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Résumé

Titre Partition de complexes guidés par les données pour la reconstruction
de surface

Résumé Cette thèse introduit une nouvelle approche pour la reconstruc-
tion de surface à partir d’acquisitions de nuages de points. Cette approche
construit un complexe cellulaire à partir du nuage de points puis formule
la reconstruction comme un problème d’étiquetage binaire des cellules de
ce complexe sous un ensemble de contraintes de visibilité. La résolution du
problème se ramène alors au calcul d’une coupe minimale s-t permettant
d’obtenir efficacement une surface optimale d’après ces contraintes.

Dans la première partie de cette thèse, l’approche est utilisée pour la
reconstruction générique de surface. Une première application aboutit à un
algorithme très robuste de reconstruction de surface à partir de nuages denses
issus d’acquisitions laser. Une seconde application utilise une variante de cet
algorithme au sein d’une chaîne de photo-modélisation en combinaison avec
un raffinement variationnel photométrique. La chaîne complète est adaptée à
la reconstruction de scènes de grande échelle et obtient d’excellents résultats
en terme de complétude et de précision des reconstructions.

La seconde partie de cette thèse considère le problème de la reconstruc-
tion directe de modèles géométriques simples à partir de nuages de points.
Un algorithme robuste est proposé pour décomposer hiérarchiquement des
nuages de points denses en formes issues d’un ensemble restreint de classes
de formes. Lorsque que cet ensemble de classes est réduit aux plans seule-
ment, la reconstruction de modèles de très faible complexité est possible.
Une extension à d’autres classes de formes échange cet avantage contre la
gestion de nuages de points plus difficiles.
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Mots clés nuage de points, reconstruction de surface, complexe cellulaire,
optimisation discrète, coupe minimale s-t, visibilité, triangulation de De-
launay, complexe polyhédral, BSP, robustesse, données laser, stéréovision
multivues, photo-modélisation



Abstract

Title Labeling of data-driven cell complexes for surface reconstruction

Abstract This thesis introduces a new flexible framework for surface re-
construction from acquired point sets. This framework casts the surface
reconstruction problem as a cells binary labeling problem on a point-guided
cell complex under a combination of visibility constraints. This problem
can be solved by computing a simple minimum s-t cut allowing an optimal
visibility-consistent surface to be efficiently found.

In the first part of this thesis, the framework is used for general surface
reconstruction problems. A first application leads to an extremely robust
surface reconstruction algorithm for dense point clouds from range data. A
second application consists in a key component of a dense multi-view stereo
reconstruction pipeline, combined with a carefully designed photometric vari-
ational refinement. The whole pipeline is suitable to large-scale scenes and
achieves state-of-the-art results both in completeness and accuracy of the
obtained reconstructions.

In the second part of this thesis, the problem of directly reconstructing
geometrically simple models from point clouds is addressed. A robust algo-
rithm is proposed to hierarchically cluster a dense point clouds into shapes
from a predefined set of classes. If this set of classes is reduced to planes
only, the concise reconstruction of models of extremely low combinatorial
complexity is achieved. The extension to more general shapes trades this
conciseness for a more verbose reconstruction with the added feature of han-
dling more challenging point clouds.

Keywords point cloud, surface reconstruction, cell complex, discrete op-
timization, minimum s-t cut, visibility, Delaunay triangulation, polyhedral
complex, BSP, robust, range data, multi-view stereo, image-based modeling
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Introduction

Computer vision tries to make computer see and understand visual data like
humans. On the contrary, computer graphics deals with the synthesis and
manipulation of visual content from already digitized data. While these ob-
jectives might seem completely opposite, the two computer science research
fields are growingly borrowing from each other. The particular problem of
modeling objects or scenes from measurements has been, in both fields, one
of the most studied problem. In computer graphics, these measurements
come directly from points acquired with range scanning devices and in com-
puter vision, they come from images and are extracted with less accurate
matching techniques.

Motivation

The automatic reconstruction of computer representations of scenes and ob-
jects has numerous applications in various domains and has thus always mo-
tivated research in both computer graphics and vision. In computer aided ge-
ometric design (CAGD), the reconstruction from range-acquired point clouds
sampling an existing object is referred as reverse-engineering and is used to
replace physical prototypes. Medical applications include computer aided
diagnostic, therapy and surgery planning and monitoring and require mod-
eling organs and tissues of the human body from 2D or 3D images or scans.
The reconstruction problem is also relevant for natural sciences like geology
and topography where not only the visualizations of large-scale environments
is needed but also actual numerical models to be used for simulations. In
the history and art field, the digital archival of cultural heritage not only
allows the creation of virtual museums for culture diffusion but facilitates
restoration, preservation and understanding of the artist work. Finally the
entertainment industry through video games and movies has become one

1



2 INTRODUCTION

of the most active demander for reconstructions to reproduce reality from
scratch for improved realism.

High-precision multi-view stereo

The modeling of small objects from a set of calibrated (and silhouetted)
images taken under controlled imaging conditions triggered several radically
different approaches in early multi-view stereo methods: from greedy opti-
mization [Kutulakos and Seitz, 2000] to deformable models [Faugeras and
Keriven, 1998] and graph cuts [Snow et al., 2000]. The field has quickly
matured in the recent years thanks to the stimulating competition proposed
in [Seitz et al., 2006]. The results of the latest methods are getting closer to
the range measurements used as a reference. However, few of the proposed
methods for multi-view stereo are readily applicable to large-scale scenes.

Large-scale multi-view stereo

To overcome scalability issues and the lack of silhouettes in outdoor scenes,
the few still applicable approaches rely on sparse data measurements, either
as depth maps [Strecha et al., 2006, Goesele et al., 2007] or filtered and
expanded surface patches [Furukawa and Ponce, 2007] that are merged to
produce a surface after applying a standard surface reconstruction algorithm
such as [Kazhdan et al., 2006]. The performance for complete reconstruction
seems to be lower than for smaller-scale objects, either in accuracy or com-
pleteness of the obtained model. Handling visibility globally and consistently
is indeed a problem in the merging step.

Dealing with visibility

Early methods in multi-view stereo [Kutulakos and Seitz, 2000] and recon-
struction from range scans [Curless and Levoy, 1996] acknowledged the im-
portance of consistent visibility to guide the reconstruction. In both fields,
the focus has shifted towards accurate reconstructions. In multi-view stereo
where measurements are less dense and cues guiding the reconstruction seem
more important, the later methods developed for small-scale objects either
assumed the visibility of the surface to be given [Vogiatzis et al., 2005] or in
deformable models, the information was iteratively estimated [Pons et al.,
2007a].

Robustness issues in surface reconstruction

Proper modeling of the acquisition process to guide the reconstruction can
strongly contributes to the robustness. The issue of robustness to high level
of noise and outliers is well known in computer vision where slight errors
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mismatches in images are hard to avoid. Most surface reconstruction al-
gorithms from point clouds in computer graphics implicitly assume input
point clouds of range-scanning quality: dense, almost uniformly sampled
and outlier-free. This lack of versatility limits the use of such methods in
surface reconstruction for computer vision applications.

Reconstruction of compact models

While surface reconstruction from point clouds aims at producing precise re-
constructions, modeling very fine details necessitates overly complex models
which are often not practical not only for visualization but also for higher-
level applications such as indexing and recognition. More lightweight and
geometrically simpler representations are highly desirable. Such simplified
models are currently built using either very problem-specific methods or with
extensive user intervention (related techniques are surveyed in Chapter 5).

Thesis outline

Chapter 1 first deals with the practical details of the acquisition of point
clouds, either in the case of triangulation or time-of-flight range scanners,
or in the case of passive stereo. The two point cloud generation algorithms
used for multi-view passive stereo in the subsequent chapters are also fully
described.

Chapter 2 presents a thorough review of existing surface reconstruction
algorithms from point clouds. Following Chapter 1, a visibility-based surface
fitting framework on point-driven cell complexes is introduced. In particu-
lar, the original visibility term upon which all our subsequent surface re-
construction algorithms are based is proposed and discussed along with the
corresponding optimization method. This surface fitting framework is also
compared to other closely related methods.

The first part of this thesis handles two major challenging surface recon-
struction problems in computer graphics and computer vision.

Chapter 3 considers the problem of surface reconstruction from range
data. The framework of Chapter 2 is used on the simplicial complex of the
Delaunay triangulation. The visibility term is relaxed to accommodate for
both the density of range point clouds and the scarcity of line-of-sight in-
formation. Derivated from a well-known geometric criterion for curve recon-
struction, an additional surface quality term is also proposed. The robustness
of the whole approach is demonstrated through numerous experiments with
several other methods: the method is shown to compare favourably with the
state of the art when dealing with significantly altered data sets as inputs.

The visibility-based surface optimization framework introduced in Chap-
ter 2 contains key components to address some of the major flaws of existing
dense multi-view stereo methods. An analysis of the weakness of existing



4 INTRODUCTION

dense multi-view stereo algorithms for large-scale scene reconstructions is
done. By relying again on a Delaunay triangulation, we present another
point-based surface reconstruction algorithm for multi-view stereo which per-
mits the reconstruction of an initial visibility-consistent mesh from multi-
view stereo point clouds with typically important levels of noise and high
outlier ratios. A carefully designed variational photo-refinement is used as
a post-processing to significantly improve the precision of this initial coarse
surface. The whole multi-view stereo pipeline combining the point cloud
generation, the computation of an initial complete mesh and the final mesh
refinement overcomes all the mentioned shortcomings while still being highly
accurate. It is evaluated on several challenging outdoor large-scale scenes and
compared with other dense multi-view stereo methods also suitable for large-
scale scenes. It is demonstrated to consistently compare very favorably with
the competition on both completeness and accuracy of the reconstruction.

The second part of this thesis tackles the problem of concise or geomet-
rically simplified modeling from point clouds.

In Chapter 5, existing techniques that possibly relates to geometrically
simplified modeling are surveyed. The conclusion is drawn that neither in
the context of multi-view stereo nor for reconstruction from range data an
appropriate method for surface reconstruction from point clouds with strong
shape priors exists or could satisfyingly be obtained by combining existing
techniques. An overview of our original general approach to simplified mod-
eling from point clouds is presented and its various benefits are discussed:
briefly, after detecting various shapes in a point cloud, these shapes are em-
bedded in the optimization domain, and a segmented piecewise-primitive
surface is reconstructed.

Chapter 6 describes the first step of our simplified modeling technique
from point clouds which extracts shapes from point clouds. After an in-
troduction to various robust regression methods suitable for multiple shape
detection, a hierarchical clustering algorithm is proposed. Single shape ex-
traction is done by adapting the random sampling framework to deal with
quasi-dense point clouds, and multiple shapes are extracted hierarchically to
decompose a sufficiently dense point cloud into a set of simple shapes from
predefined classes of shapes.

Concise reconstructions are introduced in Chapter 7. From a hierarchi-
cal decomposition of point clouds in purely planar regions, the proposed
approach outputs a reconstructed surface capturing the most prominent pla-
nar features of an object or a scene in a not only geometrically simple model
but also a lightweight reconstruction with an extremely low combinatorial
complexity.

The approach of Chapter 7 is generalized to allow the reconstruction of
piecewise-primitive models assembling patches from a set of selected classes
of second order surfaces. While the conciseness of the reconstructions of
Chapter 8 is traded for the accurate modeling of more complex shapes, the
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surface reconstruction is also extended to handle difficult point clouds in
which severe occlusions or insufficient sampling limit the efficiency of the
shape extraction and the subsequent robustness of the surface reconstruction
step.

Finally, Chapter 8.2 summarizes the various contributions of this the-
sis, the benefits of the proposed approaches, discusses their limitations and
proposes some possible tracks for future work.

To conclude, let us note that part of the material herein comes from
published papers, papers pending publication or in preparation:

• the visibility term presented in Chapter 2 was initially introduced
over Delaunay triangulations in Efficient Multi-view reconstruction of
large-scale scenes using interest points, Delaunay triangulation and
graph cuts [Labatut et al., 2007] with Jean-Philippe Pons and Renaud
Keriven in the proceedings of the IEEE International Conference on
Computer Vision, 2007;

• the range surface reconstruction algorithm of Chapter 3 will appear
in the journal Computer Graphics Forum under the title Robust and
efficient surface reconstruction from range data [Labatut et al., 2009a]
with Jean-Philippe Pons and Renaud Keriven;

• the whole large-scale multi-view stereo pipeline of Chapter 4 is joint
work with Jean-Philippe Pons, Renaud Keriven and Vu Hoang Hiep
and appears in Towards high-resolution large-scale multi-view stereo
[Vu et al., 2009] with Vu Hoang Hiep, Renaud Keriven and Jean-
Philippe Pons in the proceedings the IEEE Conference on Computer
Vision and Pattern Recognition, 2009. A journal paper entitled Global
and visibility-consistent dense multi-view stereo for large-scale scenes
with Jean-Philippe Pons, Renaud Keriven and Vu Hoang Hiep, de-
scribing the pipeline in further details is in preparation;

• the hierarchical shape extraction and shape-based surface reconstruc-
tion of Chapter 6 and Chapter 8 will appear in Hierarchical shape-
based surface reconstruction for dense multi-view stereo [Labatut et al.,
2009b] with Jean-Philippe Pons and Renaud Keriven in the proceed-
ings of the 2009 IEEE International Workshop on 3-D Digital Imaging
and Modeling.
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CHAPTER 1

Acquisition of point-sampled geometry

This chapter describes the different acquisition processes consid-
ered in this thesis to get point-sampled geometry. First, a quick
overview of range scanning techniques is given and then, two dif-
ferent approaches to compute quasi-dense point cloud from cali-
brated images are presented. The common availability of lines of
sight information associated to these point clouds is underlined.
This information is instrumental in the visibility-based surface
fitting framework presented in the next chapter.
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8 1. ACQUISITION OF POINT-SAMPLED GEOMETRY

As reminded in the introduction, surface acquisition has numerous ap-
plications for instance in engineering (reverse-engineering, prototyping or
visualisation), in the entertainment industry for video games and movies,
and in the digital archival for cultural heritage preservation. Several de-
vices and acquisition processes suitable to different scenarios have thus been
conceived. In this chapter, we present and discuss the various techniques
used to acquire point-sampled geometry in this thesis. Since this thesis fo-
cuses on surface reconstruction algorithms, only geometry acquisition and
not appearance acquisition will be described.

1.1 Point sets from laser range data

rotating laser/mirror

laser pulse

emitter+sensor

(a) A time-of-flight range finder

laser+lens

laser stripe

sensor

CCD array

emitter

(b) A triangulation range finder

Figure 1.1: The two common types of laser range finders.

Range finding is perhaps the most used form of acquisition of point-
sampled geometry in practice. It consists in measuring the distance between
the device and the target object. Two typical setups exists and are depicted
in Figure 1.1.

The first setup shown in Figure 1.1(a), for time-of-flight range finders,
pairs together the emitter and the sensor and measures the distance between
an emitter and the target object by firing a short pulse of light (on the
order of picoseconds) and timing how long it takes to return. SONAR and
RADAR devices exploit a similar concept, but rely respectively on sound
propagation and microwaves or radio waves and are better suited to very
large-scale acquisitions. Of more interest here, LIDAR (LIght Detection
And Ranging) is designed for smaller scale acquisitions. The acquisition is
often done by sweeping a whole angular sector and generating a stripe of
depth measurements. However it typically requires long scanning times and
its absolute accuracy is generally poor.

The second common type of range finger setup, shown in Figure 1.1(b),
separates the emitter and sensor. It is based on active optical triangulation:



1.1. POINT SETS FROM LASER RANGE DATA 9

the emitter illuminates the target object with a narrow beam or a whole
light stripe and the corresponding illuminated positions on the object are
recorded by the sensor (which is either a photodiode or a CCD array). Since
the distance between the emitter and sensor is known along with the relative
orientation of the sensor and the direction of the emitter, a depth can be
measured and the relative location in 3D of the point on the object can be
inferred. Several acquisitions are commonly done in a row by translating
the emitter-sensor pair relatively to the object to acquire a batch of range
stripes that are assembled as a single range image. Other setups for batch
acquisitions are also possible (rotating the object or the acquisition system
or translating only the emitter or the sensor). The acquired range image
can be thought as being imaged at once by a pushbroom depth camera1

that is often approximated by a simple orthographic camera2. The absolute
accuracy of such scanners is typically much higher than that of time-of-flight
scanners but they are mainly restricted to small-scale objects.

To give some actual numbers, the triangulation range scanning device
used to acquire the ground truth models in the dense multi-view stereo
benchmark of [Seitz et al., 2006] (a Cyberware Model 15) has a depth accu-
racy of about 0.05mm to 0.2mm with a resolution of 0.25mm and the scanner
used in the Stanford 3D scanning repository [sta, 2009] (a Cyberware 3030
MS) has similar specifications (see Figure 1.2 for sample scans). In compari-
son, the expected accuracy of the LIDAR device used in the dense multi-view
stereo benchmark of [Strecha et al., 2008] can be of several millimeters. The
size of the scanned object or scene is however significantly different: at most
a couple dozens centimeters for the triangulation scanners, and from one to
several dozens meters for the LIDAR laser, so that while the absolute accu-
racy is lower the relative accuracy is still comparable (see Figure 1.3 for an
example of mobile LIDAR scans).

Range stripes or range images may be acquired independently, but since
the acquisition (and subsequent surface reconstruction) of a whole object
or scene is expected, a registration step that aligns in the same coordinate
system the different range stripes or images with rigid-body transformations
is needed. For time-of-flight range finder, this step is often done implicitly by
the device during the scanning. As an example, Chapter 3 shows results on
a data set acquired using a car driving in a street, and the whole acquisition
unit features a time-of-flight range finder paired with a GPS/IMU making
possible the localisation and registration of the successive range stripes in
real-time. For triangulation range finders, the registration of the different
images is done either also automatically or with a variant of the classical
Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992].

1A camera whose restriction to the plane formed by the range stripe and the emitter
is a perspective camera and whose optical center follows the translation of the emitter.

2A perspective camera whose optical center is rejected at infinity along the optical axis.
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(a) A single range image (b) A single range image
(top view)

(c) A single range image
(close-up view)

(d) Merged range images (e) Merged range images
(top view)

(f) Merged range images
(close-up view)

Figure 1.2: Stanford bunny: a point cloud from a triangulation range scanner.

(a) Merged range stripes (b) Merged range stripes (close-up view)

Figure 1.3: rue Soufflot: a point cloud from a mobile time-of-flight range finder.

According to [Curless, 1997] and for triangulation range fingers, range
errors dominate alignments errors. The range error noise distribution can
be considered as anisotropic along the emitter line-of-sight and the range
uncertainties may be modeled with simple Gaussian statistics. A difficulty
for surface reconstruction algorithms lies in the fact that the noise level is
typically in the order of the sample spacing.

In addition to simple noise, errors in range measurements may have other
origins: errors reflectance discontinuities, shapes variations (corners), sensor
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occlusions (portion of the light block from the sensor) and laser speckle
interference due to surface roughness. A thorough analysis of these different
sources of measurements errors in triangulation range scanners can be found
in [Curless, 1997].

To conclude this section, while range scanning devices allow measure-
ments of much greater quality in terms of density and uniformity of sampling
than what is achievable with the simple passive image-based approaches de-
scribed in the next section, they also have a number of limitations:

• the scanning device is often expensive with a price several orders of
magnitude higher than a standard consumer camera used in passive
stereo,

• the acquisition process can be lengthy and necessitate tedious setups
especially for the acquisition of large-scale scene. In [Banno et al.,
2008], the use of flying balloons with attached range sensors to acquire
scans of the Bayon temple is described along with the subsequent error
correction and registration methods,

• the number of generated points is huge: the acquisition of 106 to 109

samples is becoming commonplace. This often demands dedicated al-
gorithms to either first downsample the point sets to make the surface
reconstruction more tractable or sophisticated out-of-core or stream-
ing reconstruction algorithms to handle such amount of data with a
reasonable memory footprint.

1.2 Point sets from multi-view passive stereo

An object or a scene can also be point-sampled using passive stereo tech-
niques. Taking a few pictures of a scenes is not sufficient to relate corre-
sponding points in different images. A first problem consists in determining
the “Structure from Motion” (abbreviated SfM): by using only the acquired
images, find the calibration of the cameras i.e. their relative position and
their internal settings (focal length, etc. . . ). In this thesis, we assume that
the cameras have already been fully calibrated. The underlying optimiza-
tion problems are well studied and have been demonstrated in [Pollefeys
et al., 2004, Brown and Lowe, 2005, Martinec, 2008]. Details on the princi-
ples can be found in computer vision reference books [Faugeras et al., 2001,
Hartley and Zisserman, 2004]. More recently and on a larger scale, a work-
ing combination of these techniques was shown in [Snavely et al., 2008].
SfM approaches robustly extract and track sparse matched points in images,
compute initial camera poses and 3D points position and optimize both for
camera parameters and 3D positions of the tracked features with a “bundle
adjustment” [Triggs et al., 2000], a large non-linear least-squares optimiza-
tion.

In the sequel, n views are given, each with a corresponding image Ii :
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M

Ci

Cj

mi

ei

mj

ej

(Ii,Πi)

(Ij,Πj)

(a) The epipolar geometry of two cameras Πi

and Πj (with cameras optical centers Ci and
Cj and epipoles ei and ej) and the

projections mi and mj of a point M .

M

Ci

Cj

mi mj

(b) A candidate match for a point can be
sought either in a small band around the

epipolar lines (for interest points) or by plane
sweeping.

Figure 1.4: A stereo camera pair.

R
2 → R (R3 for color images) and a camera Πi which maps a 3D point

M ∈ R
3 to a 2D pointm the coordinate frame of the image Ii. Since the input

images are also assumed to have been corrected for radial distortion, and that
the cameras are modeled with a simple perspective or pinhole camera model,
Πi is a perspective projection described by a 3× 4 homogeneous matrix Πi

and m̃ = Πi

(

M 1
)T

= (m̃x m̃y m̃z)
T in homogeneous coordinates or

m =
(

m̃x/m̃z m̃y/m̃z

)T
in Cartesian coordinates. Given a point m̃i in one

image Ii, the corresponding point in the image Ij is located along the epipolar
line of m̃i (see Figure 1.4(a)), which is the projection in the coordinate frame
of the image Ij of the ray from the optical center Ci of the camera i to
the point m̃i and is given by the relation m̃T

i Fij m̃j = 0 where Fij is the
fundamental matrix Fij of the oriented camera pair (i, j) Faugeras et al.
[2001]. Besides camera calibration, the particular choice of camera pairs is
also given: as images are typically acquired in sequence, it can generally be
easily inferred.

Two different but related point cloud generation techniques are now de-
scribed, one matching interest points in the input images and another using
plane sweeping to compute sparse depth maps. In order to apply the surface
fitting framework of Chapter 2, a slightly non-conventional way to generate
point clouds from passive stereo is used that favors density over matching
robustness. Finally, the preliminary point cloud generation of our work in
[Labatut et al., 2007] relied on SIFT keypoints and descriptors [Lowe, 2004],
an approach that presented several drawbacks: first, due to the invariance
over scale and rotation, high density is more difficult to achieve, also the



1.2. POINT SETS FROM MULTI-VIEW PASSIVE STEREO 13

epipolar geometry which is known but not used at all in the descriptor com-
putation.

1.2.1 Interest points

(a) An image from the Herz-Jesu-P25 data
set of [Strecha et al., 2008]

(b) extracted Harris corners (c) extracted LoG blobs

Figure 1.5: Interest points. Both Harris corners and LoG blobs are extracted
from the input images at a small scale to try capturing most of the geometry.

First, interest points are located in all the input images. To this purpose,
and to capture most of the geometry of the sampled shape (see Figure 1.5),
two complementary kinds of interest points are considered: Harris corners
which are typically lying on “corners” in images and Laplacian-of-Gaussian
located at the center of blob-like structures in images. The definitions and
origins of these interest points are first briefly recalled.

Harris corners

Let I : R
2 → R be a grayscale image. We note Gσ the standard two-

dimensional Gaussian kernel of variance σ2:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ,
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and Lσ the scale-space representation of the image I obtained by convolution
with Gσ: Lσ = Gσ ∗ I to detect interest point at the scale σ [Lindeberg,
1998]. We consider a translated version Kσ of the image Lσ by a vector
(u, v): ∀(x, y) ∈ Ω, Kσ(x, y) = Lσ(x+u, y+v). To integrate over a weighted
neighborhood of a point (x0, y0), a Gaussian window with an integrative scale
τ is introduced. The two scales σ and τ are usually linked by a relation of the
form σ = ξτ where ξ typically is in [0.5, 0.7]. Estimating the correspondingly
weighted sum of squared differences Sσ,τ (u, v) between Lσ and Kσ can be
done by approximating J with a first order Taylor expansion of I(x+u, y+v)

and gives Sσ,τ (u, v) ≈
(

u v
)

Mσ,τ

(

u
v

)

with Mσ,τ the scaled structure

tensor or second-moment matrix:

Mσ,τ = Gτ ∗
(

Lσ
x
2 Lσ

xL
σ
y

Lσ
xL

σ
y Lσ

y
2

)

,

where Lσ
x = ∂Lσ

∂x , Lσ
y = ∂Lσ

∂y . Large variations of Sσ,τ (u, v) in all directions
(u, v) characterize corners at an image scale σ. If the matrix Mσ,τ has
two small eigenvalues λ1 and λ2, then the considered point (x0, y0) is not
an interest point. If the matrix Mσ,τ has a small and a large eigenvalue,
the point is located on an edge at a scale σ. Finally two large eigenvalues of
Mσ,τ correspond to a corner point at (x0, y0). Instead of computing explicitly
the eigenvalues of Mσ,τ to find corners, strong local maxima3 of the more
lightweight Harris corner measure h(Mσ,τ ) [Harris and Stephens, 1988] are
used:

h(Mσ,τ ) = det(Mσ,τ )− κTr(Mσ,τ )2 = λ1λ2 − κ (λ1 + λ2)
2 ,

where κ is a sensitivity parameter usually ranging from 0.04 to 0.15.

Laplacian-of-Gaussian blobs

The zero crossing of the Laplacian ∆ are often used to detect edges in an
image. To detect blobs instead, the Laplacian-of-Gaussian (abbreviated as
LoG) applies the Laplacian ∆ operator to a scale-space representation Lσ of
an image I:

∆Lσ = Lσ
xx + Lσ

yy = ∆(Gσ ∗ I) = (∆Gσ) ∗ I .

And strong local extrema of the LoG ∆Lσ can be used to locate potential
blobs: strong positive responses correspond to dark blobs and strong negative
responses to bright blobs at a scale σ.

3local maxima above some fixed threshold value.
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Matching interest points

As announced, LoG blobs and Harris corners are extracted at some fixed
scale4 in all the input images. Then, for each potential camera pair (i, j)
and for each interest point mi (of the same type) in the first image Ii of this
pair, its best matching point m⋆

j is sought within a small band around the
corresponding epipolar line in the other image Ij (see Figure 1.4(b)). The
width of this band is fixed and should partially depend on the accuracy of
the calibration5.

The best matching point m⋆
j is the point with the highest matching score

against the reference interest point mi. The neighborhood of a potential
match mj in the image Ij is reprojected in the reference image Ii through
a plane parallel to the focal plane of the camera Πi and passing through
the potential reconstructed 3D point (the underlying assumption is that the
surface is locally fronto-parallel to the camera Πi). The matching score can
then be estimated in a window around the reference point. Since the choice
of an appropriate matching window size is difficult, multi-level matching is
used, and the matching criterion is the sum of normalized cross correlations
(NCC) for several fixed window sizes6 (or scale σ) as in [Yang and Pollefeys,
2003]. Also the matching windows are chosen as smooth Gaussian windows
to lessen the effects of the fronto-parallel assumption. Finally the matching
score ρ(mj) is:

ρ(mj) =
∑

σ

NCCσ(Ii, Ij ◦Πj ◦Π−1
i )(mi) ,

with:

NCCσ(I, J) = νσ(I, J) /
√

νσ(I) νσ(J) ,

νσ(I, J) = Gσ ∗ (I − µσ(I))(J − µσ(J)) /ωσ ,

νσ(I) = Gσ ∗ (I − µσ(I))2 /ωσ + τ2 ,

µσ(I) = Gσ ∗ I / ωσ ,

where NCCσ is the whole image normalized cross-correlation over a Gaus-
sian window of scale σ, Πj ◦Π−1

i denotes the fronto-parallel reprojection from
image Ii to Ij , ωσ(x) =

∫

ΩGσ(x − y) dy is used to normalize the involved
quantities with respect to the shape of the correlation window and τ is a
small constant to avoid numerical problems.

Furthermore, this best matching interest point m⋆
j is kept only if its

matching score ρ(m⋆
j ) is above some threshold and if it is also successfully

4in practice, a scale of 2 pixels is used for 6 Mpix images.
5a 3 pixel-wide band is typically chosen for 6 Mpix images.
65 levels are used on 6 Mpix images.
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validated: the original interest point has to be the best matching interest
point of its best matching interest point. An initial 3D point can then be
reconstructed from the calibration and using standard triangulation opti-
mization [Hartley and Zisserman, 2004] by minimizing its squared Euclidean
distance to the rays (a non-linear least-squares optimization) or with a sim-
pler iteratively reweighted optimization using the point inverse depths.

The final step aggregates the different 3D points. In each image, the
2D Delaunay triangulation (Appendix B gives a definition) of the interest
points (of the same type) is computed. This geometric data structure allows
to efficiently locate the nearest interest points of a given 2D point. Now, a
pair of matched interest points in two different views has given rise to a 3D
point by triangulation. By projecting this initial 3D point in the other views,
potential other unmatched interest points that are close enough (within a
tolerance similar the half-width of the epipolar band) are located. Closest
unmatched interest points are merged with the original pair and a new 3D
point (replacing the previous one) is re-estimated from all the interest points.
The final result is a set of points each carrying a tuple of views where they
were seen. Additionally, a confidence value has been assigned to each 3D
point, cumulating the photo-consistency scores of all its originating pairs.
Obviously, as the whole technique relies on simple greedy or winner-take-
all “optimizations”, it possibly generates a noisy point cloud with a decent
amount of outliers.

1.2.2 Sparse depth maps

While the previous passive stereo approach is general and copes with scenes
that have enough texture, it tends to generate lots of outliers and the 3D
points are often poorly located. A different passive stereo technique can be
devised when strong planar structures are observed as is often the case in
architectural scenes.

Initial sparse depth maps are computed between pairs of input images.
These depth maps have a downscaled resolution7 w.r.t. the images and are
filled using a simple geometric plane sweep with the same thresholded multi-
level NCC matching score as above. A plane is swept in the reference camera
frustum and its offset follows a geometric sequence between the near and far
planes of the camera (see Figure 1.4(b)).

These initial depth maps are merged and clusters of points are formed
according to their position in the different camera frustums. These clusters
are hierarchically split until the bounding boxes of their projections in the
images is small enough. A 3D k-D tree [Bentley, 1975] of this clustered
initial point set is then build to efficiently find the k nearest neighbors of
each point using a large neighborhood8. A plane is tentatively fitted to each

7by a factor 4 × 4 for 6 Mpix images.
8k = 25.
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(a) One of the images of the Herz-Jesu-P25

data set

(b) Point cloud from interest points (c) Point cloud from sparse depth maps

(d) Point cloud from interest points
(side view)

(e) Point cloud from sparse depth
maps (side view)

Figure 1.6: A visual comparison of point clouds from the two passive multi-
view stereo techniques on the Herz-Jesu-P25 of [Strecha et al., 2008].

point’s neighborhood with least-squares. Provided the fit is good enough,
the point is retained and its position is iteratively refined using the same
matching score as above. The final result is the same as what was obtained
from interest points: a set of points each carrying a tuple of views where
they were seen and an associated confidence. Again, this step still generates
a noisy point cloud with a decent amount of outliers but tends to yield better
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results on architectural scenes (less outliers and noise).

An advantage of the two presented passive stereo techniques lies in the
fact that the reprojection and multi-level matching process can leverage the
computational resources of common graphics hardware allowing the overall
process to be reasonably fast (a few minutes in the data sets of [Strecha et al.,
2008] featuring from 8 to 30 images of 6 Mpix, on an Intel Xeon 3.0GHz CPU
with an NVIDIA 8800 GTX GPU).

Errors in the multi-view stereo case can come from noise in the images,
but as the reconstruction involves matching points in different images, the
corresponding 3D error distribution is complex and cannot be modeled as
simply as in range scanning case. In addition the noise level is much higher
in such passive stereo. Mismatches are also almost inevitable leading to gross
outliers. Depending on the geometry of the cameras and the repetitiveness
of texture patterns, these mismatches may even aggregates in structured
clusters of outliers producing phantom structures in the point cloud. Another
limitation of passive stereo is the highly non-uniform density of samples that
depends on the amount of texture on the scene and object. While visibility
filtering and expansion techniques combining heuristic-based optimizations
have been able to improve the quality of point clouds from stereo as in
[Furukawa and Ponce, 2007, Goesele et al., 2007], standard point clouds from
multi-view such as the two described acquisition methods have notoriously
higher levels of noise and ratio of outliers that point clouds acquired with
laser range finding.

1.3 Conclusion

In this chapter, techniques to acquire unorganized point clouds sampling a
target object or a scene have been described both for range scanning devices
and for passive stereo. Despite strong differences in sampling quality, the
two family of methods obviously share the property that acquired points
are “visible” from one or several sensors or emitters meaning that the corre-
sponding line-of-sights travels through empty space only between the object
of interest and the sensor or emitter. This simple information is instrumental
in the surface fitting framework presented in the next chapter. Finally, even
when this information has been thrown away and cannot be easily inferred,
this information may be synthesized in the case of densely and uniformly
sampled closed surfaces without outliers: the hidden point removal operator
of [Katz et al., 2007] may still be applied afterwards to simulate acquisitions
from virtual sources, an example is shown in Figure 1.7 (for one source, it
only amounts to computing the convex hull of the projection center and a
spherically flipped point cloud).
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Figure 1.7: Applying the hidden point removal operator of [Katz et al.,
2007] to the Stanford bunny from a virtual source.
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CHAPTER 2

Surface fitting framework

After an overview of related work on fitting surfaces to sets of
points, this chapter presents a general visibility-based surface
fitting framework. The problem of surface reconstruction from
point clouds is cast as a binary labeling of cells in a cell complex.
The cell complex is chosen so as to capture the surface with a
subset of its facets while the labeling problem exploits visibility
constraints from the line-of-sights associated with the acquired
points. A globally optimal labeling and a corresponding surface
can efficiently be computed as a minimum s-t cut in a network
graph derived from the cell complex.
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2.1 Previous work on fitting surface to point sets

From a set of points P = {Pi}i∈J1,NK in E
3 assumed to sample a solid model,

the task consists in computing a surface S from P. The reconstructed surface
S is typically represented as a triangulated mesh directly usable for further
processing. This surface S should match the surface of the original model
both geometrically and topologically. In E

2, if an interpolatory curve is
sought after and in the absence of noise or outliers not sampling the curve,
an optimal curve reconstruction is the polygon that connects the samples
the way there are connected along the original curve. In contrast, in E

3,
the surface reconstruction problem is in general ill-posed. Depending on
the sampled surface and the properties of the sampling, the difficulty of
meeting these criteria also varies: the problem is made more challenging by
sparsity, varying density, noise, outliers, non-smoothness and the presence
of boundaries in the original surface.

As noted in the introduction chapter, this problem of reconstructing a
surface from scattered points sampling a physical shape is motivated by nu-
merous applications. Various surface reconstruction algorithms have thus
been developed. In this section, we give an overview of the existing tech-
niques. Two major categories of surface reconstruction methods exist: im-
plicit surface methods and Delaunay-based methods. A few other methods
based on deformable models or shape template are also discussed.

2.1.1 Implicit methods

The first approach to surface reconstruction constructs a function of space
from the samples and defines the surface implicitly as a level-set of the func-
tion which permits smooth and approximating surface reconstruction. Other
advantages include the fact that the output surface is always the watertight
boundary of a solid and that singularities can be avoided. To output a
triangulated mesh, these method are often required to apply an isosurface
extraction algorithm such as the common Marching Cubes [Lorensen and
Cline, 1987] or a more advanced, feature preserving variant [Kobbelt et al.,
2001].

Distance functions

The first example of implicit method is [Hoppe et al., 1992] which estimates
the tangent plane at each sample point from its k nearest neighbors. A
consistent orientation of these planes is found with a minimum spanning
tree optimization and the function is defined as the distance to the tangent
plane associated to the closest point in space.

In [Curless and Levoy, 1996], the authors acknowledge the importance of
the scanning process and exploit line of sight information to blend weighted
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distance functions derived from range images. For efficiency reasons, the
domain is restricted to a thin shell around the samples and the output of the
method is thus a non-watertight reconstruction with boundaries.

Radial basis functions

Later methods represent the function as a weighted sum of basis functions,
typically radial basis functions (RBF), more relevant to solve interpolation
problems from scattered data [Franke and Nielson, 1980]. The value of the
functions is known at constraint points where RBFs are placed. The weights
are then globally solved to satisfy the constraints either exactly (for an in-
terpolating reconstruction) or approximately and minimize a smoothness
measure. The smoothest function that fits the points is zero everywhere.
To avoid this trivial solution, [Carr et al., 2001] has to impose on- and off-
surface constraints. In [Ohtake et al., 2004], compactly supported RBFs with
adaptive support are relied upon to handle noise.

Partition of unity and moving least-squares

Other recent approaches construct local functions near the sample points and
blend them together (using locally supported weight functions that sum to
one) to obtain the implicit function. In [Ohtake et al., 2003], the multi-level
partition of unity implicit surface representation is introduced: low-degree
polynomials approximate the shape of the surface in each cell of an adaptive
octree and an efficient implementation is demonstrated to handle large sets
of points. Moving least squares (MLS) [Lancaster and Salkauskas, 1981] can
naturally handle moderate amount of noise and be used to define similar im-
plicit functions with signed distance to local planes as local approximants,
yielding the implicit MLS method of [Shen et al., 2004]: reconstruction guar-
antees are provided for sufficiently dense and uniform point clouds [Kolluri,
2008]. A related but different method is the projection-based MLS of [Levin,
2003] where the surface is sought as the fixed-point of a parametric fit proce-
dure. [Alexa et al., 2003] introduced the technique to the field of computer
graphics with a polynomial fitting step. Numerous variants exists among
which [Fleishman et al., 2005] where sample neighborhoods are found with
a least-median-of-squares estimator from robust statistics to cope with noise
and to preserve sharp features.

Indicator functions

Another choice of function is the indicator valued one inside the object and
zero outside. [Kazhdan, 2005, Kazhdan et al., 2006] note that the gradient
of the indicator is zero everywhere, except on the surface where it equals
the surface normal. A vector field

−→
V is computed from the oriented input

samples (P equipped with estimated oriented normals) and the gradient of
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the indicator is aligned in the least-squares sense with this vector field by

minimizing the functional
∫

Ω

∥

∥

∥

−→
V (x)−−→∇χ(x)

∥

∥

∥

2
dx where the indicator χ is

relaxed to take any real value. Applying the calculus of variations leads to a
Poisson problem ∆χ = div

−→
V . Initially solved in the Fourier domain [Kazh-

dan, 2005], locally supported RBFs are used in [Kazhdan et al., 2006] over
an adaptive octree for efficiency and produce excellent results making the
method very competitive in practice as the global L2 minimization naturally
brings resilience to noise.

Methods such as [Hornung and Kobbelt, 2006c, Lempitsky and Boykov,
2007], based on the minimal surfaces framework with graph cuts of [Boykov
and Kolmogorov, 2003] also belongs to this category: values of the indicator
function are assigned to whole elementary volumes over a regular grid so
as to globally minimize an energy with a combinatorial minimum s-t cut
optimization. Post-processing is required to lessen artifacts from the regular
grid discretization.

This family of implicit approaches is sometimes limited by their sensitiv-
ity to noise, outliers or non-uniform sampling or even simply by the lack of
reliable and consistent normal estimates.

2.1.2 Deformable models

Since the seminal paper [Witkin and Terzopoulos, 1988] on active contours,
many applications of deformable models that evolve under the sum of exter-
nal and internal energies have been found in computer vision and graphics.
In general, these evolution methods require a good initialization and are
prone to local minima. In the level set framework of [Dervieux and Thomas-
set, 1979, Osher and Sethian, 1988], the time-varying model is represented
as the 0-level set of a function in R

3 whose level sets are all evolved. In
[Whitaker, 1998], the evolution guides the model towards a maximum a pos-
teriori by considering the squared error along the line of sights. [Zhao et al.,

2001] propose to minimize the functional

[∫

S
dp(x,P) dS

] 1
p

for p > 0, mea-

suring the distance of the surface to the samples. More recently, [Sharf et al.,
2006] evolve an explicit deformable mesh in a scalar field guided by the local
feature size in a coarse to fine manner to avoid local minima and capture
details.

2.1.3 Delaunay methods

The other most common approach to surface reconstruction comes from the
computational geometry community and is based on the Voronoi diagram
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and its dual, the Delaunay triangulation1. Delaunay-based methods follow
the initial intuition of [Boissonnat, 1984] of using a Delaunay triangulation
for surface reconstruction: the underlying idea is that when the sampling
is noise-free and dense enough, points close on the surface should also be
close in space. Eliminating facets of Delaunay tetrahedra according to some
criteria should then allow the reconstruction of a triangulated mesh.

The α-shapes of [Edelsbrunner and Mücke, 1994] define subsets of Delau-
nay tetrahedra for each parameter α leading to a discrete family of shapes
approximating the point sets at various levels of details.

Among Delaunay-based methods, perhaps the most well-known algo-
rithms are the Crust [Amenta et al., 1998b, 2001] and the Cocone [Amenta
et al., 2002, Dey and Goswami, 2003] families of algorithms. Crust algorithms
exploit the fact that Voronoi cells of points on the surface are elongated in
a direction perpendicular to the inferred surface. The extremal vertices of
these cells, called poles can be used to estimate the medial axis and filter
out facets not belonging to the surface. The Power Crust [Amenta et al.,
2001] is an extension, more robust for realistic inputs, that instead relies
on the power diagram, a weighted Voronoi diagram of the poles. A simple
modification, suggested in [Mederos et al., 2005], improves the robustness
of this method to noise. Cocone algorithms use poles in a simpler way to
compare facets normal with the vectors to poles. The Robust Cocone [Dey
and Goswami, 2006] generalizes the definition of poles to cope with a spe-
cific noise model. While [Amenta and Bern, 1999] was the first to provide
theoretical guarantees for smooth surfaces with the notion of local feature
size and ǫ-sampling, several of the mentioned algorithms are also provably
correct in the absence of noise and outliers or under specific noise model
related to the local feature size.

In contrast with these computational geometry approaches, [Chaine, 2003]
proposes to translate the surface convection scheme of [Zhao et al., 2001] over
the Delaunay triangulation of the input points. The ball pivoting algorithm
of [Bernardini et al., 1999] also differs from the above approaches. It avoids
computing the entire Delaunay triangulation of the input points to then
“throw away” most of it but is limited in robustness.

Degradations of the input data may make these local techniques fail. A
notable exception to this rule is the spectral surface reconstruction of [Kolluri
et al., 2004] which applies a global partitioning strategy (to be discussed
in 2.2.2) to label Delaunay tetrahedra as inside or outside the surface and
robustly handles quantities of outliers. A more detailed review of Delaunay-
based surface reconstruction can be found in the recent survey of [Cazals
and Giesen, 2006].

The suggested classification of surface reconstruction algorithms is not

1Definitions are given in Appendix B.
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rigid. As seen above, a first example is [Chaine, 2003] which formulates
the flow of [Zhao et al., 2001] on a Delaunay triangulation. Another is
[Boissonnat and Cazals, 2002] where a smooth surface is reconstructed with
the concept of natural neighbors defined on the Delaunay triangulation of
the samples for improved robustness to non-uniform sampling. In [Samozino
et al., 2006], the authors place RBF centers on the medial axis estimated
from the Voronoi diagram of the samples. The recent work of [Alliez et al.,
2007] mixes together a Delaunay-based approach and an implicit one with
a spectral method: a Voronoi diagram is used to estimate a tensor field
representing normal direction and confidence, then a generalized eigenvalue
problem is solved to compute an implicit function whose gradient is most
aligned with the direction given by the tensor field. The method is thus
not interpolatory, seems robust to noise. Due to the reliance on Voronoi
cells, it is however not robust to outliers. Furthermore, its computational
requirements seem too high and may prevent its application to large amounts
of data.

It should be noted that most of these works only target reconstruction
from high-quality range data. Recently, in the field of multi-view stereo,
[Goesele et al., 2007, Furukawa and Ponce, 2007, Bradley et al., 2008] pre-
sented specifically designed heuristics to filter, densify and improve the qual-
ity of point clouds or depth maps from passive stereo and to make some of
the most robust techniques above (namely [Kazhdan et al., 2006] and MLS
surface reconstruction) still applicable to these refined point clouds.

In the following section, we provide some background on cell complexes
and the use of minimum s-t cuts for optimal surface reconstruction in per-
spective of the more general cut minimization problem. We also discuss the
shortcomings of the previous cut-based reconstruction methods that bear
some similarity to our approach.

2.2 Background and notations

2.2.1 Cell complexes and binary labelings of cells

We first give some definitions of typical cell complexes: simplicial complexes
and polyhedral complexes.

Definition (Simplex). A k-simplex or a simplex of dimension k is the con-
vex hull of k + 1 affinely independent points i.e. a set of k + 1 points P =
{P1, . . . , Pk+1} generating an affine space of dimension k.

Any subset of l + 1 ≤ k + 1 points in P defines an l-simplex which is a
face of the simplex. For instance:

• a 0-simplex is a point, it only has 1 0-face;
• a 1-simplex is a segment, it has 2 0-faces and 1 1-face;
• a 2-simplex is a triangle, it has 3 0-faces, 3 1-faces and 1 2-face;
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• a 3-simplex is a tetrahedron, it has 4 0-faces, 6 1-faces, 4 2-faces and
1 3-face,

• etc. . .

Definition (Simplicial complex). A simplicial complex C is a finite set of
simplices that satisfies the following two properties:

1. any face of a simplex in C is also a simplex in C, and
2. two simplices in C either do not intersect, or their intersection is a

simplex of smaller dimension which is their common face of maximal
dimension.

Common examples of simplicial complexes are triangulations in 2D or
tetrahedrizations in 3D. The notion of simplex and simplicial complex is
generalized with polytopes and polyhedral complexes.

Definition (Polytope). A polytope is the convex hull of a finite set of points
P in E

d.

A polytope is equivalently the intersection, if it is bounded, of a finite
number of half-spaces. A hyperplane supporting a polytope is a hyperplane
having a non-empty intersection with the polytope and such that the poly-
tope (or P) is completely contained in one of the half-spaces induced by
the hyperplane. The definition of the faces of a polytope is more elaborate
than for a simplex: a face is the intersection of a polytope with a supporting
hyperplane. A face is the convex hull of a subset of the points P defining
the polytope. A polytope of dimension2 k is also called a k-polytope.

Similarly to a simplicial complex, a polyhedral complex3 can be defined
as follows:

Definition (Polyhedral complex). A polyhedral complex C is a finite set of
polytopes that satisfies the following two properties:

1. any face of a polytope in C is also a polytope in C, and
2. two polytopes in C either do not intersect, or their intersection is a

polytope of smaller dimension which is their common face of maximal
dimension.

Simplices and simplicial complexes are only a special case of respectively
polytopes and polyhedral complexes. The polytopes that constitute a poly-
hedral complex are called the faces of the complex. A face of dimension k
is called a k-face. 0-faces are called the vertices, 1-faces are called the edges
and in dimension d, d− 1-faces are called facets and d -faces are called cells.

2The dimension of a convex set is defined as the dimension of its affine hull (the smallest
affine set containing it).

3Sometimes called polytopial complex in the literature.
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Complexes can be further generalized with CW-complex4 in algebraic
topology. Since we are only interested in geometric properties related to CW-
complexes, a simplified definition of cell complexes will be given, consistent
with our needs. For a more general and rigorous treatment of CW-complexes
in topological spaces and algebraic topology, we refer the reader to [Hatcher,
2002].

Definition (Closed cell). A closed k-cell or a closed cell of dimension k is
a closed topological k-ball in E

d, i.e. , a subset of E
d which is homeomorphic

to a closed Euclidean k-ball.

Definition (Open cell). An open k-cell or an open cell of dimension k is an
open topological k-ball in E

d, i.e. , a subset of E
d which is homeomorphic to

an open Euclidean k-ball.

A k-polytope (and thus a k-simplex) is a closed k-cell. An open or closed
0-cell is a point in E

d.

Definition (Cell complex). A cell complex is a partition of a set U ⊆ E
d

into open cells such that for each open k-cell C in the partition of U , there
exists a homeomorphism h from the closed k-ball into U which satisfies the
following two properties:

1. the restriction of h to the interior of the closed ball is a homeomorphism
onto the cell C,

2. the image under h of the boundary of the closed ball is a finite union
of elements of the partition whose cell dimension is less than k (called
faces of C).

Polyhedral complexes (and obviously simplicial complexes) match this
definition but the faces defined above are actually closed k-cells in the cell
complex terminology, and that the term cell above designates closed k-cells
of maximum cell dimension here. We will use the above definitions of faces,
vertices, edges, facets and cells throughout this thesis.

A complex C is a k-complex or a complex of dimension k if the maximal
(cell-)dimension of the faces in C is exactly k. We denote by Cl the set of
l-faces of a k-complex C (0 ≤ l ≤ k). A k-complex is homogeneous or pure if
and only if any face of C is a face of some closed k-cell in C. The domain of a
complex C is denoted by dom(C) and is the region of E

d formed by the points
in E

d belonging to the faces of C. A k-complex is connected if its domain is
connected. In this thesis, only pure connected cell complexes are considered
whose domain is E

3 by including infinite cells. In Chapters 3 and 4, the
considered cell complex is a particular simplicial complex, a triangulation of
the input points, the Delaunay triangulation. In Chapter 7, the cell complex
is the polyhedral complex induced by a binary partitioning of space with

4CW stands for closure-finite weak topology.
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vertex

cell

edge

(a) A complex (b) A connected but impure complex

Figure 2.1: Examples of cell complexes.

planes and in Chapter 8, the cell complex is induced by a generalized binary
partitioning of space with oriented surfaces.

Two faces of a complex are incident if one is contained in the other and
their dimension differ by one. Two cells (i.e. , k-cells in a k-complex) are
adjacent if they share a common incident facet (a k − 1-face). Since cells of
a complex only intersect in a finite number of facets and as we consider cell
complexes with a finite number of cells, the finite (undirected) graph of cell
adjacency in a complex is defined as follows:

Definition (Cell adjacency graph). The cell adjacency graph G = (V, E) of
a cell complex C is a graph with n vertices V = {v1, . . . , vn}, in one-to-one
correspondence with the n cells of the complex. Each edge e in E corresponds
to a facet F of C, i.e. , the intersection of two adjacent cells Ci and Cj.

Binary values can be assigned to cells with binary labelings of cells:

Definition (Cell binary labeling). A cell binary labeling l of a k-complex C
is a map from Ck to {0, 1}.

In the sequel, l(C) will be shortened as lC . A notion of orientation for
facets of a cell complex is now introduced:

Definition (Oriented facet). Let F be a facet of a k-complex incident to the
two adjacent cells Ci and Cj ( i.e. Ci∩Cj = F ), FCi→Cj denotes the oriented
facet oriented from Ci to Cj.

The directed cell adjacency graph of a cell complex C can also be defined
with an edge corresponding to each oriented facet in the complex C. At
last, the definition of a pseudo-surface associated to a binary labeling can be
given:
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Definition (Pseudo-surface). A pseudo-surface S in a k-complex C induced
by a binary labeling l of cells is the union of all the oriented facets from
1-labeled cells to 0-labeled cells:

S =
⋃

Ci,Cj∈Ck

lCi
=1

lCj
=0

Ci ∩Cj=F

FCi→Cj .

A pseudo-surface can also be interpreted as an oriented k − 1-complex.
More interestingly, with the convention that lC = 0 means that the cell C is
outside or empty and that lC = 1 means that the cell C is considered inside,
labeling can describe indicator functions: there is a one-to-one correspon-
dence between binary labelings of a cell complex and the union of oriented
facets bounding a solid formed by inside cells in 3D.

Having defined what a cell complex is, and how some particular unions
of oriented facets can be interpreted as oriented surfaces, the next section
proposes to cast the problem of finding optimal (oriented) surfaces bounding
solids as finding an optimal cut on the directed cell adjacency graph of a
given cell complex.

2.2.2 Surface reconstruction with minimum cuts

Let G = (V, E) be a directed graph with vertices V = {v1, . . . , vn} and
oriented edges E with weights wij . Graph partitioning consists in removing
the edges connecting two sets of vertices, that is finding two disjoint sets VS
and VT such that VS ∪ VT = V, VS ∩ VT = ∅. This partition (VS ,VT ) is
called a cut and is assigned a cost : the sum of the weights of the edges going
from VS to VT (the oriented edges “crossed” by the cut):

cost(VS ,VT ) =
∑

vi∈VS

vj∈VT

wij .

This cost can be seen as a measure of similarity between the two sets VS
and VT . If we consider the directed cells adjacency graph of a cell complex,
each vertex is a cell and each edge is an oriented facet, and partitioning a
weighted version of this graph is equivalent to assigning binary labels to cells
according to oriented facets weights. A binary labeling of cells corresponds
to a graph partitioning and once weights have been assigned to oriented
facets, the cost of a cell binary labeling can be defined. In the sequel, we
assume that the label 0 for a cell C corresponds to the fact that its vertex
vC belongs to VS , and similarly for the label 1 and VT : in other words, a
labeling l is the indicator function of VT .

Since the total number of possible cuts is 2n, a combination of efficient
algorithms and restricted sets of cuts are needed to find a minimum cut.
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Spectral partitioning

Spectral clustering is a first class of methods for computing optimal partitions
of graph. Given an undirected similarity graph G = (V, E) with non-negative
weights (wij = wji ≥ 0), we define:

• di =
∑

j wij and D = (di)
T ∈ R

n,

• li, a relaxed label assigned to the graph vertex vi and l = (li)
T ∈ R

n,
• W = (wij) ∈Mn,n(R)
Applications of spectral partitioning make use of graphs induced by the

symmetrized k-nearest neighbors, ǫ-neighbors or even fully connected graphs.
In our context, the undirected cells adjacency graph of the complex is an
obvious candidate. If we note L = D−W , the symmetric and positive semi-
definite unnormalized Laplacian matrix of the graph, then we have (other
properties of this matrix can be found in [Mohar, 1991, 1997]):

lT L l =
1

2

n
∑

i,j=1

wij (li − lj)2 .

If li takes only binary values then this is (almost) exactly the cost of the
corresponding cut in the graph and efficient algorithms exist to compute
the minimum cut [Stoer and Wagner, 1997] (requiring VS ,VT 6= ∅). With
a relaxed labeling and also avoiding the trivial solution, lT L l is minimized
when l is the second eigenvector of L (the first eigenvalue of L is 0). From
this relaxed labeling (for instance computed with Lanczos algorithm to find
the first eigenvectors of the sparse matrix L), a binary labeling of vertices can
then be found with the k-means algorithm [Steinhaus, 1956] or thresholding.
However, the defined cost does nothing to prevent small sets of nodes from
being isolated. A more useful spectral partitioning method [Shi and Malik,
2000] considers the following normalized cost:

cost(VS ,VT ) =
∑

vi∈VS

vj∈VT

wij

/

∑

vi∈VS

vj∈V

wij +
∑

vi∈VS

vj∈VT

wij

/

∑

vi∈VT

vj∈V

wij ,

which penalizes small clusters. Unfortunately, minimizing exactly this bal-
anced cost (or finding a corresponding binary labeling) is an NP-complete
problem. If li is relaxed, it can be shown that minimizing this new cost leads
to minimizing:

lT L̃l =
1

2

n
∑

i,j=1

wij

(

li√
di
− lj
√

dj

)2

,

where L̃ is a normalized5 Laplacian matrix L̃ = D−1/2LD−1/2 = I −
D−1/2WD−1/2 (a standard reference for normalized graph Laplacians is

50−1/2 is replaced by 0.
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[Chung, 1997]). As above, computing the second eigenvector of L̃ allows
to infer a binary labeling of vertices with the k-means algorithm [Steinhaus,
1956] or appropriate thresholding.

Surface reconstruction from point clouds has already been expressed as a
problem equivalent to computing a normalized cut. The spectral surface re-
construction of [Kolluri et al., 2004] applies this criterion to partition subsets
of Delaunay tetrahedra. The method however varies on the presented scheme
by modifying the eigenvalue problem: the normalized Laplacian matrix L̃ in-
volved in the objective function is altered by allowing negative weights and
modifying its diagonal to make the matrix positive definite. According to
the authors, these adjustments in practice greatly improve robustness and
increase speed, but they also void the interpretation of the solution as an
optimal normalized cut. The method is nevertheless still quite slow, could
not be applied to large data sets and besides requiring two successive parti-
tioning steps, several additional ad hoc treatments seem to be needed for it
to be applied to real data (filtering out spurious tetrahedra by thresholding
and restricting the labeling to tetrahedra near the sample points along their
line of sights).

Minimum s-t cuts

Another approach to graph partitioning adds two special “terminal” vertices
to V, the source s and the sink t. The weights are restricted to non-negative
values but asymmetry is now allowed. In addition to edges to its incident
vertices, each vertex vi now has links to s and t respectively weighted si and
ti. An s-t-cut (VS ,VT ) is a cut such that s ∈ VS and t ∈ VT . The cost of
such a cut may be split as follows:

cost(VS ,VT ) =
∑

vi∈VS\{s}
vj∈VT \{t}

wij +
∑

vi∈VS\{s}
ti +

∑

vi∈VT \{t}
si .

This cost can be interpreted as an energy E(VS ,VT ) attached to the corre-
sponding partition with a “regularizing” term between the VS and VT sets
(the sum of edge weights wij which is actually the cost of the cut without
considering the terminals) and a “data” term for VS and VT (the sums of
the link weights si and ti). The minimum s-t cut problem consists in finding
an s-t cut (VS ,VT ) with the smallest cost. According to the Ford-Fulkerson
theorem [Ford and Fulkerson, 1962], this problem is the same as computing
the maximum flow from the source s to the sink t: several efficient algo-
rithms with low-polynomial complexity have been developed to solve this
problem, making it possible to globally minimize the energy E(VS ,VT ). The
two classes of such algorithms are variants of the original augmenting paths
[Dinic, 1970] and push-relabel algorithms [Goldberg and Tarjan, 1988] (both
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of O
(

|V|2 |E|
)

complexity). Detailed descriptions of these algorithms in com-
binatorial optimization can be found in [Tarjan, 1983, Cook et al., 1998].

By building an appropriate graph, many segmentation problems in com-
puter vision or graphics can be thus solved globally and efficiently [Greig
et al., 1989]. More generally, global minimization of specific classes of energy
is achievable with minimum s-t cuts [Kolmogorov and Zabih, 2004, Freed-
man and Drineas, 2005]. Most often, methods using minimum s-t cuts for
optimal binary segmentation or partitioning for curve or surface reconstruc-
tion straightforwardly apply the minimal surfaces with graph cuts framework
of [Boykov and Kolmogorov, 2003] by slicing the whole domain of interest
with a regular grid and interpreting the previous equation as the sum of the
discretizations of an integral over the interface (the surface S) between VS
and VT and two integrals over VS (the outside volume Vout) and VT (the
inside volume Vin):

E(S) =

∫

S
f(x) dS +

∫

Vout

gout(x) dx +

∫

Vin

gin(x) dx .

Often employed over these regular grid graphs, a popular augmenting paths
algorithm is the one of [Boykov and Kolmogorov, 2004]. Although its theoret-
ical complexity O

(

|V|2 |E| cost(V⋆
S ,V⋆

T )
)

is worse than standard algorithms,
it is preferred due to better empirical performance.

Methods that rely on minimum s-t cuts for optimal surface reconstruc-
tion either directly from images or from point clouds adopt this point of
view which has several weaknesses. First, a regular subdivision of space
seriously impedes the scalability of minimum s-t cuts as empty space has
to be modeled explicitly. It also requires extensive post-processing to re-
move the stair-cases artifacts on the extracted surface (a continuous version
of these minimal s-t cut surfaces was proposed in [Appleton and Talbot,
2006]). Then, the area-based regularization term is the cause of the “shrink-
ing bias”6: the optimal surface for an energy reduced to this term only is
the trivial empty one. Minimizing an energy including such a term cou-
pled with other terms often results in over-smoothing. Workarounds include
restricting the domain of interest or adding a uniform balloon force which
requires data-specific adjustment and is unable to recover thin protusions
and concavities. In the field of surface reconstruction from point clouds, the
approach of [Hornung and Kobbelt, 2006c] unfortunately suffers from both
problems: the domain is regularly subdivided with a grid that introduces
metrication errors and requires a special post-processing step to smooth out
grid artifacts. The computational burden of this grid is limited thanks to the
use of “banded” graph cuts of [Lombaert et al., 2005] which actually reduce
the minimum s-t cuts optimization to a local optimization in a neighborhood

6Typical of numerous regularizations techniques but exacerbated by the global opti-
mum property of minimum s-t cuts.
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of the initially computed proxy surface. In [Lempitsky and Boykov, 2007],
the flux of a coarsely oriented vector field is maximized. However, to make
this approach robust against undersampling and outliers, the authors resort
to an area term and a regional term based on lines of sight (a simple non-
uniform balloon force). Also, to lower the computational cost, the authors
use a dedicated heuristic that requires proper initialisation to speed up the
maximum flow computation on the voxelized volume.

Alternatives to regular grids exist: [Kirsanov and Gortler, 2004] first
proposed to use graph cuts on cell complexes to globally optimize surface
functionals and developed the idea of using random sparse complexes for their
flexibility over regular subdivisions. In surface reconstruction from images,
[Vogiatzis et al., 2007, Sinha et al., 2007] propose multi-resolution regular
subdivisions. In [Labatut et al., 2007], we propose a sparse subdivision
adaptive to sample measures with the Delaunay triangulation.

Our general surface fitting method circumvents the common drawbacks
of graph cuts for surface reconstruction from images or point clouds. In-
stead of imposing a regular grid, we exploit the adaptivity of a cell complex
guided by the input data. Moreover, a visibility term taking into account
the acquisition procedure is proposed: it explicitly avoids the empty surface
solution. In contrast with methods purely based on the minimal surfaces of
[Boykov and Kolmogorov, 2003], our optimization problem is purely discrete
and does not approximate a continuous one.

2.3 Overview of our approach

All surface reconstruction algorithms presented in the next chapters follow
the same overall scheme:

Algorithm 1 Summary of our approach
1: Compute a set of points P with associated visibility sets v,
2: Compute a cell complex from this set of points,
3: Compute an optimal binary labeling l⋆ = arg minl E(l) of its cells w.r.t.

some energy accounting for visibility constraints (plus possibly some oth-
ers terms),

4: Extract the corresponding oriented pseudo-surface S from the optimal
inside/outside cells binary labeling l⋆.

The underlying assumptions are that the sought surface can be approx-
imated with a union of facets from the cell complex and that the sample
points sample these facets densely enough.
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2.3.1 Points with visibility sets

As noted in the previous chapter, all the considered acquisition methods
suppose clear lines of sight between their respective emitter or sensor and
the reconstructed point crossing only empty space. In the rest of the thesis
we denote by P = {P1, . . . , PN} the finite set of points in E

d acquired using
one of the techniques discussed in Chapter 1. We denote by v a map from P
to a finite set of points in E

3 which associates to each point P ∈ P a “visibility
set”, i.e. , a finite set of locations v(P ) =

{

V1, . . . , V|v(P )|
}

such that for all
i ∈ J1, |v(P )|K, the line segment [ViP ] is a line-of-sight. Depending on the
projection, the point Vi may even be rejected towards infinity and located
in an infinite cell of the cell complex. We will note v(P ) as vP in the sequel.

2.3.2 Cell complexes from points

The cell complexes considered in the rest of this thesis are all “data-driven”:
their construction is guided by the initial point cloud and a subset of the
facets of the complex is assumed to capture the surface to be reconstructed.
The cell complex is either directly computed from the set of points as in
Chapters 3 and 4 where the Delaunay triangulation of the points is used, or
as in Chapter 6, it requires a pre-processing of the point cloud to extract
appropriate structures (see Chapters 7 and 8). In all cases, this reliance
on sparse adaptive point-driven complexes enables our surface reconstruc-
tion framework to naturally scale to large outdoor scenes, a problematic
case for dense graph cut methods over regular subdivision of space. Hence
one drawback is that the actual computation of the cell complex is more
labor-intensive than a simple regular grid. This is the compromise to pay
for greater flexibility. The cell adjacency graph is however typically much
sparser and the ensuing optimization faster. An advantage of the facts that
the complexes span the whole ambient space and that the optimization re-
lies on visibility, is the added ability to handle closed scenes but also some
open scenes: the extracted pseudo-surface can include infinite facets of the
complex, allowing pseudo-surfaces to be extracted with a boundary lying
on the finite edges of the infinite cells of the complex. Most other surface
reconstruction algorithms can only output closed reconstructions.

2.3.3 Optimal cell binary labeling

A pseudo-surface S∗ is sought after so as to minimize visibility constraints
imposed by the line-of-sight of the acquired points:

S∗ = arg min
S

Evis(S,P, v) .
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Surface visibility

A surface should never cross the empty space traversed by the various lines of
sight attached to the points. Ideally, one would like to minimize the number
of conflicts of the lines of sight with the pseudo-surface S induced by the cell
labeling l. This corresponds to the following energy:

Evis(S,P, v) = Evis(l,P, v) =
∑

P∈P

∑

Q∈vP

Vconflict

(

l
CQ→P

1
, . . . , l

CQ→P
N[QP ]

)

,

where CQ→P
1 , . . . , CQ→P

N[QP ]
is the ordered sequence of the N[QP ] cells crossed

from the emitter/sensor position Q to the point P . Since P is not assumed
to lie exactly on a facet of the complex, the sequence is terminated at the
facet of complex closest to P as shown in the upper part of Figure 2.2. N[QP ]

depends on P , Q and the complex. Each oriented facet F (CQ→P
i ∩ CQ→P

i+1

for i ∈ J1, N[QP ]−1K is intersected by the line segment [QP ]. Vconflict is given
by:

Vconflict

(

l
CQ→P

1
, . . . , l

CQ→P
N[QP ]

)

= αvis ✶

[

∃i ∈ J1, N[QP ]K l
CQ→P

i
= 1

]

,

where αvis is a constant w.r.t. the labeling but can possibly depend on the
considered point or line of sight: it is a confidence measure of the point or
line of sight. For instance,

1. for dense range images, αvis can be linked to the estimated normal from
the range image or to the closeness of the sample point to boundaries
of the range as in [Turk and Levoy, 1994, Curless and Levoy, 1996],

2. for passive point clouds from multiple images, αvis can be linked to
the photo-consistency score (it could also be linked to the condition
number of the triangulation optimization).

Since the trivial labeling l0 : c ∈ C → 0 marking all cells as outside and to
which corresponds an empty pseudo-surface satisfies these constraints, the
facts that the point is assumed to lie near the surface and that the sensor
has to be outside have to be considered. We denote by CQ→P

1 , . . . , CQ→P
N[QP ]

the same ordered sequence of the N[QP ] cells crossed from the ending point
position Q to the point P (up to the closest facet to P ). We denote by
CQ→P

N[QP ]+1 the cell behind this closest facet to the point P in the direction

of the line of sight, i.e. each oriented facet F =
(

CQ→P
i , CQ→P

i+1

)

for i ∈
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Figure 2.2: Visibility and graph construction. A line of sight from a sam-
ple point traverses a sequence of cells: the traversed sequence goes from the left
darker blue cell to the rightmost light blue cell and the darker blue rightmost cell is
the cell “behind” the sample; the darker green facets are considered crossed by the
line of sight. To such sequence corresponds the shown graph construction and the
assignment of weights to the cells and oriented facets.

J1, N[QP ]K is intersected by the line [QP ]. We define Evis as:

Evis(S,P, v) = Evis(l,P, v) =
∑

P∈P

∑

Q∈vP

Dout

(

l
CQ→P

1

)

+ Vconflict

(

l
CQ→P

1
, . . . , l

CQ→P
N[QP ]

)

+Din

(

l
CQ→P

N[QP ]+1

)

,

where:

Dout (lC) = αvis ✶ [ lC = 1 ] ,

Din (lC) = αvis ✶ [ lC = 0 ] .

As announced, a labeling that marks the cell of the emitter/sensor as inside
is penalized and a labeling marking the cell behind the point as outside is
also penalized in addition to labelings creating conflicts with lines of sight.
A major drawback however, is that the subterm Vconflict involves a varying
number of cells (typically greater than two) and an optimal labeling can thus
not be found using a minimum s-t cut on the directed cells adjacency graph
of the complex. Instead of penalizing a “conflict” with each line of sight, the
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number of misalignments of the surface may be penalized. To this end, Evis

is replaced with the following new expression:

Evis(S,P, v) = Evis(l,P, v) =
∑

P∈P

∑

Q∈vP

Dout

(

l
CQ→P

1

)

+

N[QP ]−1
∑

i=1

Valign

(

l
CQ→P

i
, l

CQ→P
i+1

)

+Din

(

l
CQ→P

N[QP ]+1

)

,

where Valign is a simple pair-wise subterm defined for two adjacent cells of
the complex (since in the above equation the cells are crossed in that order,
they are adjacent to each other):

Valign

(

lCi , lCj

)

= αvis ✶
[

lCi = 0 ∧ lCj = 1
]

.

The benefit of this new visibility term is that a globally optimal labeling can
be efficiently be computed with minimum s-t cut. The corresponding weight
construction is shown in Figure 2.2: the s-link of the vertex representing the
cell C1 is assigned αvis, the t-link of vertex representing the cell CN[QP ]

behind
the closest facet to P is assigned αvis and each oriented facet crossed by the
line of sight from P to Q is also assigned αvis. These weight assignments are
accumulated over all lines of sight, and computing a minimum s-t on this
graph yields a globally optimum labeling.

One might wonder if alternatives would not be better suited to this prob-
lem. For instance, simply penalizing crossed cells with a data term, i.e. ,
using the Dout subterm for all crossed cells leads to a guided ballooning
force (this is one of the additional terms used in [Lempitsky and Boykov,
2007]), known to be not as robust and often requiring data-specific param-
eter tuning. Making the subterm Valign symmetric reduces to a standard
regularizing term along each line of sight. The presented visibility term has
been designed to avoid these pitfalls and an extensive validation in the next
chapters confirms this. Its integral nature, by accumulating weights over
all available line-of-sights, explains its robustness to outliers present both in
the empty space crossed by the line-of-sights and behind densely sampled
surface areas.

Other terms

We have purposely not detailed the construction of the cell complex since it is
problem specific. Depending on the sampling density of the points and their
line of sights w.r.t. the facets of the complex, some additional term might
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be needed to compute not only a surface that is approximately visibility-
consistent but also a surface avoiding some mislabeling due to scarce visibility
information. These additional terms may be a surface quality measure for
Delaunay triangulations in Chapters 3 and 4 or the photo-consistency of the
surface for the multi-view stereo problem.

2.3.4 Pseudo-surface extraction

As noted in Section 2.2, there is a one-to-one correspondence between binary
labelings of cells and inside/outside partitions by pseudo-surfaces. From an
optimal cell labeling l⋆, a corresponding optimal pseudo-surface S⋆ can be
extracted as the interface between 0-labeled cells (outside cells) and 1-labeled
cells (inside cells):

S⋆ =
⋃

Ci,Cj∈C3

l⋆Ci
=1

l⋆Cj
=0

Ci ∩Cj=F

FCi→Cj ,

where C3 is the set of cells of the complex. In the various complexes used
in Chapters 3, 4, 7 and 8, the output pseudo-surface is always a polygonal
mesh, with either purely triangular facets, more general polygonal facets in
Chapter 7 or whole surface patches approximated by triangular meshes in
Chapter 8. This output mesh may not be 2-manifold, i.e. , it may contain
singular vertices or edges, but, if required, it can be converted to a 2-manifold
mesh using standard mesh processing techniques such as [Guéziec et al.,
2001].

Note that while the labeling of cells is guaranteed to be globally optimal,
the pseudo-surface is only optimal w.r.t. to the underlying complex. The
choice and construction of the complex is a critical part of our approach for
the final pseudo-surface S to accurately model the acquired object or scene.
To illustrate this and the use of the presented visibility term over differ-
ent point-driven cell complexes, Figures 2.3 and 2.4 compare reconstructions
from noise-free point clouds with the same visibility term and a simple uni-
form and symmetric term Vcomp per facet, which penalizes the number of
facets in the final pseudo-surface:

Vcomp

(

lCi , lCj

)

= Vcomp

(

lCj , LabelingCi

)

= ✶
[

lCi 6= lCj

]

,

for two adjacent cells Ci and Cj such that Ci ∩ Cj = F . In the minimum
s-t cut optimization framework, this term amounts to adding a weight to all
oriented facets. The reconstructions were computed on an adaptive region-
based octree [Finkel and Bentley, 1974] (at maximum depth 9, with at most
one point per octree cell) and on the Delaunay triangulation of the input
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points. The input point cloud samples a ground truth model and the visibil-
ity sets were obtained with occlusion computation using this ground truth
model. In these noise-free examples, the choice of a Delaunay triangulation
completely removes the stair-case artifacts typical of graph cuts method over
regular subdivisions and obviates any post-processing.
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Figure 2.3: block data set: comparison of visibility-based reconstructions over
different data-driven complexes. First row: ground truth model and input point
cloud, second row: reconstruction over an adaptive region-based octree and third
row: reconstruction over a Delaunay triangulation. The graphs on the right are
histograms of the distance to ground truth of the reconstructions.
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Figure 2.4: fandisk data set: comparison of visibility-based reconstructions over
different data-driven complexes. First and second rows: ground truth model and
input point cloud. Third and fourth rows: reconstruction over an adaptive region-
based octree. Fifth and sixth rows: reconstruction over a Delaunay triangulation.
The graphs on the right are histograms of the distance to ground truth of the recon-
structions.
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2.4 Conclusion

This chapter has introduced our general surface fitting framework. The
problem of surface reconstruction from acquired point clouds is cast as the
reconstruction of a visibility-consistent pseudo-surface in a data-driven cell
complex. This problem reduces to a binary labeling of cells that can effi-
ciently be computed with a minimum s-t cut. Problem-specific cell complexes
are used in the subsequent chapters for different surface reconstruction ap-
plications.
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CHAPTER 3

Surface reconstruction from range data

A first variant of our visibility-based surface fitting framework
is applied to reconstruct models from range acquired data. The
Delaunay triangulation of the points is chosen as the cell complex
and the visibility term is relaxed to accommodate for noise in
densely sampled data with scarce line-of-sight information. In
addition, a suitable discrete surface quality term is designed and
added to the energy. Numerous experiments are presented both
on highly deteriorated synthetic data sets and on real-world data
sets to assess the robustness of a global optimization based on
visibility constraints for surface reconstruction.

Contents

3.1 Surface reconstruction algorithm . . . . . . . . . 46

3.1.1 Delaunay triangulation . . . . . . . . . . . . . . . . 46

3.1.2 Optimal labeling of tetrahedra . . . . . . . . . . . 47

3.1.3 Surface visibility . . . . . . . . . . . . . . . . . . . 47

3.1.4 Surface quality . . . . . . . . . . . . . . . . . . . . 51

3.2 Implementation details and issues . . . . . . . . 53

3.3 Experimental results . . . . . . . . . . . . . . . . 54

3.3.1 Robustness to non-uniform sampling . . . . . . . . 58

3.3.2 Robustness to noise . . . . . . . . . . . . . . . . . 58

3.3.3 Robustness to outliers . . . . . . . . . . . . . . . . 59

3.3.4 Large-scale outdoor range data . . . . . . . . . . . 60

45



46 3. SURFACE RECONSTRUCTION FROM RANGE DATA

As seen in Chapters and 2, surface reconstruction from range data is
driven by numerous applications and has a long research history. While re-
cent methods have exclusively considered unoriented point sets or, on the op-
posite, prerequired good normal estimation for these points, we only assume
the availability of approximate lines of sight: despite being either available
or easily recoverable, such datum is often simply thrown away. This addi-
tional information is put to use to formulate the reconstruction problem as
an energy minimisation on a Delaunay triangulation. Our energy basically
measures how well the inside/outside of a Delaunay tetrahedron agrees with
soft visibility constraints derived from lines of sight and the likeliness of this
labeling as an output surface. Fortunately, our energy can be interpreted as
an s-t cut in a special graph allowing a globally optimal labeling of tetrahe-
dra with respect to these constraints and the surface quality measure to be
efficiently found as a minimum s-t cut. This simple combination of a Delau-
nay tetrahedron labeling with the global optimization of a visibility-based
energy exhibits strong resilience to various kinds of alterations of the input
data.

3.1 Surface reconstruction algorithm

The first step of our method computes a triangulation of the 3D point cloud
composed of all merged range images. Each finite vertex of this triangulation
comes from one range image, and the relative location of the laser and/or
the sensor(s) is (at least, approximately) known. As a consequence, the
corresponding line(s) of sight emanating from a vertex to the laser and/or
the sensor(s) is required to not cross the reconstructed surface.

3.1.1 Delaunay triangulation

To apply the surface fitting framework of Chapter 2, the chosen cell complex
is, as announced, a triangulation of the input points, more specifically its
Delaunay triangulation. This choice is motivated by the following remark-
able property: under some assumptions, and especially if P is a “sufficiently
dense” sample of a surface, in some sense defined in [Amenta and Bern,
1999], then a good approximation of the surface is “contained” in Del(P), in
the sense that the surface can be accurately reconstructed by selecting an
adequate subset of the triangular facets of the Delaunay triangulation which
was illustrated at the end of Chapter 2.

While the algorithmic complexity of the Delaunay triangulation of n 3D
points is O(n2) in general, as recently proven by [Attali et al., 2003], this
complexity drops to O(n log n) when the points are distributed on a smooth
surface (and under a mild uniform sampling condition), which is the case of
interest here.
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3.1.2 Optimal labeling of tetrahedra

We consider the surface reconstruction problem as a Delaunay tetrahedra
labeling problem: tetrahedra are each assigned an inside or outside label.
The reconstructed surface, denoted by S in the following, is therefore a
union of oriented Delaunay triangles: it is guaranteed to be watertight and
intersection-free as it bounds a volume. We define an energy E(S), attached
to a reconstructed surface S, and gathering two distinct terms:

E(S) = Esoft−vis(S,P, v) + λqual Equal(S)

The term Esoft−vis(S,P, v) is derived from the framework described in Chap-
ter 2 and is a sum of penalties for misalignments and wrong orientations of
the surface S with respect to the constraints imposed by all the lines of sight
from the sample points. The term Equal(S) penalizes the triangles of S un-
likely to appear on the true surface. λqual is a positive constant weighting
Equal(S).

In the next two sections, we present these two energy terms which can be
interpreted as costs of s-t cuts on a special graph, allowing our energy to be
globally and efficiently minimized with a standard maximum flow algorithm
as reminded in Chapter 2. The graph considered is obviously related to the
Delaunay triangulation: it has vertices representing the Delaunay tetrahe-
dra and directed edges representing the oriented triangles between adjacent
tetrahedra. This graph is augmented with the (abstract) source and sink
vertices and with links from each tetrahedron to the source and the sink.
The vertices linked to the source correspond to tetrahedra labeled as outside
and symmetrically, vertices linked to the sink are inside tetrahedra. The
directed edges of a cut are triangles on the oriented surface.

As noted in Chapter 2, the infinite tetrahedra (the tetrahedra lying out-
side the convex hull of the input points) are also included as vertices in our
graph: this allows the labeling to recover open surfaces. Such property is
especially useful for outdoor scenes as shown in Section 3.3.

3.1.3 Surface visibility

In this section, the original visibility term of the previous chapter is quickly
described in the special case of the Delaunay triangulation of the input points
as the underlying cell complex. It is then improved to better cope with scarce
visibility information and sample noise.

Let us consider one vertex of the triangulation and one line of sight from
this vertex to the laser (or sensor).

Provided the sample position is noise-free, the tetrahedra intersected by
this line of sight from this vertex to the sensor or to the laser should be
labeled as outside and the tetrahedron behind the vertex should be labeled
as inside. By minimizing the number of intersections of this line of sight
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Figure 3.1: Stanford armadillo: 428K vertices, 841K facets. The original range
scans contain many outliers which are automatically eliminated by our method.

with the oriented surface and penalizing a wrong orientation, we can try
imposing this visibility constraint: the triangles crossed by a line of sight
from the vertex to the laser (or sensor) are to be penalized. In addition,
the surface should also go through the vertex originating the line of sight
and the last tetrahedron traversed by the line of sight should be labeled as
outside. Let us translate this into weights in the corresponding s-t graph
(see Figure 3.2(a)):

1. the left-most darker blue tetrahedron gets an αvis-weighted link to the
source (αvis is a positive constant for the line of sight),

2. the darker green oriented facets on the left of the vertex, crossed by
the line of sight and pointing towards the sensor or emitter get an
αvis-weighted edge,

3. the darker blue tetrahedron right behind the vertex gets an αvis-weighted
link to the sink.

If a confidence measure is available for the line of sight, as indicated in
Chapter 2, it should be incorporated into αvis: for instance, [Curless and
Levoy, 1996] assigned a confidence value that depends on the angle between
the sample normal (evaluated from the range image) and the direction of the
line of sight. A surface that goes through the vertex and does not cross the
line of sight will not cut any of the weighted edges and links just constructed
and will therefore not increase the cost of the s-t cut. This construction is
repeated for all available lines of sight of all the vertices of the triangulation
by summing their weight contributions: newly generated weights are added
to the previously assigned. This can be seen as a kind of “vote” from each
line of sight for tetrahedra to be labeled as inside or outside and for oriented
triangles to belong to the surface or not. Note that the only tetrahedra that
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Figure 3.2: Visibility and soft visibility: how a single line of sight (red dotted
line) of a vertex of the triangulation (red) from a sample point to a laser (or to a
sensor) contributes to the weights assigned to the origin tetrahedron, to the facets
it crosses (darker green) and to the final tetrahedra (darker blue).
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get a non zero-weighted link to the source are those (possibly infinite ones)
containing the laser sources or sensors optical centers. This integration over
hundreds or thousands of thousands of line of sights combined with a global
optimization allows our method to exhibit a strong resilience to different
kinds of errors in the input data.

Figure 3.3: Stanford bunny (with visibility only): a constant visibility term
per line of sight is not suited to the reconstruction of densely (but noisily) sampled
surfaces with few lines of sight per sample: it tends to generate bumpy surfaces and
mislabels many interior tetrahedra.

Figure 3.4: Stanford dragon (visibility vs. soft visibility): on the left, no tol-
erance is used and the reconstruction is bumpy and overly complex (1,176K vertices,
2,322K facets), on the right, a reconstruction with tolerance generates a smoother
and much coarser mesh (304K vertices, 580K facets).

While this construction effectively avoids the empty surface solution and
the “shrinking bias”, it is not completely adapted in the context of recon-
struction from range scans which sample a surface very densely (with a noise
amplitude close to the sampling density): it tends to generate overly complex
surfaces (see Figures 3.3 and 3.4) that are bumpy and have many handles in-
side the model. The measurement noise found in range image is responsible
for the bumpiness of the surface, and the large tetrahedra being mislabeled
inside the model appear because each sample point only has one or two
line(s) of sight: the tetrahedra that should be labeled as inside because they
lie behind a vertex are at a much greater risk of being mislabeled because
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Figure 3.5: Stanford happy buddha: 380K vertices, 738K facets. Setting the
tolerance parameter σ too high might create unwanted holes (inside the square).

no ray from their vertices will ever intersect them. This is precisely what
happens in Figure 3.3: some inside tetrahedra of the bunny get mislabeled as
outside. In multi-view stereo, this problem can be partly circumvented first
by aggregating nearby pair-wise reconstructed 3D points together (merging
their line of sight information) as done in the two passive stereo methods of
Chapter 1 or by relying on a photo-consistency term to penalize facets. Here,
these two problems are solved differently and more elegantly by relaxing the
visibility constraints: a tolerance parameter σ is introduced and we modify
the edges and links weight constructions. As shown in Figure 3.2(b), the
previous construction is extended so that the final tetrahedron on the line of
sight does not lie strictly behind the considered vertex but a bit further: it is
actually shifted to a distance of 3σ along the line of sight. We also make the
oriented facets weights decay with the distance of the intersection of the line
of sight with the vertex: each oriented facet intersected by the line of sight

of a vertex at a distance d of this vertex gets a weight of αvis

(

1− e−d2/2σ2
)

from this line of sight. As shown in Figure 3.5, the value of σ should be
set conservatively. However, changing it reasonably allows to generate more
or less complex output meshes (see Figure 3.6). Finally, note that σ = 0 is
equivalent to the first visibility weight construction.

3.1.4 Surface quality

The soft visibility constraints of the previous visibility term are sometimes
insufficient to get a good reconstruction: handles might still appear due to
tiny elongated tetrahedra being wrongly labeled as outside because few (or
no) line of sight intersected them.

At first, a simple heuristic can be used to filter out these tetrahedra
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σ = 0.0625
131K vertices
263K facets

σ = 0.125
109K vertices
214K facets

σ = 0.25
65K vertices
126K facets

σ = 0.5
34K vertices
66K facets

σ = 1
17K vertices
34K facets

σ = 2
11K vertices
21K facets

Figure 3.6: Influence of the tolerance parameter σ on the reconstruction de-
tails and complexity of the UU sheep.

and ensure the “quality” of the triangles in the output surface: the quality
of surface triangle is evaluated as the ratio of the length of their longest
edge over the length of their shortest edge (minus one). In our graph, each
oriented triangle is weighted with this value. This new quality term tries
preventing “badly-shaped” triangles from appearing on the surface.

In practice, this quality measure gives satisfying results and also happens
to be used in the second labeling step of [Kolluri et al., 2004]; it is however
slightly too discriminating towards skinny triangles that may be required on
the surface itself especially in areas where holes in the range images are to
be patched (thanks to the Delaunay triangulation).

Instead, we propose to apply a “soft” generalization to 3D of the β-
skeleton described in [Amenta et al., 1998a] for curve reconstruction. In 2D,
the β-skeleton algorithm computes the Delaunay triangulation of the sample
points and chooses the edges of the triangulation whose adjacent triangles
have circumcircles centered on opposite sides of the edge and whose radius
are both greater than β/2 times the length of the edge. For dense enough
samples, this selection of edges with large empty circumcircles is guaranteed
to output a correct reconstruction. Unfortunately, in 3D, almost flat tetrahe-
dra can lie on the surface despite having small empty circumspheres, so the
β-skeleton does not generalize well to 3D and may introduce holes. Rather
than crudely relabel some tetrahedra selected with a threshold (or even in a
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Figure 3.7: Soft 3D β-skeleton: a facet of the triangulation, its two adjacent
tetrahedra (red) and their circumscribing spheres (green). Their angles φ and ψ
with the plane (blue) of the facet influence the weight of this facet.

greedy way), we integrate this quality criterion into our global optimization
framework. For a given facet of the triangulation, we consider its two adja-
cent tetrahedra as pictured in Figure 3.7: the circumscribing spheres of these
tetrahedra intersect the plane of the facet at an angle φ and ψ. To favor
facets with large empty circumspheres, a weight 1 −min{cos(φ), cos(ψ)} is
added to the two oriented weights of each facet. This way, facets with large
empty circumspheres get small penalties for being cut as they are more likely
to belong to the surface and conversely, facets with smaller empty spheres
are more penalized.

Applying the two constructions described above for the surface visibility
term and for the surface quality term assigns oriented edge and link weights
to nodes in a directed s-t graph. By computing a minimum s-t cut on this
graph, an optimal labeling of tetrahedra with respect to these two combined
criteria is obtained and a resulting watertight surface can then be extracted.

For very noisy range scans, any interpolating method may output bumpy
surfaces when applied directly to the point cloud. As seen in Section 3.3.2,
our method can still be used, at least to help bootstrapping local PDE-based
refinements [Whitaker, 1998, Zhao et al., 2001] whose initialization is often
problematic. For rendering purpose, in Figures 3.1, 3.8, 3.6, 3.9 and 3.4, at
most two steps of the fairing operator of [Vollmer et al., 1999], an enhanced
Laplacian smoothing, were applied.

3.2 Implementation details and issues

The presented algorithm was implemented in C++ and relies on the CGAL
library [Boissonnat et al., 2000] for the computation of the Delaunay tri-
angulation. The line walk query is described in Appendix B. It also uses
Kolmogorov’s max-flow algorithm [Boykov and Kolmogorov, 2004] and im-
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plementation for the partitioning.
Our current prototype still allows for improvement in both running time

and memory use. The max-flow library was designed for efficiency on grid
graphs and energies typically used in computer vision. While our network
graphs also have fixed connectivity (each node has 4 neighbors), the visibility
term in our energy design does not lead to short paths from the source to
the sink. Switching to a more adapted max-flow algorithm may significantly
improve running times.

Moreover, due to limitations of the max-flow library, edge weights are
required to be computed, and only after the whole network graph can be
constructed at once. This means that storage for the weights is duplicated.
Actually, the graph itself, which can be trivially derived from the Delaunay
triangulation, is also stored twice in memory.

Finally, an important increase in memory use can be observed in Ta-
ble 3.1 between the weights and the minimum s-t cut computations. The
algorithm of Kolmogorov’s library caches entire search trees which again
impacts seriously on the memory footprint.

3.3 Experimental results

Figure 3.8: Berkeley angel: 361K vertices, 716K facets, genus 3 (the original
model has genus 1).

We tested our method on several (variously sized) publicly available sets
of range scans from either the Stanford 3D Scanning Repository (bunny,
dragon, armadillo and buddha), the AIM@SHAPE Shape Repository (sheep
and elephant) or the U.C. Berkeley Computer Animation and Modeling
Group (angel) and also on a new outdoor large-scale data set (rue Souf-
flot). Only for the Stanford and rue Soufflot data sets a reliable estimation
of the laser position and/or direction to the sensor(s) was available. This
should however not be seen as a strong limitation since for the other data
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Sheep (Figure 3.6) 153K 966K 2s 3s 1s 3s 10s ≪ 1m
Bunny (Figure 3.12) 362K 2,252K 10s 11s 2s 7s 31s < 1m
Dragon (Figure 3.4) 1,770K 11,383K 38s 68s 15s 59s 180s 3m

Angel (Figure 3.8) 2,008K 12,637K 41s 86s 16s 48s 190s 3m 10s
Armadillo (Figure 3.1) 2,247K 14,519K 47s 58s 13s 177s 295s 4m 55s

Buddha (Figure 3.5) 2,644K 17,167K 62s 120s 14s 74s 271s 4m 31s
Elephant (Figure 3.9) 4,413K 27,487K 98s 274s 35s - -

Elephant (Figure 3.9) / 64-bits 4,413K 27,487K 93s 189s 32s 102s 417s 6m 57s
rue Soufflot (Figure 3.14) / 64-bits 6,592K 42,062K 176s 416s 40s 521s 1154s 19m 14s

Sheep (Figure 3.6) 153K 966K 48MB 67MB 133MB
Bunny (Figure 3.12) 362K 2,252K 109MB 154MB 306MB
Dragon (Figure 3.4) 1,770K 11,383K 543MB 771MB 1.6GB

Angel (Figure 3.8) 2,008K 12,637K 605MB 858MB 1.7GB
Armadillo (Figure 3.1) 2,247K 14,519K 690MB 981MB 2.0GB

Buddha (Figure 3.5) 2,644K 17,167K 815MB 1.1GB 2.4GB
Elephant (Figure 3.9) 4,413K 27,487K 1.3GB 1.8GB -

Elephant (Figure 3.9) / 64-bits 4,413K 27,487K 2.2GB 2.7GB 6.5GB
rue Soufflot (Figure 3.14) / 64-bits 6,592K 42,062K 3.6GB 5.2GB 9.9GB

Table 3.1: Detailed running time and peak memory use (rounded) of the different steps of the algorithm for the presented recon-
structions on an Intel Xeon 3GHz computer (the Elephant and rue Soufflot data sets required a 64-bits environment to complete the
computation). Note: 1GB = 1024MB.
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#Points 153K 362K 1,770K 2,008K 2,247K 2,644K 4,413K 6,592K

Running time
Our algorithm 10s 31s 180s 190s 295s 271s 417s 1154s

Poisson 19s [8] 65s [9] 180s [10] 363s [10] 208s [11] 602s [11] 566s [11] 1058s [13]
20s [9] 66s [10] 461s [11] 376s [11] 751s [12] 546s [12] 934s [12] 1608s [14]

Peak memory use
Our algorithm 133MB 306MB 1.6GB 1.7GB 2.0GB 2.4GB 6.5GB 9.9GB

Poisson 237MB [8] 300MB [9] 655MB [10] 785MB [10] 728MB [11] 1.2GB [11] 1.1GB [11] 3.3GB [13]
239MB [9] 311MB [10] 975MB [11] 856MB [11] 1.4GB [12] 1.2GB [12] 1.7GB [12] 9.5GB [14]

Table 3.2: Comparison of running time and peak memory use of the surface reconstruction algorithm with Poisson surface
reconstruction [Kazhdan et al., 2006] for the presented reconstructions (maximum octree depth in brackets). The reconstructions of the
Elephant and rue Soufflot data sets were run in a 64 bits environment. Note: 1GB = 1024MB.



3.3. EXPERIMENTAL RESULTS 57

Figure 3.9: INRIA/ISTI Livingstone elephant: 821K vertices, 1,586K facets.

sets, we used less precise, approximate lines of sight and this did not result
in significant artefacts in the reconstructions (the more strongly penalized
facets and tetrahedra lies inside or far outside the object). Moreover, even
if lines of sight can not be reliably guessed, the hidden point removal op-
erator of [Katz et al., 2007] could potentially be applied from virtual laser
positions to recover such visibility information, at least for properly sampled
data without outliers.

In all the experiments, the same value of 5 for λqual was used to balance
visibility and quality. Instead of weighting lines of sight with a confidence
estimation as in [Curless and Levoy, 1996] and suggested in Section 3.1.3,
αvis was purposefully fixed to a constant 32. These two constants were
heuristically found on one data set and kept for all the presented results.
Finally, the tolerance σ which is supposed to reflect the expected noise level
in the data was uniformly set on a per model basis but estimated the same
way for every model (1/2 of the median range grid diagonal).

As indicated in Table 3.1 and despite the shortcomings of our implemen-
tation, our method proves to be fast and scales well (almost linearly) with
the size of the input point cloud both in running time and peak memory use
(much better than spectral methods): this might be a hint that modeling
the surface reconstruction problem by taking into account as much informa-
tion as possible about the scanning process actually leads to a better posed
minimization problem. A comparison with Poisson surface reconstruction
[Kazhdan et al., 2006], run at two successive octree depths, shows in Ta-
ble 3.2 that our method is competitive in running time but tends to require
more memory due to both its interpolatory nature and the known limits of
our implementation.
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In addition to the previously shown reconstructions, we highlight in the
next three sections the robustness of our approach compared to several other
methods: the Delaunay-based local algorithms Robust Cocone [Dey and
Goswami, 2006] and Power Crust [Amenta et al., 2001], and the implicit
methods Adaptive Compactly Supported Radial Basis Functions [Ohtake
et al., 2003] and Poisson surface reconstruction [Kazhdan et al., 2006]. The
two implicit methods require oriented normal estimates. While more elabo-
rate methods exist (see [Dey et al., 2005] for a recent study), these normals
were computed in each scan by fitting a plane to the neighbors of each sam-
ple with least-squares weighted by a standard radial function of the distance
[Wendland, 1995]. The correct normal orientation is found using the lines of
sight. The normals were obviously estimated from the modified data of the
experiments to make the comparison fair. More involved methods should
not be expected to provide much more precise normal estimations for the
different altered data used in the experiments.

Finally in the last section, Poisson surface reconstruction and our ap-
proach are challenged on a difficult large-scale outdoor scene.

3.3.1 Robustness to non-uniform sampling

Figure 3.10 illustrates the adaptivity of our method to a non-uniform sam-
pling of the surface (plus a decent amount of measurement noise): a plane
partitions the input point set in halves and one of these halves is heav-
ily downsampled. While Robust Cocone seriously degrades when a 128×
undersampling is reached, from the beginning, Power Crust splits the two
front paws of the sheep. It better handles the undersampling until a 1024×
downsampling when its local approach make some important details disap-
pear on the front part of the sheep: the right ear fades away, and the bottom
right part around the paw almost vanishes. Poisson progressively shrinks the
right part of the sheep, losing all features and Adaptive CS RBF is quickly
in trouble. By relying on the visibility information available from the scarce
samples, our method is still able to reconstruct a surface that resembles the
original model.

3.3.2 Robustness to noise

While all the data sets used to present our result already contain various
amounts of measurement errors, we provide further evidence of the ability of
our method to cope with severe amounts of noise. In Figure 3.11, we adopt
a protocol analogous to [Kolluri et al., 2004] which add isotropic Gaussian
noise to the original point coordinates in the Stanford bunny scans. We
instead add anisotropic Gaussian noise along the laser line of sight only.
Exceptionally, we present results not only with the usual fixed tolerance
parameter σ but also results with a varying value of σ matching the amount of
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added noise. The standard deviation of the added noise is measured in terms
of the median length d = 0.001 of the range grids diagonals. Point clouds
altered with a noise of deviation several times this length are extremely
fuzzy, and a correct reconstruction is hardly expected. Holes quickly appear
at +0.8d with Power Crust. Robust Cocone which is designed to cope with
reasonable amount of noise quickly loses the features of the model (ears, neck
and front paws) between +0.4d to +0.9d. Adaptive CS RBF is unable to
handle the additional noise. Poisson, however, is extremely resistant and still
reconstructs a smooth surface at very high levels of noise. It nevertheless
begins to seriously degrade after +2d. Our method still outputs a genus
0 (albeit bumpy) surface with deviation +2d, after this point, the ears of
the model begin to fade away and after a +3d deviation the reconstruction
irreversibly but slowly degrades. Our method with an adapted σ outputs a
much smoother reconstruction and degrades more gracefully.

3.3.3 Robustness to outliers

As illustrated in Figure 3.1, range scans usually contain some outliers. On a
synthetic example of 26K noise-free points, the spectral surface reconstruc-
tion method of [Kolluri et al., 2004] was shown to handle 1,200 outliers (or
4.5% of outliers) without any degradation, it then slightly degrades with
1,800 outliers (6.5%) and completely disintegrates with about 10,000 out-
liers (28%). Here, outliers are added to the original data in much larger
amount or ratio. In Figures 3.12 and 3.13, we show how the results of other
algorithms and ours degrade as randomly generated outliers are gradually
added to the 362K points of the Stanford bunny (in fact, we are showing
robustness to measurement noise and synthetic outliers): the outliers are
added scan per scan, their position projects to the range grid and their loca-
tion is randomly chosen within the bounding box of the range image. This
protocol effectively simulates outliers generated during the acquisition. All
other tested methods are defeated earlier than ours and unable to recover
any useful reconstruction. Poisson reconstruction is the strongest contender,
but the estimated oriented normal field tends to be inconsistent at outliers
and this may actually help this method to filter out outliers.

It is nevertheless pleasant to observe that taking into account the visibil-
ity information from the scanning process allows our method to deal with an
impressive number of outliers (up to 850,000 or ∼70% of outliers) with only
very slight degradation of the recovered surface (a handful of outside tetra-
hedra might be mislabeled now and then). We have consistently observed
that our reconstructions irreversibly degrade only when the number of out-
liers begins to exceed twice the number of inliers: this definitely confirms the
suitability of a global optimization based on lines of sight for outlier removal.
While such massive amounts of outliers are not realistic for laboratory ac-
quisitions, our method can be applied with success to outdoor range data
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or to quasi-dense point clouds from image matching or video tracking that
would contain some amount of outliers.

3.3.4 Large-scale outdoor range data

In this section, we show the result of our reconstruction algorithm compared
to Poisson surface reconstruction [Kazhdan et al., 2006] on a challenging data
set. The range data was acquired in the rue Soufflot in Paris while driving
a mobile vehicle equipped with a time-of-flight range finder paired with a
GPS/IMU unit which automatically registers the acquired data (the vehicle
was also equipped with several cameras). The images and range data are
provided courtesy of MATIS1, French Mapping Agency (IGN). This datum
is particularly difficult: it hardly meets satisfying sampling conditions, it
includes moving objects (the pedestrians and the other vehicles), features
are present at a wide range of different scales (the street is about 250 meters
long) and many parts are occluded. In addition the whole point cloud weights
6.7M samples.

While the presented results would probably require some post-processing
before any use in applications, they still demonstrate the potential of our ap-
proach even on data acquired without controlled scanning conditions. The
running time and peak memory use of our method are about 16m and 9.9GB.
Poisson surface reconstruction was executed at the largest possible depth (14)
on the same machine and takes 26m and 9.5GB of memory. Recently, ex-
tension of previous reconstruction algorithms have been proposed to handle
massive data sets with limited memory [Fiorin et al., 2007, Allègre et al.,
2007, Bolitho et al., 2007]. Since such considerations are out of scope in
the present chapter, only the original (non out-of-core) algorithm of Pois-
son surface reconstruction was used. As shown in Figures 3.14, 3.15, 3.16
and 3.17, our method reconstructs the whole open scene with very thin de-
tails (however, for illustration purposes, large triangles close to the convex
hull had to be filtered out from the reconstruction by thresholding). Poisson
reconstructs a closed scene (which thus required editing) that is less com-
plete than ours (the adjacent streets are much less extended and the roofs
are missing, see Figures 3.14 and 3.15). It also tends to smooth out the fine
structures our method is able to recover (Figures 3.16 and 3.17).

1http://recherche.ign.fr/labos/matis/.

http://recherche.ign.fr/labos/matis/
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(a) Point cloud (right half downsampled by a factor
16, 128 and 1024)

(b) Robust Cocone

(c) Power Crust

(d) Adaptive CS RBF

(e) Poisson

(f) Our method

Figure 3.10: Robustness to undersampling: the right-most bottom view corre-
sponds to a 1024× downsampling.
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(a) Power Crust: +0.1d and +0.8d (b) Robust Cocone: +0.4d and +0.9d

(c) Adaptive CS RBF: +0.3d and +0.5d

(d) Poisson: +0.9d, +1.5d, +2d and +3d

(e) Our method with fixed σ: +0.9d, +1.5d, +2d and
+3d

(f) Our method with varying σ: +0.9d, +1.5d, +2d and
+3d

Figure 3.11: Robustness to noise: the input point cloud is on the left of the first corresponding reconstruction result.
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(a) Point cloud plus 0, 200 and 4,000 outlier(s)

(b) Robust Cocone

(c) Power Crust

(d) Adaptive CS RBF

(e) Poisson

(f) Our method

Figure 3.12: Robustness to relatively few outliers.
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(a) Point cloud plus 50,000, 300,000 and 850,000 outliers

(b) Poisson

(c) Our method

Figure 3.13: Robustness to large amounts of outliers.
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Figure 3.14: Top view of the rue Soufflot: reconstruction results for Poisson
(top) and our method (bottom).

Figure 3.15: Panorama view of the rue Soufflot: reconstruction results of
Poisson (top) and our method (bottom).
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Figure 3.16: Reconstruction details of the rue Soufflot: acquired images (top),
corresponding reconstruction results of Poisson (middle) and our method (bottom).

Figure 3.17: Reconstruction details of the rue Soufflot: acquired images (left),
corresponding reconstruction results of Poisson (center) and our method (right).



CHAPTER 4

Multi-view stereo reconstruction of large-scale scenes

While the precision of image-based modeling methods has dras-
tically increased in the past few years, most dense multi-view
stereovision methods are still not applicable to large-scale out-
door scenes. A variant of the visibility-based optimization on
Delaunay tetrahedra is used in a multi-view stereo pipeline as
the key initialization of a mesh-based photometric variational re-
finement. Qualitative and quantitative evaluation of the whole
pipeline is done on a number of scenes showing its results to
compare very favorably with the current state-of-the-art.
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Boosted by the Middlebury challenge [Seitz et al., 2006], the precision of
dense multi-view stereovision methods has increased drastically in the past
few years. Yet, most methods, although performing well on this benchmark,
are still inapplicable to large-scale data sets taken under uncontrolled con-
ditions. This chapter proposes a multi-view stereo pipeline which deals with
very large scenes while producing highly detailed reconstructions within very
reasonable time. The keys to these benefits are twofold: 1. a minimum s-t
cut based global optimization that transforms a dense point cloud into a vis-
ibility consistent mesh, followed by 2. a mesh-based variational refinement
that captures small details, smartly handling photo-consistency, regulariza-
tion and adaptive resolution. The method has been tested on numerous
large-scale outdoor scenes. The accuracy of its reconstructions is also mea-
sured on the recent dense multi-view benchmark proposed in [Strecha et al.,
2008], showing the results to compare more than favorably with the current
state-of-the-art.

4.1 Introduction

Motivation As noted in the introduction chapter, scene reconstruction
from multiple images has always been an active field of research in computer
vision. This problem finds many practical applications in the entertainment
industry, in earth sciences and in cultural heritage digital archival. When
highly detailed reconstructions are needed, the combination of laser-based
acquisition and standard surface reconstruction are usually applied success-
fully. However, as reminded in Chapter 1, these methods and the acquisition
process are rather complex to set for large-scale outdoor reconstructions,
particularly when aerial acquisition is required (see for instance the recent
detailed reconstruction of the Bayon temple in Angkor [Banno et al., 2008]
with range finders attached to flying balloons). A long-term goal is to replace
these methods with image-based ones, yielding considerable savings both in
time and money. Recent advances in multi-view stereo methods made this
goal closer than ever.

Multi-view stereo Since the review of [Seitz et al., 2006] and the associ-
ated Middlebury evaluation, a lot of research has been focusing on multi-view
reconstruction of small objects with tightly controlled imaging conditions.
This has led to the development of many algorithms whose results are begin-
ning to challenge the precision of laser-based reconstructions. However most
of these algorithms are not directly suited to large-scale scenes. A number
of multi-view stereo algorithms have been proposed that exploit the visual
hull of [Laurentini, 1994]. Assuming the foreground object can be separated
from the background, 2D silhouettes delimiting the object of interest are
extracted in each images. Their back-projections in 3D yield a set of gener-
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Figure 4.1: Visual hull. Objects acquired under controlled imaging conditions
from Seitz et al. [2006], silhouetted images and the corresponding (approximated)
visual hulls. While the visual hull does not capture deep concavities (the temple’s
stairways or the dino’s legs, for instance), it already provides a good initialization
for variational methods.

alized cones that intersects in the visual-hull (see Figure 4.1). Many dense
multi-view methods rely on this information either as an initial guess for
further optimization [Hernández and Schmitt, 2004, Furukawa and Ponce,
2006, Hornung and Kobbelt, 2006a,b, Starck et al., 2006, Tran and Davis,
2006, Vogiatzis et al., 2007, Yu et al., 2006], as a soft constraint [Hernández
and Schmitt, 2004, Kolev et al., 2009] or even as a hard constraint [Sinha
and Pollefeys, 2005, Furukawa and Ponce, 2006] to be fulfilled by the recon-
structed shape.

While the unavailability of the visual hull discards many of the top-
performing multi-view stereo algorithms of the Middlebury challenge of Seitz
et al. [2006] for our purpose, the requirement for the ability to handle large-
scale scenes discards most of the others, in particular volumetric methods,
i.e. methods based on a regular decomposition of the domain into elemen-
tary cells, typically voxels. Obviously, this approach is mainly suited to
compact objects admitting a tight enclosing box, as its computational and
memory costs quickly become prohibitive when the size of the domain in-
creases. This includes space carving [Seitz and Dyer, 1999, Kutulakos and
Seitz, 2000, Broadhurst et al., 2001, Yang et al., 2003, Treuille et al., 2004],
level sets [Faugeras and Keriven, 1998, Jin et al., 2005, Pons et al., 2007a],
and volumetric graph cuts [Vogiatzis et al., 2005, Boykov and Lempitsky,
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2006, Hornung and Kobbelt, 2006b, Lempitsky et al., 2006, Starck et al.,
2006, Tran and Davis, 2006] (though [Sinha et al., 2007, Hernández et al.,
2007] propose regular volumetric grid adaptive to photo-consistency mea-
sures to push the resolution limit further).

Finally, cluttered scenes disqualify variational methods [Faugeras and
Keriven, 1998, Hernández and Schmitt, 2004, Duan et al., 2004, Jin et al.,
2005, Lhuillier and Quan, 2005, Pons et al., 2007a, Delaunoy et al., 2008]
that can easily get stuck into local minima, unless a way to estimating a
close and reliable initial guess is provided that takes visibility into account.

Large-scale multi-view stereo Multi-view stereo methods that have
proved to be more adapted to large-scale scenes (e.g. outdoor architectural
scenes) are those representing the initial geometry with sparser measure-
ments as depth maps or point clouds.

The performance of depth maps based methods [Kolmogorov and Zabih,
2002, Strecha et al., 2003, 2004, Gargallo and Sturm, 2005, Strecha et al.,
2006, Goesele et al., 2006, 2007, Tylecek and Sara, 2009] for complete recon-
struction however seems to be lower than previously discussed approaches,
either as regards accuracy or completeness of the obtained model. This may
be due to the merging process and to the difficulty to take visibility into
account globally and consistently. While visibility is taken into account to
fuse depth maps in [Merrell et al., 2007], the focus on high performance pre-
vents the use of a global optimization. Recently, [Zach et al., 2007] proposed
a globally optimal variational merging of truncated signed distance maps
using a volumetric grid. Another exception could be the work of [Campbell
et al., 2008], currently one of the most accurate method according to the
Middlebury evaluation, but this method relies on a volumetric graph cut
[Hernández et al., 2007] that cannot handle large-scale scenes.

Large-scale and high-resolution multi-view stereo In contrast to
these depth maps based methods, the authors of [Furukawa and Ponce, 2007]
propose a very accurate reconstruction that generates and propagates a semi-
dense set of patches. This method has shown impressive results but relies
on heuristics to filter and expand sets of oriented patches. The final surface
reconstruction is done with Poisson surface reconstruction [Kazhdan et al.,
2006] which requires dense and uniformly sampled point clouds and does not
handle visibility issues.

This method was tested on the large-scale data sets provided by Christoph
Strecha et al. [Strecha et al., 2008], the only available evaluation that allows
comparison on large-scale scenes (to our knowledge). The results of [Fu-
rukawa and Ponce, 2007] were so far significantly more accurate and complete
than the few other submitted ones. Note that the relatively small number of
competitors w.r.t. the Middlebury challenge corroborates the above discus-
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sion about the non-ability of most of the methods to handle such data. This
quantitative challenge will be relied upon to demonstrate the superiority of
our method. Results on other data sets confirm this superiority by visual
qualitative evaluation.

Our multi-view stereo method consists in a pipeline that handles large-
scale scenes while providing very accurate reconstructions. The whole pipeline
is designed to not sacrifice accuracy for scalability. Several design choices
are made and justified by an analysis of the weaknesses of previous methods.
The pipeline consists of three main steps:

1. the generation of a quasi-dense point cloud with the standard passive
multi-view stereo techniques described in Chapter 1,

2. the extraction of a mesh that respects visibility constraints and is close
to the final reconstruction, with a minimum s-t cut-based optimization
using the surface fitting framework of Chapter 2 over the Delaunay
triangulation of the points (similarly to the previous chapter),

3. the variational refinement of this initial mesh to optimize its photo-
consistency.

Figure 4.2: Bad initializations. The photometric variational refinement requires
a good initialization: here, a very crude initial surface was used on the fountain-P11

and Herz-Jesu-25 data sets of [Strecha et al., 2008].

4.2 Quasi-dense point cloud

As described in Chapter 1, a quasi-dense point is generated either from
interest points or from plane sweeping. Close points are then aggregated
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efficiently using the Delaunay triangulation or clustering, so that a point of
the final cloud originates from possibly more than two images. The overall
process is fast, the NCC (and, if necessary, the plane sweep) being easily
implemented on graphics hardware.

Above all, relying on thresholds and possibly generating numerous out-
liers is not a serious concern. The only goal of this step is to generate enough
points so that the following global optimization finds a close enough surface
from the tetrahedron facets.

Figure 4.3: Aiguille du Midi data set. From left to right: two of the 53 images
(10 Mpix) of a mountain summit taken from a helicopter (© B.Vallet/IMAGINE),
point cloud from interest points, initial surface S0 (smoothed for rendering purpose),
final reconstruction (600, 000 triangles).

Figure 4.4: Aiguille du Midi data set. Rendered views of the reconstruction
of the Aiguille du Midi data set without and with texture remapping using [Allène
et al., 2008].
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4.3 Initial mesh

Early work in stereovision [Faugeras et al., 1990] already relied on constrained
Delaunay triangulations of robustly matched segments to reconstruct envi-
ronments. Here, the second step of our multi-view pipeline consists in pro-
ducing from the Delaunay triangulation of the generated quasi-dense point
cloud a mesh taking visibility into account which is accurate enough to be
then refined by a variational optimization. The hypothesis is then that the
gradient descent of some energy deforms this mesh into a local minimum
considered as the final reconstruction. The correct initialization of this local
variational optimization is thus critical as shown in Figure 4.2.

Our visibility-based surface fitting framework of Chapter 2 perfectly ful-
fills this purpose for cluttered large-scale scenes. From the image-based point
cloud where each point memorizes the two or more images from which it has
been triangulated (as described in Chapter 1), the Delaunay triangulation
of these points is built. Then, the Delaunay tetrahedra are labeled inside
or outside the object so that the labeling minimizes some energy and finally
the surface is extracted as the set of triangles between inside and outside
tetrahedra. The energy takes visibility into account and exactly follows the
Evis term of Chapter 1: each ray from a vertex of the Delaunay triangulation
to the cameras from which it has been generated is enforced to intersect the
oriented output surface as few times as possible. Note that since the noise
model for stereo is more complex than for range data and that several lines
of sight per point are available, the relaxed visibility term Esoft−vis of the
previous chapter is not used as it requires an additional tolerance parameter
σ that could not be set as appropriately as in the previous chapter.

However, as input images are available, an additional photo-consistency
term Ephoto may be used to favor surfaces with best matching re-projections
in the different views. This can also be implemented within the minimum s-t
cut framework of Chapter 2: the edge of each oriented facet F gets a weight
1 − ρ(F ) where ρ(F ) ∈ [0, 1] is a the estimated photo-consistency cost of
the oriented facet F . The photo-consistency cost ρ(F ) can be computed
as follows. F being an oriented facet of the triangulation, its vertices have
associated visibility information that can be used to determine the most
fronto-parallel reference view i. Pairwise photo-consistencies ρij(F ) of the
oriented facet in this reference view i and another view j are then calculated
and their median is finally chosen as ρ(F ): ρ(F ) = med{ρij(F )}j with ρij(F )
defined for instance as the mean normalized cross-correlation on a smooth
Gaussian window sliding over the projection of the facet F in the reference
view (as in Chapter 1).

The resulting point cloud is very dense compared to standard passive
stereo and typically contains millions of points (see Figure 4.3). The visi-
bility term of the energy of Chapter 2 is very effective to filter out outliers
from stereo point clouds. Due to the high density of point clouds from reg-
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ular grids or interest points, triangles lying near the surface are very small
and we experimented with such complimentary photo-consistency term: the
output surface is less noisy and this term may help removing structured out-
liers. However, since the output surface is only used as an initialization for
a variational photometric refinement, this term is advantageously replaced
with the simple surface quality term Equal of the previous chapter used for
surface reconstruction from range scans. This term penalizes facets unlikely
to appear on a densely sampled surface. As a result and contrarily to the
original method of [Labatut et al., 2007], the minimum s-t cut step encodes
discrete visibility and surface quality, saving an appreciable amount of time
(the photo-consistency has to be computed on all the facets of the Delaunay
triangulation). Support for infinite tetrahedra is also added (tetrahedra with
one facet on the convex hull and incident to the infinite vertex). This not
only allows the observer to be “inside” the object, but also makes it possible
to generate open meshes. This is an important aspect for outdoor scenes.

The energy to label tetrahedra which can be globally minimized with
minimum s-t cut, is thus:

E(S) = Evis(S,P, v) + λqual Equal(S) ,

where P is the generated point cloud and v the associated visibility sets.
The resulting initial mesh is denoted by S0.

4.4 Variational refinement

The obtained mesh S0 is still noisy and does not capture fine details. It is
refined with all the image data, using a variational multi-view stereovision
approach pioneered by [Faugeras and Keriven, 1998]: S0 serves as the initial
condition of a gradient descent of an adequate energy function. As S0 is
close to the desired solution, this local optimization is very unlikely to get
trapped in an irrelevant local minimum. The energy function and optimiza-
tion procedure is now justified, by presenting the numerous improvements
to the initial method. These are not details, or more accurately, to get a
detailed reconstruction, every detail matters.

4.4.1 Photo-consistency

Let S be the object surface, x a point on S, −→n the normal to S at point x,
gij(x,

−→n ) a positive decreasing function of a photo-consistency measure of the
patch (x,−→n ) according to images i and j, and vSij(x) ∈ {0, 1} the visibility
of x in these images according to S. The original energy in [Faugeras and
Keriven, 1998] is:

Ephoto(S) =
∑

i,j

∫

S
vSij(x) gij(x,

−→n ) dS . (4.1)
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Figure 4.5: calvary data set. From left to right: two of the 27 images (8 Mpix) of
a sculpted calvary taken from the ground, the generated point cloud (1, 300, 000
points), the initial mesh S0 (1, 200, 000 triangles) and the final reconstruction
(1, 850, 000 triangles).

Figure 4.6: calvary data set. Rendered and close views of the reconstruction of
the calvary data set without and with texture remapping using [Allène et al., 2008].

To this energy, the re-projection error introduced by [Pons et al., 2007a] is
preferred, namely:

Eerror(S) =
∑

i,j

∫

ΩS
ij

h(Ii, I
S
ij)(xi) dSi , (4.2)

where h(I, J)(x) is a positive decreasing function of a photo-consistency mea-
sure between images I and J at pixel x, ISij = Ij◦Πj◦Π−1

i is the re-projection
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of image Ij into image Ii induced by S and ΩS
ij is the domain of definition of

this re-projection. This energy measures, for each considered camera pair,
the dissimilarity between the portion of a reference image corresponding to
the projected surface and a portion of another image re-projected via the
surface into the reference image.

This summation has three major advantages over the original one:
1. re-projecting Ij into Ii according to S uses the exact geometry of S

and does not use the tangent patch (x,−→n ) approximation anymore,
2. the less a surface element is viewed in a given image, the less it con-

tributes to the energy, and
3. this re-projection can easily be computed on graphics hardware with

projective texture mapping.
The first point is essential to get an accurate reconstruction: in methods
approximating the surface by planar patches, the choice of patch size is a
difficult trade-off between robust and accurate photo-consistency.

4.4.2 Regularization

While the original intrinsic energy Ephoto of Equation 4.1 is self-regularizing
due to the integration over the surface, this is not anymore the case of
Equation 4.2. The energy function Eerror is thus complemented with a thin-
plate energy Ethin−plate which measures the total curvature of the surface.
This term penalizes strong bending, not large surface area:

Ethin−plate(S) =

∫

S
κ2

1 + κ2
2 dS ,

where κ1 and κ2 are the principal curvatures of the surface at the considered
point. Consequently, the associated gradient flow is exempt from the classical
shrinking bias.

The total energy to be minimized by the variational refinement is finally:

E(S) = Eerror(S) + λthin−plate Ethin−plate(S) ,

and the surface S follows the evolution:

S(0) = S0 dS
dt

= −∇E(S) .

4.4.3 Surface representation

The level set representation used in [Faugeras and Keriven, 1998, Pons et al.,
2007a] has a prohibitive computational and memory cost for high resolution
reconstructions. Unstructured polygonal meshes are much better at captur-
ing extremely fine geometry. Moreover, both the global optimization step
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and the computation of the image reprojection ISij on graphics hardware de-
pend on a triangular mesh. Hence, the obvious choice for representing S is
a deformable triangular mesh with vertices and triangular facets. Moreover,
S0 is assumed to have the desired topology, which is confirmed in our nu-
merical experiments. As a result, it was found not necessary to resort to
complex remeshing procedures [Pons and Boissonnat, 2007, Zaharescu et al.,
2007] to handle topology changes during deformation.

4.4.4 Discretization

An overwhelming majority of methods in variational multi-view stereovision
[Faugeras and Keriven, 1998, Duan et al., 2004, Hernández and Schmitt,
2004, Jin et al., 2005, Lhuillier and Quan, 2005, Pons et al., 2007a], and
more generally in computer vision, rely on an optimize then discretize ap-
proach: an energy functional depending on a continuous infinite-dimensional
representation is considered, the gradient of this energy functional is com-
puted analytically, then the obtained minimization flow is discretized.

In contrast, a discretize then optimize approach is adopted: an energy
function that depends on a discrete finite-dimensional surface representation,
here a triangle mesh is considered, and standard non-convex optimization
tools are used. The benefits of this approach have long been recognized in
mesh processing, but have seldom been demonstrated in computer vision
[Slabaugh and Unal, 2005, Delaunoy et al., 2008].

Following [Delaunoy et al., 2008], the term Eerror from [Pons et al., 2007a]
is rewritten as a function of the triangulated mesh. As recalled in [Eckstein
et al., 2007, 2.2], the corresponding discrete gradient field can be directly
computed with the partial derivatives of this energy with respect to vertex
positions. First of all, it circumvents the difficult task of choosing a consistent
discretization of differential quantities, such as normal and curvature, on a
triangle mesh. Second, it is more faithful to the data, and it guarantees
that the energy actually decreases: notably, the obtained gradient vector at
a vertex involves integrals over the whole ring of triangular facets around
it. This is in strong contrast with a point-wise, and thereby noise-sensitive,
dependency on the input data that a late discretization typically causes. A
crucial point has to be noted here: this discrete gradient flow may include
a significant tangential component driving the vertices at the right places
minimizing the energy. For instance, vertices naturally migrate to the object
edges if any. This is illustrated by the crisp reconstruction of stair treads in
Figures 4.7 and 4.8.

When the mesh parametrization is close to isometric, the gradient from
the complementary thin-plate energy reduces to a simple bi-Laplacian ∆2.
A discrete analog of such simplified thin-plate energy and associated flow,
described in [Kobbelt et al., 1998] is used by applying the umbrella opera-
tor of [Taubin, 1995] to approximate the Laplace-Beltrami operator. This
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particular choice has the nice property of redistributing vertices along the
surface, and in particular of discouraging degenerate triangles.

4.4.5 Balance between photo-consistency and regularization

A long-standing issue in variational methods is the proper and automatic
balancing between data attachment and smoothing terms. Designing a gen-
eral solution to this problem is clearly out of the scope of this chapter. A
specific strategy is instead proposed that allows conducting all the following
experiments without adjusting parameters to each data set. The solution is
twofold.

First, the fact that regularization has to be more important where photo-
consistency is less reliable is observed, in particular in textureless or low-
textured image regions. Consequently, the contribution of camera pair (i, j)
at pixel xi in Eq. 4.2 is weighted by a reliability factor:

min{σ2
i , σ

2
j }/

(

min{σ2
i , σ

2
j }+ ǫ2

)

,

where σ2
i and σ2

j denote the local variance at xi in images Ii and ISij , respec-
tively, and ǫ is a constant.

Second, the two terms of the energy function are homogenized: while
the data attachment term of Eq. 4.2 is homogeneous to an area in pixels,
the discrete thin-plate term is homogeneous to squared world units. After
weighting the contribution of each image in Eq. 4.2 by the square of the
ratio between the average depth of the scene and the focal length in pixels, a
scalar regularity weight can be defined whose optimal value is stable across
very different datasets.

4.4.6 Mesh resolution

The resolution of the mesh is automatically and adaptively adjusted to im-
age resolution: a triangular facet is subdivided if there exists one camera
pair such that the visible facet projection exceeds a user-defined number of
pixels in both images. This threshold is set to 16 pixels in the experiments.
A classical one-to-four triangle subdivision scheme is used, which has the
advantage of preserving sharp edges.

4.5 Experimental results

As already mentioned, the following experiments have been conducted with
the same parameters. The photo-consistency h is based on the same NCC
as in Chapter 1, although other more elaborate measures could be envis-
aged. Some operations are implemented on graphics hardware, mainly NCC
estimations and image reprojections. Depending on the number of images,
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the running time of our pipeline ranges from fifteen to ninety minutes, on
a 3.0 GHz CPU and an NVIDIA GeForce 8800 GTX GPU. State-of-the-art
results have also been obtained on the templeRing data set of the Middle-
bury challenge [Seitz et al., 2006] for small-scale objects taken under tightly
controlled imaging conditions but these results are not reproduced here since
the focus is on experiments on large-scale scenes.

Original data sets The method was tested on an aerial acquisition of the
Aiguille du Midi summit (data and calibration courtesy Bernard Vallet and
Marc Pierrot-Deseilligny respectively). The data set consists of 53 images of
5 Mpix. Figure 4.3 shows two of the images, the generated point cloud, the
initial mesh S0 and the final reconstruction. This experiment validates the
whole pipeline and the ability to cope with uncontrolled imaging conditions
(snow, sun, moving people from one image to another) and a mix of complex
and smooth geometries. The variational process is able to recover the top
antenna although it is only partially present in S0. Figure 4.5 shows results
on a data set of 27 images of 10 Mpix of a sculpted calvary taken from
the ground. The cloud has 1, 300, 000 points, with many outliers, mainly
sky points obtained by matching clouds that have moved between shots.
Only 660, 000 of these points are selected for the initial mesh S0 (1, 200, 000
triangles). This mesh is noisy, due to the process of matching interest points
that are just approximately view-point invariant (a smoothed version of this
mesh is shown in Figure 4.5). As the close views of Figure 4.6 show, the final
reconstruction (1, 850, 000 triangles) is sharp enough to capture meaningful
details, while global visibility is still correct.

Large-scale dense multi-view stereo benchmark Provided by Strecha
et al. [Strecha et al., 2008], the already mentioned data sets consists in
outdoor scenes acquired with 8 to 30 calibrated 6 Mpix images. Ground truth
has been acquired with a LIDAR system. Evaluation of the multi-view stereo
reconstructions is quantified through relative error histograms counting the
percentage of the scene recovered within a range of 1 to 10 times an estimated
LIDAR depth standard deviation σ. The focus here is on the four first data
sets, for which other groups have submitted results. Dedicated to large-
scale objects and fitting perfectly our objective, these sets are particularly
challenging, especially the castle-P19, a complete courtyard acquired from
the inside and where a tractor stays in the middle, disturbing reconstruction.
So far, only Furukawa et al. [Furukawa and Ponce, 2007] and Tylecek et al.
[Tylecek and Sara, 2009] submitted for these particular data sets. Figures 4.7
and 4.8 show, for the four data sets, two of the images and a global view of the
generated point cloud, the initial surface and the final reconstruction. The
output meshes go from 1, 450, 000 to 3, 000, 000 triangles, depending on the
data set. Comparison with the other methods are given in Figure 4.9, where



80 4. DENSE MULTI-VIEW STEREO OF LARGE-SCALE SCENES

cumulated histograms clearly show that the proposed pipeline is both more
accurate (thanks to the final variational refinement) and complete (thanks
the initial visibility-consistent mesh). Focusing of the Herz-Jesu-P8 data set,
Figure 4.10 provides a more visual comparison. For the four best methods so
far and our method, the results are rendered and the corresponding error is
color encoded. Note that the ground truth is not everywhere available (e.g.
, the metal bar under the left porch, which we actually partially recover).
Finally, Figure 4.11 compares, for the other three datasets, the rendering of
our reconstruction with the one of the second best method. Further results
are available on the challenge website1.

1http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
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Figure 4.9: Relative error cumulated histograms. From top to bottom, left
to right, relative error cumulated histograms, respectively for the Herz-Jesu-P8,
fountain-P11, entry-P10 and castle-P19 data sets. Legend is the following: FUR
for [Furukawa and Ponce, 2007], ST4 for [Strecha et al., 2004], ST6 for [Strecha
et al., 2006], ZAH for [Zaharescu et al., 2007], TYL for [Tylecek and Sara, 2009],
JAN for [Jancosek and Pajdla, 2009], VU for our work. On all data sets, the
measures confirm clearly the superiority of our better results, both in accuracy and
completeness.
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Figure 4.10: A visual comparison on the Herz-Jesu-P8 data set. From top
to bottom, results from ZAH [Zaharescu et al., 2007], ST4 [Strecha et al., 2004],
TYL [Tylecek and Sara, 2009], FUR [Furukawa and Ponce, 2007] and our work.
Left: variance weighted depth difference (red pixels encode an error larger than 3σ;
green pixels encode missing LIDAR data; the relative error between 0 and 3σ is
encoded in gray. Right: diffuse renderings of the corresponding triangle meshes.
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Figure 4.11: Visual comparisons for the three other data sets. Left: render-
ing of the second best method ([Strecha et al., 2004] for fountain-P11, [Furukawa
and Ponce, 2007] for the entry-P10 and castle-P19). Right: our method.
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CHAPTER 5

Proposed approach

Chapters 3 and 4 deal with methods aimed at detailed recon-
structions using priors such as visibility, surface quality, fairness
or photo-consistency. The current and the following chapters
focus on reconstruction with strong shape priors to build geo-
metrically simplified models from points cloud that captures the
characteristic geometric features of the object or scene. A sur-
vey of related techniques shows that despite being interesting and
having practical importance, this problem seems to have not been
sufficiently considered. Our general approach to this problem is
then introduced and advocated.
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5.1 Related work

Reconstruction of 3D models from urban imagery has long been an active
topic of research in computer vision and photogrammetry. Applications such
as Google Earth or Microsoft Virtual Earth have allowed a broad audience to
visualize large-scale models of cities with superimposed street level or aerial
imagery. Still, the models are mostly handmade and automatic generation
from images of such content is clearly desirable. Similarly, the automatic
reconstruction of range acquired surfaces with simple primitives directly from
point clouds finds strong motivations in reverse-engineering, visualization,
shape indexing and recognition for instance. Several methods for automatic
or interactive image-based modeling, segmentation of point clouds or surfaces
have been developed, and can apply to the problem of reconstruction with
shape-priors or semantic modeling. The following sections give an overview
of these various attempts.

5.1.1 Dense multi-view stereo

As seen in Chapter 4, dense multi-view stereo has received a tremendous
amount of attention in the last years since the comparison and benchmark
of [Seitz et al., 2006]. While the accuracy of the latest results begins to chal-
lenge laser acquired data, most of these method are not suited to reconstruc-
tion in a general setting, because of their reliance on silhouette-segmented
images or the necessity to tightly enclose the whole scene in a bounding-
box in order to apply an optimization framework over a regular volumetric
grid. If a few dense multi-view methods still seem appropriate and scalable
to general outdoor scenes (such as the one described in Chapter 4), all of
these approaches produce overly complex meshes (with several hundreds of
thousands of triangular facets) and trade a highly detailed reconstruction
for the loss of characteristic large geometric features in the scenes. The pro-
posed approach does not suffer from any of these shortcomings and directly
outputs a geometrically simple model of a potentially large-scale scene.

5.1.2 Automatic urban modeling

Dedicated methods have been elaborated for architectural scenes. The method
described in [Werner and Zisserman, 2002a,b] detects dominant directions
from a sparse SfM point cloud with matched lines. Vertical planes are then
extracted, roof planes added and finally the ground is detected by sweeping
along the vertical direction. This set of planes forms an initial coarse shell
on which a restricted family of parametrized models of window, doors and
dormer windows is then fitted. [Dick et al., 2004] also heavily exploits strong
direction constraints but produces more elaborate buildings reconstructions
thanks to a wider dictionary of parametrized models. Other approaches such
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as [Cornelis et al., 2007] target the reconstruction of larger-scale city roads
and coarse building facades by using road-level passive stereo on a mobile car
combined with recognition. In contrast with general dense multi-view stereo
methods, these approaches are limited to reconstruction of scenes where their
numerous assumptions are practically verified.

5.1.3 Human-assisted image modeling

Human-assisted reconstruction was pioneered by [Debevec et al., 1996]: a
user marks some edges in the images, select simple primitives, and the in-
terface aligns the primitives with the edges (the SfM problem is part of the
optimization and relies on strong architectural cues). This initial effort was
a source of inspiration for the development of commercial products such as
Autodesk ImageModeler [aut, 2009] which after a manual SfM step, simi-
larly allows a user to guide a simplified model reconstruction from images by
exploiting photometric cues. A similar semi-interactive modeling approach
to videos has been proposed in [van den Hengel et al., 2007]. More re-
cently, the Google Sketchup program [goo, 2009], designed to create content
for Google Earth, has proposed a tool to align objects to photographs re-
quiring the careful specification of a coordinate frame from three vanishing
points (which may not always be possible for close-up pictures for instance).
[Habbecke and Kobbelt, 2006] mention a prototype including an iterative
plane-fitting requiring heavy user intervention to delimit matching polygo-
nal regions in images. [Sinha et al., 2008] present an even easier approach
for architectural scenes with abundant parallel lines guiding the user and
constraining optimizations thanks to extracted lines and vanishing points.
Apart from the prototype of [Habbecke and Kobbelt, 2006], the described
methods do not require calibrated images. In our case, if such information
is unavailable, it could be recovered using a combination of computer vision
techniques as noted in Chapter 1.

5.1.4 Towards automatic compact modeling from images

Very few work has tried to solve the suggested problem from images. [Fraun-
dorfer et al., 2006] matches affine-invariant features to initialize planar seed
regions which are then expanded with a region growing scheme. [Bartoli,
2007] modifies the traditional RANSAC technique [Fischler and Bolles, 1981]
to facilitate multiple structures detection and subsequently computes delin-
eation of the extracted planar regions. These two approaches focus mostly
on the plane extraction step applied to sparse point clouds from SfM, ex-
tract a limited number of planes and are not designed to output simplified
piecewise-planar dense reconstructions. In [Gallup et al., 2007], dominant
directions are extracted from a SfM point cloud using minimum-entropy his-
tograms. Multiple plane sweeps are then performed along these directions to
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generate a set a depth hypotheses for each pixel. A best cost or an optional
graph cut optimization step finally generates piecewise-planar depth maps.
The method is designed for ground-level acquisitions and assumes the exis-
tence of a ground plane and perpendicular facade normals. The very recent
work of [Furukawa et al., 2009] follows the same approach. It is restricted to
scenes satisfying the Manhattan hypothesis [Coughlan and Yuille, 2003] and
featuring planes aligned with three principal orthogonal directions. After
identifying three approximately orthogonal axes with a normal histogram,
plane candidates are extracted with a mean shift clustering along these three
directions, after which piecewise-planar depth maps are also generated with a
graph cut labeling. The proposed method heavily relies on the dense filtered
and refined point clouds of [Furukawa and Ponce, 2007] and the 3 directions
assumption limits its application. Moreover, no structure preserving surface
reconstruction complements the method.

On the other hand, [Hilton, 2005] focuses on the mesh reconstruction and
proposes a visibility-consistent construction using a constrained Delaunay
triangulation of a sparse 3D features from SfM. Their approach reconstructs
compact triangulated models but is unable to identify large planar polygonal
facets. The method is moreover interpolatory and in practice, quite limited
in robustness to outliers. The most related work is perhaps [Baillard and
Zisserman, 1999] which describes a piecewise-planar reconstruction method
exploiting detection of half-planes supported by matched extracted edges.
The mesh reconstruction relies on less robust heuristic grouping rules. Fur-
thermore, the technique only seems applicable to scenes mostly taken from
very similar points of views (roof structure from aerial views for instance).

5.1.5 Segmentation of range data

A lot of work has been devoted to the segmentation of range images in prim-
itives (a classification and evaluation is presented in [Hoover et al., 1996]):
these approaches focuses on 2.5D data structured as depth images. As noted
in Chapter 1, this kind of data is known to exhibit much lower noise levels
than point clouds from passive stereo, are much denser, have a more uniform
sampling and contain very few outliers (even so that high order differential
quantities as curvatures can be reliably estimated and used to classify the
points/pixels). Few authors have considered the problem of segmenting a
whole 3D point cloud. In [Gelfand and Guibas, 2004], the notion of slippage
motion is defined as a rigid motion that slides a transformed shape against
its stationary version without forming gaps. Slippable components of data
(including shapes such as planes, spheres and cylinders) are discovered and
aggregated into regions. The approach applies to range data only without
actual surface reconstruction. More recently, the RANSAC robust regression
is applied in [Schnabel et al., 2007] with a focus on performance to segment
point clouds acquired with 3D range scanning: several modifications make
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the method scalable to relatively large set of scans with a very reasonable
running time. The method relies on correct and consistent estimated nor-
mals for detection and is thus sensitive to large amounts of noise. It also
assumes a dense and uniformly sampled point cloud which limits it to range
data. This work is used in [Schnabel et al., 2009] for surface completion
from point clouds with primitive shapes: the volumetric surface reconstruc-
tion algorithm derives from [Lempitsky and Boykov, 2007] but is guided
by the recovered shapes and a connectivity criterion. Unfortunately, one
of the added energy terms forces the authors to replace the minimum s-t
cut optimization with an iterative greedy minimization whose convergence
is not guaranteed. The final reconstructed surface is extracted from a dense
voxel grid with [Kobbelt et al., 2001] and a number of specific variations.
Finally, in [Chen and Chen, 2008], a semi-automatic reconstruction method
from range scans of architectural scenes is proposed. The point set is first
segmented into planes by using the Gauss map, tentative boundaries of the
planar region are extracted and a final polyhedral model is built with some
user interaction. The method is demonstrated on two scanned buildings
but again relies heavily on correct normal estimation, user interaction and
numerous heuristics.

5.1.6 Geometry processing for simplification

One may argue that standard geometry simplification techniques already ex-
ist and could straightforwardly be applied to the output meshes of a dense
multi-view stereo pipeline such as the one presented in Chapter 4. However
such combination is not only less efficient than the approach we propose, it is
also less powerful and not adequate. First, mesh simplification (a reference
on this topic is [Luebke et al., 2002]) is mainly suited to perfectly meshed,
almost noise-free surfaces far from the typical output of multi-view recon-
struction algorithms. These methods mainly use an edge collapse operation
on triangular meshes which merges the two incident vertices of an edge into
a single vertex that is optionally moved to a new location. The edge to col-
lapse is selected via a priority queue which contains valid candidates sorted
by some criterion so as to minimize the distortion error. In this spirit, the
Progressive Meshes of [Hoppe, 1996] generates level of details from an initial
mesh always using the initial mesh as a reference. The criterion is then mod-
ified to allow view-dependent simplification in [Hoppe, 1997]. [Garland and
Heckbert, 1997] defines the Quadric Error Metric (QEM) that measures how
well a new vertex would fit the supporting planes of the triangles adjacent to
the selected collapsed edge. In [Hoppe, 1999] QEM is extended to account
for attributes attached to the mesh. [Lindstrom and Turk, 1998] proposes to
select edges and place new vertices in order to minimize the change in volume
of the solid bounded by the mesh. In [Lindstrom and Turk, 2000], the simpli-
fication criterion comes from rendered images of the original, detailed mesh.
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Despite these numerous variants, sometimes close to image-based compact
modeling, the simplified meshes still inherit from the original mesh through
a series of local modifications only, the approach does not allow to capture
more global shapes without significant simplification of the mesh and curved
geometry is often lost. Simplification also often requires user intervention
for quality inspection. Figure 5.1 shows such an attempt to simplify a mesh
of a high-quality multi-view stereo reconstruction described in Chapter 4.

(a) Reconstruction result of
the Herz-Jesu-P25 data set
from the dense multi-view

stereo pipeline of Chapter 4.

(b) Reconstruction result,
128× simplified, numerous

details are still present.

(c) Reconstruction result,
4096× simplified, the ground
and facade are planar, but the
columns and the stair treads

have been wrecked.

Figure 5.1: Various levels of simplification of the output of the dense multi-
view stereo pipeline with the mesh simplification scheme of [Garland and Heckbert,
1997].

5.1.7 Geometry processing for shape recovery

Recently, more involved mesh segmentation methods have appeared and pro-
duced impressive results as a preliminary step to guide subsequent simplifi-
cation or remeshing (a recent and complete survey is presented in [Shamir,
2008]). A typical example of such method is the variational shape approxi-
mation (VSA) framework of [Cohen-Steiner et al., 2004]. VSA computes an
optimal partition of a mesh in k regions R = {Ri} (each region Ri is a union
of facets) represented by corresponding shape proxies P = {Pi} (planes in the
original method) so that the total distortion E(R, P ) =

∑

i=1,...,k E(Ri, Pi)
is minimized. The metric measuring region distortion is either the standard
L2 metric between the region Ri and its plane proxy Pi or a new L2,1 metric,
which is basically a L2 measure of the normal field and can be computed
in closed form for plane proxies. To find an optimal partitioning, a variant
of Lloyd’s algorithm [Lloyd, 1982] (the algorithm at the core of k-means
clustering [Steinhaus, 1956]) is used each time an additional region is intro-
duced. The method is not fully automatic and also has to rely on heuristics
(like “teleportation” of proxies) to avoid local minima but has been success-
fully demonstrated for coarse remeshing. Since this initial work, a number
of variants have been developed by other authors, generalizing the approach
to other classes of shapes to obtain better approximations with less prim-
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itives: [Wu and Kobbelt, 2005] extends the methods to spheres, cylinders
and rolling-ball blend patches by using approximated L2 and L2,1 metric
and [Yan et al., 2006] proposed to approximate the original L2 metric to
extract general quadrics along with a graph cut method to smooth irregular
boundary curves.

It must be noted that these techniques face similar problems as simplifica-
tion methods with imperfect inputs. Moreover, as in mesh simplification, the
original, given mesh is constantly used as a reference to measure distortion
and to extract the connectivity of the final approximant. Our method tries
addressing a more challenging problem. Starting from the point cloud, it im-
plicitly combines mesh segmentation and shape-based simplification during
surface reconstruction. The acquisition process is accounted for throughout
the pipeline while the mentioned post-processings are more likely to worsen
initial errors produced by surface reconstruction algorithms.

In light of the previous analysis, we draw the conclusion that no satis-
fying, general enough method exists to automatically build compact shape-
based models of scenes from images or point clouds. Applications include
not only image-based compact modeling or compact surface reconstruction
from point clouds, but also reverse-engineering or object and scene recog-
nition, interpretation and indexing and more generally semantic modeling
from images or point sets.

5.2 Overview of the proposed approach

Since the goal is to reconstruct geometrically simple models that capture
the main geometric features of an object or a scene, we propose to adopt the
following approach:

1. Initially and as in the previous chapters, a point cloud sampling the
scene or the object of interest is acquired either through range mea-
surements or quasi-dense passive stereo (see Figure 5.2(a));

2. From this noisy point cloud potentially containing outliers, shapes from
predefined classes of shapes are robustly extracted and the points are
clustered (see Figure 5.2(b)). A corresponding hierarchical description
(Figure 5.2(c)) of the scene or object is built by mixing the shape
detection with the induced spatial subdivision (see Figure 5.2(d));

3. The actual partition of space induced by this scene description is then
explicitly computed, in particular the adjacency graph of the cells of the
corresponding complex (see Figure 5.2(e)) is constructed. By labeling
the cells of this subdivision as inside or outside of the scene, a mesh
representing the scene can be extracted as a union of facets of the cell
complex (see Figure 5.2(f)).
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The spatial partitioning and subdivision of space we use is a general-
ization of binary space partitioning trees (BSP tree for short). Originally
developed to address the hidden-surface problem [Fuchs et al., 1980], the
BSP tree is a versatile structure widely used both for spatial partitioning
and boundary representation (of solid objects) with particular applications
in rendering, robot motion and path planning. A BSP tree is a binary tree
that defines a recursive partition of space into pairs of subspaces with re-
spect to dividing planes at arbitrary positions and orientations. Instead of
being limited to planes only, any oriented hypersurface can also be used to
split the space into two halves: one negative and one positive. Each node of
the binary tree corresponds to a splitting hypersurface and each leaf to an
unpartitioned area of space. The generalized shape-based BSP tree is first
used as a data partitioning structure to hierarchically cluster a point cloud
into sets of shapes and then serves as a boundary representation for surface
reconstruction.

For the final cell labeling step, a variant of the visibility-based surface fit-
ting framework of Chapter 2 is again applied. The energy defined is suitable
for minimum s-t cuts optimization allowing a globally optimal labeling of
cells and a corresponding surface to be generated from the space subdivision
and the fitted points. In Chapter 8, the final step is also extended to out-
put partly shape-based reconstructions (hybrid reconstructions) combining
shape elements in some areas with non-shape based parts.

Several reasons motivates this top-down approach:
• while the initial shape extraction is greedy, it is based on a variant of

the RANSAC framework more robust and suited to dense enough point
clouds with multiple structures. This variant is applicable to point
clouds of lower quality typical from our passive stereo techniques,

• shapes with infinite extent can naturally cope with areas of poor tex-
ture in image-based modeling or varying sampling density in range
scanning,

• the detection of potential large shapes early in the reconstruction
pipeline allows these geometric features to be correctly identified and
recovered in the reconstruction which would be difficult if a generic
surface reconstruction algorithm was first applied as in Chapter 4.

As regards the use of a generalized BSP tree as a spatial subdivision and
a boundary representation guided by recovered shapes, our particular choice
has a number of desirable properties for the considered problem:

• exploiting the space subdivision during the detection helps reducing
the generated shape hypotheses to more useful hypotheses instead of
repetitively sampling the whole point cloud,

• the use of a binary space partition instead of an arrangement limits
the combinatorial complexity of the cell complex w.r.t. the number of
recovered shapes (see Appendix B) and the corresponding cells and
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(a) Input point cloud (b) Hierarchically clustered point cloud
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Figure 5.2: Overview of our approach to shape-based reconstruction.

facets are also more relevant for the final reconstruction,
• the connectivity of primitives and the recovery of boundaries and ver-

tices between the different primitives, one of the major difficulty of the
problem, is handled implicitly in the surface reconstruction,

• poorly point sampled areas (due to low texture in stereo) are automat-
ically extended to meet other primitives,

• wrongly detected shapes do not significantly affect the spatial subdi-
vision as they only split facets and cells,

• the final segmentation is implicit to the surface reconstruction and
the output of our reconstruction pipeline is a piecewise-primitive seg-
mented mesh. This segmentation may possibly be used for several
purposes: remeshing, guided simplification or higher level applications
like shape matching, indexing, . . .
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5.3 Conclusion

After a survey of applicable approaches to simplified modeling from images
or range clouds, our overall approach to simplified modeling has been pre-
sented and motivated. The next chapter details the robust hierarchical shape
extraction. The two subsequent chapters first describe the reconstruction of
concise models when the set of shapes is restricted to planes and then the
reconstruction of simplified models from more complex shape classes.



CHAPTER 6

Shape extraction

As described in Chapter 5, the first step in our approach to shape-
based surface construction consists in extracting shapes from the
point clouds using a predetermined set of shape classes. First,
the known limitations of robust regression methods for multiple
shape fitting are pointed out. Then our single shape extraction
based on the random sampling framework is presented and used
to compute a hierarchical decomposition of the input point cloud.
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6.1 Robust regression for shape fitting

Point clouds from range data or passive stereo are often more or less noisy
but may also contain significant amounts of outliers as seen in Chapter 1.
Furthermore, the object or scene of interest is usually complex and explain-
able with several different structures, which may make the estimation of a
single shape even more challenging. As shown in Figure 6.1, standard re-
gression fails in the presence of outliers, i.e. , small or large departures from
the assumed model (in the figure, measurements are assumed to lie on a line
and to be corrupted with Gaussian noise). Robust methods that are toler-
ant to such measurements are thus required to detect the different structures
sampled by a point cloud. A large body of work has been dedicated to ro-
bust regression. Most techniques widely used in computer vision (where the
issue of robustness, for instance to mismatches, is important) can be seen
as optimizing some objective function (as we will see, the number of bin
votes for the Hough transform and the number of outliers outside a band for
RANSAC) with an appropriate sampling of the model parameters (either by
quantizing the parameters space or by randomly sampling models supported
by sets of points). Before describing our approach to robust regression in
our specific case of dense or quasi-dense point clouds, we give an overview
of the general possible approaches and their various limitations when multi-
ple shapes have to be fitted to a noisy point cloud with numerous potential
outliers.

(a) A line fitted to a set of
points with (total)

least-squares

(b) A line fitted to the same
set of points corrupted with a

few outliers

(c) A line fitted to a set of
points with two different

structures

Figure 6.1: Outliers and pseudo-outliers can wreck the least-squares estimate
of a line.

In the sequel, we assume N measurements are given as a set of points P =
{P1, . . . , PN} in E

d, these measurements may be noisy and carry outliers,
i.e. , points that do not sample the real object or scene. To fit a shape
Sh(β) parametrized by n parameters β = (β1, . . . , βn)T ∈ R

n (n = 4 for a
plane, n = 4 for a sphere, etc. . . ), the residual of each measurement ri(β) is
considered. This residual usually takes the simplest form of some distance
measure to the parameterized shape Sh(β): ri(β) = d(Pi, Sh(β)).
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6.1.1 M-estimators

M-estimators (M for “maximum likelihood type”) [Huber, 1981] generalize
maximum likelihood estimation by weighting differently each measurements
according to some robust loss function ρ and estimate a model β⋆ as follows:

β⋆ = arg min
β

N
∑

i=1

ρ

(

ri(β)

sσ

)

,

where ρ is the loss function, often taken as:

ρ(x) =

{

1−
(

1− x2
)3 |x| ≤ 1

1 |x| > 1
,

which effectively limits the influence of outliers. σ is the assumed noise level
and s a (user-specified) scale parameter. For most choice of ρ there is no
closed-form solution, and the optimization can be reduced to “iteratively
reweighted least-squares” requiring a good initialization. This initialization
may restrict the use of M-estimator and often has to come from other ro-
bust methods to avoid leverage measurements that may lock to M-estimator
optimization in a local minimum.

6.1.2 Finding modes in parameter space

A general approach to shape detection consists in mapping the input data
into the parameter space and detect peaks in the corresponding distribution
of shapes. These techniques can generally handle very naturally the detection
of multiple structures. The classical Hough transform is first described and
then the variant of the general mean-shift procedure that applies in our
context is presented.

Hough transform and variants

The Hough Transform [Hough, 1959, 1962, Duda and Hart, 1972] (SHT for
Standard Hough Transform) is a widely used technique to extract shapes
that considers the number of measurements belonging to each hypothesized
shapes in a discretized version of the parameter space of the shapes. Noting
βj1,...,jn

the discretized parameters:

β⋆ = arg max
βj1,...,jn

∣

∣

∣

{

i ∈ J1, NK : r2i (βj1,...,jn
) ≤ r2maxj1,...,jn

}∣

∣

∣
,

where rmax is a threshold depending on the discretization and the chosen
distance to shapes. Although this optimization is performed over a shape
domain with discretized parameters, this formulation exhibits strong simi-
larities with M-estimators:
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(a) Points
sampling a set of
lines in the plane.

(b) The corresponding
Hough transform in (r, θ).

(c) A strong local
maximum of the
Hough transform.

(d) The extracted strong
local maxima

corresponding to the lines.

(e) Points noisily
sampling lines in

the plane.

(f) Hough transform: no
strong local maximum

extracted.

(g) The noise
makes the peaks

more diffuse.

(h) Hough transform with
2× larger bin sizes: some

of the expected strong local
maxima are recovered.

Figure 6.2: The Hough transform has difficulties handling noise.

β⋆ = arg min
βj1,...,jn

N
∑

i=1

ρ

(

ri(βj1,...,jn
)

rmaxj1,...,jn

)

,

where ρ(x) =

{

0 |x| ≤ 1
1 |x| > 1

.

In an actual implementation, the parameter space is first discretized and
each measurement votes in all the bins of shape hypotheses to which it may
belong (up to some tolerance). The optimal hypothesis is the one whose bin
has accumulated the most votes. To extract multiple structures, different
strategies are possible, such as iteratively extracting the global maximum,
removing its contribution from the shapes histogram and iterating until ei-
ther the desired number of shapes is met or the maximum is not strong
enough. Another option consists in extracting at once all strong enough
local maxima and keeping only the strongests. While the Hough transform
naturally handles data with multiple structures (of the same kind), the bin
size and threshold adjustment are delicate with a compromise between accu-
racy and computational efficiency and the method faces inherent difficulties
on noisy data.

We give an example in the simple case of lines detection in the plane.
Lines can be parametrized as follows: β = (r, θ) and a point of coordinates
(x, y) in the plane belongs to all the lines whose parameters obey the follow-
ing relation:
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r(θ) = x cos θ + y sin θ = r0 cos (θ − θ0) .
with r0 =

√

x2 + y2 and θ0 = cos−1 x/r0 = sin−1 y/r0. This relation de-
scribes a sinusoid in Hough space. Figure. 6.2 illustrates the results of a
successful extraction of lines and the difficult choice of an adequate bin size
when noise is present: the peaks are more diffuse and missed by the detec-
tion. While augmenting the bin size can help recovering some of the missing
peaks some are definitely lost. The fact that the size of the voting space is
exponential in the number of parameters is another problem and makes SHT
impractical for many applications involving detection of complex shapes.

Several variants of the SHT have been tried to address to some of these
issues. The Probabilistic Hough Transform [Kiryati et al., 1991] reduces the
number of votes by randomly selecting a fraction of the input points while
maintaining results similar to the SHT. The Randomized Hough Transform
(RHT) [Xu et al., 1990] only generates line hypotheses for pairs of points
simplifying the voting and revealing shapes more quickly. The Hierarchical
Hough Transform [Princen et al., 1990] iteratively considers coarse-to-fine
versions of the feature space. In contrast, the Adaptive Hough Transform
[Illingworth and Kittler, 1989] guides the refinement of both the range and
number of bins of the discretization of the parameter space. Finally, while
the SHT applies to any shape with an analytic equation (e.g. line, circle,
etc. . . ), it is limited to 3 parameters for computational efficiency reasons,
and schemes to split the search in lower dimensional parameters subspaces
have to be used. The Generalized Hough Transform [Ballard, 1981] is able to
detect arbitrary objects by searching for transformation parameters instead.
Finally, a recent applicative variant of the SHT can be found in [Décoret
et al., 2003]: the extreme simplification of models into a set of partially trans-
parent texture-mapped polygons is done with a different objective function
which combines a facet coverage and a penalty cost per plane.

Mean-shift derivatives

Instead of quantizing the parameter space and accumulating votes, the data
can be mapped into the parameter space and the mean-shift procedure of
[Comaniciu and Meer, 2002] used to find the maxima of an estimated density.
GivenN data points xi ∈ R

d, the kernel density estimate (also named Parzen
window method [Parzen, 1962]) can be applied to give a non-parametric
estimator f̂k of the density at x:

f̂K(x) =
cK,h

N

N
∑

i=1

K

(

x− xi

h

)

,

whereK is a kernel function satisfyingK(x) ≥ 0, h is a smoothing parameter
called the bandwidth, and the constant cK,h is chosen to ensure that K(x)
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integrates to 1. The kernel used in practice are radially-symmetric, K(x) =
k(‖x‖2) where k(x) is a profile defined for x ≥ 0. A common choice of
profile is k(x) = exp (−x/2) yielding a multivariate normal kernel K. The
bandwidth h globally controls the width of the kernel placed at each xi.
Define g(x) = −k′(x) and G(x) = cG,hg(‖x‖2) the associated kernel with
normalization constant cG,h. Taking the gradient of this density estimate, it
can be shown that:

mh(x) = C
∇f̂h(x)

f̂(x)
=

∑N
i=1 g

(

‖x−xi‖2

h2

)

xi

∑N
i=1 g

(

‖x−xi‖2

h2

) − x ,

where C is a positive constant and mh(x) is called the mean shift vector. The
expression shows that the mean shift vector is proportional to the normalized
density gradient estimate at x. The iteration:

xj+1 = xj + mh

(

xj
)

is a gradient ascent technique converging to a stationary point of the density.
Saddle points can be detected and removed to obtain only the modes of f̂(x).
As shown in [Comaniciu et al., 2001], the mean-shift procedure can be made
more adaptive by introducing one bandwidth parameter hi and one weight
wi per point. Setting these is again problem-specific, but a typical heuristic
consists in computing the k nearest neighbor xi,k of each point xi (for a
fixed k) to set the bandwidth based on some distance measure between xi

and xi,k.
The mean-shift procedure is a non-parametric estimator and is not di-

rectly applicable to fitting shapes. The data has first to be mapped into some
parameter space. The projection-based mean-shift (pbM) of [Subbarao and
Meer, 2009] proposes to reformulate the M-estimator objective function as a
variable bandwidth kernel density estimation to fit hyperplanes in R

d. The
method turns into a projection pursuit approach by seeking modes with
mean-shift along directions hypothesized through random sampling. How-
ever the technique is restricted to plane detection and is not intrinsically
robust. In addition, and as for the Hough transform, the approach is limited
in robustness w.r.t. the choice of parametrization.

Generally the two parameter space methods described are unable to cope
with large percentage of gross outliers, especially with a growing number of
structures and when the distribution of inliers per structure becomes uneven.

6.1.3 Random sampling optimization

Two well-known objective functions in robust regression rely on random sam-
pling optimization.



6.1. ROBUST REGRESSION FOR SHAPE FITTING 105

Least median of squares (LMS)

LMS [Rousseeuw, 1984] estimates an optimal model β⋆ that yields the small-
est value for the median of the squared residuals computed for the entire data
set:

β⋆ = arg min
β

median
i

r2i (β) .

The method is very robust to outliers and does not need a user-specified
scale estimate. A robust scale estimate can actually be inferred from the
optimal median:

σ⋆ = C
√

median
i

r2i (β) ,

where C is a constant making σ⋆ unbiased for a target distribution of mea-
surements errors. Inliers to the optimal model are identified to have a resid-
ual within some multiple of σ⋆ (or geometrically lying within a band defined
by a multiple of σ⋆ around the model). Note that the median of an unordered
set can be found in expected linear time only using the QuickSelect algo-
rithm.

A first drawback limits the applicability of LMS to the data sets we
consider where other structures act as outliers during one regression: its
breakdown point is of 0.5 meaning that whenever the number of outliers ex-
ceed half of the size of the data set, the estimate is false. A second drawback
is its poor efficiency meaning that the scale is usually underestimated under
a Gaussian noise error model [Rousseeuw and Leroy, 1987].

The MINPRAN estimator of [Stewart, 1995] (minimize probability of
randomness) is an extension of LMS that tolerates more than 50% outliers
but assumes an explicit outlier distribution. Least trimmed squares improve
the breakdown point of LMS by replacing the median with another single
k-th order statistics. Other extensions [Miller and Stewart, 1996, Lee et al.,
1998] have been proposed to compute several k-th order statistics of the
squared residuals instead. In [Lee et al., 1998], the value of k is determined
adaptively from the data and in [Miller and Stewart, 1996] unbiased scale
estimates are used to find the smallest scale over all possible k. Both methods
have been demonstrated for range image segmentations but their requirement
to systematically estimate large numbers of order statistics (and thus to pre-
sort the residuals) may however limit a practical application to large point
sets.

Random sampling consensus (RANSAC)

RANSAC [Fischler and Bolles, 1981], a method that has known a great
success in computer vision, can cope with large proportion of outliers and
has found numerous practical applications. RANSAC maximizes the number
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Figure 6.3: The RANSAC objective function counts the number of points
“within a band around” a hypothesized model.

of inliers, defined as having a squared residual lower than some user-specified
threshold:

β⋆ = arg max
β

∣

∣

{

i ∈ J1, NK : r2i (β) < r2max

}∣

∣ .

Equivalently, RANSAC minimizes the number of outliers outside a band
induced by this threshold (see Figure 6.3) and can again be reformulated in
a way similar to M-estimator:

β⋆ = arg min
β

N
∑

i=1

ρ

(

ri(β)

rmax

)

,

with ρ(x) =

{

0 |x| ≤ 1
1 |x| > 1

. While the objective function bears some similar-

ity with that of the Hough Transform, the optimization is done over shapes
hypothesized in the space of measurements and the threshold rmax has a
clear interpretation w.r.t. these measurements.

MSAC [Torr and Zisserman, 2000] replaces the binary loss function of

RANSAC with ρ(x) =

{

x2 |x| ≤ 1
1 |x| > 1

to also penalizes inliers according to

their residuals. While a large number of RANSAC derivatives have been de-
veloped, RANSAC is biased and has known limitations [Stewart, 1997] when
applied to data featuring multiple structures and small-scale discontinuities.

Random sampling procedure

Since the objective functions of LMS and RANSAC described are not differ-
entiable, an alternate optimization procedure must be devised. A possible
form of a random sampling optimization is shown in Algorithm 2. A number
of model hypotheses are randomly generated from minimal sets of measure-
ments and the objective function is evaluated on each model. If the model is
judged satisfactory (with a finite error), then it is compared to the current
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optimal model which is possibly updated. When the generation of hypothe-
ses is over, the best model encountered so far is kept along with a set of
inliers and the optimal value of the objective function. This best model is
often “polished” and re-estimated from the set of inliers.

Algorithm 2 Optimization through random sampling to fit a parametrized
model Sh(β) from a set of samples.

1: function RandomSampling(P, . . . )
2: i← 0 ⊲ the number of drawn models
3: k ← kmin ⊲ the min. # of models to draw
4: Shbest ⊲ the best model so far
5: Ebest ←∞ ⊲ the best error so far
6: Ibest ← ∅ ⊲ the best set of inliers so far
7: while i < k do
8: draw a random minimal set S of n samples from P
9: instantiate a new parametrized model Sh(β) from S

⊲ generate a model hypothesis
10: compute the error E(Sh) and the inlier set I(Sh)

of the new model Sh from P
11: if E(Sh) < Ebest then ⊲ whether the hypothesis is better
12: Shbest ← Sh

13: Ebest ← E(Sh)
14: Ibest ← I(Sh)
15: end if
16: update k with |I(Sh)|
17: i← i+ 1
18: end while
19: return (Shbest, Ebest, Ibest)
20: end function

This optimization scheme is very flexible and not only LMS, RANSAC
and their variants but also the RHT can be described within this frame-
work. In RANSAC, a minimum number of inliers is often specified so that
E(Sh) = ∞ in Algorithm 2 if the model hypothesis Sh(β) does not have
enough inliers. As a result, no acceptable model may be found after all
hypotheses have been generated. The optimization may also not find the
optimal model, either because not enough hypotheses have been generated
or because the instantiated models do not explain well enough the set of
measurements. The outlined random sampling scheme can be modified in a
number of ways:

• the drawing of samples does not need to be uniform and may be altered
or even biased to favor some model hypotheses,

• the instantiation of models from minimal sets can also be altered,
• the error E(Sh) (the objective function) can be modified (in particular
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to evaluate to ∞ in order to invalidate some hypotheses),
• optionally, the maximum number of iterations can be modified (typ-

ically decreased) by taking into account each newly discovered set of
inliers I(Sh).

Some parameters for random sampling in general or RANSAC in partic-
ular need to be specified and are now detailed.

Maximum number of iterations Model hypotheses can not be gener-
ated indefinitely and the number of iterations has to be limited. The number
of samples to draw can be derivated in different ways. First, assuming an
inlier ratio of w and uniformly random drawings, the expected value E[k]
of the minimum number of iterations k is1 E[k] = w−n and its standard

deviation is σ[k] =
√

1−wn

wn . The minimum number of iterations may then be
chosen as E[k] + λσ[k] where λ weights the confidence in the chosen num-
ber of iterations. A more standard derivation estimates the probability p of
success after k drawings of minimal sets: p = 1− (1−wn)k, which leads to:

k =
log(1− p)

log(1− wn)
.

As noted before, the assumed inlier ratio w can be updated each time a
set of inliers I(Sh) is found and k be consequently re-estimated. Note that
the number of iterations only depends on the ratio of inliers and not on the
total number of points.

Minimum size of the consensus set (RANSAC) A common option
is to chose a minimum size close to the assumed number of inliers wN , but
w is often only a guess and this size threshold may be problem-specific.

Distance threshold (RANSAC) For lack of a better error model, if
the measurement error relative to a model is assumed to follow a Gaussian
distribution N (0, σ2) with zero mean and σ standard deviation, a distance
threshold dmax to decide whether a point is an inlier or not can be esti-
mated with a given confidence. The square of the point to model distance
r2i (β) = d2(Pi, Sh(β)) is a squared Gaussian variable and thus follows a χ2

1

distribution. The probability that the value of a χ2
1 random variable is less

1

E[k] =
∞

X

k=1

k (1 − w
n)k−1

w
n = . . . = w

−n
,

Var[k] =
∞

X

k=1

`

k − w
−n´2

(1 − w
n)k−1

w
n = . . . =

1 − wn

w2n
.
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than x2 is given by the cumulative χ2
1 distribution F1(x

2) =
∫ x2

0 χ2
1(y) dy.

For the probability 0.95 that a point is an inlier, the distance threshold to
use is then d2

max = F−1
1 (0.95)σ2 ≈ 3.84σ2. For a probability of 0.99, the

threshold becomes d2
max ≈ 6.63σ2.

Random sampling methods and multiple structures

As noted above, the estimation of models with RANSAC is biased when
data sets feature multiple structures acting as structured outliers or pseudo-
outliers. Extending random sampling methods for multiple structures re-
gression is challenging. Some attempts include the incorporation of robust
statistical measures [Chen et al., 2001] to estimate noise scale. The multi-
RANSAC method of [Zuliani et al., 2005] adapts RANSAC to simultaneously
recover several models but the number of models has to be specified. Other
recent approaches [Zhang and Kosecká, 2006, Toldo and Fusiello, 2008] try
exploiting the clustering of hypotheses in the same spirit as the detection
of modes in parameter space but use instead the distribution of residuals or
consensuses.

We do not pretend to solve the general problem of multiple structures
segmentation from noisy point clouds with outliers. In the next section,
we propose to exploit additional priors from our problem (the acquisition
process, the geometry of the extracted shapes and the assumed higher density
of the point cloud near the shapes) to significantly improve the robustness
of existing approaches.

6.2 Single shape robust extraction

Our shape detection and fitting method is based on the RANSAC framework
of [Fischler and Bolles, 1981]: random shapes instantiated by minimal sets
of points2 are enumerated to optimize an objective function counting the
number of points (the shape inliers) inside a band around a shape instance.
As reminded in the previous section, plain RANSAC is not suited to robust
regression for data with multiple structures. The commonly used approach
to multiple model detection is to extract a model with RANSAC, remove the
inliers to the extracted model and iterate. Iterating can lead to catastrophic
results. Figure 6.4 shows the result of a sequence of successive shape extrac-
tions with the MSAC [Torr and Zisserman, 2000] variant of RANSAC: after
one or two successful extractions, MSAC begins to hallucinate structures
that slice the whole point cloud with a good fit. In contrast, our approach
does not suffer from this problem. Even if it is derivated from RANSAC and
if simple successive shape detections are applied, our approach successfully
recover all the shapes with the same number of model hypotheses.

23 points for a plane, 4 points for a sphere. . .
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Figure 6.4: Sequential MSAC: the sequential extraction of shapes with naive
RANSAC methods may lead to catastrophic cascaded errors (both *SAC methods
used the same number of iterations). First row: extraction of planes only on the
joint data set. From left to right: noisy input point cloud, sequential MSAC extrac-
tion of planes, our improved MSAC extraction. Second row: extraction of different
shapes on the block data set. From left to right: noisy input point cloud, sequential
MSAC extraction of shapes, our improved MSAC extraction.

Before any shape detection occurs, a 3D k-D tree [Bentley, 1975] of the
point cloud is first computed to efficiently find the k nearest neighbors (ab-
breviated k-NN, k = 10 in practice) and estimate the normal of each point
by fitting a plane to these k-NN with a least-squares estimate. The normal
orientation −→n P is corrected using the visibility information vP of the sample
point P . If the surface has been densely enough sampled by the point cloud
P, the k-NN of a point near the surface are likely to also lie near the sur-
face, leading to a more reliable normal estimation. The k-NN of an outlier
point, however, are much more spatially spread and its normal will likely be
incoherent with its neighbors’. This information will be put to use to filter
out outliers.

As noted in the description of random sampling optimization, the random
sampling scheme is quite flexible and can be changed in a number of ways.

Objective function The objective function or error to be minimized over
all the hypothesized models from one class is modified as follows:

1. being based on the MSAC variant [Torr and Zisserman, 2000] of RANSAC,
it penalizes inliers according to their distances to the instantiated sur-
face.

2. The acquisition process intervenes in the inlier counting procedure: a
point is considered an inlier only if its visibility information agrees with
the instantiated shape, i.e. , if the local oriented normal to this shape
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does not make a wide angle with any of the lines of sight of the point.
3. The local surface oriented normal is similarly considered in the inliers

counting procedure: a point is an inlier only if its oriented normal is
close to the local normal of the instantiated shape.

4. Finally, the inlier counting procedure exploits the graph induced by the
k-NN relation to count the number of inliers in the largest connected
regions from the seed points (that instantiated the surface) and inside
the inliers band. Such region growing approach helps avoiding the so-
called “hallucination” problem of RANSAC variants (artificially find-
ing structure by relating small clusters) by naturally handling densely
sampled multiple structures while keeping the robustness advantages
of a RANSAC-based optimization. It is also more efficient since only
a subset of the points are visited.

Figure 6.5: The modified RANSAC objective function exploits a supposed
spatial proximity of inliers and the asymmetric k-NN relation to avoid the so-called
“hallucination” of structures (illustrated by the diagonal band).

To summarize these modifications, a point P is an inlier (and the predi-
cate InlierSh [P ] is true) if and only if its normal −→n P is, up to some tolerance
(typically θmax = 20◦), aligned with the local normal to the shape Sh , if its
line-of-sights are all correctly oriented w.r.t. the normal of the shape −→n Sh(P )
at P (with a tolerance γmax = 85◦ in practice) and if it lies in a band define
by dmax around the instantiated shape Sh :

InlierSh [P ] ⇔
(

d(Sh , P ) ≤ dmax

)

∧
(−→n P .

−→n Sh(P ) ≥ cos θmax

)

∧
(

∀Q ∈ vP
−−→
PQ.−→n Sh(P ) ≥ cos γmax ‖PQ‖

)

.
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Now, we note P −→ Q the relation “the point Q is a k-NN of the point P ”

and P
Sh−→ Q the relation (P −→ Q) ∧ InlierSh [Q]. The transitive closure

of the relation
Sh−→ on P from a subset U ⊆ P of points is noted

Sh

−→⋆ and
defined as:

U
Sh

−→⋆ Q ⇔
{

∃P ∈ U
∃p ∈ N ∃Q1, . . . , Qp ∈ P

P
Sh−→ Q1

Sh−→ . . .

. . .
Sh−→ Qp

Sh−→ Q
,

i.e. , the point Q can be “reached” through a sequence of k nearest neighbors
that are also inliers from a point P ∈ P. The new objective function we
consider is formally:

β⋆ = arg min
U={Pi1

,...,Pim}⊆P
U⊆Sh(β)

N
∑

i=1

ρ

(

ri(β)

rmax
, Pi,U

)

,

with ρ(x,Q,U) =

{

x2 U
Sh

−→⋆ Q
1 else

. m is the minimal number of points |U|

to instantiate a parametrized shape Sh(β). While this objective function has
some similarity with previous ones, it explicitly accounts for the optimiza-
tion method (random sampling of minimal sets), and it asks for the local
proximity of inliers as shown in Figure 6.5. The loss function depends on
both the point and the minimal set and not only on the residual of the point.
It could also depend on the normal and line-of-sight used to decide whether
a point is an inlier, à la MSAC. We actually experimented with it but found
no significant difference in practice.

Finally, we verify that, as announced, this objective function is efficiently
computed with a simple (breadth-first or depth-first, for instance) search
algorithm from seed points in the oriented k-NN induced graph by checking
whether each vertex is an inlier and limiting only this search to inliers. This
effectively amounts to finding the largest connected regions of inliers from
the seed points U .

Shape hypotheses The way samples are drawn and shapes are instanti-
ated is also modified to consider more meaningful hypotheses.

• The density of samples is supposed to be higher near the surface. The
closer the points, the higher the chance the points are inliers to the
same shape. Of the few points to be randomly selected to create a
shape instance, the first point Pi1 is drawn uniformly in the point
cloud, while the next are uniformly drawn but only within B(Pi1 , r),
a ball of small radius r = s dmax (a fixed multiple of the maximum
inlier distance dmax). This geometric ball search can be answered as a
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range query again in the k-D tree of the points. While this operation
makes the plane sampling a more involved operation, this cost is out-
weighed by improving the chance of drawing meaningful shapes and
allowing the maximum number of iterations of the random sampling
to be significantly reduced. This localized sampling follows NAPSAC
[Myatt et al., 2002], developed in the context of high-dimensional ro-
bust estimation, where an assumed distribution of inliers and outliers
led to this idea. In theory, NAPSAC would require sorting the samples
by increasing order of distance to Pi1 to pick additional samples with
an adequate distribution. In practice, the authors also only uniformly
sample points inside a hypersphere of fixed radius derived from the
inferred distributions of inliers and outliers.

• Only shape hypotheses whose minimal sets of points agree on both vis-
ibility and local normal orientation are drawn. The points Pi1 , . . . , Pim

from a minimal set U have to be inliers to the instantiated Sh(β) ac-
cording to the inlier definition given above: ∀i ∈ Ji1, imK InlierSh(β)[Pi].

• The point clouds from Chapter 1 may still be quite noisy (especially
in the passive stereo case) and random shapes exactly supported by
minimal sets of point lead to systematic wrong hypotheses (with a
possibly wrong optimal shape as a consequence), especially for non-
planar shapes. An improved estimate of the instantiated random shape
Sh is obtained by refitting it to all the local inlier points within the band
around Sh (restricted to the ball B(P1, r) used to search the minimal
set) with distance loss weighted least-squares.

Note that this shape extraction method is general and hence applicable
to any class of orientable surface for which approximate distance and normal
can be computed. Also note that all the involved geometric queries (ball
query and k nearest neighbors) rely only on the initial computation from the
k-D tree from the input point cloud.

Shapes of different classes (only planes in Chapter 7 and planes, spheres,
cylinders and cones in Chapter 8) are tentatively extracted from the point set,
and the shape with the lowest error is selected (provided there is one). The
particular choice of distance to the shapes has been omitted in this discussion.
While computationally attractive, fitting using the simple algebraic signed
distance fβ for implicit surfaces (fβ(P ) = 0 if P ∈ Sh(β)) is known to be
biased (in the presence of noise and in particular when the shape is partially
occluded). Instead several first and higher order approximations have been
proposed [Taubin, 1988, 1991, 1993] as a compromise between speed and
accuracy. We depart from this approach and use the Euclidean distance to
a shape. In the cases considered in the next two chapters, this distance has
a closed form. Except for planes, the fitting optimization is a non-linear
least-squares problem that we solve through an iterative optimization. The
particular details of shape distance, instantiation and fitting for each class of
shapes are described in Appendix A. Finally, even if all second order shapes
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used in Chapter 8 could be reduced to a single, more generic class of quadrics,
we explicitly distinguish the shapes, to reduce the number of parameters
and the computational cost of generating shape hypotheses, to allow the
computation of Euclidean distance in closed form (for general quadrics this
would require finding a root of a 6-th order polynomial) as well as to avoid
having to handle geometric degeneracies.

6.3 Hierarchical extraction of multiple shapes

Instead of repeatedly applying the above single shape extraction by sequen-
tially removing fitted point from the point set, the extraction is modified
so as to guide the detection towards interesting shapes and simultaneously
build the BSP tree required for the surface reconstruction step. At first the
localized sampling described above helping locating large dominant shapes
in the whole point cloud. As shapes are recovered the corresponding spa-
tial subdivision then progressively assumes the role of the localized sampling
to extract meaningful shapes. A summary of the whole method is shown
in Algorithm 6.3 where ExtractShape corresponds to the single shape
extraction described above.

Initially, the BSP tree is reduced to a single leaf for the whole space. From
a previously built BSP tree, a restricted shape extraction is tried in turn in
each active leaf. If no shape can be extracted from a leaf, the leaf is marked
as inactive and is not be explored anymore. After a successful extraction,
a few steps are followed. Sufficiently large connected sets of inliers (as in
Section 6.2) are found in the band around the detected shape. With least-
squares weighted by shape distance loss, the surface is refitted to all these new
inliers points which are now excluded from the point cloud. Outliers lying in
the band are however kept for further shape sampling (distinguishing points
used for sampling and error is done to prevent overfitting while still allowing
interesting shape hypothesis to be generated). Finally all the leaves of the
tree intersected by the shape clusters are split and new nodes corresponding
to the shape are created along with two leaves. The whole process is iterated
until no further shape extraction is possible. If needed, the location of the
points (the leaf they belong to) is updated at each leaf splitting event.

The described search and split strategy may also be modified in a number
of ways:

• If all the leaves intersected by the recovered shape are systematically
split, the resulting spatial subdivision is the so-called arrangement of
the shapes and contains many superfluous regions that are not rele-
vant for the final reconstruction and would make the application of
the surface fitting framework of Chapter 2 more difficult. Splitting
only leaves with enough shape supported points is preferable both to
make the final surface reconstruction better posed and to reduce its
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computational cost.
• At the other extreme, splitting only the leaf where the search has oc-

curred may avoid possible misclassification or poorer fit but the possi-
bility of identifying large shared unconnected components of the same
shape is then lost.

• Finally, if the shape hypotheses are always formulated from points of
the whole point cloud, a larger number of hypothesis may be required
in presence of outliers. Restricting the search to leaves that are inval-
idated when no shape can be extracted is more efficient and further
lowers the required number of iterations.

Experiments demonstrating the hierarchical shape extraction on syn-
thetic and real data are postponed to Chapters 7 and 8 so as to show the
whole segmentation and reconstruction procedure from point clouds at once.

6.4 Conclusion

This chapter has introduced the first step in our approach to the problem
of surface reconstruction with strong shape priors from noisy points with
outliers.

We proposed several improvements to the classical random sampling
framework applied to shape fitting. These improvements allow the robust
extracting of a shape in a dense point cloud even in the presence of multiple
structures. The key to this achievement is to take into account the acqui-
sition process, the local geometry of the shape and the spatial proximity of
inliers both in the sampling process and in the error associated to a shape
instance.

The single shape extraction is then included in a hierarchical shape de-
composition algorithm that given a point cloud outputs a BSP tree-like de-
scription of a subset of the points into multiple shapes. This hierarchical
decomposition is used in the next two chapters for the final surface recon-
struction.

It should be noted that this whole shape fitting procedure is generic and
can be extended to several classes of orientable surfaces for which approxi-
mate distance and normal can be computed.
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Algorithm 3 Synopsis of the shapes extraction and tree construction algo-
rithm
1: function ExtractShapes(P, . . . )
2: compute the k nearest neighbors of each point
3: estimate the normal to each point from its neighbors
4: T ← a single leaf ⊲ the BSP tree
5: SH ← ∅ ⊲ the set of extracted shapes
6: Psamp ← P ⊲ mark all points as used for sampling
7: Perr ← P ⊲ mark all points as used for error
8: mark the single leaf of T as active
9: while there is an active leaf in T do

10: for all active leaves of T do
11: ℓ← the current active leaf of T
12: Pℓ

samp ← Psamp ∩ ℓ
13: Pℓ

err ← Perr ∩ ℓ
14: ⊲ points used for sampling and error restricted to ℓ

15:

(

Shℓ, Eℓ, Iℓ
)

← ExtractShape(Pℓ
samp, Pℓ

err)

⊲ (tentatively) extract a new shape Sh in ℓ
16: if Eℓ =∞ then
17: mark the leaf ℓ as inactive
18: continue to the next active leaf in T
19: end if
20: I ← the (large) connected sets of inliers to Shℓ in Psamp

21: O ← outliers in Psamp lying in the band around Shℓ

22: estimate Sh from I and its initial estimate Shℓ

23: SH ← SH ∪ {Sh}
24: mark all the points of I as belonging to Sh

25: Psamp ← Psamp \ I
26: Perr ← Perr \ (I ∪ O)

⊲ note Perr ⊆ Psamp is thus always verified
27: for all leaves of T intersected by I do
28: ℓ′ ← the current leaf of T intersected by I
29: turn the leaf ℓ′ into a internal node of T associated to Sh

30: add two new leaves ℓ′1 and ℓ′2 to this internal node
31: mark the leaves ℓ′1 and ℓ′2 as active
32: end for
33: end for
34: end while
35: return (T ,SH)
36: end function



CHAPTER 7

Concise piecewise-planar surface reconstruction

This chapter applies the shape extraction method of the previous
chapter to classes of shapes restricted to planes only. In this case
applying a variant of the surface fitting framework of Chapter 2
to a polyhedral complex induced by the hierarchical description
of the point cloud leads not only to geometrically simple models
but also to very concise ones with extremely low combinatorial
complexity. Promising results of the combined shape extraction
and surface reconstruction approach are shown both on synthetic
and real data.
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Our first application of the hierarchical shape extraction procedure is
restricted to planes and produces a piecewise-planar hierarchical description
of the point set P. The surface reconstruction uses as input, a subset P ′ ⊆ P ′

of the original input cloud along with the cluster representative Pl P (the
plane) to which each point P belongs and the tree description.

7.1 Surface reconstruction algorithm

The hierarchical segmentation induces a particular cell complex and with
the notations introduced in Chapter 2, a pseudo-surface can be extracted
corresponding to a globally optimum labeling of cells w.r.t. the following
energy:

E(S) = Evis′(S,P ′, v) ,

where Evis′ is a variant of Evis that penalizes surfaces crossing a line of sight
and surface mis-orientations w.r.t. to the clustered points P ′. Optionally,
for difficult point clouds from stereo, an additional photo-consistency term
is used to favor photo-consistent facets of the complex and to compensate
for poorly sampled geometry (caused by the lack of texture) or to avoid
structured outliers:

E(S) = Evis′(S,P ′, v) + λphoto Ephoto(S) ,

as in Chapter 4, Ephoto(S) is the sum of the photo-consistencies of the ori-
ented facets composing S (using for instance the fitted points close to the
considered facet to determine which views to use):

Ephoto(S) =
∑

Ci,Cj∈C3

f⋆
Ci

=0,f⋆
Cj

=1

Ci ∩Cj=F

1− ρ
(

FCj→Ci
)

.

In the presented results for multi-view stereo, this computationally expensive
term was not necessary and was not used.

7.1.1 BSP polyhedral complex

The choice of cell complex is imposed by the hierarchical segmentation of
the input point clouds in structures. Since the detected shapes are restricted
to planes, the hierarchical structure is a standard BSP tree [Fuchs et al.,
1980]. The corresponding cell complex is a polyhedral complex that can
be computed exactly with a simple modification of an algorithm for the in-
cremental construction of hyperplane arrangements: the associated details
are given in Appendix B. Examples of such cell complexes are shown in Fig-
ure 7.1 for the extractions of planar structures on the data sets of Figures 7.3
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and 7.10. The extracted pseudo-surface is a mesh with or without bound-
aries, with convex polygonal facets and identified supporting (and possibly
shared) planes. Note that while the results shown in Section 7.2 are simple,
the optimization domain is not trivial and only embeds the recovered sur-
face: the selected facets often represent much less than half the facets of the
embedding complex (see Tables 7.1 and 7.2).

Figure 7.1: BSP polyhedral complexes: the final surface is extracted as a union
of facets in a polyhedral complex. Left: polyhedral complex for the double torus II

data set, right: for the cubes data set.

Very recently, we have discovered the work of [Murali and Funkhouser,
1997] where an inside/outside labeling of the cells of a (plane based) BSP
complex is used to recover a simple polygonal model in the quite different
context of remeshing noise-free polygon soups. In this work the labeling is
based on the facet coverage of polygons to define a notion of cells “solidities”
and reduces to the inversion of a sparse matrix. The proposed formulation
is not suited to data sets with noise and outliers and cannot recover open
scenes.

7.1.2 Surface visibility

The visibility term Evis of Chapter 2 is slightly adapted to sets of points
which are known to belong to clusters of points from an extracted plane.
These points are located near a facet of the complex whose supporting plane
corresponds to their plane cluster as facets of the complex are built from
plane clusters. The considered sequence of traversed cells by a line of sight
is thus modified to account for this additional knowledge: the sequence is
stopped at the facet F ∈ C2 of the complex corresponding to the plane Pl P

of the fitted point P , provided this facet exists. Using the same notations as
in Chapter 2, the visibility constraints are written as:
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s

t

αvis

αvis αvis

  αvis

Figure 7.2: Visibility. A fitted point (red circled dot) affects the oriented facets
(darker green) and cells (darker blue) weights along one of its lines of sight (red
dotted line) from its plane cluster.

Evis′(S,P ′, v) =
∑

P∈P ′

∑

Q∈vP
∃F∈C2

F⊂Pl P ∧ dim([PQ]∩F )=0

Dout

(

l
CQ→P

1

)

+

N[QP ]−1
∑

i=1

Valign

(

l
CQ→P

i
, l

CQ→P
i+1

)

+Din

(

l
CQ→P

N[QP ]+1

)

.

This term is obviously suitable to minimum s-t cut optimization. As
shown in Figure 7.2, the oriented facets crossed by the considered line of
sight (darker green) get a weight of αvis, while the cell (darker blue) where
the camera optical center lies is linked to the source s with an αvis weight
and the cell behind the plane of the fitted point (darker blue) is linked to the
sink t with a weight αvis. For all the available lines of sight, these weights or
penalties for cells being inside or outside the surface and facets being part
of the reconstruction are accumulated.

7.2 Experimental results

The running time of the prototype implementation seems reasonable for the
presented results: it varies from 1m to 15m for the extraction of the planes
(conservative settings were used) and the surface reconstruction (including
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the exact computation of the polyhedral complex) typically takes less than
10m and is dominated by the ray traversal of the complex.

Noisy point clouds (synthetic) Several experiments were run on syn-
thetic data to evaluate both the segmentation step of Chapter 6 and the
reconstruction step of this chapter. Each time a point cloud is generated
from the vertices of an original mesh. The visibility of the points w.r.t.
64 sources located around the object is evaluated with this ground truth
model to check for occlusions. The point location are contaminated with
isotropic Gaussian noise. Figures 7.3, 7.5, 7.7 and 7.8 show segmentations
and reconstructions on a variety of different point clouds. Curved geometry
is approximated with several planar patches Figure 7.9 depicts how different
settings of the tolerance parameters of the plane detection lead to various
levels of details for the reconstructed surface. In Figure 7.6, the concise re-
construction of the double torus I and double torus II data sets is compared
both in quality and conciseness with Poisson surface reconstruction [Kazh-
dan et al., 2006] and the reconstruction method of Chapter 4. Not only our
output mesh is almost unaffected by the added noise, but it is several order
of magnitude less complex than both other reconstructions and recovers the
sharp features of the original model.

Figure 7.3: double torus I: our reconstruction is visually indistinguishable from
the ground truth. From left to right: ground truth mesh, noisy input point cloud,
segmented point cloud and concise piecewise-planar reconstruction (colored by plane
/ uncolored / wireframe contours).

cubes (multi-view stereo) The experiment of Figure 7.10 uses 60 ren-
dered images (1 Mpix) of 6 cubes and the input point cloud is generated
with the method described in Chapter 1 and based on interest points. The
matching ambiguity of the texture (the same on all the cubes) results in a
very noisy point cloud with a fair amount of outliers (only half of the in-
put point cloud was clustered into planes by our method). Despite this, as
shown in Figure 7.11, our algorithm outputs a surface that has the expected
complexity of the original model. In contrast, Poisson surface reconstruction
fails to output a satisfying reconstruction due to the insufficient coherence of
the estimated normals. The reconstruction method of Chapter 4 again out-
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Figure 7.4: double torus I data set: comparison with the general purpose re-
construction method of Chapter 4 and Poisson surface reconstruction. First row:
Delaunay, second row: Poisson, third row: concise reconstruction. First column:
reconstructed surface, second column: reconstructed surface (colored by distance to
ground truth), third column: histogram of distances to ground truth.

puts a noisy and much more complex mesh. The high level of noise however
makes our method poorly estimates one of the 18 extracted planes.
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Figure 7.5: double torus II: our reconstruction is visually indistinguishable from
the ground truth. From left to right: ground truth mesh, noisy input point cloud,
segmented point cloud and concise piecewise-planar reconstruction (colored by plane
/ wireframe contours).
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Original mesh
#Vertices 39K 26K 49K 44K 102K
#Facets 78K 51K 99K 89K 204K

Input point cloud
#Points 39K 26K 49K 44K 102K
σnoise 0.05 0.05 0.07 0.01 0.0025
ℓmax 20 20 38 5.25 1.12

Segmentation
#Extracted planes 14 16 34 53 35 54 71
#Clustered points 34K 17K 45K 38K 94K 91K 90K

86% 68% 92% 86% 92% 89% 88%

Reconstruction

#Vertices (complex) 82 72 317 462 189 268 342
#Facets (complex) 107 86 435 646 247 348 449
#Vertices (surface) 46 48 222 280 139 203 260

56% 67% 70% 61% 74% 76% 76%
#Facets (surface) 41 40 178 218 112 155 198

50% 47% 41% 34% 45% 45% 44%

Table 7.1: Detailed input and results: data for the results on the synthetic data
sets. σnoise is the standard deviation of the added isotropic Gaussian noise and ℓmax

is the length along the maximum dimension of the bounding box of the point cloud.

rue Soufflot (range data) In Figure 7.12, our method is tested on range
data acquired from a mobile car equipped with a GPS/IMU unit paired with
a time-of-flight range driving in a street along a block (a part of the data
set featured in Chapter 3 without occlusion). This demonstrates a potential
application of our approach to reconstruct simple models of whole streets
from ground acquired data even in the presence of numerous non-planar
features (pedestrians, terraces, . . . ). The method is however limited, and
not applicable at once to reconstruct the whole street, since adjacent streets
are half-occluded and the corresponding planes thus cannot be extracted.

ALOI #418 (multi-view stereo) The Amsterdam library of object im-
ages [Geusebroek et al., 2005] offers a large collection of small objects cap-
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Figure 7.6: double torus II data set: comparison with the general purpose re-
construction method of Chapter 3 and Poisson surface reconstruction. First row:
Delaunay, second row: Poisson, third row: concise reconstruction. First column:
reconstructed surface, second column: reconstructed surface (colored by distance to
ground truth), third column: histogram of distances to ground truth.

tured under varying viewing angle, illumination angle and illumination color.
Of particular interest here, is the object #418, an ornamental stone and an
almost purely piecewise-planar object. The 72 images (0.5 Mpix) of this ob-
ject undergoing a rotation were calibrated using a tracking software. A point
cloud from matched interest points was then computed with the method of
Chapter 1. The output of our segmentation and reconstruction algorithm is
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Figure 7.7: block data set: ground truth mesh, noisy input point cloud, segmented
point cloud and concise piecewise-planar reconstruction (colored by plane / uncol-
ored / wireframe contours).

Figure 7.8: fandisk data set: ground truth mesh, noisy input point cloud, seg-
mented point cloud and concise piecewise-planar reconstruction (colored by plane /
uncolored / wireframe contours).
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Input point cloud #Points 110K 291K 58K 677K 888K

Segmentation
#Extracted planes 18 5 14 9 48
#Clustered points 50K 199K 39K 194K 589K

46% 68% 68% 29% 66%

Reconstruction

#Vertices (complex) 255 36 137 127 257
#Facets (complex) 441 46 263 226 303
#Vertices (surface) 48 18 44 48 160

19% 50% 32% 38% 62%
#Facets (surface) 36 10 36 38 95

8% 22% 15% 16% 31%

Table 7.2: Detailed input and results: data for the results on the other data
sets.

depicted by Figure 7.13. The object and its stand are properly reconstructed
and the final model attempts to capture the simple geometry of this object.
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Original mesh 102K 204K
Input point cloud 102K

Reconstructions: Concise reconstruction, E(S) = Evis(S)
dmax = 10−2, θmax = 22.5◦ 139 112
dmax = 3.75 10−3, θmax = 7.5◦ 203 155
dmax = 2.5 10−3, θmax = 6◦ 260 198

Figure 7.9: joint data set: different values of the distance threshold dmax and
the normal deviation tolerance θmax lead to varying levels of approximation of non
piecewise-planar geometry.

cloister (multi-view stereo) This multi-view data set features 96 im-
ages of the cloister courtyard of the Cluny abbey. Our segmentation and
reconstruction approach outputs a lightweight mesh featuring the ground,
the facades and the roofs of this outdoor scene.
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Figure 7.10: cubes data set: a simple model, samples synthetic images, point
cloud from interest points, segmented point cloud and concise piecewise-planar re-
construction (colored by plane / wireframe contours).

castle-P30 (multi-view stereo) We finally consider the castle-P30 data
set from the recent dense multi-view stereo benchmark of large-scale scenes
of [Strecha et al., 2008]. The 30 images (6 Mpix) of this dataset captures
a courtyard containing large planar parts (the ground, the facades and the
roofs) and some occluders (tractor, . . . ). Our result on a point cloud from the
sparse depth maps of Chapter 1, shown in Figure 7.16, is the most impressive
and preserves the large-scale structures of the courtyard. In Figure 7.15, The
reconstruction algorithm of Chapter 4 failed to recover the ground due to the
high number of outliers generated in the depth maps near the ground and
the relatively low amount of inliers in this area. In contrast, our approach
which search for large structures before reconstruction, is able to correctly
recover the ground from inliers flooded in a mass of outliers and outputs a
simple model that includes the main facades the ground, the roofs and the
towers.
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Input point cloud 110K

Reconstructions: Delaunay, E(S) = Evis(S) + λqual Equal(S) 79K 159K
Concise reconstruction, E(S) = Evis′ (S) 48 36

Figure 7.11: cubes data set: comparison with the generic reconstruction method
of Chapter 3 (the normal estimate and outliers level were too high for Poisson to
succeed). First row: Delaunay, second row: concise piecewise-planar reconstruction.
First column: reconstructed surface, second column: reconstructed surface (colored
by distance to ground truth), third column: histogram of distances to ground truth.

Figure 7.12: rue Soufflot data set: a part of the previously shown rue Soufflot

data set, segmented point cloud and concise piecewise-planar reconstruction (colored
by plane / uncolored / wireframe contours).
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Figure 7.13: ALOI #418 data set: two of the 72 input images, input point cloud,
segmented point cloud and concise piecewise-planar reconstruction (colored by plane
/ uncolored / wireframe contours).

Figure 7.14: cloister data set: two of the 96 input images, input point cloud,
segmented point cloud and concise piecewise-planar reconstruction (colored by plane
/ uncolored / wireframe contours).

Figure 7.15: castle-P30 data set. Initial mesh of the reconstruction method of
Chapter 4 (top and front view): due to the high density of outliers, the ground is
hardly reconstructed. The reconstruction has been smoothed for rendering purpose.
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Figure 7.16: castle-P30 data set. First row: two of the 30 images. Second row:
point cloud from depth maps (top and side view). Third row: segmented point cloud.
Fourth row: concise piecewise-planar reconstruction (colored by plane / uncolored
/ wireframe contours). Fifth row: colored concise reconstruction (front and back
view).



CHAPTER 8

Shape-based surface reconstruction

In contrast with Chapter 7, this chapter applies the hierarchical
shape extraction method of Chapter 6 to several classes of shapes.
The conciseness of the reconstructions is traded for the ability
to model more complex surfaces. In addition, a simple exten-
sion is proposed to extract hybrid surfaces, which are not purely
piecewise-primitive but can also interpolate through points not
fitted to shapes. Encouraging results of the combined shape ex-
traction and surface reconstruction approach are shown on both
synthetic and challenging real data.
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The second application of the hierarchical shape extraction procedure is
extended to planes, spheres, cylinders and cones to produce a shape-based
hierarchical description of the point set P. As explained in Chapter 6, the
fitting of second order surfaces is done w.r.t. the Euclidean distance to the
shape. Details on the exact parametrization, initialization and fitting of
shapes are given in Appendix A. The surface reconstruction uses as input, a
subset P ′ ⊆ P of the original input cloud along with the cluster representa-
tive ShP (the shape) to which each point P belongs and the tree description.

8.1 Surface reconstruction algorithm

The hierarchical segmentation induces a particular cell complex and with
the notations introduced in Chapter 2, a pseudo-surface can be extracted
corresponding to a globally optimum labeling of cells w.r.t. the following
energy:

E(S) = Evis′(S,P ′, v) ,

where Evis′ is a variant of Evis, similar to the one of the previous chapter,
that penalizes surfaces crossing a line of sight and surface mis-orientations
w.r.t. the clustered points P ′.

8.1.1 Generalized BSP complex and approximation

As in the previous chapter, the choice of cell complex is imposed by the hier-
archical segmentation of the input point clouds into planes, spheres, cylinders
and cones. Since the detected shapes are not restricted anymore to planes,
the hierarchical structure is a generalized BSP tree. Each cell of the complex
corresponds to a leaf of the BSP tree but one leaf of the tree may give rise
to several cells (the space between two close parallel planes split by a sphere
corresponds to two leaves but three cells for instance). Each facet of this
complex is contained in one of the splitting surfaces. Two different cells may
be linked by more than one facet since they may not be convex.

For polyhedral complexes induced by BSP complexes, the practical ex-
act computation of complexes was possible. When the complex cells are
delimited by general second order surfaces, this is still a subject of active re-
search [Geismann et al., 2001, Fogel et al., 2006, Dupont et al., 2007], not to
mention the queries also required by our visibility-based surface reconstruc-
tion framework. To circumvent this major problem, a practical solution is
adopted: at the loss of conciseness, a refined Delaunay triangulation that
approximates the shape supported facets is computed with a volume mesh
generator derived from [Boissonnat and Oudot, 2005] from the BSP tree. A
cell is approximated as a union of tetrahedra and a facet as union of trian-
gles. A corresponding adjacency graph for cells is also recovered. Details for
this step are given in Appendix B. The network graph may be a multi-graph
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Figure 8.1: Generalized BSP complexes: the final surface is extracted as a
union of facets in a complex approximated by a triangulation. Left: complex for the
block data set, right: for the joint data set.

with several edges between the same pair of cells: these edges are merged
together so that in the subsequent minimum s-t cut optimization the corre-
sponding oriented facets are coupled. Examples of such approximated cell
complexes are shown in Figure 8.1.

8.1.2 Surface visibility

The visibility term Evis of Chapter 2 is again slightly adapted to sets of
points which are known to belong to clusters of points from an extracted
shape in a fashion similar to the previous chapter. These fitted points are
located near a facet of the complex whose supporting shape corresponds to
their shape cluster as facets of the complex are built from shape clusters
of points. The considered sequence of traversed cells by a line of sight is
thus modified to account for this additional knowledge: the sequence stops
at the facet F ∈ C2 of the complex corresponding to the shape ShP of the
fitted point P and closest along the line of sight to it, provided such a facet
exists. Using the same notations as in Chapter 2 with N[QP ] the potentially
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dotted line).
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In terms of minimum s-t cut optimization and graph weights, just like in the
previous chapter and as illustrated in Figure 8.2, the oriented facets crossed
by the considered line of sight (darker green) get a weight of αvis. The cell
(darker blue) where the camera optical center lies is linked to the source
s with an αvis weight. Finally the cell behind the shape of the fitted point
(darker blue) is linked to the sink t with a weight αvis. These weights for cells
being inside or outside the surface and facets being part of the reconstruction
are accumulated for all the available lines of sight.

8.1.3 Hybrid surface reconstruction

As demonstrated in the previous chapter, a purely shaped-based reconstruc-
tion works well for scenes or for objects that can be easily decomposed or
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Figure 8.3: block data set: ground truth mesh, noisy input point cloud, segmented
point cloud and shape-based reconstruction (colored by shape / uncolored).

approximated in surfaces patches from the set of shapes and when no se-
vere occlusion hinders some parts of the scenes from being sampled by the
point cloud. Since a purely shape-based reconstruction relies on a boundary
representation and labels cells as inside or outside, missing surface patches
required to close the object volume can lead to gross error in the recon-
struction (see Figure 8.4), since the hole filling property of the Delaunay
triangulation used in Chapters 3 and 4 is lost. Most of the geometry of
the object can be captured by computing a hybrid reconstruction combining
shape elements as before with some points of the depth maps to recover a
faithful reconstruction of the whole scene. Similar hybrid meshes have been
very recently proposed in a post-processing step [Lafarge et al., 2009] to
be applied to the output of the dense multi-view stereo pipeline of Chap-
ter 4. Here, the proposed hybrid surface reconstruction has the additional
property to preserve sharp boundaries between neighboring shapes. This is
achieved easily as follows: instead of restricting the optimization domain to
the approximated BSP complex, the whole approximating triangulation is
used, augmented with points that were not fitted to the detected shapes.
This is done without altering the meshing of the shapes, by first computing
the Delaunay triangulation of the points that were not fitted and then re-
fining this triangulation (without modifying the vertices position) using the
multi-domain mesh generator (and recovering approximated BSP complex
cells and facets as above). This way, the optimization domain embeds both
the shapes and the points likely to reside in fine or uncaptured details of
the scene. The energy used in the optimization is modified as follows (the
output surface is now a triangulated mesh whose facets are either unlabeled
or labeled with their supporting shapes):

E(S) = Evis′(S,P ′, v) + Evis(S,P\P ′, v) + λhybrid Ehybrid(S) ,

where λhybrid is a positive weighting constant.
The term Evis′(S,P ′, v) penalizes visibility inconsistencies w.r.t. the fitted

points and is the same term as previously but on the triangulated domain
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instead: all triangular facets crossed by a line-of-sight are penalized and
the sequence of traversed tetrahedra stops at the facet corresponding to
the shape cluster of the considered point. The term Evis(S,P\P ′, v) refers
to points that were not fitted to shapes and is exactly the same as the
visibility term of Chapter 4 over Delaunay triangulations. Finally, the term
Ehybrid(S) penalizes only triangular facets that do not belong to facets of
the BSP complex (i.e. , facets not belonging to recovered shapes) with the
discrete quality cost of Chapter 3. As shown in Figure 8.4, adjusting the
weight λhybrid allows switching from a purely shape-based reconstruction to
a hybrid reconstruction with finer details (apart from Figure 8.4, all the
presented hybrid reconstruction results use the same value of λhybrid).

Note that a similar approach might also be used in the purely piecewise-
planar case to extend the approach of the previous chapter to better handle
missing data which might occur in the case of serious occlusions: refine a
Delaunay triangulations initially including the point not fitted and the fitted
points projected to their respective planes so that the triangulation conforms
to the facets of the polyhedral complex by adding Steiner points. Algorithms
and implementation for this problem actually exists [Cohen-Steiner et al.,
2002, Si and Gaertner, 2005, Si, 2007]. The drawback is however the same
as here: the conciseness of the reconstructions of the previous chapter would
be lost and a post-processing step that simplifies the mesh would be required.

Figure 8.4: block data set. First row: shape extraction result with one of the
detected shape purposely removed and shape-based reconstruction result. Second
row: hybrid reconstruction result with a high λqual and hybrid reconstruction result
with a low λqual.
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8.2 Experimental results

Note that the results presented here use the variant of the extraction algo-
rithm of Chapter 6 that only searches for shapes inside a cell and splits only
that cell. The running time of the prototype implementation is more im-
portant than in the previous chapter due to the increased number of shape
classes and the different cell complex construction: from 5m to about 1h for
the extraction of shapes (the implementation can be improved and conser-
vative settings were used for the random sampling optimization) and from
1m to 15m for the surface reconstruction.

Noisy point clouds (synthetic) Figures 8.3, 8.5 and 8.6 evaluate our
shape-based segmentation and reconstruction pipeline on synthetic data. As
in the previous chapters, the input point cloud was generated from the ver-
tices of a mesh of the object. The associated visibility information was deter-
mined with ray-casting and occlusion computation using 64 virtual cameras
around the object and some amount of isotropic Gaussian noise was added to
the locations of the points. In these synthetic experiments, our purely shape-
based reconstruction works very well and outputs a faithful representation of
the original object. Note how the back of the shape-based reconstruction of
the fandisk data set, which deviates slightly from cylinder is approximated
with several cylindric patches. In Figures 8.7, 8.9 and 8.8, our reconstruc-
tion results on these data sets are compared with the surface reconstruction
algorithm of Chapter 4 and Poisson surface reconstruction [Kazhdan et al.,
2006]. The usual observations on these methods again apply here, [Kazhdan
et al., 2006] smooth out sharp features and depends on consistent normal
estimation (there is a small bump in the reconstruction of the joint data
set due to an area with mis-oriented normals). The surface reconstruction
algorithm from Chapter 4 is interpolatory and outputs noisy surfaces when
applied to noisy inputs.

Figure 8.5: joint data set: ground truth mesh, noisy input point cloud, segmented
point cloud and shape-based reconstruction (colored by shape / uncolored).
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Figure 8.6: fandisk data set: ground truth mesh, noisy input point cloud, seg-
mented point cloud and shape-based reconstruction (colored by shape / uncolored).
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Input point cloud
#Points 49K 102K 44K 570K 888K 319K 718K
σnoise 0.07 0.0025 0.01
ℓmax 38 1.12 5.25

Segmentation
#Extracted shapes 12 12 32 40 14 63 139
#Clustered points 46K 38K 77K 477K 440K 211K 364K

Table 8.1: Detailed input and results: data for the results on the synthetic and
real data sets. For the synthetic data sets, σnoise is the standard deviation of the
added isotropic Gaussian noise and ℓmax is the length along its maximum dimension
of the bounding box of the point cloud.

carter (range data) Figure 8.10 shows the result of our segmentation
and reconstruction on a set of range scans of a mechanical part. While the
structures making up the carter have been identified and reconstructed, due
to the search and split strategy used in this chapter and the simplistic shape
selection criterion, the inner and outer shell of the carter are jagged at the
junction between different shapes.

castle-P30 (multi-view stereo) Our result is shown in Figure 8.11, and
as expected, is a simplified model of the scene. The result is different from the
previous chapter in terms of geometry, because a different distance threshold
for fitting shapes was used. The combinatorial complexity of the resulting
mesh is also much higher than for the lightweight result of the previous
chapter.

fountain-P11 (multi-view stereo) The fountain-P11 scene of Figure 8.12
combines easily identifiable shapes with very fine details making it suitable
to challenge our hybrid surface reconstruction. The result of Chapter 4 in
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Figure 8.7: block data set: comparison with the general purpose reconstruction
methods of Chapter 4 and Poisson surface reconstruction. First row: Delaunay,
second row: Poisson, third row: our shape-based reconstruction. First column:
reconstructed surface, second column: reconstructed surface (colored by distance to
ground truth), third column: histogram of distance to ground truth.

Figure 8.12 is noisy but contains most of the details of the fountain. The
hybrid reconstruction automatically extends the wall and ground, identifies
the planar parts of the fountain base and approximates sculptures with small
decorations with smooth second order patches.

Herz-Jesu-P25 (multi-view stereo) The results of Figure 8.13 on the
Herz-Jesu scene are more striking. While the raw reconstruction of Chapter 4
is, as usual, a noisy model, the staircases of the hybrid reconstruction are
perfectly straight (noisy staircases are typical cases of failure of RANSAC
methods), the columns and archways are smooth and the facades and the
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Figure 8.8: joint data set: comparison with the general purpose reconstruction
methods of Chapter 4 and Poisson surface reconstruction. First row: Delaunay,
second row: Poisson, third row: our shape-based reconstruction. First column:
reconstructed surface, second column: reconstructed surface (colored by distance to
ground truth), third column: histogram of distance to ground truth.
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Figure 8.9: fandisk data set: comparison with the general purpose reconstruction
methods of Chapter 4 and Poisson surface reconstruction. First row: Delaunay,
second row: Poisson, third row: our shape-based reconstruction. First column:
reconstructed surface, second column: reconstructed surface (colored by distance to
ground truth), third column: histogram of distance to ground truth.

ground (which produces lots of mismatches) have been replaced by planes.
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Figure 8.10: carter data set: input point cloud, segmented point cloud, shape-
based reconstruction (colored by shape / uncolored).

Figure 8.11: castle-P30 data set. First row: three of the 30 images. Second row:
point cloud from depth maps (top and side view). Third row: segmented point cloud
and shape-based reconstruction (colored by shape). Fourth row: additional views of
the shape-based reconstruction.
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Figure 8.12: fountain-P11 data set. First row: three of the 11 images. Second
row: point cloud from depth maps (front and side view. Third row: segmented
point cloud, hybrid reconstruction (colored by shape / uncolored from front and side
view). Fourth row: close-ups on the hybrid reconstruction, from left to right: wall
base and ground, basin side, decorations, basin interior. Fifth row: (unsmoothed)
initial mesh of the dense multi-view stereo pipeline of Chapter 4.
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Figure 8.13: Herz-Jesu-P25 data set. First row: three of the 25 images. Second
row: point cloud from depth maps (front and side view). Third row: segmented
point cloud and hybrid reconstruction colored by shape. Fourth row: hybrid recon-
struction. Fifth row: close-ups on the hybrid reconstruction, from left to right:
stairs, column, facade and side wall, archway, window, facade and ground. Sixth
row: (unsmoothed) initial mesh of the dense multi-view stereo pipeline of Chapter 4.



Conclusion

Summary

This thesis deals with surface reconstruction from point clouds acquired ei-
ther with range-scanning devices or with simple image-based matching tech-
niques for multi-view stereo.

A surface fitting framework has been proposed: the surface to reconstruct
is sought as a surface that satisfies most visibility constraints coming from
the points line-of-sights. The formulated optimization problem is solved effi-
ciently and globally using minimum s-t cut. Compared to previous cut-based
approaches, the surface fitting does not necessarily use a regular subdivision
of the space to approximate integrals. The problem to be solved is instead
purely discrete. Great flexibility comes from the use of a purely point-driven
optimization domain, which allows the method to be applied to large out-
door scenes and also to handle closed as well as open scenes. Another major
difference is the explicit avoidance of the “shrinking bias” that often plagues
graph cuts approaches for minimal surfaces. The proposed framework is also
versatile and extensible.

A first application is presented on the Delaunay triangulation of the in-
put points to reconstruct a watertight triangular mesh from range images.
Contrasting with other approaches, our method is simpler, being based on
acquisition information. The original visibility term is relaxed to accom-
modate for noise in dense albeit noisy range scans and a discrete surface
quality term is added. The robustness of the method is demonstrated on
several examples: it is able to cope with severe undersampling, noisy data
and outstanding amounts of outliers, and is applicable to large-scale outdoor
scenes. While such conjunction of data alterations are rare for range scanner
laboratory data, they are much more commonplace for outdoor range data
acquisitions which justifies our approach and makes it a versatile tool for
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surface reconstruction. In spite of a currently limited implementation, great
computational scalability is achieved with respect to the size of the input
point cloud both in running times and in memory use.

A second application of the surface fitting framework is found in multi-
view stereo reconstruction of large-scale cluttered scenes taken under un-
controlled imaging conditions, a scenario where traditional multi-view stereo
methods are either not applicable or have completeness and accuracy issues
in part due to a lack of a correct treatment of visibility issues. From a quasi-
dense point generated from the images, an initial surface is reconstructed by
following the method used for reconstruction from range data: this surface
is both complete and close to the ground truth and serves as a coarse initial
estimate of the scene or object of interest. Its accuracy is then improved by
a carefully designed and also scalable variational refinement. The complete
multi-view stereo pipeline is demonstrated on various large-scale scenes. It
outputs reconstructions that are visually and quantitatively more accurate
and complete than state-of-the-art techniques.

Next, the problem of reconstructing compact models from point clouds or
more generally surface reconstruction with shape priors has been considered.
Our approach encompasses clustering, multiple structures detection in noisy
point clouds with outliers and shape-based surface reconstruction. Several
improvements to the random sampling scheme are proposed for dense and
quasi-dense point clouds: the acquisition process is again relied upon to
filter out outliers and the local density of the point cloud is exploited in
the sampling and error measure. These modifications allow in practice the
recovery of multiple structures in point clouds. The clustering of the input
point cloud in different shapes (from predefined classes of shapes) is used in a
subsequent reconstruction step that again exploits a variant of the visibility-
based surface fitting framework.

When the set of extracted shapes is restricted to planes only, our final
surface reconstruction is based on a polyhedral complex induced by the recov-
ered planes and the resulting surfaces are extremely lightweight segmented
mesh with polygonal facets that we call a “concise reconstruction”.

This conciseness is then traded for the recovery of more complex shapes,
enabling piecewise-primitive reconstructions. The reconstruction method is
finally extended to handle challenging point clouds of scenes that combines
both fine details and easily identifiable shapes.

In both cases, encouraging results on synthetic and real-world data are
shown and compared with reconstructions of general-purpose methods.

Limitations and perspectives

Despite the above achievements, the various approaches have provisions for
future work.
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As for our visibility-based surface fitting on point-driven cell complexes,
a way to quantify the sampling requirements w.r.t. the particular chosen
cell complex would help to make the reconstruction even more robust: the
method is known to produce incorrect results in poorly sampled areas where
outliers outweight inliers. Nevertheless, we believe that using line-of-sight or
more generally exploiting as much knowledge as possible from the acquisition
process, a recurring idea in this thesis, would make many graphics or vision
related problem better posed.

The surface reconstruction algorithm from range data is interpolatory,
which is actually one of its main limitations. A possible remedy would be
to account for the noise model in the spatial subdivision, or perhaps more
realistically, to split the visibility-based point filtering and surface recon-
struction into two distinct steps. Another limitation is the scalability to
very large data sets that are now common in range scanning [Levoy et al.,
2000, Banno et al., 2008]. As noted in Chapter 3, previous reconstruction
algorithms have been extended to out-of-core or streaming versions in order
to handle massive data sets with limited memory [Fiorin et al., 2007, Allègre
et al., 2007, Bolitho et al., 2007]. A first step in this direction would be the
design of a selective visibility-based filtering of the input point cloud as in
[Allègre et al., 2006] to eliminate redundant sample points in overly dense
areas before applying the final reconstruction.

The multi-view stereo pipeline is clearly a first step towards high-resolution
models that could compete with laser scans, but the road to them might not
be that long. The availability of very high-resolution consumer-grade cam-
eras will raise new issues like the problem of splitting the reconstruction
problem into several smaller, more tractable ones [Zaharescu et al., 2008]. A
growing source of data sets gaining interest from computer vision researchers
is the community data available on websites such as Flickr or Google Im-
ages. This kind of data poses new challenges on scalability and robustness
to dramatic appearance variability that some researchers have already tried
to address in [Snavely et al., 2008, Goesele et al., 2007]. Another source
of large image-based data sets for multiple view reconstruction comes from
ground-based videos of cities acquired for services such as Google Street
View. Impressive results have already been achieved in this area with the
real-time reconstruction of urban scenes (processing a total of more than
one million images) summarized in [Pollefeys et al., 2008]. The use of an
cross-correlation score throughout the pipeline assumes the surface material
is always close to Lambertian, an hypothesis not always verified especially
in the new challenging data sets just mentioned. Extending the variational
refinement to simultaneous estimation shape and radiance [Jin et al., 2003,
2005, 2008, Delaunoy et al., 2008] may increase robustness and also allow
advanced appearance-based applications.

Several methods have been proposed to address the very challenging 4D
stereo problem (multi-view stereo in time): space and motion carving [Vedula
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et al., 2000], iterative reconstruction [Starck and Hilton, 2007], scene flow
estimation [Vedula et al., 2005], variational methods [Pons et al., 2007a,
Huguet and Devernay, 2007, Courchay et al., 2009], dynamic surface elements
[Carceroni and Kutulakos, 2002], mesh-based models with fixed topology for
tracking [Furukawa and Ponce, 2008, 2009]. In contrast with these methods,
a variant of our surface fitting framework to sequences of points clouds [Aganj
et al., 2009] would enable spatio-temporal reconstructions to be obtained at
an acceptable computational cost without resorting to local optimization and
relying on silhouettes or imposed models.

The surface reconstruction with shape priors is only a first attempt to
solve a seemingly new problem. Preliminary results are encouraging but
various improvements are possible and expected. The issue of automatic
scale selection in the shape segmentation step could be resolved by adapt-
ing existing techniques [Fan and Pylvänäinen, 2008]. The error function in
the random sampling scheme basically uses a simple weighted counting argu-
ment; also measuring the spread of points over the hypothesized shape would
help to deal with highly non-uniform point clouds. The algorithm to extract
multiple shapes is greedy: point fitted to a shape are never considered again.
Although the method was found to behave robustly in the experiments, this
step may benefit from a more global approach to clustering like [Toldo and
Fusiello, 2008]. To allow our simplified modeling technique to better capture
more general scenes, the shape detection should be extended to other classes
of shapes: this is feasible but would gain from a better shape class selection
criterion inspired by the minimum description length and minimum message
length [Wallace and Boulton, 1968, Rissanen, 1978] concepts. Another lim-
itation comes from the shape estimation: since least-squares fitting of the
Euclidean distances is used, the underlying noise model is assumed to be
isotropic Gaussian which as noted in Chapter 1 is far from reality especially
in point clouds from passive stereo.

An important assumption of the shape extraction and reconstruction, not
always fulfilled in practice, is the uniformity and density of the input point
cloud: the concise and purely shape-based surface reconstruction step are in
particular limited in robustness w.r.t. severe occlusions that prevent correct
shape recovery. A pre-processing should detect and embed simplified shapes
boundaries in the complex possibly using either the points cluster or the
input images. Additionally, replacing the labeling of cells by a selection of
facets of the complex would make the whole approach more practical without
sacrificing the conciseness of the reconstruction in the piecewise-planar case.
Our hybrid reconstructions are partly interpolatory and would require a final
guided photometric refinement to be applied as a lightweight post-processing
to locally improve fine details. Applying the shape-based pipeline to more
data sets especially range scan data is also expected.

Finally, we plan to explore the generalization of our simplified model-
ing approach to possibly other problems: shape-based remeshing of noisy
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polygon soups may be a first application.
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Résumé détaillé de la thèse

Cette thèse étudie le problème de la reconstruction de surface à partir de nu-
ages de points ou d’images multiples. Ce problème apparaît à la fois dans le
domaine de l’imagerie numérique et de la vision par ordinateur et a toujours
été l’objet d’une recherche active. En effet, la reconstruction automatique de
modèles de scènes ou d’objets trouve de nombreuses applications dans divers
domaines tels que la conception assistée par ordinateur, l’ingénierie à rebours
ou le diagnostic, la thérapie et la chirurgie assistés par ordinateur. De tels
modèles sont utiles en géologie et topographie pour la simulation numérique
mais aussi en histoire et en art pour l’archivage digital de l’héritage culturel.
Finalement l’industrie du divertissement est un client de choix pour ce type
de techniques très demandées pour la conception de jeux video et de films
réalistes.

Acquisition de nuages de points

Les nuages de points utilisés dans cette thèse sont issus de deux modalités
d’acquisition bien différentes. On considère d’abord des nuages acquis par
scanner laser 3D. Ce type de nuages est très dense, contient peu de mesures
aberrantes et les mesures ont un niveau de bruit faible mais de l’ordre du
pas d’échantillonnage. L’autre méthode d’acquisition considérée procède par
stéréovision multivues passive. Cette méthode produit des nuages soit par
appariement de points d’intérêt dans une paire d’images puis triangulation
3D, soit par balayage de plans pour produire des cartes de profondeurs non
denses. Les nuages générés sont moins denses, beaucoup plus bruités et
contiennent une bonne proportion de mesures aberrantes due à des erreurs
d’appariement.

Dans les deux cas, l’espace compris entre le point 3D généré et la source
ou le détecteur doit être vide si le point n’est pas une mesure aberrante: la
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surface du solide ne peut pas intersecter le rayon ayant servi à l’acquisition
du point correspondant.

Reconstruction de surface

Le problème de la reconstruction de surface à partir d’un nuage de points
censé échantillonner un solide a suscité beaucoup de recherche et de nom-
breuses méthodes différentes existent. Malheureusement, ces méthodes sont
le plus souvent applicables uniquement à des nuages de points d’excellente
qualité comme ceux acquis à l’aide d’un scanner laser.

Tous les algorithmes de reconstruction de surface présentés dans cette
thèse suivent la même approche:

1: Générer un ensemble de points P muni d’ensembles de visibilité v (pour
chaque point, les sources ou détecteurs utilisés pour son acquisition),

2: Calculer un complexe cellulaire à partir de ces points,
3: Calculer un étiquetage binaire optimal l⋆ = arg minl E(l) des cellules du

complexe de manière à minimiser une énergie traduisant des contraintes
de visibilité (éventuellement accompagnée de termes complémentaires),

4: Extraire une pseudo-surface orientée S à partir de l’étiquetage in-
térieur/extérieur optimal l⋆.

L’hypothèse sous-jacente est que la surface recherchée peut être approchée
par une union de facettes du complexe et que les points du nuages échantil-
lonnent suffisamment densément les facettes de ce complexe.

Le système de contraintes de visibilité est le suivant. Le rayon depuis une
source ou un détecteur vers un point acquis ne doit pas traverser la surface
reconstruite. De plus l’espace situé derrière le point doit être à l’intérieur du
solide et celui où se trouve la source ou le détecteur doit être à l’extérieur.
On note CQ→P

1 , . . . , CQ→P
N[QP ]

la suite de N[QP ] cellules traversées depuis la

source ou le détecteur Q vers le point P considéré. On note CQ→P
N[QP ]+1 la

cellule situé derrière la facette la plus proche du point P dans cette direc-
tion. Les contraintes de visibilité se traduisent en une énergie Evis(S,P, v)
à minimiser :

Evis(S,P, v) = Evis(l,P, v) =
∑

P∈P

∑

Q∈vP

Dout

(

l
CQ→P

1

)

+

N[QP ]−1
∑

i=1

Valign

(

l
CQ→P

i
, l

CQ→P
i+1

)

+Din

(

l
CQ→P

N[QP ]+1

)

,
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Valign étant un terme d’interaction binaire défini pour deux cellules adjacentes
du complexe :

Valign

(

lCi , lCj

)

= αvis ✶
[

lCi = 0 ∧ lCj = 1
]

,

Dout (lC) = αvis ✶ [ lC = 1 ] ,

Din (lC) = αvis ✶ [ lC = 0 ] ,

où αvis reflète la confiance attribuée au point considéré.
Cette énergie peut être minimisée globalement en calculant une coupe

minimale s-t sur un graphe dérivé du graphe d’adjacence des cellules du
complexe. Un étiquetage intérieur/extérieur optimal des cellules du com-
plexe peut donc être obtenu efficacement ainsi que la pseudo-surface orientée
associée.

Reconstruction de surface à partir d’acquisitions laser

Notre approche est appliquée une première fois pour la reconstruction de
surface à partir d’acquisitions laser en choisissant comme complexe cellulaire
la triangulation de Delaunay des points du nuage. L’énergie minimisée est
la suivante :

E(S) = Esoft−vis(S,P, v) + λqual Equal(S) .

Le terme Esoft−vis(S,P, v) est une variante relaxée des contraintes de vis-
ibilité. C’est une somme de pénalités pour la mauvaise orientation et le
mauvais alignement de la surface S par rapport aux rayons issus des points
vers les sources d’acquisition. Le terme Equal(S) pénalise les triangles de S
n’appartenant vraisemblablement pas à la surface recherchée. λqual est une
constant positive d’ajustement.

Plusieurs expériences sont proposées afin d’évaluer la robustesse de notre
algorithme au sous-échantillonnage, au bruit et aux mesures aberrantes en
comparaison avec d’autres algorithmes existants. Enfin, une comparaison
avec l’état de l’art [Kazhdan et al., 2006] est présentée sur un nuage de points
de grande échelle acquis en extérieur depuis un véhicule. Notre algorithme
passe bien à l’échelle en temps de calcul et en mémoire et se montre très
robuste aux différentes dégradations des nuages en entrée.

Reconstruction dense multivues

de scènes de grande échelle

Malgré des résultats de plus en plus précis [Seitz et al., 2006], la plupart
des approches actuelles pour la photo-modélisation précise sont inadaptées
à la reconstruction de scènes extérieures de grande échelle, soit parce qu’une
enveloppe visuelle est nécessaire, soit parce que l’outil de minimisation repose
sur une subdivision fine de l’espace ambiant.
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Une variante de la méthode de reconstruction à partir de données laser est
utilisée pour initialiser un raffinement photométrique variationnel. Puisque
l’initialisation est déjà proche de la surface recherchée, la descente de gradient
correspondante ne devrait pas tomber pas dans un minimum local.

L’énergie servant à étiqueter les tétrahèdres de la triangulation de De-
launay est la suivante :

E(S) = Evis(S,P, v) + λqual Equal(S) ,

où P est le nuage de points généré pas stéréovision multivues passive et v
les ensembles de visibilité associés. La surface obtenue par cette première
minimisation est notée S0.

L’énergie minimisée par le raffinement variationnel est :

E(S) = Eerror(S) + λthin−plate Ethin−plate(S) ,

où Eerror mesure, comme dans [Pons et al., 2007a], l’erreur de reprojection
de la surface S (liée à la photo-consistance de la surface dans les images) et
Ethin−plate pénalise les zones de forte courbure. La surface S suit alors la
descente de gradient suivante :

S(0) = S0 dS
dt

= −∇E(S) .

La surface S est représentée par un maillage triangulé pour faciliter le calcul
du terme de photo-consistance et permettre une reconstruction précise tout
en étant capable de passer à l’échelle. La descente de gradient employée est
cohérente avec la représentation discrétisée de la surface.

Enfin, le banc d’essai de [Strecha et al., 2008] est utilisé pour démontrer
la supériorité de cette chaîne de photo-modélisation par rapport aux autres
méthodes pouvant reconstruire des scènes extérieures de grande échelle. Des
résultats qualitatifs sur d’autres jeux de données sont également présentés.

Reconstruction de modèles compacts

Nous dressons d’abord un bilan des différentes approches applicables pour la
reconstruction de modèles compacts à partir d’images ou de données laser.
Que ce soit en vision par ordinateur ou en imagerie numérique, il n’existe
pas de méthode satisfaisante permettant de reconstruire directement de tels
modèles.

Nous proposons d’appliquer notre approche pour la reconstruction de
surface sur un complexe cellulaire particulier. Des primitives issues d’un
ensemble restreint de classes de primitives sont détectées de manière hiérar-
chique dans le nuage de points. Le complexe cellulaire induit par cette
partition binaire de l’espace est utilisé comme domaine d’optimisation pour
extraire une surface « primitive par morceaux ».
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Extraction de primitives

Partant du constat que les nombreuses méthodes existantes pour l’extraction
de primitives sont inadaptées soit à la détection de structures multiples, soit
à la présence de bruit et de points aberrants, plusieurs améliorations au
schéma classique RANSAC [Fischler and Bolles, 1981] sont proposées pour
des nuages denses ou quasi-denses: le processus d’acquisition est pris en
compte encore une fois et la densité locale de points non aberrants est utilisée
dans la mesure d’erreur et l’échantillonnage des primitives. Ces modifications
permettent en pratique la détection de plusieurs structures dans les nuages
de points considérés dans cette thèse. Cette détection robuste de primitives
est intégrée dans la décomposition hiérarchique de l’espace nécessaire pour
appliquer notre approche pour la reconstruction de surface.

Reconstruction concise de surface

planaire par morceaux

Lorsque que l’ensemble des classes de primitives est restreint aux plans
seulement, le complexe cellulaire est un complexe polyhédral. Ce complexe
peut être construit en utilisant une simple variante d’un algorithme clas-
sique [Edelsbrunner, 1987] pour la construction incrémentale d’arrangements
de plans. Les reconstructions obtenues sur des nuages synthétiques et réels
sont bien meilleures que celles obtenues par des méthodes génériques et les
maillages polygonaux segmentés résultants ont une complexité très faible
justifiant l’appellation de « reconstruction concise ».

Reconstruction de surface primitive par morceaux

Pour la détection et la reconstruction de surface à l’aide de primitives plus
élaborées (plans, cylindres, sphères et cônes), la construction exacte du com-
plexe cellulaire induit par les primitives détectées dans le nuage de point est
abandonnée au profit d’un calcul approché. À cet effet, le mailleur multi-
domaines de [Pons et al., 2007b] est utilisé pour obtenir une triangulation
labélisée de l’espace. À chaque cellule correspond une union de tétrahèdres
et à chaque facette, une union de triangles. La reconstruction de modèles
compacts est illustrées sur plusieurs résultats synthétiques et réels. Même si
le modèle produit par l’algorithme n’a plus la propriété de faible complexité
des reconstructions concises, il est dorénavant possible de produire des mod-
èles hybrides interpolant des points du nuage initial n’appartenant pas à des
primitives détectées.

Enfin, notons qu’une partie du contenu de cette thèse provient d’articles
publiés, à paraître ou en préparation:
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• le système de contraintes de visibilité a été initialement introduit pour
des triangulations de Delaunay dans l’article Efficient Multi-view re-
construction of large-scale scenes using interest points, Delaunay trian-
gulation and graph cuts [Labatut et al., 2007] avec Jean-Philippe Pons
et Renaud Keriven dans les actes de l’IEEE International Conference
on Computer Vision en 2007;

• l’algorithme de reconstruction de surface à partir de données laser est
décrit dans l’article de journal Robust and efficient surface reconstruc-
tion from range data [Labatut et al., 2009a] à paraître dans Computer
Graphics Forum avec Jean-Philippe Pons et Renaud Keriven;

• la chaîne complète de photo-modélisation est un travail commun avec
Jean-Philippe Pons, Renaud Keriven et Vu Hoang Hiep et apparaît
dans Towards high-resolution large-scale multi-view stereo [Vu et al.,
2009] avec Vu Hoang Hiep, Renaud Keriven et Jean-Philippe Pons
dans les actes de l’IEEE Conference on Computer Vision and Pattern
Recognition, 2009. Un article de journal intitulé Global and visibility-
consistent dense multi-view stereo for large-scale scenes avec Jean-
Philippe Pons, Renaud Keriven et Vu Hoang Hiep, décrivant la chaîne
de manière plus détaillée est en préparation;

• la méthode d’extraction hiérarchique de primitives et de reconstruc-
tion de surface est tirée de l’article Hierarchical shape-based surface
reconstruction for dense multi-view stereo [Labatut et al., 2009b] avec
Jean-Philippe Pons et Renaud Keriven à paraître dans les actes du 2009
IEEE International Workshop on 3-D Digital Imaging and Modeling.



APPENDIX A

Parameterization and fitting of shapes

This chapter presents the various parametrizations, initializa-
tions, distances formulae and optimization problemsa for fitting
shapes to sets of points used in the shape extraction algorithm
of Chapter 6 and in the results presented in Chapters 7 and 8.
We mostly follow [Shakarji, 1998] for the shapes parametrizations
and their respective fitting optimizations.

aWhile the plane fitting case is pretty well-known and is linked to principal
component analysis, it is nevertheless included for completeness.
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A.1 Least-squares fitting

“Fitting” consists in adjusting the parameters β = (β1, . . . βn)T ∈ R
n of a

function f(.,β) : R
m → R to best approximate a set ofN data measurements

(xi, yi)i∈J1,NK. A data measurement is a pair (x, y) where x ∈ R
m is an

independent variable and y ∈ R a dependent variable found by observation.
The least squares method, which is the simplest and most commonly used
form of fitting, finds parameters β⋆ (and a corresponding function) that
minimizes the sum J of the squared N residuals ri(β) = yi − f(xi,β):

S(β) =
N
∑

i=1

ri(β)2 =
N
∑

i=1

(yi − f(xi,β))2

Or more compactly, with R(β) =
(

ri(β)
)T

, Y =
(

yi

)T
and F (β) =

(

f(xi,β)
)T

:

S(β) = ‖R(β)‖2 = ‖Y − F (β)‖2

Assuming the measurements yi have errors independently random and
distributed as a normal distribution N (0, σ2) around the true model, least-
squares fitting is a maximum likelihood estimator since the likelihood L(Y |β)
function is:

L(Y |β) =

N
∏

i=1

P (yi |β) ∝ exp

(

−
∑N

i=1 ri(β)2

σ2

)

Weighted least-squares fitting is a variant that weights each residuals ri
with a corresponding coefficient wi > 0. For the particular problem of fitting
shapes to a set of points, the measurements are (xi, 0) (where xi ∈ R

3 are
the data points), the function f is simply the (orthogonal) distance of a point
to a shape with parameters β, and finally, the weights are problem-specific
confidences in the data points.

Linear least-squares

When f depends linearly on its parameters, one has f(x,β) =
∑n

j=1 βj φj(x)
(the φj being functions from R

m to R), or equivalently F (β) = Xβ withX =
(

φj(xi)
)

∈ MN,n(R). The optimization problem then reduces to finding
the vector β∗ = arg min

β

‖Y −Xβ‖2 which leads to the so-called normal

equations XTXβ⋆ = XTY . These equations are typically solved using a
Cholesky decomposition of XTX, a QR or an SVD decomposition of X by
increasing order of stability w.r.t. a potentially ill-conditioned XTX.
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Non-linear least-squares

More generally, f may non-linearly depend on its parameters β. This is the
case of interest here where a shape is fitted by minimizing the orthogonal
distance of a set of points. Only first-order surfaces (i.e. , planes) least-
squares fitting reduces to a simple problem (a 3 × 3 eigenvalue problem).
Second-order surface fitting we are also interested in require the non-linear
least-squares problem to be solved iteratively with an appropriate initializa-
tion:

{

β0

βk+1 = βk + ∆β

To find the increment ∆β, a simple gradient descent can be used: ∆β =
γJTR (noting J the Jacobian matrix of F and γ a small enough positive
constant). While this approach is guaranteed to converge to a local min-
imum, it is usually very slow. Using a Taylor expansion of the residuals,
S(βk+1) = ‖Y − F (βk + ∆β)‖2 ≈ ‖Y − F (βk)− J∆β‖2 is now a linear
least-squares problem in ∆β leading to the Gauss-Newton method based on
the corresponding normal equations: JTJ∆β = JTR. This method is faster
with convergence approaching a quadratic rate, however it is not guaranteed
to converge and is even known to fail when starting far off the final min-
imum. The well-known Levenberg-Marquardt algorithm [Levenberg, 1944,
Marquardt, 1963] “interpolates” between these two methods (the components
of the gradient are additionally scaled to improve the convergence):

(

JTJ + λDiag(JTJ)
)

∆β = JTR

where λ ≥ 0 is a “damping” parameter. It is one of the most popular method
for least-squares curve and surface fitting. While Levenberg-Marquardt is
slower than Gauss-Newton, in practice, it is more robust and able to reach
a solution even when started far off from the final minimum.

The rest of this chapter provides, for each considered class of shape, its
parametrization β, the associated distance formula, the initialization from
a minimal set of points, the objective function S(β) and the coefficients
of the Jacobian matrix J(β). A modification to the general procedure of
the Levenberg-Marquardt algorithm is the normalization of the parameters
of each shape applied at the beginning of each iteration before computing
the distances and Jacobians of their respective least-squares problems. This
normalization does not affect the optimization process. The actual imple-
mentation of the method described in Chapter 6 relies on the MINPACK
[Moré et al., 1980, 1984, min, 1999] library of routines. MINPACK provides
highly portable and robust implementations of several algorithms for solving
non linear systems and minimization problems. In particular the lmdif and
lmder routines are implementations of the Levenberg-Marquardt algorithm
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with automatic choice of damping parameter. More specifically the C/C++
port of MINPACK of [Devernay, 2009] was used.

A.2 Plane

Parametrization

P

P0
Pl

O

n

d

Figure A.1: A plane Pl ~n,d, the geometric meaning of its parameters and a point P .

A plane Pl −→n ,d is parametrized by −→n and d where (see Figure A.1):
• −→n = (nx, ny, nz) ∈ R

3 is a vector normal to the plane,
• d ∈ R is the signed distance to the plane of the origin O, or equivalently
−−−→OP .−→n for P ∈ Pl −→n ,d.

Normalization

1. −→n ←− [ −→n / ‖−→n ‖ (unit normal).

Initialization

A plane Pl −→n ,d is constructed from three non-collinear points P1, P2 and P3

as follows:
1. −→n =

−−−→
P1P2 ×

−−−→
P1P3 /

∥

∥

∥

−−−→
P1P2 ×

−−−→
P1P3

∥

∥

∥

2. d = −−−→OP1.
−→n

Point distance

The signed Euclidean distance of a point P to a plane Pl −→n ,d is:

d(P, Pl ) = −→n .−−→OP + d = −→n .−−→P0P

for any point P0 ∈ Pl (after the above normalization). The gradient of this
distance w.r.t. P is:
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∇d(P, Pl ) = −→n

Least-squares fitting to a set of points

Least-squares fitting of a plane Pl ⋆ to a finite set ofN points P = {P1, . . . , PN}
with respective weights {w1, . . . , wN} involves finding Pl ⋆ = arg min

−→n ,d

S(−→n , d)

with:

S(−→n , d) =

N
∑

i=1

wi d
(

Pi, Pl −→n ,d

)2

Introducing a Lagrangian multiplier λ ∈ R and modifying the objective
function:

S′(−→n , d, λ) = S(−→n , d)− λ
(

‖−→n ‖2 − 1
)

Looking for stationary points:

∂S′(−→n , d, λ)

∂nx
= 2

N
∑

i=1

wi Pix d(Pi, Pl )− 2λnx = 0

∂S′(−→n , d, λ)

∂ny
= 2

N
∑

i=1

wi Piy d(Pi, Pl )− 2λny = 0

∂S′(−→n , d, λ)

∂nz
= 2

N
∑

i=1

wi Piz d(Pi, Pl )− 2λnz = 0

∂S′(−→n , d, λ)

∂d
= 2

N
∑

i=1

wi d(Pi, Pl ) = 0

∂S′(−→n , d, λ)

∂λ
= 1− ‖−→n ‖2 = 0

leads to introducing the weighted centroid of the points:

P = O +

∑N
i=1wi

−−→
OPi

∑N
i=1wi

which belongs to the plane since −→n .
−−→
OP + d = 0 according to the equation

from the fourth vanishing partial derivative.
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Rewriting the objective function:

N
∑

i=1

wi d(Pi, Pl )2 =
N
∑

i=1

wi

(

−→n .
−−→
OP +−→n .

−−→
PPi + d

)2

= −→n . (cov(P)−→n )

where cov(P) =
∑N

i=1wi

−−→
PP ⊗

−−→
PP is the weighted covariance matrix of the

set of weighted points P.
The least-squares problem reduces to a simple eigenproblem that can

be solved using Jacobi iterations for instance: the normal −→n is given by
the eigenvector of cov(P) associated with the smallest eigenvalue and the
distance d follows from this normal and the weighted centroid.

A.3 Sphere

Parametrization

P

C

Sp

r

Figure A.2: A sphere Sp
C,r

, the geometric meaning of its parameters and a point
P .

A sphere SpC,r is parametrized by C and r where (see Figure A.2):

• C = (Cx, Cy, Cz) ∈ R
3 is the center of the sphere,

• r ∈ R
+ is the radius of the sphere.

Normalization

None.
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Initialization

A sphere SpC,r is constructed from four non-coplanar points P1, P2, P3 and

P4 as follows (with Pi = (Pix, Piy, Piz) and di =
∥

∥

∥

−−→
OPi

∥

∥

∥ for i ∈ J1, 4K):

1. C =

(

Dx

2Da
,
Dy

2Da
,
Dz

2Da

)

is the circumcenter of the tetrahedron1 whose

vertices are the points P1 P2, P3 and P4 where:

Dx =

∣

∣

∣

∣

∣

∣

∣

∣

d2
1 P1y P1z 1
d2
2 P2y P2z 1
d2
3 P3y P3z 1
d2
4 P4y P4z 1

∣

∣

∣

∣

∣

∣

∣

∣

Dy = −

∣

∣

∣

∣

∣

∣

∣

∣

d2
1 P1x P1z 1
d2
2 P2x P2z 1
d2
3 P3x P3z 1
d2
4 P4x P4z 1

∣

∣

∣

∣

∣

∣

∣

∣

Dz =

∣

∣

∣

∣

∣

∣

∣

∣

d2
1 P1x P1y 1
d2
2 P2x P2y 1
d2
3 P3x P3y 1
d2
4 P4x P4y 1

∣

∣

∣

∣

∣

∣

∣

∣

Da =

∣

∣

∣

∣

∣

∣

∣

∣

P1x P1y P1z 1
P2x P2y P2z 1
P3x P3y P3z 1
P4x P4y P4z 1

∣

∣

∣

∣

∣

∣

∣

∣

Dc =

∣

∣

∣

∣

∣

∣

∣

∣

d2
1 P1x P1y P1z

d2
2 P2x P2y P2z

d2
3 P3x P3y P3z

d2
4 P4x P4y P4z

∣

∣

∣

∣

∣

∣

∣

∣

2. r =

√

D2
x +D2

y +D2
z − 4DaDc

2|Da|
is its radius.

Point distance

The signed distance of a point P ∈ R
3 to a sphere SpC,r is:

d(P, Sp) =
∥

∥

∥

−−→
CP
∥

∥

∥
− r

The gradient of this distance w.r.t. P is:

∇d(P, Sp) =
−−→
CP /

∥

∥

∥

−−→
CP
∥

∥

∥

Least-squares fitting to a set of points

Least-squares fitting of a sphere Sp⋆ to a finite set ofN points P = {P1, . . . , PN}
with respective weights {w1, . . . , wN} involves finding Sp⋆ = arg min

C,r
S(C, r)

with:
1A point P = (Px, Py, Pz) belongs to the circumsphere of this tetradron iff

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

d2 Px Py Pz 1
d2
1 P1y P1y P1z 1

d2
2 P2y P2y P2z 1

d2
3 P3y P3y P3z 1

d2
4 P4y P4y P4z 1

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

= 0 where d =
‚

‚

‚

−−→
OP

‚

‚

‚

. Expanding this determinant leads

to the formulae.



164 A. PARAMETERIZATION AND FITTING OF SHAPES

S(−→n , d) =

N
∑

i=1

wi d
(

Pi, SpC,r

)2
=

N
∑

i=1

wi fi(C, r)
2

Coefficients of the Jacobian matrix of F (C, r) =
(

fi(C, r)
)

:

∂fi(C, r)

∂Cx
= −CPix /

∥

∥

∥

−−→
CPi

∥

∥

∥

∂fi(C, r)

∂Cy
= −CPiy /

∥

∥

∥

−−→
CPi

∥

∥

∥

∂fi(C, r)

∂Cz
= −CPiz /

∥

∥

∥

−−→
CPi

∥

∥

∥

∂fi(C, r)

∂r
= −1

A.4 Cylinder

Parametrization

P
Cy

n
r

C

Figure A.3: A cylinder Cy
C,~n,r

, the geometric meaning of its parameters and a point
P .

A cylinder CyC,−→n ,r is parametrized by C, −→n and r where (see Figure A.3):

• C = (Cx, Cy, Cz) ∈ R
3 is a point on the axis of the cylinder,

• −→n = (nx, ny, nz) ∈ R
3 is the axis direction,

• r ∈ R
+ is the cylinder radius.
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Normalization

1. −→n ←− [ −→n / ‖−→n ‖ (unit normal),

2. C ←− [ C −
(−→n .−−→OC

)−→n (closest point to the origin on the axis).

Initialization

A cylinder CyC,−→n ,r is constructed from three non-collinear points P1, P2 and
P3 as follows:

1. the axis direction −→n is chosen as the normal to the plane defined by
the three points:

−→n =
−−−→
P1P2 ×

−−−→
P1P3 /

∥

∥

∥

−−−→
P1P2 ×

−−−→
P1P3

∥

∥

∥

2. the points P1, P2 and P3 are projected on the plane defined by −→n and
P1 giving three points:

p1 = (p1x, p1y, p1z) = (0, 0, 0)

p2 = (p2x, p2y, p2z) = (
−−−→
P1P2 .

−→u , 0, 0)

p3 = (p3x, p3y, p3z) = (
−−−→
P1P3 .

−→u ,−−−→P1P3 .
−→v , 0)

in the orthonormal basis (P1,
−→u x,
−→u y,
−→u z) with:

−→u x =
−−−→
P1P2 /

∥

∥

∥

−−−→
P1P2

∥

∥

∥

−→u y = −→n ×−−−→P1P2 /
∥

∥

∥

−→n ×−−−→P1P2

∥

∥

∥

−→u z = −→n

3. the center C and radius r of the cylinder derive from the center and
radius of the circumcircle of the triangle with vertices p1, p2 and p3.

Noting di =
∥

∥

∥

−−→
P1pi

∥

∥

∥ for i ∈ J1, 3K:

dx =

∣

∣

∣

∣

∣

∣

d2
1 p1y 1
d2
2 p2y 1
d2
3 p3y 1

∣

∣

∣

∣

∣

∣

= p3yd
2
2 dy = −

∣

∣

∣

∣

∣

∣

d2
1 p1x 1
d2
2 p2x 1
d2
3 p3x 1

∣

∣

∣

∣

∣

∣

= d2
2 − d2

3

da =

∣

∣

∣

∣

∣

∣

p1x p1y 1
p2x p2y 1
p3x p3y 1

∣

∣

∣

∣

∣

∣

= p2xp3y dc = −

∣

∣

∣

∣

∣

∣

d2
1 p1x p1y

d2
2 p2x p2y

d2
3 p3x p3y

∣

∣

∣

∣

∣

∣

= 0

C = P1 +
dx

2da

−→u x +
dy

2da

−→u y

r =

√

d2
x + d2

y

2|da|
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Point distance

The signed Euclidean distance of a point P to the cylinder CyC,−→n ,r is:

d(P, Cy) =
∥

∥

∥

−→n ×−−→CP
∥

∥

∥
− r =

∥

∥

∥

−−→
CP −

(−→n .−−→CP
)−→n

∥

∥

∥
− r

(after the above normalization). The gradient of this distance w.r.t. P is:

∇d(P, Cy) =
(−−→
CP −

(−→n .−−→CP
)−→n

)

/
∥

∥

∥

−→n ×−−→CP
∥

∥

∥

Least-squares fitting to a set of points

Least-squares fitting of a cylinder Cy⋆ to a finite set of N points P =
{P1, . . . , PN} with respective weights {w1, . . . , wN} involves finding Cy⋆ =
arg min

C,−→n ,r

S(−→n , r) with:

S(−→n , d) =
N
∑

i=1

wi d
(

Pi, CyC,−→n ,r

)2
=

N
∑

i=1

wi fi(C,
−→n , r)2

Coefficients of the Jacobian matrix of F (C,−→n , r) =
(

fi(C,
−→n , r)

)

:

∂fi(C,
−→n , r)

∂Cx
= −

(

CPix −
(−→n .−−→CPi

)

nx

)

/
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

∂fi(C,
−→n , r)

∂Cy
= −

(

CPiy −
(−→n .−−→CPi

)

ny

)

/
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

∂fi(C,
−→n , r)

∂Cz
= −

(

CPiz −
(−→n .−−→CPi

)

nz

)

/
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

∂fi(C,
−→n , r)

∂nx
= −

(−→n .−−→CPi

) CPix −
(−→n .−−→CPi

)

nx
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

∂fi(C,
−→n , r)

∂ny
= −

(−→n .−−→CPi

) CPiy −
(−→n .−−→CPi

)

ny
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

∂fi(C,
−→n , r)

∂nz
= −

(−→n .−−→CPi

) CPiz −
(−→n .−−→CPi

)

nz
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

∂fi(C,
−→n , r)

∂r
= −1
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A.5 Cone

Parametrization

P

Co

nr

C

θ

Figure A.4: A cone Co~n,d, the geometric meaning of its parameters and a point P .

A cone CoC,−→n ,d,θ is parametrized by C, −→n , d and θ where (see Figure A.3):
• C = (Cx, Cy, Cz) ∈ R

3 is a point on the cone axis (different from the
apex),

• −→n = (nx, ny, nz) ∈ R
3 is the axis direction (−→n pointing towards the

apex),
• d ∈ R

+ is the distance of C to the cone,
• θ ∈ [0, π

2 ] is the apex semi-angle.

Normalization

1. −→n ←− [ −→n / ‖−→n ‖ (unit normal),

2. C ←− [ C −
(−→n .−−→OC

)−→n (closest point to the origin on the axis),

3. θ ←− [ θ [2π],
4. If θ > π, θ ←− [ θ[π] and −→n ←− [ −−→n ,
5. If θ > π

2 , θ ←− [ π − θ,
6. If d < 0, d←− [ −d and −→n ←− [ −−→n .

Initialization

A cone CoC,−→n ,d,θ is constructed from four non-coplanar points P1, P2, P3 and
P4 as follows:



168 A. PARAMETERIZATION AND FITTING OF SHAPES

1. the axis direction −→n is chosen as the normal to the plane defined by
the three points P1, P2 and P3:

−→n =
−−−→
P1P2 ×

−−−→
P1P3 /

∥

∥

∥

−−−→
P1P2 ×

−−−→
P1P3

∥

∥

∥

2. the points P1, P2 and P3 are projected on the plane defined by −→n and
P1 giving three points:

p1 = (p1x, p1y, p1z) = (0, 0, 0)

p2 = (p2x, p2y, p2z) = (
−−−→
P1P2 .

−→u , 0, 0)

p3 = (p3x, p3y, p3z) = (
−−−→
P1P3 .

−→u ,−−−→P1P3 .
−→v , 0)

in the orthonormal basis (P1,
−→u x,
−→u y,
−→u z) with:

−→u x =
−−−→
P1P2 /

∥

∥

∥

−−−→
P1P2

∥

∥

∥

−→u y = −→n ×−−−→P1P2 /
∥

∥

∥

−→n ×−−−→P1P2

∥

∥

∥

−→u z = −→n

3. the point C on the cone axis derives from the center of the circumcircle

of the triangle with vertices p1, p2 and p3. Noting di =
∥

∥

∥

−−→
P1pi

∥

∥

∥ for

i ∈ J1, 3K:

dx =

∣

∣

∣

∣

∣

∣

d2
1 p1y 1
d2
2 p2y 1
d2
3 p3y 1

∣

∣

∣

∣

∣

∣

= p3yd
2
2 dy = −

∣

∣

∣

∣

∣

∣

d2
1 p1x 1
d2
2 p2x 1
d2
3 p3x 1

∣

∣

∣

∣

∣

∣

= d2
2 − d2

3

da =

∣

∣

∣

∣

∣

∣

p1x p1y 1
p2x p2y 1
p3x p3y 1

∣

∣

∣

∣

∣

∣

= p2xp3y dc = −

∣

∣

∣

∣

∣

∣

d2
1 p1x p1y

d2
2 p2x p2y

d2
3 p3x p3y

∣

∣

∣

∣

∣

∣

= 0

C = P1 +
dx

2da

−→u x +
dy

2da

−→u y

r =

√

d2
x + d2

y

2|da|

4. the axis direction −→n is (optionally) corrected: −→n should points towards
the cone apex defined to be on the same side of the P1, P2, P3 plane
as P4 if P4 is inside the cylinder CyC,−→n ,r and on the other side in the
opposite case,
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5. d is the distance of C to the line defined by P4 and the projection of
P4 on the circle:

d0 = −→n .−−→CP4

−→u 0 = −→n ×−−→CP4

r0 = ‖u0‖
P5 = C +−→u 0 + d0

−→n
−→u = ((r0 − r)−→u 0/r0 + d0

−→n ) / ‖(r0 − r)−→u 0/r0 + d0
−→n ‖

d =
∥

∥

∥

−→u ×−−→CP5

∥

∥

∥

6. the apex semi-angle θ is deduced from d and r:

θ = cos−1 d

r

Point distance

The signed Euclidean distance of a point P to the cone CoC,−→n ,d,θ is:

d(P, Co) =
∥

∥

∥

−→n ×−−→CP
∥

∥

∥ cos θ +
(−→n .−−→CP

)

sin θ − d

(after the above normalization). The gradient of this distance w.r.t. P is:

∇d(P, Co) =
(−−→
CP −

(−→n .−−→CP
)−→n

)

/
∥

∥

∥

−→n ×−−→CP
∥

∥

∥ cos θ +−→n sin θ

Least-squares fitting to a set of points

Least-squares fitting of a cone Co⋆ to a finite set ofN points P = {P1, . . . , PN}
with respective weights {w1, . . . , wN} involves finding Co⋆ = arg min

C,−→n ,d,θ

S(C,−→n , d, θ)

with:

S(C,−→n , d, θ) =

N
∑

i=1

wi d
(

Pi, CoC,−→n ,d,θ

)2
=

N
∑

i=1

wi fi(C,
−→n , d, θ)2

Coefficients of the Jacobian matrix of F (C,−→n , d, θ) =
(

fi(C,
−→n , d, θ)

)

:
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∂fi(C,
−→n , d, θ)

∂Cx

= −





CPix −
(−→n .−−→CPi

)

nx
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

cos θ + nx sin θ





∂fi(C,
−→n , d, θ)

∂Cy

= −





CPiy −
(−→n .−−→CPi

)

ny
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

cos θ + ny sin θ





∂fi(C,
−→n , d, θ)

∂Cz

= −





CPiz −
(−→n .−−→CPi

)

nz
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

cos θ + nz sin θ





∂fi(C,
−→n , d, θ)

∂nx

= −





(−→n .−−→CPi

) CPix −
(−→n .−−→CPi

)

nx
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

cos θ

+
((−→n .−−→CPi

)

nx − CPix

)

sin θ





∂fi(C,
−→n , d, θ)

∂ny

= −





(−→n .−−→CPi

) CPiy −
(−→n .−−→CPi

)

ny
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

cos θ

+
((−→n .−−→CPi

)

ny − CPiy

)

sin θ





∂fi(C,
−→n , d, θ)

∂nz

= −





(−→n .−−→CPi

) CPiz −
(−→n .−−→CPi

)

nz
∥

∥

∥

−→n ×−−→CPi

∥

∥

∥

cos θ

+
((−→n .−−→CPi

)

nz − CPiz

)

sin θ





∂fi(C,
−→n , d, θ)
∂d

= −1

∂fi(C,
−→n , d, θ)
∂θ

= −
(∥

∥

∥

−→n ×−−→CPi

∥

∥

∥ sin θ −
(−→n .−−→CPi

)

cos θ
)



APPENDIX B

Cell complexes and geometric queries

This chapter describes in detail the exact or approximate compu-
tation of the various cell complexes used throughout this thesis.
The implementation of the main geometric queries used in our
surface fitting framework, namely point location and traversal
along a segment are also discussed.
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The two geometric queries required by the visibility term presented in
Chapter 2 are first defined.

Definition (Point location query). The point location query Locate(P ) on
a d-complex maps a point P ∈ E

d to a cell C such that P ∩ C 6= ∅ (the cell
C contains P ).

The result of this query is always defined in this thesis since the domain
of our cell complexes is the whole ambient space E

3.

Definition (Line walk query). A line walk LineWalk(P,Q) on a d-complex
maps two points P,Q ∈ E

d to a sequence of cells (C1, . . . , CN ) traversed by
the line segment [PQ] with P ∈ C1 and Q ∈ CQ.

A few remarks:
• the line walk query always begins by locating P , if possible this location

can also be provided to avoid an additional query.
• a reverse line walk can be used to find the cells “behind” a point, with

a trivial modification to stop either after the first encountered facet
(Chapters 2, 4, 7 and 8) or after some distance along the line segment
(Chapter 3).

• for simplicity, we assume that the line segment [PQ] intersect only
facets.

• the data structure used to represent the complex is supposed to allow
efficient retrieval of the incident faces so that the facets crossed by the
line can be recovered from two adjacent cells.

B.1 Delaunay triangulations

Definition

Let P = {P1, . . . , PN} be a set of N points in E
d. The Voronoi cell associated

to a point Pi, denoted by Vor(Pi), is the region of space that is closer from
Pi than from all other points in P:

Vor(Pi) =
{

P ∈ E
d : ∀ j 6= i ‖P − Pi‖ ≤ ‖P − Pj‖

}

Vor(Pi) is the intersection of N − 1 half-spaces bounded by the bisector
planes of segments [PiPj ] with j 6= i. Vor(Pi) is therefore a convex polytope,
possibly unbounded. The Voronoi diagram of P, denoted by Vor(P), is the
cell complex induced by the Voronoi cells Vor(Pi).

The Delaunay triangulation Del(P) of P is defined as the geometric dual
of the Voronoi diagram: there is an edge between two points Pi and Pj in the
Delaunay triangulation if and only if their Voronoi cells Vor(Pi) and Vor(Pj)
have a non-empty intersection. It yields a triangulation of P, that is to say
a partition of the convex hull of P into d-dimensional simplices (i.e. into
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Figure B.1: Delaunay triangulation and Voronoi diagram of a set of points in
2D. The vertices of the triangulation correspond to the input points plus the infinite
vertices. As in Chapter 2, vertices are in red, edges in green and cells (triangles
here) in blue. The edges of the associated Voronoi diagram are superimposed in
dashed gray.

triangles in 2D, into tetrahedra in 3D, and so on). Figure B.1 displays an
example of a Voronoi diagram and its associated Delaunay triangulation in
the plane. An “infinite” vertex and infinite tetrahedra (one for each facet of
the convex hull of P) are added to the triangulation so that dom(Del(P)) =
E

d.

The algorithmic complexity of the Delaunay triangulation of N points is
at mostO(N logN) in 2D, andO(N2) in 3D or generallyO(N logN+N ⌈d/2⌉)
and its combinatorial complexity is O(N ⌈d/2⌉) in the general case [Boissonnat
and Yvinec, 1998a].

Construction

The Computational Geometry Algorithms Library (CGAL) [cga, 2009] pro-
vides an excellent implementation of the algorithm described in [Devillers,
2002] to compute the Delaunay triangulation of 3D points. It is robust to de-
generate configurations and floating-point error thanks to the use of symbolic
perturbation and exact geometric predicates while still being able to process
millions of points per minute on a standard workstation as demonstrated in
Chapters 3 and 4.
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Point location

The algorithm of [Devillers, 2002] actually computes a hierarchy of Delaunay
triangulations of a decreasing sequence of subsets of the input point cloud.
This allows the location of a query point to be efficiently found: starting
from the highest level of the hierarchy, the closest vertex is located in the
current level and the search proceeds in the next level of the hierarchy.

Line walk

The only query lacking from CGAL is the line walk in 3D. For a line walk
query LineWalk(P,Q), once a tetrahedron C1 containing the point P is
located, the facet F intersected by the ray [PQ) and incident to the second
tetrahedron C2 of the sequence of tetrahedra can be located by brute force.
Then, the intersection point R of F with [PQ) is determined. As shown
in Figure B.2(a), if V1 is the vertex opposite to F and V2, V3 and V4 the
other vertices of C2, the outgoing facet in C2 can be found from the loca-
tion of Q w.r.t. the planes passing supported by {R, V1, V2}, {R, V1, V3} and
{R, V1, V4}. Once this new outgoing facet is found, a new intersection point
can be computed and the search continues until the point Q lies in the tetra-
hedron. This line walk avoids the explicit computation of ray intersections
with all the facets of traversed tetrahedron and is not specific to Delaunay
triangulations.

(a) Line walk in a triangulation. (b) Line walk in a
polyhedral complex.

Figure B.2: Walking along a line in complexes.
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B.2 BSP polyhedral complexes

Construction

We first consider a special case of polyhedral complexes, the arrangement of
hyperplanes and recall its definition:

Definition (Hyperplanes arrangement). Let PL be a set of n hyperplanes
in E

d. The intersection of a finite number of half-spaces is a bounded or
unbounded (convex) polytope, and so PL induces a decomposition of E

d into a
collection of bounded or unbounded polytopes with pairwise disjoint interiors.
These polytopes and their faces (in 3D, their vertices, edges and facets) form
a pure cell complex of dimension d which is called the arrangement of PL.
This cell complex is denoted by Arr(PL).

An arrangement in E
d is called a d-arrangement. In the sequel, for sim-

plicity, we will only consider sets of hyperplanes in general position: any
subset of d planes meets at a point and the intersection of d + 1 planes is
empty. The corresponding arrangement is called a simple arrangement. The
total number of faces in a simple arrangement1 of n hyperplanes is Θ(nd).

If we consider the d-arrangement Arr(PL) and Pl a plane not belonging
to PL, the complex formed by the d-faces in Arr(PL) and their faces is
called the zone of Pl in the arrangement Arr(PL). The complexity of any
zone2 in the d-arrangement Arr(PL) of n hyperplanes is Θ(nd−1).

Based on this property, algorithms exist to incrementally construct an
arrangement in time Θ(nd). [Edelsbrunner, 1987] provides a detailed ex-
planation of an algorithm explicitly computing the incidence graph3 of all
the faces of the arrangement. In [Boissonnat and Yvinec, 1998b], a shorter
description of a similar algorithm computing only the incidence graph of the
0, 1 and 2-faces is given.

Algorithm. 4 gives a very summarized description of the algorithm from
[Edelsbrunner, 1987]. The line 4.2 computes the simple d-arrangement of
the first d planes (in 3D, it constructs 1 vertex, 6 edges, 12 faces and 8 cells).
Each remaining plane is then inserted in the current arrangement. First, an
edge intersecting the plane is found, then the zone of the plane in the current
arrangement is identified (first 0 and 1-faces, then higher dimensional faces)
and finally, faces of the zone that requires splitting are split and the incidence
graph is updated. Of course, the description given is highly simplified, it is
however sufficient to understand the only modification required to compute
polyhedral complexes induced by BSP. For complete details on the original
arrangement computation algorithm, we refer the reader to [Edelsbrunner,
1987].

1It is still O(nd) in a non-simple arrangement.
2It is still O(nd−1) in a non-simple arrangement.
3The data structure of this graph also stores a point at each node, this point is located
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Algorithm 4 An overview of the incremental algorithm of [Edelsbrunner,
1987] to compute the incidence graph I of an arrangement of n planes
Pl 1, . . . , Pl n

1: function BuildArrangement(Pl 1, . . . , Pl n)
Require: n ≥ d
2: I ← BuildTrivialArrangement(Pl 1, . . . , Pl d)
3: for i← d+ 1, n do
4: Pick a random vertex V in the arrangement Arr({Pl 1, . . . , Pl i−1})
5: Find an edge E incident to V such that aff(V ) ∩ Pl i 6= ∅
6: Walk along aff(V ) to find an edge E0 such that E0 ∩ Pl i 6= ∅
7: Starting from E0, mark all 0- and 1-faces of the zone of Pl i

8: Mark all the k-faces of the zone of Pl i, k ∈ J2, dK
9: Replace the marked faces of Arr({Pl 1, . . . , Pl i−1}) and update the

incidence graph I accordingly
10: end for
11: end function

The algorithm is slightly modified to compute the polyhedral complex
induced by a binary space partitioning described by a tree. A bounding box
surrounds the finite cells of the complex. The arrangement corresponding
to the 2d planes of this bounding box is computed using this algorithm4.
Then, by traversing the BSP tree from the root (the root corresponds to
the only bounded cell among the 3d cells of the initial arrangement), the
polyhedral complex is incrementally built as follows: each inner node of the
tree corresponds to a cell of the current polyhedral complex that should be
split by the corresponding plane. This split is performed by restricting the
action of lines 4.7, 4.8 and 4.9 to the current cell: only k-faces within the
cell are considered, as if the zone of the plane was restricted to the current
cell. This restriction ensures that only faces relevant for the BSP complex
are created. The complexity of the modified algorithm naturally follows the
complexity of the BSP complex. Furthermore, in Chapter 6, several cells
can be split simultaneously by a single plane: the zone of this plane can be
restricted to all these cells to achieve the construction as shown in Figure B.3.

CGAL [cga, 2009] does provide constructions and queries for 2D arrange-
ments of lines (generic enough to handle bounded and unbounded line seg-
ments and curves). It however does not provides an implementation of ar-
rangements of planes in 3D, so the algorithm described in [Edelsbrunner,
1987] and summarized here was implemented along with the above modi-
fication to compute polyhedral complexes induced by BSPs. The involved
queries (point location and line walk traversal) to be described in the next

in the interior of the k-face corresponding to the node.
4Modified to handle non-simple arrangements.
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sections were also implemented, all this made possible and transparently
robust to degenerate configurations and floating-point error thanks to the
excellent CGAL kernel which provides not only exact predicates but also
constructions5.

Figure B.3: From hyperplanes arrangements to BSP polyhedral complexes.
First row: an arrangement of 4 lines in the planes, the zone of a line in this ar-
rangement, the arrangement of the 5 lines. Second row: the zone of a line restricted
to a set of cells and the BSP complex.

Point location

To locate a cell containing a point in a polyhedral complex, different strate-
gies are possible: - exhaustive search of all the complex cells, - walk along a
line from a known cell by casting a ray to the query point and traversing the
complex, - put landmarks of known location in the complex, use a k-tree to
find the nearest landmark and locate with a line walk, - decompose the cells
of the complex into simpler cells of constant complexity and use a search
structure. As a compromise between implementation time and efficiency, a
slight variant of the “walking along a line” is used. Indeed, pinhole or push-
broom cameras have finite projection centers and the cells of these centers
may be located in advance or tracked. The line walk required by the surface
fitting can then directly be used from these cells.

5Exact constructions are required because the location of created vertices is used by
the incremental construction.
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Line walk

The line walk query on polyhedral complexes follows the line walk algorithm
in triangulations of Section B.1. One major difference however is the fact
that the simplified intersection test cannot be used anymore since cells can
be general d-polytopes and not d-simplices with only d + 1 vertices. The
search for an outgoing facet has to exhaustively check all the facets of a
crossed polytopial cell for intersection (see Figure B.2(b). This is done by
first testing for intersecting with the supporting plane of a facet, and then
ensuring that the intersection lies inside the polygon of the facet.

B.3 Generalized BSP complexes

As noted in Chapter 8, the practical exact and robust computation of com-
plexes whose cells are delimited by higher order surfaces (even when re-
stricted to second order surfaces only) is still the subject of active research.

Construction

A practical solution consists in using a tetrahedral meshing of the space
refined to approximate the recovered shapes. To compute this approximation
of the cell complex induced by the generalized BSP tree, the adaptive volume
mesh generator of [Pons et al., 2007b] is employed. This mesh generator
extends the surface meshing algorithm of [Boissonnat and Oudot, 2005] to
multi-label partitions. The underlying algorithm works by refining a 3D
Delaunay triangulation and only requires as input an oracle answering for a
point which label it is associated with. In our case, this oracle answers the
leaf of the generalized BSP tree where the point is located. The output is a
labeled Delaunay triangulation, which approximates the interfaces between
the distinct valued domains: each tetrahedron of this triangulation is labeled
according to its associated leaf. From this labeled simplicial complex, we
recover an approximating complex whose cells are union of simplicial cells
and facets are union of simplicial facets. These cells of our approximated
BSP induced complex are found as the connected components of identically
labeled tetrahedra. The facets of the complex (and the whole adjacency
graph) are found as the connected components of triangle facets between two
tetrahedra with the same labels pairs. The mapping between the simplicial
cells and the computed cells of the approximation is maintained as well as
the correspondence between simplicial facets and facets of the approximated
complex.

Point location

The point location is answered using the approximating triangulation as in
Section B.1 and the found tetrahedron is mapped to the corresponding cell
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of the BSP complex.

Line walk

The line walk query follows Section B.1 with modifications to account for
cells and facets of the approximated complex.

Post-processing

The actual implementation of [Boissonnat and Oudot, 2005] only accurately
meshes smooth surfaces while piecewise-smooth surfaces are considered in
Chapter 8. The implementation design of the algorithm in CGAL [Rinaud
and Yvinec, 2007] is flexible and would allow the inclusion of specific refine-
ment criteria for sharp features if available. Such refinement criteria were
not available at the time. Instead, in Chapter 8, the output surface and in
particular the boundaries and vertices shared between shapes, is improved
by an additional post-processing step: all the vertices of the triangulation
are iteratively reprojected on each of the shape regions to which they belong.

Finally, an optional edge collapse simplification following [Lindstrom and
Turk, 1998] with a cost accounting for normal deviation may be applied to
simplify the surface mesh while taking into account for its known geometry.
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Publications of the author

Journal papers

• Patrick Labatut, Jean-Philippe Pons, Renaud Keriven and Vu Hoang
Hiep. Global and visibility-consistent dense multi-view stereo for large-
scale scenes. In preparation.

• Patrick Labatut, Jean-Philippe Pons and Renaud Keriven. Robust and
efficient surface reconstruction from range data. Computer Graphics
Forum. To appear.

Conference and workshop papers

• Patrick Labatut, Renaud Keriven and Jean-Philippe Pons. Fast level
set multi-view stereo on graphics hardware. In 3rd International Sym-
posium on 3D Data Processing, Visualization and Transmission, pages
774–781, 2006.

• Patrick Labatut, Jean-Philippe Pons and Renaud Keriven. Efficient
multi-view reconstruction of large-scale scenes using interest points,
Delaunay triangulation and graph cuts. In IEEE International Con-
ference on Computer Vision, 2007.

• Vu Hoang Hiep, Renaud Keriven, Patrick Labatut and Jean-Philippe
Pons. Towards high-resolution large-scale multi-view stereo. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 1430–
1437, 2009.
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• Patrick Labatut, Jean-Philippe Pons and Renaud Keriven. Hierar-
chical shape-based surface reconstruction for dense multi-view stereo.
The 2009 IEEE International Workshop on 3-D Digital Imaging and
Modeling, 2009.
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