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Abstract

In this paper, we present a novel method, the first to date

to our knowledge, which is capable of directly and auto-

matically producing a concise and idealized 3D represen-

tation from unstructured point data of complex cluttered

real-world scenes, with a high level of noise and a signif-

icant proportion of outliers, such as those obtained from

passive stereo. Our algorithm can digest millions of input

points into an optimized lightweight watertight polygonal

mesh free of self-intersection, that preserves the structural

components of the scene at a user-defined scale, and com-

pletes missing scene parts in a plausible manner. To achieve

this, our algorithm incorporates priors on urban and archi-

tectural scenes, notably the prevalence of vertical structures

and orthogonal intersections. A major contribution of our

work is an adaptive decomposition of 3D space induced by

planar primitives, namely a polyhedral cell complex. We ex-

perimentally validate our approach on several challenging

noisy point clouds of urban and architectural scenes.

1. Introduction

1.1. Motivation

3D models of urban and architectural scenes are of in-

creasing use in many applications: augmented reality, nav-

igation, urban planning, physical simulations for environ-

mental impact assessment, etc. Creating such models from

range scanning and multi-view imagery constitute an inter-

esting alternative to computer-aided design, both in terms

of efficiency and cost. However, the scalability of these ac-

quisition processes is still limited by their need for signifi-

cant human assistance: purely-automatic 3D modeling from

range or stereo data is still far inferior to its interactive coun-

terpart as regards reliability, accuracy and compactness.

Whereas a large number of recent works have focused

on the first two issues [24, 27], our paper tackles the third

one. Indeed, automatic 3D modeling algorithms typically

produce overly complex meshes which are cumbersome for

storage, indexing, transmission and rendering. This prob-

lem is usually circumvented by a posteriori simplification.

However, the latter may easily lose characteristic geometric

features and worsen reconstruction defects.

This makes combined 3D reconstruction and idealization

very desirable. Our work tackles the case of unstructured

3D points as input data, which encompasses merged range

scans and stereovision depth maps, as well as several re-

cent multi-view stereo techniques (e.g. [4, 12, 18]) explic-

itly based on point clouds.

1.2. Related work

The extensive work on segmentation of range images

or height fields [5, 13, 32] and its application to auto-

matic 2.5D city modeling [21, 33], and on reconstruction

of piecewise-planar depth maps [1, 11, 20, 26] is not rele-

vant to our problem due to its restrictive 2.5D assumption.

Segmentation of 3D point clouds into geometric primi-

tives ([23] and references therein) only brings a partial so-

lution, as it does not address the reconstruction of a well-

behaved 3D surface.

A few recent works simultaneously address primitives

detection and surface reconstruction [6, 14, 15, 17, 22] by

leveraging a vast literature in computer-aided design. How-

ever, these methods only handle laser scans (or synthetic

point clouds) of mechanical parts and simple architectural

scenes, with a low level of noise and a small proportion of

outliers. The tested scenes typically contain a few dozens

of geometric primitives and never exceed 200.

1.3. Principles of our approach

Basically, our approach constructs a set of geometric

primitives which faithfully approximates input data, then

adequately assembles them into a well-behaved surface. To

that extent, our work is related to [6, 14, 15, 17, 22]. But our

instantiation of this general sketch obeys specific principles

which allow to significantly push the state-of-the-art.

Order of approximation. A zero-order approximation

is not sufficient in our context: slopes play an important
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semantic and physical role in architectural scenes, and sur-

face normals have a major perceptual impact in rendering.

Hence we maintain a first-order approximation throughout

our approach. In particular, this involves estimating tangent

planes to the input point cloud.

Degree of geometric primitives. Our approach uses

planar primitives only. In contrast, some authors [14, 17,

23] have proposed to include higher-degree primitives such

as spheres, cylinders, cones and tori. Our motivation is

threefold. First, man-made environments are essentially

piecewise-planar. Second, there is no loss of generality in

restricting primitives to planes, since curved objects admit

piecewise-linear approximations, at the expense of a higher

number of primitives. Third, polygonal meshes are a widely

established standard in computer vision, mesh processing

[2] and computer graphics, to the point that the aforemen-

tioned higher-degree techniques [14, 17, 23] end up extract-

ing a polygonal mesh as output. Our method directly com-

putes an optimized polyhedral reconstruction.

Scale of analysis. Our 3D reconstruction algorithm aims

at preserving structural parts of the scene. But, as exten-

sively studied by the scale-space theory [19], the very no-

tion of structure cannot be dissociated from the notion of

scale. For instance, in architectural scenes, roof tiles and

window moldings may be alternatively regarded as impor-

tant structures or negligible perturbations depending on the

scale of interest. Hence our whole approach is guided by

a tolerance distance σ and a tolerance angle θ. The higher

these scale parameters, the fewer primitives in the approx-

imation and the more idealized the output reconstruction.

Note that the input sampling density, accuracy and level of

noise induce a lower bound on the scale of analysis.

Topological guarantees. Our approach is based on a la-

beling of a decomposition of 3D space into empty or occu-

pied regions. Thus it has in common with volumetric graph

cuts (e.g. [18, 25]) and implicit methods for surface recon-

struction (e.g. [16]) the ability to output watertight surfaces

free of self-intersection. In contrast, most existing solutions

to our problem [6, 14, 15] stitch primitives with local de-

cisions based on proximity. Hence they are unable to fill

gaps in input data and may easily produce invalid topology

in ambiguous cases.

Visibility-consistency. In the vein of [8, 18], our ap-

proach maximizes the consistency of the surface with visi-

bility information provided by the acquisition process: ad-

ditionally to positions and tangent planes, lines-of-sight of

inputs point are incorporated in a global optimization.

Prior-based completion. Due to the imperfection of the

acquisition process, some important structural parts of the

scene may appear only partially in the input data, or even

be completely absent. For example, façades are frequently

missing in aerial data, due to narrow streets and/or insuf-

ficiently oblique views, while window ledges, top of steps

as well as sides of various protrusions are often occluded in

ground data. Such incomplete data makes much harder the

task of obtaining a faithful watertight reconstruction.

While partially missing structures can be recovered by

prolongation of detected geometric primitives, as in [17,

22], a single absent structure, for example a small inden-

tation between two close parallel planes, can jeopardize the

entire reconstruction. This inevitably leads to augment the

set of primitives using prior knowledge about the scene.

Here, we introduce such prior knowledge in the form of

ghost primitives: they consist of hypothesized planar primi-

tives that ensure the expected continuation of detected prim-

itives and enforce the prevalence of vertical structures and

orthogonal intersections in urban and architectural scenes.

1.4. Contributions of our approach

To our knowledge, our algorithm is the first to date which

is capable of directly and automatically producing a concise

and idealized 3D representation from unstructured point

data of complex cluttered real-world scenes, with a high

level of noise and a significant proportion of outliers, such

as those obtained from passive stereo.

Our algorithm can digest millions of input points into

an optimized lightweight watertight polygonal mesh free of

self-intersection, that preserves the structural components

of the scene at the user-defined scale, and completes miss-

ing scene parts in a plausible manner.

A major contribution of our work is an adaptive decom-

position of 3D space induced by planar primitives, namely

a polyhedral cell complex. It can be regarded as an exten-

sion of 3D arrangements of planes [10] which have only ap-

peared once [28] in image processing, for automatic build-

ing reconstruction, in elementary cases of less than ten

planes. The space decompositions used in the two works

closest to ours also face serious limitations. [22] is based on

a regular cubic grid, the computational and memory cost of

which quickly becomes prohibitive: it has been be applied

only to mechanical parts with tight bounding boxes and less

than two hundred primitives. As for the generalized binary

space partition proposed in [17], it is intractable: it must be

approximated by a dense 3D Delaunay triangulation which

loses the desirable compactness of the representation.

In contrast, we demonstrate the feasibility of polyhe-

dral cell complexes of thousands of planar primitives. This

constitutes an alternative in many applications to other

widespread non-uniform space decompositions, such as oc-

trees (e.g. [16]) or 3D triangulations (e.g. [18, 25]).

The rest of this paper is organized as follows. After de-

scribing in detail the different steps of our algorithm in Sec-

tion 2, we discuss implementation aspects and we experi-

mentally validate our approach on several challenging noisy

point clouds of urban and architectural scenes in Section 3.
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Figure 1. 2D illustration of the outline of our algorithm: (a) input

points, (b) detected primitives with boundary points, (c) detected

and ghost primitives, (d) induced cell complex, (e) labeled cell

complex and (f) output mesh.

2. Method Description

The input to our algorithm is a point set {pi, i ∈
{1, . . . , N}} in R

3 along with visibility information. For

clarity of the exposition, we assume that the latter consist of

a single line-of-sight per input point, although 3D positions

are typically triangulated from several emitters/sensors (ex-

cept for time-of-flight range scanners). Let ci be the 3D

position of the reference emitter/sensor of pi. Note that ci
may be different for every input sample, e.g. in the case of

mobile LiDAR data. We also suppose that we have a reli-

able vertical direction since this is crucial for incorporating

our priors on urban and architectural scenes.

Figure 1 illustrates the outline of our algorithm on a sim-

ple 2D case. Its steps are described in the next subsections.

2.1. Definition of adjacency relations

To be able to assess the connectedness of a primitive, we

have to equip the input point cloud with some adjacency

relations. While this is straightforward for range images or

height fields [5, 21, 32, 33], unstructured 3D data require

more elaborate tools.

Specifically, we use the mutual k-nearest neighbors

graph: pi and pj are considered neighbors if and only if

pj belongs to the k-nearest neighbors of pi and pi belongs

to the k-nearest neighbors of pj . As demonstrated in [30],

the reciprocity of the k-NN relationship is an effective cri-

terion for outliers detection. Consequently, our definition

of adjacency tends to isolate outliers into small connected

components, thereby uncluttering inlier primitives.

2.2. Estimation of oriented tangent planes

In order to ensure a first-order approximation of input

data, an estimation of tangent planes at the user-defined

scale is required.

To achieve this, for each input point pi, we perform a

principal component analysis (PCA) on the ball neighbor-

hood of radius 2σ centered on pi. First, the eigenvector

associated to the smallest eigenvalue yields the best fitting

plane in least-squares sense, which constitutes our initial

estimate T 0
i of the tangent plane at pi. Second, the ratio of

the two smallest eigenvalues gives a local indicator qi of the

complexity of the neighborhood in terms of curvature, noise

level and outlier proportion.

As the initial estimate T 0
i smoothes out normal discon-

tinuities, we refine it by iteratively (i) partitioning points

contained in the ball neighborhood as inliers or outliers de-

pending on whether their distance to T l
i exceeds σ/2, (ii)

fitting T l+1

i to these inliers using PCA. This process usu-

ally converges in two or three iterations and produces a final

tangent plane estimate Ti. Moreover we give Ti a consistent

orientation by making sure that ci is on its positive side.

We can now make an important definition. An input

point pi is an inlier of an oriented plane P if and only if

the three following conditions are met: (i) visibility: ci is

on the positive side of P , (ii) position: the distance from

pi to P is less than σ, (iii) tangency: the angle between Ti

and P is less than θ.

Figure 2. Inlier point p of the plane P .

2.3. Detection of planar primitives

This crucial step of our algorithm constructs a first-order

approximation of the input data by a set of planar primitives.

A planar primitive consists in (i) an oriented 3D plane and

(ii) a connected subset of inlier points which encodes its

spatial extent.

We could have resorted to RANSAC as in [23, 17], but a

simpler deterministic region growing approach has proven

sufficient, even on challenging data. A well-known limita-

tion of this approach is the critical influence of seed choice,



so we have designed a careful seeding strategy, based on the

following observation: region growing easily gets trapped

in erroneous solutions whenever the seed point is close to

sharp edges, corners, high-curvature or high-noise regions.

Hence our algorithms exploits the indicator of local com-

plexity qi: we iteratively grow planar primitives from the

unassigned input point of better planarity. This way, easy

decisions are made first, while difficult ones are postponed

to a later stage of the algorithm in which we expect that

most ambiguities be resolved.

After a primitive has been computed, its constituting

points are discarded from further consideration. Hence the

main detection loop terminates, and every input point is as-

signed to exactly one primitive. Finally, we discard planar

primitives which are significantly smaller than the scale of

analysis, as they unnecessarily increase the size of the ap-

proximation. Specifically, we check whether their standard

deviation along their second principal axis exceeds σ/2.

We now detail the extraction of a planar primitive from

an adequately chosen seed point pi. It again follows a clas-

sical alternate segmentation/fitting approach. Given an ori-

ented plane P l, we unambiguously define a planar primitive

as the maximal connected subset of inliers of P l that con-

tains pi. Reciprocally, a PCA of these inliers yields a novel

estimation P l+1 of the supporting plane of the primitive.

We bootstrap this process with the tangent plane Ti as the

initial estimate P 0 and iterate until convergence (or cycle).

Figure 3. Detected planar primitives (left, color-coded) and zoom

on boundaries (left, yellow points) for Herz-Jesu-P25.

2.4. Addition of ghost primitives

A single, small missing plane between two closely par-

allel ones can jeopardize the entire reconstruction if con-

strained to the set of detected primitives (see Figure 4). We

make up for these gaps by incorporating additional, unseen,

ghost primitives.

Figure 4. Importance of ghost primitives. Left: reconstruction with

detected primitives only. Right: reconstruction with detected plus

ghost primitives.

In practice, we derive these ghost primitives from bound-

aries of detected primitives. First, we delineate the bound-

ary of a planar primitive by computing the 2D α-shape of

the projections of its constituting points [9], with a char-

acteristic radius equal to the scale (α = σ2). Second, we

approximate this boundary up to a distance σ with a set of

line primitives, obtained by iterative merging. Third, we

discard boundary lines adjacent to another primitive (com-

pared with the scale σ), thus retaining only true boundaries

(see Figure 3). Finally, for each of these boundary lines, we

add the following two ghost planes, provided they are not

parallel to the original primitive, up to the tolerance angle

θ: the vertical plane containing the line and the plane or-

thogonal to the former and passing through the line as well.

2.5. Construction of the cell complex

A 3D arrangement of the supporting planes of all the

primitives contains the entire structure of the scene and

could be computed using the algorithm of [10]. However,

this naive solution suffers from a very high algorithmic –

Θ(n3) – and combinatorial complexity. Indeed, each addi-

tional planar primitive involves to split all current polyhe-

dral cells across its supporting plane; in addition, the spa-

tial extent of a primitive is not taken into account: it makes

no sense that, for instance, a chimney on a roof may inter-

vene in the reconstruction of a building at the other end of

the scene. A much more local modification of the partition

would be desirable to keep the number of cells, and thus

the computational effort and the memory cost, sustainable.

We propose a more elaborate algorithm to cope with these

limitations.

First, we use a two-level hierarchy in the decomposition.

The first level of the hierarchy consists of a coarse uniform

rectilinear volumetric grid which decomposes the domain

into cubical super-cells of medium size, typically 10 times

the scale σ. This grid forms an initial, trivial arrangement of

equally-spaced axis-aligned planes that subsequently local-

izes the reach of the primitives, hence decreasing the com-

plexity of the complex. The second level of the hierarchy

consists of a partition of each cubical super-cell into con-

vex polyhedral cells. The way this partition is built lies in-

between a 3D arrangement and a binary space partition: our

algorithm splits a subset of the cells traversed by the sup-

porting plane, whereas an arrangement would split all cells,

and a binary space partition would split a single cell. Specif-

ically, we only split the cells spanned by the planar primitive

being inserted, i.e. cells intersected by the supporting plane

and by a σ-ball centered on a point of this primitive. This

expansion guarantees a greater robustness of the reconstruc-

tion and ensures that the intersecting primitives (as defined

in the analysis of boundary segment) actually intersect in

the complex.

Please note that, contrarily to the case of an arrangement,



the final partition depends on the order in which the prim-

itives are inserted. We design this order to minimize the

complexity of the final partition, using two heuristics. The

first heuristic exploits the fact that there are many quasi-

horizontal and quasi-vertical primitives (compared to the

tolerance angle θ), with two variants for aerial and ground

data respectively. In the case of aerial data, we insert all

quasi-vertical primitives first, which is likely to lead to a

low-complexity 2D-like partition that contains the layout of

buildings. We then insert all quasi-horizontal primitives,

which leads to simple partitions in the existing cells while

limiting the extent of these primitives to relevant zones. Fi-

nally, we insert slanted primitives. However, for ground

data, we insert first quasi-horizontal primitives (which lead

to trivial partitions in the different cubical super-cells), then

quasi-vertical ones. The dominant horizontal direction of

lines of sight, which yields a majority of horizontal miss-

ing primitives rather than horizontal ones, accounts for this

reverse order. The second heuristic we use is to insert prim-

itives in decreasing order of size. Indeed, smaller primitives

are likely to traverse few of the cells induced by larger prim-

itives, contrarily to what would happen in reverse order.

Figure 5. 2D illustration of the better conciseness of our polyhedral

cell complex (left) over a complete arrangement (right).

2.6. Labeling of the cell complex

We formulate the surface reconstruction problem as

an optimal binary labeling of the complex, according to

an energy function designed to maximize the visibility-

consistency of the surface. Each cell is labeled as empty

or occupied, and we extract a surface as the union of all ori-

ented facets from an occupied cell to an empty one. This

surface bounds the 3D volume of the union of occupied

cells, hence is watertight and intersection-free.

This labeling problem is handled within the framework

of minimum s − t cut on the cell-adjacency graph G =
(V, E) of the partition: the vertices V are the cells of the

polyhedral complex while the edges E link adjacent cells,

i.e. correspond to the facets of the complex. More precisely,

we consider the directed adjacency graph with a (directed)

edge corresponding to each oriented facet of the complex.

V is augmented with two additional seeds, a source s and a

sink t, with edges from s to each cell and from each cell to

t. All edges have non-negative weights w.

A s − t cut (S, T ) is a partition of V into two disjoint

sets S and T such that s ∈ S and t ∈ T . The cost of an

s − t cut is the sum of the weights of the edges from S
to T . Efficient algorithms with low-polynomial complexity

exist to find the s − t with minimal cost, allowing a global

minimization of the energy. A graph partitioning (S, T )
corresponds to a binary labeling of cells – where cells in S
and T are respectively empty and occupied – and the cost of

the cut to the energy of the associated surface. Weights of

edges joining the source or the sink penalize the associated

cells, while weights of edges between two cells penalize the

associated oriented facets.

The energy is composed of three terms, a visibility term

Evis(S), an orientation term Eorient(S) and a regulariza-

tion one Eregul(S):

E(S) = Evis(S) + Eorient(S) + Eregul(S). (1)

The visibility term Evis(S) penalizes the oriented facets

crossed by the lines of sight of the fitted points. In order to

account for the scale precision σ, a line of sight goes from

the camera center, to an ending point behind the fitted point,

shifted to a distance of σ in this direction. As shown in

Figure 6, along this line, all oriented facets in the opposite

direction are penalized with a weight αvis, except for facets

for which this point is an inlier at this scale σ (see Section

2.2). Moreover, the cells containing the camera center and

the ending point are respectively linked to the source s and

the sink t, with the same weight αvis.

s

t
Figure 6. Visibility. A fitted point penalizes the oriented facets of

the grid (grey facets) and of the primitives of which it is not an

inlier (darker orange) along its line of sight (red dashed line), and

links its terminal cells (darker blue).

The orientation term Eorient(S) penalizes facets cor-

responding to detected primitives but of opposite orienta-

tion with an infinite weight, preventing genuine primitives –

which are oriented 3D planes – to be used in the reverse di-

rection in the reconstructed surface. Note that neither ghosts

primitives nor grid planes appear here because they have no

orientation – hence can be used in both directions.

Finally, the regularization term Eregul(S) penalizes the

area of the surface compared to the mean surface density

d of the detected primitives, with different weights αprim
area

and αgrid
area for facets belonging respectively to a primitive

(detected or ghost) and to a plane of the initial grid:

Eregul(S) = αprim
area dA(Sprim) + αgrid

areadA(Sgrid). (2)



The parameters αvis, α
prim
area and αgrid

area balance the various

terms of the energy which is defined up to a factor, so we

can fix one of them, e.g. αvis = 1. The other parameters

αprim
area and αgrid

area, are easily set (see Section 3.2).

2.7. Surface extraction

The boundary of the occupied cells of the polyhedral

partition forms a watertight polygonal mesh, free of self-

intersection. However this mesh does not fulfill all our

needs: it is verbose, since many facets of the polyhedral

partition may belong to the same planar primitive. These

redundant coplanar facets have to be identified and merged

into a single polygonal facet. Moreover, this polygonal

facet possibly features concave parts, holes and multiple

connected components, so it has to be triangulated to meet

display or post-processing requirements.

We reach both goals using a constrained 2D Delaunay

triangulation [7]: for each planar primitive that appears in

the reconstruction, we build a 2D triangulation of the ver-

tices of the corresponding polygonal facet that tries to be

as Delaunay as possible, while including among its edges

the boundaries of this polygonal facet, although the latter

do not necessarily constitute Delaunay edges. Interestingly,

this close-to-Delaunay property discourages badly-shaped

triangles.

Figure 7 illustrates the surface extraction step. It demon-

strates the higher conciseness and quality of the output mesh

over the raw boundary of the polyhedral partition.

Figure 7. Surface extraction. Left: boundary of the polyhedral

cell complex. Right: final mesh obtained by a constrained 2D

Delaunay triangulation on each planar primitive.

3. Experimental Validation

3.1. Implementation aspects

Our C++ implementation is based upon the Com-

putational Geometry Algorithms Library (CGAL:

http://www.cgal.org). CGAL provides all the

needed basic geometric operations, as well as robust and

efficient algorithms for nearest neighbors search, principal

component analysis and 2D triangulations.

As there is currently no publicly available code for com-

puting 3D plane arrangements, and a fortiori our more gen-

eral polyhedral cell complex, we have developed our own

source code on top of the CGAL kernel. The use of ex-

act geometric computation [31] has proven essential: the

frequent occurrence of quasi-degenerate configurations in

large real-world data make rounding errors of floating-point

arithmetic prohibitive.

To perform the s−t cut, we use the Boost Graph Library

implementation of Kolmogorov’s max-flow algorithm [3].

3.2. Parameters

A major strength of our method is that the user basically

needs to set only one parameter, the scale distance σ, de-

pending on the scale of the data, the noise level and the

desired precision. For all the other parameters, we used the

constant values of Table 1 throughout our experiments.

k number of nearest neighbors 10

θ scale angle 25◦

αprim
area regularization for primitives 0.05

αgrid
area regularization for the grid 0.5

Table 1. Values of constant parameters.

As for the initial cubic decomposition, we used cubes

of size 10σ for ground data, and squared columns of base

size 10σ and of infinite height for aerial data, to allow the

vertical completion of buildings up to the ground.

3.3. Results

We tested our algorithm on datasets of various type and

size. We show our results in Figure 8.

The first dataset, block, is a synthetic, mechanical part,

typical of CAD models, that allows us to check our al-

gorithm on a simple example. It has already been recon-

structed in [17] for instance. We obtain a concise mesh, with

a good approximation of cylindric parts by planes. Since the

data is complete, the reconstruction does not resort to any

ghost primitive.

The other datasets were obtained from multi-view im-

agery by winner-take-all matching based on multi-scale

normalized cross correlation. Hence our input point clouds

present a large proportion of outliers, as clearly visible in

Figure 8(b) for instance.

entry-P10, fountain-P11 and Herz-Jesu-P25 are ground,

architectural scenes, taken from the publicly available

benchmark of [27]. We obtained concise, simplified mod-

els of these scenes that highlight their major planar features

and preserve sharp edges. Note how we recovered window

moldings in entry-P10 or steps in Herz-Jesu-P25.

Cluny and Marseille have been obtained from aerial

(resp. helium balloon and airborne) imagery. Our algo-

rithm successfully infers the overall structure of the scene

despite many missing façades in the input data. It also

recovers some roof superstructures, in particular chimneys

and dormer windows of the Cluny Abbey.



Table 2 gathers quantitative data about our experiments:

number of input points, of detected primitives, of ghost

primitives and of output mesh facets, as well as timings

measured on a 2.66 Ghz Intel Xeon PC. Notably, the com-

putation time does not exceed 35 minutes on our largest

datasets of several millions of points.

We would like to emphasize that the main objective and

achievement of our work are the conciseness and idealiza-

tion of the output models, and not a fine accuracy. We

obviously do not intend to compete with dense multiview

stereo reconstruction algorithms for example, [29] reports

2M facets on entry-P10 and 1.6M facets on fountain-P11.

On the other hand, we do not intend to compete with dense

multiview stereo reconstruction algorithms as regards accu-

racy, as our main goals are conciseness and idealization.

4. Conclusion

We have proposed a novel method for automatic sim-

plified piecewise-planar 3D reconstruction and completion

from massive point clouds corrupted by noise, outliers, and

severe occlusions. We have demonstrated the benefits of our

approach on challenging urban and architectural scenes.

Future work includes incorporating verticality, horizon-

tality and orthogonality priors since the primitives detec-

tion step, in order to improve the visual acceptability of our

3D models. Also, we plan to explore the feasibility of a

streaming approach for out-of-core 3D reconstruction of en-

tire cities from ground or oblique aerial imagery.
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(a) picture of the scene (b) input point cloud (c) Output polygonal mesh
Figure 8. Piecewise-planar reconstructions on various datasets.

Datasets # points σ (m) # primitives # ghosts # output facets time (s)

block 49283 1 52 0 208 7

entry-P10 1393012 0.1 452 1681 5376 550

fountain-P11 1526957 0.05 491 1439 4139 730

Herz-Jesu-P25 737990 0.05 895 4821 15025 265

Cluny 3019228 0.2 1241 6285 19889 2050

Marseille 3313834 1 1099 2415 11078 1400
Table 2. Statistics on processed models.


