
A GPU Implementation of Level Set Multiview

Stereo

Patrick Labatut1, Renaud Keriven2, and Jean-Philippe Pons2

1 Département d’Informatique, École normale supérieure,
F-75230 Paris Cedex 05, France,

patrick.labatut@ens.fr
2 CERTIS, École Nationale des Ponts et Chaussées,

F-77455 Marne-la-Vallée Cedex 2, France,
keriven@certis.enpc.fr, pons@certis.enpc.fr

Abstract. Variational methods that evolve surfaces according to PDEs
have been quite successful for solving the multiview stereo shape recon-
struction problem since [1]. However just like every other algorithm that
tackles this problem, their running time is quite high (from dozens of
minutes to several hours). Fortunately graphics hardware has shown a
great potential for speeding up many low-level computer vision tasks. In
this paper, we present the analysis of the different bottlenecks of the orig-
inal implementation of [2] and show how to efficently port it to GPUs
using well-known GPGPU techniques. We finally present some results
and discuss the improvements.

1 Introduction

Three-dimensional shape reconstruction from a set of pictures is one of the oldest
problems in computer vision and find its roots back in robotics. Unfortunately
the current state-of-the-art algorithms for reconstruction from multiple views
are typically very slow and forbid a more widespread use of this technique.

A quite recent idea to improve the running time of many computer vision
algorithms consists in using commodity graphics cards not for rendering fancy
graphics but for general-purpose computations. We show how this approach was
successful for us, allowing quality shape reconstruction within minutes.

The first section of this paper discusses previous work in the field of stereo
reconstruction and general-purpose computation on GPUs (GPGPU), the next
section describes the shape reconstruction algorithm we used, the following sec-
tion details our implementation and the final section presents some results.

2 Related Work

2.1 Multiview Stereo Algorithms

Given n (≥ 2) images of the same scene (along with the calibration parameters
of the cameras), the goal is to build a 3D model of the scene as close as possible



to the original. This goal is difficult to reach because occluded parts and lighting
can substantially change the appearance of a scene from different viewpoints.

Currently multiview stereo algorithms can be very roughly divided into two
classes: on one hand, discrete methods à la space carving derivated from [3] which
work on an initialy whole discrete volume and incrementally remove chunks of
voxels that do not satisfy a photo-consistency condition; on the other hand,
variational methods based on the deformation of a surface under a PDE [1, 4].
The algorithm considered here [2] belongs to this latter class.

2.2 General-Purpose Computation on GPUs

In just a few years graphics cards have become heavily parallel processing ma-
chines with increased programming capabilities making their use possible for
other purposes than standard real-time rendering [5]. A simplistic way to un-
derstand what a GPU actually does is to consider it as a stream processor [6]
which executes a computational kernel over all the elements of an input stream
(possibly accessing other streams) and puts the corresponding results into an
output stream.

2.3 Stereo Vision Using Graphics Hardware

Computer vision algorithms are nowadays often GPU-accelerated, as they work
on the same kind of data as rendering. Recovering the disparity map of two
images has already been thoroughly studied: from simple block matching strat-
egy with a multiscale approach [7], to mixed CPU/GPU approach initializing a
graph-cut optimization with crude depth maps computed on GPU [8], and paral-
lel dynamic programming on GPU [9]. Numerical schemes for 2D level sets have
also been implemented by brute force [10] and more recently, 3D level sets for
segmentation [11] introduced a GPU to CPU message passing system. However,
to our knowledge, no multiview stereo algorithm for full shape reconstruction
has been adapted to run on GPUs.

3 Shape Reconstruction Method

The variational method of [2] borrows from [1] but formulates the evolution of
the surface as an image registration problem. It is thus simpler, more robust
than most other methods and also more suitable for a GPU implementation.

3.1 Notations

A surface S ⊂ IR3 models the shape of the scene being reconstructed. We note
Pi : IP3 → IP2 the projection matrices and Ii : Ωi ⊂ IR2 → IRc the corresponding
images. Si is the part of the surface S visible in the image Ii. P−1

i,S : Pi(S) → Si

reprojects from the camera Pi to the surface S. Finally Ij◦Pj◦P−1
i,S : Pi(Sj) → IRc

is the reprojection of the image Ij in the camera Pi via the surface S.



iS jS

IjIi

jPP i

Fig. 1. Cameras setup and notations

3.2 Energy to Minimize

We wish to minimize a sum of dissimilarity terms between pairs of images: each
pair is composed of one of the input images and some predicted image obtained
by reprojecting another input image into the camera corresponding to the former
image. This leads to the following energy (M is the dissimilarity measure between
two areas of image):

M(S) =
∑

i

∑

j 6=i

M(Ii, Ij)(S) =
∑

i

∑

j 6=i

M |Ωi∩Pi(Sj)
(Ii, Ij ◦ Pj ◦ P−1

i,S ) (1)

The minimization of this energy results in the evolution of the surface S

along its outward normal N, driven by the equation:

∂S

∂t
=



−λH +
∑

i

∑

j 6=i

δSi∩Sj
∂2M DIj DPj

di

z3
i



N (2)

where H is the mean curvature of S (which corresponds to a smoothing term
added to the energy), D· is the Jacobian matrix of a function, δ· is the Kronecker
symbol, di the vector from the camera Pi to the considered point, zi its depth
and λ a smoothing coefficient (λ > 0).

3.3 Similarity Measure

The described method allows the use of whatever similarity measure we want:
cross-correlation, correlation ratio, mutual information, etc. . . [12]. We limited
ourselves to the local normalized cross-correlation cc(Ii, Ij) (which can accomo-
date even non-lambertian surfaces provided the window size is small enough):

µ(Ii) = Gσ∗Ii

ω
v(Ii) =

Gσ∗I2

i

ω
− µ2(Ii) + τ2

v(Ii, Ij) =
Gσ∗IiIj

ω
− µ2(Ii) µ2(Ij) cc(Ii, Ij) =

v(Ii,Ij)√
v(Ii) v(Ij)

(3)



where ω(x0) =
∫

Ω
Gσ(x0 − x) dx is the spatial normalization to account for the

shape of the correlation window, and Gσ is a gaussian kernel.

The dissimilarity measure M cc(Ii, Ij) between images Ii and Ij is simply the
sum of the normalized cross-correlation over the whole domain: −

∫

Ω
cc(Ii, Ij)(x) dx

and its partial derivative needed for the minimization is:

∂2M
cc(Ii, Ij) = α(Ii, Ij) Ii + β(Ii, Ij) Ij + γ(Ii, Ij) (4)

where:

α(Ii, Ij) = Gσ ∗ −1

ω
√

v(Ii) v(Ij)

β(Ii, Ij) = Gσ ∗ cc(Ii,Ij)
ω v(Ij)

γ(Ii, Ij) = Gσ ∗
(

µ(Ii)

ω
√

v(Ii) v(Ij)
− µ(Ij) cc(Ii,Ij)

ω v(Ij)

)

(5)

3.4 Energy Minimization

The minimization of the energy by gradient descent is implemented within the
level set framework [13] and can implicitly cope with surface topology changes.
However this comes at a cost and to reduce the computational burden, the
narrow band algorithm [14] is used to evolve the level sets. As the energy is
optimized through a simple steepest gradient descent, it can easily get stuck in a
local minimum. The algorithm therefore adopts a multi-scale approach by using
the result of the optimization at a coarser scale to initialize the optimization at
a finer level.

4 Graphics Hardware Implementation

Whereas other variational methods for multiview stereo are CPU-only, [2] was
designed with classical GPU acceleration in mind. We take this one step further
by using GPGPU techniques.

4.1 Original Implementation Analysis

The main loop driving the evolution of the surface and executed at each time step
can be decomposed as shown in Tab. 1. As all the surface points visible in image
Ii should be points from the narrow band, the M cc derivative is computed over
the common domain of image Ii and image Ij reprojection, allowing for stream
computation. Items 6 and 7 actually spend most of the time doing bilinear
interpolations. The depth computations and reprojections were already running
on GPU. Finally the level sets computations cover only a fraction of the running
time. We thus chose to concentrate our efforts on items 5.2, 6 and 7.



0% 1 mesh update

10% 2 distance function update

5% 3 mesh download to the GPU

5% 4 depth computation in every camera
5 similarity measure derivative update

for each camera couple (i, j)

0% 5.1 reprojection of the image Ij in the camera Pi

20% 5.2 computation of the similarity measure derivative

20% 6 computation of band points attributes
for each band point / for each camera

position / visibility / intensity computation

40% 7 normal speed computation
for each band point / for each camera pair

if the point is visible in the two cameras
7.1 corresponding normal speed computation

0% 8 CFL condition

0% 9 level sets update

Table 1. Main loop with typical running time distribution

4.2 Reprojection and Visibility Masks Computation

The depth is computed via conventional rendering of the surface and update of
the depth buffer. The visibility masks (Ωi ∩Pi(Sj)) and the image reprojections
are computed with the shadow mapping technique which consists in using the
contents of the depth buffer we got from the Pj camera as a texture and rendering
the surface in the camera Pi. Accessing texels in this special texture triggers a
comparison between the current depth and the depth stored in the texture and
returns a boolean value. The surface points are used as texture coordinates and
the texture matrix (which is applied to the texture coordinates before accessing
texels) is replaced by the Pj camera matrix. We can thus generate a depth mask
using the Pj camera depth buffer as a texture. Then the Ij image reprojection
is obtained by applying this image as a texture (see Fig. 2(a)).

4.3 Computation of the Similarity Measure Derivative

The convolutions were originally implemented with a recursive filter [15]. IIR
filters do not fit very well in the GPU computational model constraints so it
was replaced by a simple separable convolution. In order to mask away some
of the input records in the stream, we take advantage of the efficient Z-Culling

technique: it consists in loading a mask in the depth buffer that allows masked
records to completely skip the execution of the computational kernel. Using
this masking technique, the computation of α, β and γ from (5) easily maps
to successive kernels: first compute 1, Ii, Ij , Ii Ii, Ii Ij , Ij Ij , then convolve
the previous pass result with Gσ, then compute ω, µ(Ii), µ(Ii), v(Ii), v(Ij),
v(Ii, Ij), cc(Ii, Ij) and finally convolve with Gσ to get α, β and γ.



P j

P i

iI

Ij
S

(a) shadow mapping (b) mapping the band to a 2D stream

Fig. 2. Some of the techniques used

4.4 Computation of the Points Position, Visibility, Intensity and

Normal Speed

At the finest scale, the band typically contains many dozens of thousand of
points. An input stream containing the coordinates of the band points is first
created (as shown in Fig. 2(b)). Computational kernels iterate over the cameras,
compute the position, visibility and intensity attributes from this input stream,
and output corresponding attributes streams. Z-Culling is once again used to
mask away some parts of the input stream where no computation needs to be
done.

For the normal speed we combine visibility streams and the stream mask to
generate a mask for Z-Culling. The camera pairs are then iterated over while
accumulating the normal speeds computed for each points in the narrow band.
The level sets are finally updated using this output stream.

5 Results

The graphics hardware was programmed using the OpenGL API and its exten-
sions mechanism. The Cg programming language was also used for prototyping.
All the presented results (Tab. 2 and Fig. 3) were obtained on a PC with an
Intel Xeon 2.8 GHz CPU and 1 GB of system RAM equipped with an NVIDIA
GeForce 7800 GTX graphics card with 256 MB of video RAM.

The overall speed factor is almost about 4 when compared to the already
GPU accelerated method from [2]. However the original sections of the algo-
rithms that were using lots of bilinear interpolations observe an elevenfold im-
provement in general, and the computation of the measure derivative gets a
ninefold decrease of its running time.



Table 2. Input data, parameters and running times

“buddha”1 “dino”2

#Images 25 16

Resolution 256 × 256 × 3 256 × 256 × 3

#Pairs 50 32

Level set volume 128 × 128 × 128 192 × 192 × 192

Running time (CPU/GPU) ∼ 780 s ∼ 860 s

Running time (GPU) ∼ 210 s ∼ 240 s

6 Conclusion

The decrease of the total running time is significative allowing shape reconstruc-
tion within minutes and it is even more impressive if we consider the CPU-only
method from [1]: the hypothetical overall performance gain would be about 200.

References

[1] Faugeras, O., Keriven, R.: Complete dense stereovision using level set methods.
In: European Conference on Computer Vision. Volume 1406. (1998) 379–393

[2] Pons, J.P., Keriven, R., Faugeras, O.: Modelling Dynamic Scenes by Registering
Multi-View Image Sequences. International Conference on Computer Vision and
Pattern Recognition 2 (2005) 822–827

[3] Kutulakos, K., Seitz, S.: A Theory of Shape by Space Carving. International
Journal of Computer Vision 38(3) (2000) 199–218

[4] Duan, Y., Yang, L., Qin, H., Samaras, D.: Shape Reconstruction from 3D and
2D Data Using PDE-based Deformable Surfaces. In: European Conference on
Computer Vision. Volume 3. (2004) 238–251

[5] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A Survey of General-Purpose Computation on Graphics Hardware.
In: Eurographics 2005, State of the Art Reports. (2005) 21–51

[6] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Han-
rahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM
Transactions on Graphics 23(3) (2004) 777–786

[7] Yang, R., Pollefeys, M.: Multi-Resolution Real-Time Stereo on Commodity
Graphics Hardware. In: IEEE Conference on Computer Vision and Pattern Recog-
nition. Volume 1. (2003) 211–218

[8] Geys, I., Koninckx, T.P., Gool, L.J.V.: Fast Interpolated Cameras by Combining
a GPU based Plane Sweep with a Max-Flow Regularisation Algorithm. In: In-
ternational Symposium on 3D Data Processing, Visualization and Transmission.
(2004) 534–541

1 Intel OpenLF Mapping project: http://www.intel.com/research/mrl/research/lfm/
2 Multiview Stereo Evaluation project: http://grail.cs.washington.edu/projects/mview/



Fig. 3. “buddha” data set: first column: some input images, second column: ground
truth, third column: result; “dino” data set: first column: some input images, second
column: evolution (first time step of each scale), third column: result

[9] Gong, M., Yang, Y.H.: Near Real-Time Reliable Stereo Matching Using Pro-
grammable Graphics Hardware. In: IEEE International Conference on Computer
Vision and Pattern Recognition. (2005)

[10] Rumpf, M., Strzodka, R.: Level Set Segmentation in Graphics Hardware. In:
IEEE International Conference on Image Processing. Volume 3. (2001) 1103–1106

[11] Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: A Streaming Narrow-
Band Algorithm: Interactive Deformation and Visualization of Level Sets. IEEE
Transactions on Visualization and Computer Graphics 10(40) (2004) 422–433

[12] Hermosillo, G., Chefd’hotel, C., Faugeras, O.: Variational Methods for Multi-
modal Image Matching. International Journal of Computer Vision 50(3) (2002)
329–343

[13] Osher, S., Sethian, J.A.: Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational
Physics 79(1) (1988) 12–49

[14] Adalsteinsson, D., Sethian, J.A.: A Fast Level Set Method for Propagating Inter-
faces. Journal of Computational Physics 118(2) (1995) 269–277

[15] Deriche, R.: Fast Algorithms for Low-Level Vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1(12) (1990) 78–88


