CC1 2023/2024 - Durée 1h

Les documents et appareils électroniques (calculatrice, téléphone, ordinateur, ...) sont interdits. **Toutes les réponses doivent être justifiées**.

Exercice 1 - Stratégies pour QCM

Les étudiants de la promotion 2024 sont évalués sur la base d'un QCM avec 10 questions, chaque question ayant 3 réponses possibles. Pour éviter les stratégies hasardeuses, l'enseignant adopte le barême suivant : 1 si la réponse est bonne, -0.5 si la réponse est fausse, 0 si pas de réponse.

On commence par supposer que pour chaque question une unique réponse possible est bonne. On note X la note d'un étudiant qui répondrait au hasard (sans s'abstenir).

- 1. Trouver la loi de X.
- 2. Donner son espérance et sa variance.
- 3. Donner une expression pour $\mathbb{P}(X<0)$. On admettra que $\mathbb{P}(X<0)\approx 0.56$. Conclure quant à la pertinence de la stratégie de réponses au hasard (comparativement à l'abstention).
- 4. On suppose maintenant que pour chaque question plusieurs réponses sont vraies (au moins une). L'enseignant adapte alors son barême en donnant 1 point si l'étudiant donne toutes les bonnes réponses, -a sinon. Calculer a de telle sorte qu'à ce qu'en moyenne un étudiant n'aie pas intérêt à répondre au hasard.
- 5. Enfin, on suppose maintenant qu'un étudiant commence par choisir au hasard un nombre N de questions auxquelles il va répondre, puis répondre au hasard aux N premières (et s'abstenir pour les suivantes). Que ce soit dans la première ou deuxième situation, montrer qu'en moyenne il n'y gagnera pas.

Solution 1 -

1. On note X_i le nombre de points obtenus à la question i. On a $\mathbb{P}(X_i=1)=1/3=1-\mathbb{P}(X_i=-0.5)$, et donc $X_i\sim -0.5+1.5\mathcal{B}(1/3)$. On suppose par ailleurs que, l'étudiant répondant complètement au hasard, ses réponses et donc les X_i sont indépendantes. On a alors

$$X = \sum_{i=1}^{n} X_i \sim -5 + 1.5\mathcal{B}(10, 1/3).$$

2.
$$\mathbb{E}(X) = -5 + 1.5 * 10/3 = 0. \text{ Var}(X) = (1.5)^2 10 * (1/3) * (2/3) = 5.$$

3. On a

$$\mathbb{P}(X < 0) = \sum_{k=0}^{3} {10 \choose k} \frac{2^{10-k}}{3^{10}}$$
$$= \frac{2^{10} + 10 * 2^{9} + 45 * 2^{8} + 120 * 2^{7}}{3^{10}} \approx 0.56.$$

Si on regarde les espérances, s'abstenir ou répondre au hasard mènent au même résultat. En revanche répondre au hasard conduit avec plus d'une chance sur deux à une note négative strictement, il vaut donc mieux éviter.

4. Pour chaque question, on a $2^3-1=7$ sous-ensembles de réponses possible, avec un seul sous-ensemble donnant droit à 1 point. Comme auparavant, on a alors

$$X_i = -a + (a+1)\mathcal{B}(1/7)$$

$$X = \sum_{i=1}^{1} 0X_i \sim -10a + (a+1)\mathcal{B}(10, 1/7).$$

On en déduit que $\mathbb{E}(X) = -10a + \frac{10(a+1)}{7}$, et donc

$$\mathbb{E}(X) = 0 \quad \Leftrightarrow \quad a = \frac{1}{6}.$$

5. On prend N une variable aléatoire sur $[\![1,10]\!]$, et on a alors

$$X \sim \sum_{i=1}^{N} X_i,$$

où les X_i sont comme avant d'espérance nulle et N est indépendante des X_i . On peut alors écrire

$$\mathbb{E}(X) = \sum_{k=1}^{10} \mathbb{P}(N=k)\mathbb{E}(X \mid N=k)$$

$$= \sum_{k=1}^{1} 0\mathbb{P}(N=k)\mathbb{E}(\sum_{i=1}^{k} X_i)$$

$$= \sum_{k=1}^{1} 0\mathbb{P}(N=k) \sum_{i=1}^{k} \mathbb{E}(X_i) = 0.$$

Pas de gain à espérer en espérance donc.

Exercice 2 - Minimum de Pareto

On se donne X_1, \ldots, X_n i.i.d. de loi sur \mathbb{R} donnée par la densité

$$f(x) = x^{-2} \mathbb{1}_{x \ge 1}.$$

On note Z_n la variable $\min_{i=1,\ldots,n} X_i$.

- 1. Montrer que f est bien une densité.
- 2. Trouver la loi de Z_n .
- 3. Montrer que $Z_n \xrightarrow[n \to +\infty]{\mathbb{P}} 1$.
- 4. Montrer que $n(Z_n 1)$ converge en loi vers une variable Z dont on précisera la loi.
- 5. (*) Montrer que $Z_n \xrightarrow[n \to +\infty]{p.s.} 1$.

Solution 2 -

1. *f* est bien positive, et vérifie

$$\int_{1}^{+\infty} f(u)du = \left[-\frac{1}{x} \right]_{1}^{+\infty} = 1,$$

c'est donc bien une densité.

2. Soit $t \in \mathbb{R}$. On a, par indépendance

$$\mathbb{P}(Z_n > t) = \mathbb{P}(\min_{i=1,\dots,n} X_i > t)$$
$$= \mathbb{P}\left(\bigcap_{i=1}^n \{X_i > t\}\right)$$
$$\mathbb{P}(X_1 > t)^n.$$

Si $t \le 1$, $\mathbb{P}(X_1 > t) = 1$, et donc $\mathbb{P}(Z_n > t) = 1$. Pour t > 1, le calcul précédent montre que $\mathbb{P}(X_1 > t) = t^{-1}$, et donc que

$$\mathbb{P}(Z_n > t) = t^{-n}.$$

On en déduit, pour tout $t \in \mathbb{R}$,

$$\mathbb{P}(Z_n > t) = t^{-n} \wedge 1.$$

3. Soit $\varepsilon > 0$. Comme $Z_n \ge 1$ p.s., on a

$$\mathbb{P}(|Z_n - 1| > \varepsilon) = \mathbb{P}(Z_n > 1 + \varepsilon)$$
$$= (1 + \varepsilon)^{-n} \underset{n \to +\infty}{\longrightarrow} 0.$$

Donc $Z_n \xrightarrow[n \to +\infty]{\mathbb{P}} 0$.

4. On commence par remarquer que $n(Z_n-1)\geq 0$ p.s.. Ensuite, pour $t\geq 0$,

$$\mathbb{P}(n(Z_n - 1) > t) = \mathbb{P}\left(Z_n > 1 + \frac{t}{n}\right)$$

$$= \left(1 + \frac{t}{n}\right)^{-n}$$

$$= \exp\left(-n\left[\log\left(1 + \frac{t}{n}\right)\right]\right)$$

$$= \exp\left(-n\left[\frac{t}{n} + o(n^{-1})\right]\right)$$

$$= \exp\left(-t + o(1)\right) \underset{n \to +\infty}{\longrightarrow} e^{-t}.$$

On en déduit que $n(Z_n-1) \leadsto \mathcal{E}(1)$ (loi exponentielle de paramètre 1).

5. En reprenant les mêmes calculs qu'auparavant, en notant $A_n = \{|Z_n - 1| > n^{-1/2}\}$, on a

$$\mathbb{P}(A_n) = (1 + n^{-1/2})^{-n} \le e^{-n^{1/2}}.$$

On en déduit que $\sum_{n\geq 1}\mathbb{P}(A_n)<+\infty$. Le Lemme de Borel-Cantelli donne alors

$$\mathbb{P}\left(\bigcap_{n\geq 1}\bigcup_{k\geq n}A_k\right)=0,$$

ou encore, en passant au complémentaire

$$\mathbb{P}\left(\bigcup_{n\geq 1}\bigcap_{k\geq n}A_k^c\right)=1.$$

Or, si $\omega \in \bigcup_{n \geq 1} \bigcap_{k \geq n} A_k^c$, on a l'existence de n_ω tel que, pour tout $n \geq n_\omega$, $|Z_n(\omega) - 1| \leq n^{-1/2}$. Donc, si $\omega \in \bigcup_{n \geq 1} \bigcap_{k \geq n} A_k^c$, $Z_n(\omega) \underset{n \to +\infty}{\longrightarrow} 1$. On en déduit $Z_n \xrightarrow[n \to +\infty]{p.s.} 1$.