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In this elegant paper, F. Yao, Y. Wu, and J. Zou offer a unified treatment
of the problem of classifying sparse functional data via sliced inverse regres-
sion (e.g., Li, 1991). Such signals are typically encountered in longitudinal
studies and various other scientific experiments. In this setting, only a few
measurements are available for some, or even all, individuals, and a cumula-
tive slicing approach is proposed by the authors to borrow information across
individuals and recover the central subspace.

At first, the authors address the structural issue due to binary classification:
since the label Y is discrete, the conditional expectation based on Y can
only provide one direction of the central subspace. Therefore, the regression
function p(x) := P(Y = 1|X = x) is preferred as a response variable, in
line with the approach of Shin et al. (2014). The function p is estimated by
using a weighted SVM (Support Vector Machine) scheme, which is the first
step of the PEFCS (Probability Enhanced Functional Cumulative Slicing)
procedure. In this respect, it is interesting to note that the optimal situation
for classification—that is p(x) = 0 or p(x) = 1—is indeed the worst case
for this dimension reduction approach, since then only one direction of the
central subspace can be recovered.

Next, the authors address the problem of classifying sparsely observed sig-
nals. As pointed out in Section 3, a direct estimation of FPC (Functional
Principal Components) scores may lead to poor results in this context. Thus
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the PACE (Principal Analysis by Conditional Expectation) method, origi-
nally presented by Yao et al. (2005), is preferred to estimate the covariance
operator and its spectral decomposition, yielding a decomposition of signals
in a finite-dimensional space. Finally, the issue of estimating conditional co-
variances in the sparse setting is addressed via a cumulative slicing strategy,
by adapting arguments of Fan and Gijbels (1996) and Yao et al. (2005).

An interesting conclusion of the experimental studies provided in Section 4
of the article is that dimension reduction via central subspace estimation
seems to boost the performance of the centroid method of Delaigle and Hall
(2012a). The comparison is drawn with respect to FPCA, which plays the
role of a benchmark, and with respect to three other classifiers (Linear Dis-
criminant Analysis, Quadratic Discriminant Analysis, and additive Logistic
Regression). All procedures are outperformed by the PEFCS + centroid
package, at least in the proposed numerical illustrations. The poorer results
of FPCA + centroid method show that the directions which capture the more
total variation might not be the most useful ones for classification, as already
pointed out by Delaigle and Hall (2012a). Thus, the experimental results sug-
gest that the proposed PEFCS algorithm succeed in recovering these useful
directions. Nonetheless, it could be of interest to compare the performance of
the centroid method based on the reduced data with that of the “raw” cen-
troid method, which could take advantage of the high-dimensional structure,
at least if the variance term is neglected (Delaigle and Hall, 2012a).

It is also interesting to notice that a preliminary projection, based on PACE,
is performed by the PEFCS procedure, prior to the dimension reduction step.
Although the authors choose the truncation so that “nearly 100% of the total
variation is explained”, the remaining almost 0% could contain useful infor-
mation for classification in some “not-so-pathological” cases. Therefore, a
further study might consider choosing the initial projection based on a func-
tional Partial Least Squares basis (PLS; see, e.g., Delaigle and Hall, 2012b, or
Preda et al., 2007), where priority is given in the functional decomposition to
directions that capture the maximal correlation with the response variable.
The extension of PLS decomposition to sparse functional data may not be
so straightforward. However, combining an initial projection based on PLS
with a dimension reduction technique such as the one proposed in the paper
may offer more guarantees for classification performance—especially if it is
performed through the centroid method. It is likely that if the dimension re-
duction is carried out only through ranking and thresholding the PLS scores,
then the resulting space will be larger than the central subspace. Indeed,
the directions that are not in the central subspace but are strongly corre-
lated with directions in this subspace will eventually be selected by such a
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method. More generally, this remark enlightens a major advantage of the cen-
tral subspace paradigm over correlation-based methods such as, for instance,
the Lasso: correlation between informative directions and non-informative
ones does not affect the performance of central subspace recovery, at least
theoretically.

Let us finally point out that a drawback of central subspace recovery via
inverse regression is the linearity requirement (Assumption 2 in the paper
by F. Yao, Y. Wu, and J. Zou), which holds in particular when the distri-
bution of X is elliptic. However, as shown by Fukumizu et al. (2009), such
an assumption may be avoided by using a different characterization of the
central subspace. The key is to derive a criterion of conditional independence
expressed in terms of conditional covariance operators over a Reproducing
Kernel Hilbert Space (RKHS) embedding of X. This leads to the construc-
tion of the so-called KDR (Kernel Dimension Reduction) method, which
amounts to optimize a contrast function over the Stiefel manifold. This pro-
cedure exhibits good performance, even in non-elliptical cases. However, the
results of Fukumizu et al. (2009) are derived in a finite-dimensional regres-
sion setting. Therefore, a challenging project for the future is to extend the
Fukumizu et al. (2009) paradigm to the sparse functional case by following
a route similar to the PEFCS strategy.

Thus, to summarize, central subspace recovery is an active and promising
research area, which is clearly of interest in high-dimensional settings such
as functional data classification. More care is needed when data are sparsely
observed and the response variable is binary. This point is remarkably ad-
dressed in the paper by F. Yao, Y. Wu, and J. Zou, which we think will
stimulate further research in the domain.
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