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Facilitated diffusion of DNA-binding proteins is known to speed up target site location by combining

three dimensional excursions and linear diffusion along the DNA. Here we explicitly calculate the

distribution of the relocation lengths of such 3D excursions, and we quantify the short-range correlated

excursions, also called hops, and the long-range uncorrelated jumps. Our results substantiate recent single-

molecule experiments that reported sliding and 3D excursions of the restriction enzyme EcoRV on

elongated DNA molecules. We extend our analysis to the case of anomalous 3D diffusion, likely to occur

in a crowded cellular medium.
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The kinetics of gene regulation plays a key role for
various cell functions such as the response to external
signals. A limiting step of this complex process is the
location of specific DNA sequences by DNA-binding pro-
teins. This target search process is widely accepted to be
speeded up by facilitated diffusion, which combines a
linear (1D) diffusion of the protein along the DNA called
sliding and three dimensional (3D) excursions named
hopping or jumping that can relocate the protein to an
unexplored region of the DNA [1–3]. Single-molecule
experiments have recently evidenced sliding for a variety
of proteins (for a review, see [4]) and, more lately, hopping
or jumping have been reported for the processivity factor
UL42 [5] and for the restriction enzyme EcoRV [6,7]. The
distinction between hopping and jumping, which both stem
from free 3D diffusion of the protein after dissociation
from DNA, is usually based on the location of the protein
reassociation site on the DNA after a 3D excursion. The
reassociation site is either close, and thus statistically
correlated, to the dissociation site (hopping) or far from
it (jumping) [2,5,8]. Following this definition, we here-
after call hops 3D correlated excursions whose span
(end-to-end length of the 3D excursion) is shorter than
the DNA persistence length � (see Fig. 1 left side) and
we call jumps the other 3D excursions, leading to random
relocations over the DNA, that have been studied exten-
sively [2,7,9–14].

So far an analytical description of hops is still missing,
despite its importance for quantifying the efficiency of
facilitated diffusion. In the context of colocalization
[8,15,16] for instance, it has been observed that in prokar-
yotes, the target sites of transcription factors can be very
close to their coding sequence, making target location by
sliding and hopping much more favorable than by jumping.
Hops could also play a major role when considering the
translocation of a site-specific protein along DNA coated

by other DNA-binding proteins that hinder a linear diffu-
sion over large distances.
Another aspect, which has not been considered so far, is

the modelling of hopping and jumping in a crowded
cellular environment. Crowding can strongly affect the
transport properties of tracer molecules in cells, either in
the cytoplasm or in the nucleus, causing a dynamics often
reported to depart from usual diffusion [17,18]. Though
anomalous diffusion is known to drastically modify the
kinetics of transport limited reactions [19–21], its impact
on facilitated diffusion remains unexplored.
In this Letter, we give the analytical distribution of the

length of 3D relocations on an elongated DNA molecule.
This result has important merits: (i) It not only provides the
distribution of hop lengths, but also gives quantitative
access to the relative importance of hops and jumps in
the biologically relevant case of a randomly coiled DNA.
(ii) It accounts for recent in vitro single-molecule experi-
ments [6], and thus confirms the observation of EcoRV 3D
relocations on elongated DNA molecules. (iii) It can be
generalized to the case of anomalous transport due to
crowding relevant to in vivo situations.
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FIG. 1 (color online). Facilitated diffusion of a protein on
DNA. Left: schematic definition of sliding, hopping, and jump-
ing. Right: model parameters.
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Normal diffusion.—We first introduce the model in the
case of diffusive transport. We consider a pointlike protein
diffusing in 3D with a diffusion coefficient D, and model
the DNA molecule by an infinite cylinder of radius a (see
Fig. 1 right side). The density probability that the protein is
at time t at r knowing that it was at r0 at time 0 satisfies the
backward diffusion equation [22]:

@tPðr; tjr0Þ ¼ D�r0Pðr; tjr0Þ: (1)

We use cylindrical coordinates and assume standard radia-
tive boundary conditions,

@r0Pðr; tjr0Þðr0 ¼ aÞ ¼ �Pðr; tjr0Þðr0 ¼ aÞ (2)

to describe the adsorption of the protein on DNA. The
parameter � has the dimension of the inverse of a length,
and is proportional to the adsorption rate [23]. We first
determine the equation satisfied by the density probability
�ðzjr0Þ of being adsorbed on the DNA at the longitudinal
absciss z, starting from the point r0. Using the relation
between the first-return time probability density at the
longitudinal absciss z on the DNA Fðz; tjr0Þ and the proba-
bility current [23] one can show that

�ðzjr0Þ ¼ 2�aD
Z 1

0
@rPða; z; tjr0Þdt: (3)

Using Eqs. (1) and (2), it is then easy to obtain that

�r0�ðzjr0Þ ¼ 0

@r0�ðzjr0Þðr0 ¼ aÞ ¼ ��ðzjr0Þðr0 ¼ aÞ: (4)

After Fourier transform this equation yields finally

�ðzjr0Þ ¼ 1

�

Z 1

0
cosðkzÞ K0ðkr0Þ

K0ðkaÞ þ K1ðkaÞk=�dk; (5)

where Ki (and later Ji) denote Bessel functions. Several
comments are in order. (i) First, the behavior of the relo-
cation length distribution at large z is given by �ðzjr0Þ �
½lnðr0=aÞ þ ð�aÞ�1�=½2zln2ðz=aÞ�. This wide tail distribu-
tion shows the importance of long-range relocations, remi-
niscent of the distribution of return times to the DNA
[23,24]. More precisely, it can be shown that, starting
from the DNA (r0 ¼ a), the median of the distribution
(5) is given by a expð1=�aÞ (assuming ��1 > a), which
gives an interpretation of the parameter � alternative to the
previous definition (2). (ii) Most importantly, these results
are relevant to in vivo situations when the DNA has a
random coil conformation, as for z < � (where � is the
DNA persistence length) the DNA can be modeled as a
cylinder. Thus, Eq. (5) gives directly the distribution of
hops, which could be accessed only numerically so far. On
the other hand, since we consider as jumps the relocations
longer than �, the probability of performing a jump rather
than a hop is given by the complementary cumulative
distribution:

Cðz ¼ �Þ ¼
Z
jzj>�

�ðzjr0Þdz� lnðr0=aÞ þ 1=�a

lnð�=aÞ : (6)

Hence, as soon as the protein departs the DNA further than
its diameter, it has a significant probability of performing a
jump. In the context of target localization, Eq. (6) shows
that in situations where jumping is favorable, reducing the
persistence length makes the search process faster, as was
found in [7] where the persistence length could be effec-
tively tuned by stretching the DNA.
Application to single-molecule experiments.—Using our

approach, we now give a quantitative interpretation of
single-molecule experiments. In [6] we have reported the
direct observation by total internal reflection fluorescence
microscopy of the interaction of the restriction enzyme
EcoRV with elongated DNA molecules. At low salt con-
centrations [NaCl], we observed a linear diffusion (sliding)
of the enzyme along the DNAwith a 1D diffusion constant
D1 ’ 10�2 �m2 � s�1. We also observed fast and long-
range relocations (>zm ¼ 200 nm) within an observation
time tobs ¼ 40 ms, in a proportion significantly larger than
expected by sliding. They were interpreted as 3D excur-
sions accomplished with a 3D diffusion constant D3 ’
50 �m2 � s�1, i.e., much larger than D1. We determined
the complementary cumulative distribution of the lengths
of these large relocations.
Though our theoretical approach provides the distribu-

tion of 3D relocations for an infinitely long DNA, it can be
adapted to the experiments. First, to account for the finite
observation time tobs, we use the following alternative
writing of the relocation length distribution:

�ðzÞ ¼
Z tobs

0
Pkðz; tÞF?ðtjaÞdt; (7)

where Pkðz; tÞ ¼ ð4�DtÞ�1=2 expð�z2=4DtÞ is the 1D

propagator along the DNA, and F?ðtjaÞ is the first-passage
density to DNA in the orthogonal plane, yielded by nu-
merical inversion of its Laplace transform [23]:

F̂ ?ðsjaÞ ¼ K0ðxÞ
K0ðxÞ þ ð�aÞ�1K1ðxÞ

; (8)

with x ¼ a
ffiffiffiffiffiffiffiffiffi
s=D

p
. Second, we take into account the finite

length of the DNA. In the experiments, the DNA was
elongated and the DNA ends, separated by L ’ 2:2 �m,
were chemically bound to a surface. Because of its low
nonspecific interactions with the proteins this surface can
be considered as reflective. For analytical purposes we
consider an effective geometry and model the DNA by a
finite cylinder of radius a (given by the sum of the DNA
and enzyme radii) and length L standing between two
reflective planes perpendicular to the cylinder axis. This
approximation is expected to be valid in the regime that we
consider here where tobs is small so that multiple reflections
are very unlikely. The effect of the reflective planes is dealt
with using the method of images. Assuming a homoge-
neous distribution of the starting point, we obtain through
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standard calculations the probability density of observ-
ing a relocation of length z within an observation time
tobs:�rðzÞ ¼ 2

L

P1
n¼0 Yn, with Y0¼

R1
z �ðxÞdxþðL�

zÞ�ðzÞ, and Yn>0¼ðL�zÞ½�ð2nLþzÞþ�ð2nL�zÞ��R
2nLþz
2nL�z�ðxÞdx.
Experimentally, the cumulative distribution of the relo-

cation lengths z was found to weakly depend on [NaCl].
This is consistent with biochemical studies that reported
only a slight dependence on [NaCl] of the binding rate to
DNA [25]. Moreover, after normalization by the total
number of observed relocations, the data collapse
(Fig. 2), demonstrating that [NaCl] does not impact on
the shape of the distribution. These normalized cumulative
distributions can be compared to the theoretical prediction
CrðzÞ=CrðzmÞ, where CrðzÞ ¼

R1
z �rðz0Þdz0. As shown in

Fig. 2, the z dependence of the experimental distributions
is in good agreement with our model, which strongly
supports that the observed large relocations are due to 3D
excursions [6]. Since this agreement is obtained for a wide
range of values of ��1 (0–40 nm), a quantitative estimation
of this parameter cannot be obtained using these normal-
ized distributions.

Subdiffusion.—We now turn to the case where crowding
effects in the cellular medium lead to subdiffusion when
the protein dissociates from the DNA. Such behavior has
been reported in many biological situations [17,18], but an
analysis of its quantitative impact on target search is still
missing. As a first step in this direction, we calculate the
relocation length distribution on DNA.

The subdiffusive behavior is usually characterized by a

mean square displacement that scales as [26] h�r2i �
t2=dw , where dw > 2 defines the walk dimension. Such a
scaling law can be obtained from a few microscopic mod-
els. Here we focus on two possibilities: (i) continuous time

random-walks models [26,27], in which at each step the
walker can land on a trap (such as the free cage around the
tracer in a crowded environment) where it can stay for
extended periods of time, and (ii) models based on spatial
inhomogeneities, as diffusion in random fractals such as
critical percolation clusters [28], in which the anomalous
behavior is due to fixed obstacles that create numerous
dead ends. The relative role of these two scenarios in the
subdiffusion observed in cells is still debated [21].
While these two classes of models lead to similar scaling

laws for the mean square displacements, their microscopic
origins are intrinsically different [21] and thus lead to
notable differences in the relocation length distributions.
In the case of subdiffusion stemming from continuous time
random-walks, the geometry of the trajectories is not af-
fected by crowding, and only the dynamics deviates from
normal diffusion. The relocation length distribution, which
depends only on the geometry of trajectories, is therefore
similar to that obtained above with regular diffusion. As a
consequence, Eq. (5) and its implications are still valid in
this case. In contrast, in the case of a fractal type sub-
diffusion, the geometry of trajectories is deeply affected
by crowding. We consider here that after dissociation
from DNA the protein evolves on a fractal embedded in
the 3D space, and keep the notations of Fig. 1. Assuming
that the longitudinal and transverse projections of the
transport process are independent, we use Eq. (7) to write
the relocation length distribution as �ðzjr0Þ ¼R1
0 Pkðz; tÞF?ðtjr0Þdt, where Pk stands for the longitudinal

propagator, characterized by the walk dimension dw and

the fractal dimension dkf of the projected motion, and F? is

the transverse first-passage-time density to DNA, charac-
terized by dimensions dw and d?f .
To go further, we follow [29] and we assume that the

diffusion current obeys the generalized Ficks’s law, which
gives an effective transport operator for any quantity c:

K�rcðrÞ � K

rdf�1

d

dr

�
rdf�dwþ1 d

dr
cðrÞ

�
; (9)

where K is the generalized diffusion coefficient. Note that
for subdiffusion dw > 2 � d?f which means that the ex-

ploration is compact and we can take the limit a ! 0. After
some algebra the first-passage-time density F? reads:

F?ðtjr0Þ ¼ d��?
w Kr

�?dw=2
0

�ð�?Þ
Z 1

0
e�Kutu�?=2J�?ð�

ffiffiffi
u

p Þdu;
(10)

where �¼2rdw=20 =dw and �i¼1�dif=dw (here i¼? , k).
Using the propagator found in [29], we finally obtain the
following explicit result:

�ðzjr0Þ ¼ �
Z 1

0
uð�?��kÞ=2J�?ð�

ffiffiffi
u

p ÞK�k ð�
ffiffiffi
u

p Þdu; (11)

with � ¼ 2zdw=2=dw and

C
 (

z 
 )

r

C
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r

m
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FIG. 2 (color online). Cumulative distribution of hop length
z (�m) normalized by the number of hops larger than zm ¼
200 nm. Data from [6] (in PIPES buffer): black crosses ¼
10 mM NaCl, red diamonds ¼ 20 mM NaCl, green boxes ¼
40 mM NaCl, blue circles ¼ 60 mM NaCl. Solid lines: distri-
bution from our model for ��1 ¼ 0:5 nm (lower green lines),
��1 ¼ 20 nm (upper red lines).

PRL 102, 188101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
8 MAY 2009

188101-3



� ¼ 2d
�k��?�1
w r�?dw=2

0 zðd
k
f
þdwÞ=2�1

�ð�?Þ�ð1� �kÞ : (12)

The analytical expression (11) of the relocation length
distribution for subdiffusion in fractals is validated by
numerical simulations in the representative example of a
percolation cluster embedded in a 3D space (see Fig. 3),
which justifies our decoupling assumption of longitudinal
and transverse projections of motion. The large z behavior
can be shown from (11) to be given by �ðzjr0Þ �
r
dw�d?

f

0 =z1þdw�d?
f , which decays faster than the diffusion

case [�1=zln2ðz=aÞ] as illustrated in Fig. 3. Accordingly,
the proportion of jumps in the case of a random conforma-

tion of DNA now scales like Cð�Þ � ��dwþd?
f and is there-

fore significantly decreased in this case of fractal type
crowding as compared to the case of regular diffusion.
Note that this predicted low proportion of jumps is com-
patible with recent in vivo observations [30], and supports
the idea that crowding effects could be important in vivo. In
the context of colocalization, our results further suggest
that crowding could be beneficial for target location since it
enhances the local scanning of the DNA by reducing the
proportion of jumps.

To conclude, we developed an analytical model that
gives the distribution of 3D relocation lengths of a protein
dissociating from a DNA molecule. We could quantify the
relative proportion of hops and jumps in facilitated diffu-
sion, and we confirmed the direct observation of hops in
single-molecule experiments involving the EcoRV restric-
tion enzyme. We extended our approach to the case of
anomalous transport and showed quantitatively that crowd-

ing effects can favor hopping and significantly reduce the
proportion of jumps. Overall, our study supports the hy-
pothesis that 3D excursions play a crucial role in protein/
DNA interactions.
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FIG. 3 (color online). Distribution of the relocation length
�ðzjr0Þ for 3D excursions on a critical percolation cluster
embedded in a 3D cubic lattice, for r0 ¼ 1 and a ¼ 0.
Simulations (normalized for z � 3) are performed for different
system sizes to rule out finite size effects (symbols), and collapse
on the theoretical curve (plain line) obtained from Eq. (11). Here

dw ¼ 3:88 . . . , d?f ¼ 2, and dkf ¼ 1 since df ¼ 2:53 . . . [28].

The large z scaling follows �ðzjr0Þ � 1=z2:88..., and is compared
to the case of normal diffusion (dashed line) with r0 ¼ 1 and
a ¼ 0:1.
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