073/pnas.2137243100
http://dx.doi.org/10.1016/S0022-5193(05)80768-4
http://dx.doi.org/10.1890/06-1769.1
http://dx.doi.org/10.1038/nchem.622
http://dx.doi.org/10.1103/PhysRevLett.106.038102
http://dx.doi.org/10.1103/PhysRevLett.106.038102
http://dx.doi.org/10.1209/epl/i2005-10001-y
http://dx.doi.org/10.1103/PhysRevLett.94.198101
http://dx.doi.org/10.1088/0953-8984/17/49/020
http://dx.doi.org/10.1016/j.physa.2005.05.028
http://dx.doi.org/10.1209/epl/i2006-10100-3
http://dx.doi.org/10.1103/PhysRevLett.105.150606
http://dx.doi.org/10.1007/s10955-011-0138-6
http://dx.doi.org/10.1103/PhysRevLett.103.138102
http://dx.doi.org/10.1103/PhysRevLett.103.138102
http://dx.doi.org/10.1103/PhysRevE.74.020102
http://dx.doi.org/10.1088/0953-8984/19/6/065141
http://dx.doi.org/10.1039/b811447c
http://dx.doi.org/10.1209/0295-5075/84/38003
http://dx.doi.org/10.1209/0295-5075/84/38003
http://dx.doi.org/10.1103/PhysRevLett.101.130601
http://dx.doi.org/10.1103/PhysRevLett.101.130601
http://dx.doi.org/10.1103/PhysRevLett.100.168105
http://dx.doi.org/10.1103/PhysRevLett.100.168105
http://dx.doi.org/10.1063/1.3264122
http://dx.doi.org/10.1016/0301-4622(76)80017-8
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1209/epl/i2003-00208-x
http://dx.doi.org/10.1073/pnas.0436709100
http://dx.doi.org/10.1093/nar/gkn376
http://dx.doi.org/10.1098/rspb.2005.3462
http://dx.doi.org/10.1098/rspb.2005.3462
http://dx.doi.org/10.1088/1367-2630/11/2/023033
http://dx.doi.org/10.1103/PhysRevLett.85.5655
http://dx.doi.org/10.1103/PhysRevLett.85.5655
http://dx.doi.org/10.1103/PhysRevE.66.011916
http://dx.doi.org/10.1103/PhysRevE.66.011916
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1261521&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1261521&tag=1
http://dx.doi.org/10.1016/0040-5809(76)90040-X
http://dx.doi.org/10.1103/PhysRevE.80.031112
http://dx.doi.org/10.1103/PhysRevE.80.031112
http://dx.doi.org/10.1103/PhysRevE.79.040105
http://dx.doi.org/10.1103/PhysRevLett.98.250602
http://dx.doi.org/10.1103/PhysRevLett.98.250602
http://dx.doi.org/10.1103/PhysRevE.72.016127
http://dx.doi.org/10.1103/PhysRevE.72.016127
http://dx.doi.org/10.1103/PhysRevLett.95.260601
http://dx.doi.org/10.1103/PhysRevLett.95.260601
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1103/PhysRevE.76.050102
http://dx.doi.org/10.1103/PhysRevE.76.050102
http://dx.doi.org/10.1073/pnas.0712158105
http://dx.doi.org/10.1529/biophysj.104.045773
http://dx.doi.org/10.1103/PhysRevLett.102.228101
http://dx.doi.org/10.1088/0305-4470/16/17/020
http://www.larecherche.fr/content/recherche/article?id=14386
http://www.larecherche.fr/content/recherche/article?id=14386


Dı́az de la Rosa, M.A., E. F. Koslover, P. J. Mulligan, and A. J.

Spakowitz, 2010, Biophys. J. 98, 2943.

Dix, J. A., and A. S. Verkman, 2008, Annu. Rev. Biophys. 37, 247.

Dobbie, J.M., 1968, Oper. Res. 16, 525.

Dussutour, A., J. L. Deneubourg, and V. Fourcassie, 2005, Proc. R.

Soc. B 272, 705.

Edwards, A.M., R. A. Phillips, N.W. Watkins, M. P. Freeman, E. J.

Murphy, V. Afanasyev, S. V. Buldyrev, M.G. E. Da Luz, E. P.

Raposo, H. E. Stanley, and G.M. Viswanathan, 2007, Nature

(London) 449, 1044.

Elf, J., G.W. Li, and X. S. Xie, 2007, Science 316, 1191.

Eliazar, I., T. Koren, and J. Klafter, 2007, J. Phys. Condens. Matter

19, 065140.

Eliazar, I., T. Koren, and J. Klafter, 2008, J. Phys. Chem. B 112,

5905.

Flores, J. C., 2007, Europhys. Lett. 79, 18004.

Florescu, A.-M., and M. Joyeux, 2009, J. Chem. Phys. 130, 015103.

Frost, J. R., and L.D. Stone, 2001, http.//www.rdc.uscg.gov/reports/

2001/cgd1501dpexsum.pdf.

Fujiwara, M., P. Sengupta, and S. L. McIntire, 2002, Neuron 36,

1091.

Gardiner, C.W., 1996, Handbook of Stochastic Methods: For

Physics, Chemistry and the Natural Sciences (Springer, New

York).

Gorman, J., and E. C. Greene, 2008, Nat. Struct. Mol. Biol. 15, 768.

Gowers, D.M., G. G. Wilson, and S. E. Halford, 2005, Proc. Natl.

Acad. Sci. U.S.A. 102, 15883.

Grosberg, A. Y., S. K. Nechaev, and E. I. Shakhnovich, 1988,

J. Phys. (Paris) 49, 2095.

Halford, S. E., 2009, Biochem. Soc. Trans. 37, 343.

Halford, S. E., and J. F. Marko, 2004, Nucleic Acids Res. 32, 3040.

Hanggi, P., P. Talkner, and M. Borkovec, 1990, Rev. Mod. Phys. 62,

251.

He, Y., S. Burov, R. Metzler, and E. Barkai, 2008, Phys. Rev. Lett.

101, 058101.

Hill, S., M. T. Burrows, and R.N. Hughes, 2000, J. Fish Biol. 56,

1497.

Howard, J., A. . Hudspeth, and R.D. Vale, 1989, Nature (London)

342, 154.

Hsieh, M., and M. Brenowitz, 1997, J. Biol. Chem. 272, 22092.

Hu, L. H., A. Y. Grosberg, and R. Bruinsma, 2008, Biophys. J. 95,

1151.

Hu, T., A. Y. Grosberg, and B. I. Shklovskii, 2006, Biophys. J. 90,

2731.

Hu, T., and B. I. Shklovskii, 2006, Phys. Rev. E 74, 021903.

Hu, T., and B. I. Shklovskii, 2007, Phys. Rev. E 76, 051909.

Huet, S., E. Karatekin, V. S. Tran, I. Fanget, S. Cribier, and J. P.

Henry, 2006, Biophys. J. 91, 3542.

Huey, R. B., 1968, The Psychology and Pedagogy of Reading (MIT

Press, Cambridge, MA).

James, A., M. J. Plank, and R. Brown, 2008, Phys. Rev. E 78,

051128.

Jeltsch, A., and A. Pingoud, 1998, Biochemistry 37, 2160.

Jiang, B., J. Yin, and S. Zhao, 2009, Phys. Rev. E 80, 021136.

Kabata, H., O. Kurosawa, I. Arai, M. Washizu, S. A. Margarson,

R. E. Glass, and N. Shimamoto, 1993, Science 262, 1561.

Kac, M., 1959, Probability and Related Topics in Physical Sciences

(Interscience, New York).

Kafri, Y., and R.A. Da Silveira, 2008, Phys. Rev. Lett. 100,

238101.

Kalodimos, C. G., N. Biris, A.M. J. J. Bonvin, M.M. Levandoski,

M. Guennuegues, R. Boelens, and R. Kaptein, 2004, Science 305,

386.

Kampmann, M., 2005, Mol. Microbiol. 57, 889.

Kiontke, K., and W. Sudhaus, 2005, in WormBook, edited by The C.

elegans Research Community, http://www.wormbook.org.

Knoppien, P., and J. Reddingius, 1985, J. Theor. Biol. 114, 273.

Kolesov, G., Z. Wunderlich, O.N. Laikova, M. S. Gelfand, and L.A.

Mirny, 2007, Proc. Natl. Acad. Sci. U.S.A. 104, 13948.

Komazin-Meredith, G., R. Mirchev, D. E. Golan, A.M. van Oijen,

and D.M. Coen, 2008, Proc. Natl. Acad. Sci. U.S.A. 105, 10721.

Kramer, D. L., and R. L. McLaughlin, 2001, American Zoologist 41,

137, http://icb.oxfordjournals.org/content/41/2/137.full.

Levitz, P., M. Zinsmeister, P. Davidson, D. Constantin, and O.

Poncelet, 2008, Phys. Rev. E 78, 030102.

Li, G.W., O. G. Berg, and J. Elf, 2009, Nature Phys. 5, 294.

Li, L., S. F. Nørrelykke, and E. C. Cox, 2008, PLoS ONE 3, e2093.

Lieberman-Aiden, E., N. L. van Berkum, L. Williams, M. Imakaev,

T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M.O.

Dorschner, R. Sandstrom, B. Bernstein, M.A. Bender, M.

Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S.

Lander, and J. Dekker, 2009, Science 326, 289.

Lomholt, M.A., T. Ambjornsson, and R. Metzler, 2005, Phys. Rev.

Lett. 95, 260603.

Lomholt, M.A., T. Koren, R. Metzler, and J. Klafter, 2008, Proc.

Natl. Acad. Sci. U.S.A. 105, 11055.

Lomholt, M.A., B. van den Broek, S.M. J. Kalisch, and G. L.W.R.

Metzler, 2009, Proc. Natl. Acad. Sci. U.S.A. 106, 8204.

Lomholt, M.A., I.M. Zaid, and R. Metzler, 2007, Phys. Rev. Lett.

98, 200603.

Loverdo, C., O. Bénichou, M. Moreau, and R. Voituriez, 2008,

Nature Phys. 4, 134.

Loverdo, C., O. Bénichou, M. Moreau, and R. Voituriez, 2009a,

J. Stat. Mech. (2009) P02045.

Loverdo, C., O. Bénichou, M. Moreau, and R. Voituriez, 2009b,

Phys. Rev. E 80, 031146.

Loverdo, C., O. Bénichou, R. Voituriez, A. Biebricher, I. Bonnet,

and P. Desbiolles, 2009c, Phys. Rev. Lett. 102, 188101.

Maeda, K., Y. Imae, J. I. Shioi, and F. Oosawa, 1976, J. Bacteriol.

127, 1039, http://jb.asm.org/cgi/content/abstract/127/3/1039.

Malchus, N., and M. Weiss, 2009, J. Fluoresc. 20, 19.

Mandelbrot, B. B., and J.W. van Ness, 1968, SIAM Rev. 10, 422.

Meerschaert, M.M., E. Nane, and Y.M. Xiao, 2009, Stat. Probab.

Lett. 79, 1194.

Meroz, Y., I. Eliazar, and J. Klafter, 2009, J. Phys. A 42, 434012.

Metzler, R., and J. Klafter, 2000, Phys. Rep. 339, 1.

Mirny, L., 2008, Nature Phys. 4, 93.

Moreau, M., O. Bénichou, C. Loverdo, and R. Voituriez, 2009a,

J. Stat. Mech. P12006.

Moreau, M., O. Bénichou, C. Loverdo, and R. Voituriez, 2007,

Europhys. Lett. 77, 20006.

Moreau, M., O. Bénichou, C. Loverdo, and R. Voituriez, 2009b,

J. Phys. A 42, 434007.

Moreau, M., G. Oshanin, O. Bénichou, and M. Coppey, 2003, Phys.

Rev. E 67, 045104.

Moreau, M., G. Oshanin, O. Bénichou, and M. Coppey, 2004, Phys.

Rev. E 69, 046101.

Nedelec, F., T. Surrey, and A. C. Maggs, 2001, Phys. Rev. Lett. 86,

3192.

Newby, J.M., and P. C. Bressloff, 2009, Phys. Rev. E 80, 021913.

O’Brien, W. J., H. I. Browman, and B. I. Evans, 1990, Am. Sci. 78,

152.

O’Brien, W. J., B. I. Evans, and H. I. Browman, 1989, Oecologia 80,

100.

Oshanin, G., K. Lindenberg, H. S. Wio, and S. F. Burlatsky, 2009,

J. Phys. A 42, 434008.

Oshanin, G., H. S. Wio, K. Lindenberg, and S. F. Burlatsky, 2007,

J. Phys. Condens. Matter 19, 065142.

128 Bénichou et al.: Intermittent search strategies

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011

http://dx.doi.org/10.1016/j.bpj.2010.02.055
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125824
http://dx.doi.org/10.1287/opre.16.3.525
http://dx.doi.org/10.1098/rspb.2004.2990
http://dx.doi.org/10.1098/rspb.2004.2990
http://dx.doi.org/10.1038/nature06199
http://dx.doi.org/10.1038/nature06199
http://dx.doi.org/10.1126/science.1141967
http://dx.doi.org/10.1088/0953-8984/19/6/065140
http://dx.doi.org/10.1088/0953-8984/19/6/065140
http://dx.doi.org/10.1021/jp075113k
http://dx.doi.org/10.1021/jp075113k
http://dx.doi.org/10.1209/0295-5075/79/18004
http://dx.doi.org/10.1063/1.3050097
http.//www.rdc.uscg.gov/reports/2001/cgd1501dpexsum.pdf
http.//www.rdc.uscg.gov/reports/2001/cgd1501dpexsum.pdf
http://dx.doi.org/10.1016/S0896-6273(02)01093-0
http://dx.doi.org/10.1016/S0896-6273(02)01093-0
http://dx.doi.org/10.1038/nsmb.1441
http://dx.doi.org/10.1073/pnas.0505378102
http://dx.doi.org/10.1073/pnas.0505378102
http://dx.doi.org/10.1051/jphys:0198800490120209500
http://dx.doi.org/10.1042/BST0370343
http://dx.doi.org/10.1093/nar/gkh624
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/PhysRevLett.101.058101
http://dx.doi.org/10.1103/PhysRevLett.101.058101
http://dx.doi.org/10.1111/j.1095-8649.2000.tb02160.x
http://dx.doi.org/10.1111/j.1095-8649.2000.tb02160.x
http://dx.doi.org/10.1038/342154a0
http://dx.doi.org/10.1038/342154a0
http://dx.doi.org/10.1074/jbc.272.35.22092
http://dx.doi.org/10.1529/biophysj.108.129825
http://dx.doi.org/10.1529/biophysj.108.129825
http://dx.doi.org/10.1529/biophysj.105.078162
http://dx.doi.org/10.1529/biophysj.105.078162
http://dx.doi.org/10.1103/PhysRevE.74.021903
http://dx.doi.org/10.1103/PhysRevE.76.051909
http://dx.doi.org/10.1529/biophysj.105.080622
http://dx.doi.org/10.1103/PhysRevE.78.051128
http://dx.doi.org/10.1103/PhysRevE.78.051128
http://dx.doi.org/10.1021/bi9719206
http://dx.doi.org/10.1103/PhysRevE.80.021136
http://dx.doi.org/10.1126/science.8248804
http://dx.doi.org/10.1103/PhysRevLett.100.238101
http://dx.doi.org/10.1103/PhysRevLett.100.238101
http://dx.doi.org/10.1126/science.1097064
http://dx.doi.org/10.1126/science.1097064
http://dx.doi.org/10.1111/j.1365-2958.2005.04707.x
http://www.wormbook.org
http://dx.doi.org/10.1016/S0022-5193(85)80107-7
http://dx.doi.org/10.1073/pnas.0700672104
http://dx.doi.org/10.1073/pnas.0802676105
http://dx.doi.org/10.1668/0003-1569(2001)041<0137:TBEOIL>2.0.CO;2
http://dx.doi.org/10.1668/0003-1569(2001)041<0137:TBEOIL>2.0.CO;2
http://icb.oxfordjournals.org/content/41/2/137.full
http://dx.doi.org/10.1103/PhysRevE.78.030102
http://dx.doi.org/10.1038/nphys1222
http://dx.doi.org/10.1371/journal.pone.0002093
http://dx.doi.org/10.1126/science.1181369
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1073/pnas.0903293106
http://dx.doi.org/10.1103/PhysRevLett.98.200603
http://dx.doi.org/10.1103/PhysRevLett.98.200603
http://dx.doi.org/10.1038/nphys830
http://dx.doi.org/10.1088/1742-5468/2009/02/P02045
http://dx.doi.org/10.1103/PhysRevE.80.031146
http://dx.doi.org/10.1103/PhysRevLett.102.188101
http://jb.asm.org/cgi/content/abstract/127/3/1039
http://dx.doi.org/10.1007/s10895-009-0517-4
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1016/j.spl.2009.01.007
http://dx.doi.org/10.1016/j.spl.2009.01.007
http://dx.doi.org/10.1088/1751-8113/42/43/434012
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1038/nphys848
http://dx.doi.org/10.1088/1742-5468/2009/12/P12006
http://dx.doi.org/10.1209/0295-5075/77/20006
http://dx.doi.org/10.1088/1751-8113/42/43/434007
http://dx.doi.org/10.1103/PhysRevE.67.045104
http://dx.doi.org/10.1103/PhysRevE.67.045104
http://dx.doi.org/10.1103/PhysRevE.69.046101
http://dx.doi.org/10.1103/PhysRevE.69.046101
http://dx.doi.org/10.1103/PhysRevLett.86.3192
http://dx.doi.org/10.1103/PhysRevLett.86.3192
http://dx.doi.org/10.1103/PhysRevE.80.021913
http://dx.doi.org/10.1007/BF00789938
http://dx.doi.org/10.1007/BF00789938
http://dx.doi.org/10.1088/1751-8113/42/43/434008
http://dx.doi.org/10.1088/0953-8984/19/6/065142


O’Shaughnessy, B., and I. Procaccia, 1985, Phys. Rev. Lett. 54,

455.

Park, S., P.M. Wolanin, E. A. Yuzbasyan, H. Lin, N. C. Darnton,

J. B. Stock, P. Silberzan, and R. Austin, 2003, Proc. Natl. Acad.

Sci. U.S.A. 100, 13910.

Pierce-Shimomura, J. T., T.M. Morse, and S. R. Lockery, 1999, J.

Neurosci. 19, 9557.

Ramezanpour, A., 2007, Europhys. Lett. 77, 60004.

Raposo, E. P., S. V. Buldyrev, M.G. E. Da Luz, M. C. Santos, H. E.

Stanley, and G.M. Viswanathan, 2003, Phys. Rev. Lett. 91,

240601.

Redner, S., 2001, A Guide to First Passage Time Processes

(Cambridge University Press, Cambridge, England).

Reingruber, J., and D. Holcman, 2009, Phys. Rev. Lett. 103, 148102.

Reynolds, A.M., and F. Bartumeus, 2009, J. Theor. Biol. 260,

98.

Rice, S. A., 1985, in Comprehensive Chemical Kinetics, edited

by C.H. Bamford, C. F. H. Tipper, and R.G. Compton (Elsevier,

New York), p. 25.

Richardson, H. R., and L.D. Stone, 1971, Nav. Res. Log. Q. 18, 141.

Riggs, A. D., S. Bourgeoi, and M. Cohn, 1970, J. Mol. Biol. 53, 401.

Rojo, F., C. E. Budde, and H. S. Wio, 2009, J. Phys. A 42, 125002.

Salman, H., A. Abu-Arish, S. Oliel, A. Loyter, J. Klafter, R. Granek,

and M. Elbaum, 2005, Biophys. J. 89, 2134.

Salman, H., and A. Libchaber, 2007, Nature Cell Biology 9,

1098.

Salman, H., A. Zilman, C. Loverdo, M. Jeffroy, and A. Libchaber,

2006, Phys. Rev. Lett. 97, 118101.

Santos, M. C., D. Boyer, O. Miramontes, G.M. Viswanathan, E. P.

Raposo, J. L. Mateos, and M.G. E. Da Luz, 2007, Phys. Rev. E 75,

061114.

Santos, M. C., E. P. Raposo, G.M. Viswanathan, and M.G. E. Da

Luz, 2004, Europhys. Lett. 67, 734.

Saxton, M. J., 1994, Biophys. J. 66, 394.

Saxton, M. J., 1996, Biophys. J. 70, 1250.

Saxton, M. J., 2007, Biophys. J. 92, 1178.

Sheetz, M. P., and J. A. Spudich, 1983, Nature (London) 303,

31.

Sheinman, M., and Y. Kafri, 2009, Phys. Biol. 6, 016003.

Shlesinger, M. F., 2006, Nature (London) 443, 281.

Shlesinger, M. F., 2009, J. Phys. A 42, 434001.

Shlesinger, M. F., and J. Klafter, 1986, in On Growth and Forms,

edited by H. E. Stanley and N. Ostrowski (Martinus Nijhof

Publishers, Amsterdam), pp. 279–283.

Shlesinger, M. F., and J. Klafter, 1989, J. Phys. Chem. 93, 7023.

Shlesinger, M. F., R. J. West, and J. Klafter, 1987, Phys. Rev. Lett.

58, 1100.

Slutsky, M., and L. Mirny, 2004, Biophys. J. 87, 4021.

Sokolov, I.M., R. Metzler, K. Pant, and M.C. Williams, 2005, Phys.

Rev. E 72, 041102.

Sprenger, W.W., W.D. Hoff, J. P. Armitage, and K. J. Hellingwerf,

1993, J. Bacteriol. 175, 3096, http://jb.asm.org/cgi/content/ab-

stract/175/10/3096.

Stone, L. D., 1989, Oper. Res. 37, 501.

Szymanski, J., and M. Weiss, 2009, Phys. Rev. Lett. 103, 038102.

Tailleur, J., and M. E. Cates, 2008, Phys. Rev. Lett. 100, 218103.

Taylor, J. D., and S. E. Halford, 1989, Biochemistry 28, 6198.

Tejedor, V., O. Benichou, R. Voituriez, R. Jungmann, F. Simmel,

C. Selhuber-Unkel, L. B. Oddershede, and R. Metzler, 2010,

Biophys. J. 98, 1364.

Tejedor, V., and R. Metzler, 2010, J. Phys. A 43, 082002.

van den Broek, B., M.A. Lomholt, S.M. J. Kalisch, R. Metzler, and

G. J. L. Wuite, 2008, Proc. Natl. Acad. Sci. U.S.A. 105, 15738.

Vergassola, M., E. Villermaux, and B. I. Shraiman, 2007, Nature

(London) 445, 406.

Viswanathan, G.M., V. Afanasyev, S. V. Buldyrev, E. J. Murphy,

P. A. Prince, and H. E. Stanley, 1996, Nature (London) 381, 413.

Viswanathan, G.M., S. V. Buldyrev, S. Havlin, M.G. E. Da Luz,

E. P. Raposo, and H. E. Stanley, 1999, Nature (London) 401, 911.

Viswanathan, G.M., E. P. Raposo, and M.G. E. Da Luz, 2008, Phys.

Life Rev. 5, 133.

Von Hippel, P. H., 2007, Annu. Rev. Biophys. Biomol. Struct. 36,

79.

von Smoluchowski, M., 1917, Z. Phys. Chem. 92, 129.

Wang, Y.M., R. H. Austin, and E. C. Cox, 2006, Phys. Rev. Lett. 97,

048302.

Wilson, G.G., and N. E. Murray, 1991, Annu. Rev. Genet. 25, 585.

Winter, R. B., O. G. Berg, and P. H. Von Hippel, 1981, Biochemistry

20, 6961.

Winter, R. B., and P. H. Von Hippel, 1981, Biochemistry 20, 6948.

Wunderlich, Z., and L.A. Mirny, 2008, Nucleic Acids Res. 36,

3570.

Bénichou et al.: Intermittent search strategies 129

Rev. Mod. Phys., Vol. 83, No. 1, January–March 2011

http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1073/pnas.1935975100
http://dx.doi.org/10.1073/pnas.1935975100
http://dx.doi.org/10.1209/0295-5075/77/60004
http://dx.doi.org/10.1103/PhysRevLett.91.240601
http://dx.doi.org/10.1103/PhysRevLett.91.240601
http://dx.doi.org/10.1103/PhysRevLett.103.148102
http://dx.doi.org/10.1016/j.jtbi.2009.05.033
http://dx.doi.org/10.1016/j.jtbi.2009.05.033
http://dx.doi.org/10.1002/nav.3800180202
http://dx.doi.org/10.1016/0022-2836(70)90074-4
http://dx.doi.org/10.1088/1751-8113/42/12/125002
http://dx.doi.org/10.1529/biophysj.105.060160
http://dx.doi.org/10.1038/ncb1632
http://dx.doi.org/10.1038/ncb1632
http://dx.doi.org/10.1103/PhysRevLett.97.118101
http://dx.doi.org/10.1103/PhysRevE.75.061114
http://dx.doi.org/10.1103/PhysRevE.75.061114
http://dx.doi.org/10.1209/epl/i2004-10114-9
http://dx.doi.org/10.1016/S0006-3495(94)80789-1
http://dx.doi.org/10.1016/S0006-3495(96)79682-0
http://dx.doi.org/10.1529/biophysj.106.092619
http://dx.doi.org/10.1038/303031a0
http://dx.doi.org/10.1038/303031a0
http://dx.doi.org/10.1088/1478-3975/6/1/016003
http://dx.doi.org/10.1038/443281a
http://dx.doi.org/10.1088/1751-8113/42/43/434001
http://dx.doi.org/10.1021/j100356a028
http://dx.doi.org/10.1103/PhysRevLett.58.1100
http://dx.doi.org/10.1103/PhysRevLett.58.1100
http://dx.doi.org/10.1529/biophysj.104.050765
http://dx.doi.org/10.1103/PhysRevE.72.041102
http://dx.doi.org/10.1103/PhysRevE.72.041102
http://jb.asm.org/cgi/content/abstract/175/10/3096
http://jb.asm.org/cgi/content/abstract/175/10/3096
http://dx.doi.org/10.1287/opre.37.3.501
http://dx.doi.org/10.1103/PhysRevLett.103.038102
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1021/bi00441a011
http://dx.doi.org/10.1016/j.bpj.2009.12.4282
http://dx.doi.org/10.1088/1751-8113/43/8/082002
http://dx.doi.org/10.1073/pnas.0804248105
http://dx.doi.org/10.1038/nature05464
http://dx.doi.org/10.1038/nature05464
http://dx.doi.org/10.1038/381413a0
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1016/j.plrev.2008.03.002
http://dx.doi.org/10.1016/j.plrev.2008.03.002
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144521
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144521
http://dx.doi.org/10.1103/PhysRevLett.97.048302
http://dx.doi.org/10.1103/PhysRevLett.97.048302
http://dx.doi.org/10.1146/annurev.ge.25.120191.003101
http://dx.doi.org/10.1021/bi00527a030
http://dx.doi.org/10.1021/bi00527a030
http://dx.doi.org/10.1021/bi00527a029
http://dx.doi.org/10.1093/nar/gkn173
http://dx.doi.org/10.1093/nar/gkn173

