
Préparée à l’École Normale Supérieure de Paris

Multi-User Computation over Encrypted Data

Soutenue par

Ngoc Ky NGUYEN
Le 03 décembre 2024

École doctorale no386

Sciences Mathématiques de
Paris Centre

Spécialité
Informatique

Composition du jury :

Nuttapong ATTRAPADUNG
AIST Rapporteur

Carla RÀFOLS SALVADOR
Universitat Pompeu Fabra Rapportrice

Fabien LAGUILLAUMIE
Université de Montpellier Examinateur,

Président du jury
Mark MANULIS
Universität der Bundeswehr München Examinateur

Damien VERGNAUD
Sorbonne Université Examinateur

Duong Hieu PHAN
Télécom Paris Directeur de thèse

David POINTCHEVAL
Chercheur, Cosmian Directeur de thèse

Résumé

Avec la généralisation de TLS sur le web, la confidentialité des échanges s’est renforcée. Mais cela
a du même coup ouvert de nouvelles voies aux acteurs malveillants pour attaquer directement
les machines individuelles via leur navigateurs, en contournant tous les dispositifs d’analyse
de flux, puisque tout transite dans un tunnel chiffré. Ainsi, pour détecter ou empêcher les
attaques, nombre de systèmes opèrent une rupture de flux chiffré pour continuer à analyser les
paquets en clair, mettant ainsi à mal la confidentialité. Cette thèse va étudier les mécanismes
cryptographiques permettant de garantir la confidentialité des données, tout en permettant des
analyses pour garantir la sécurité des usagers et des systèmes. Il s’agira pour cela d’adapter le
chiffrement fonctionnel ou le chiffrement à base d’attributs, pour permettre aux sondes d’extraire
les seules informations utiles à des fins de cybersécurité.

Cette thèse se focalise sur le chiffrement fonctionnel avec plusieurs utilisateurs, en particulier
où des clients peuvent individuellement chiffrer leurs données partielles, ou des senders peuvent
engendrer individuellement leur clé fonctionnelle partielle. Ces chiffrés partiels ou clés partielles
peuvent être combinés plus tard, si et seulement s’ils partagent un tag commun, e.g. un
horodatage. Nous obtenons des résultats par rapport à la notion de sécurité du chiffrement
fonctionnel dans ce cadre, avec à la fois de nouvelles définitions et de nouvelles constructions.
D’une part, nous proposons un cadre pour définir le chiffrement fonctionnel multi-client avec
un contrôle d’accès fin sur les clés de déchiffrement, qui est généralisé au cas d’une classe de
fonctions ayant des informations publiques lors du chiffrement. D’autre part, nous examinons à
nouveau le modèle de sécurité du chiffrement fonctionnel multi-client décentralisé et raffinons ses
contraintes existantes. Finalement, nour construisons des schémas concrets à l’égard de la classe
de fonctions pour calculer les produits scalaires, en exploitant les espaces vectoriels duaux avec
couplages dans les groupes bilinéaires.

cryptologie ⋆ vie privée ⋆ cybersecurité

ii

Abstract

With the generalisation of TLS over the Web, the confidentiality of communications has been
reinforced. However, this also led to new attack vectors for adversarial agents to attack directly
the individual machines via their browsers, while bypassing all the tools for data-flow analysis,
because everything is transmitted through an encrypted channel. Therefore, in order to detect or
prevent the attacks, many systems operate by stopping the encrypted channel and continuing to
analyse the data packets in the clear, which thus affects badly the confidentiality. This thesis is
going to study the cryptographic mechanisms that allow guaranteeing the confidentiality of data,
at the same time permitting the analysis to ensure the security of the users and systems. This
will require adapting the techniques of functional encryption (FE) or attribute-based encryption
(ABE), which enable the monitors to extract only the useful information for the cybersecurity
purposes.

The main setting of our studies is FE with multiple users, in particular where we allow
multiple clients to independently encrypt their partial data, or multiple senders to independently
generate their partial functional decryption keys. These partial ciphertexts or partial keys can be
later jointly combined, only if they are associated to some identical tag, e.g. a timestamp. We
obtain various results with respect to the security notions of FE in this setting, both definitionally
and constructively. On one hand, we give a definitional framework for multi-client FE with
fine-grained access control over keys, which is furthermore generalized to function classes that
authorize some auxiliary public inputs at the time of encryption. On the other hand, we revisit
the widely used security model of decentralized multi-client FE and refine existing unnatural
constraints of the model. Last but not least, we provide concrete constructions in regards of the
particular function class for computing inner products, by leveraging the power of dual pairing
vector spaces in the bilinear group setting.

cryptography ⋆ privacy ⋆ cybersecurity

iv

Acknowledgments

Paris, a November night, it was one of the darkest I could imagine. As I sank into my chair, I
found myself in an idealised world where the oracle had already run its infinite table. Somewhere
in its memory lies the story of this thesis - written in Vietnamese, English, and French. Fragments
of this story, along with my gratitude, now follow - not in any deliberate order, but as they
surface naturally in my thoughts.

I am deeply thankful to my two supervisors, David and Hiệu, for their guidance and invaluable
advice throughout our time together. My gratitude extends far beyond my doctoral studies, as
both David and Hiệu have accompanied me on my journey from the time I prepared for the ENS
diploma to the moment these lines are written—a journey for which I am profoundly grateful.
Their extensive knowledge, both in research and the practical aspects of daily academic life, as
well as their unwavering dedication to mentoring, are qualities I deeply admire. I am proud
to count myself among their students. This thesis would not have been possible without the
support of the members of my examining committee. Allow me to use first names to convey
a sense of familiarity and gratitude: I wholeheartedly thank Nutts, Carla, Fabien, Mark, and
Damien for agreeing to be part of my committee, dedicating their time to reading and evaluating
my manuscript, and accompanying me through to the conclusion of my PhD.

My PhD story is also fulfilled with wonderful memories with the CASCADE research team
and the Computer Science department at the ENS. I would also like to express my heartfelt
gratitude to the administrative and technical teams at the department, including those who have
since embarked on their well-deserved retirements or new career paths. From my very first day as
a pre-doctoral student to the completion of my journey at ENS, their support has been valuable.
For an international student navigating an unfamiliar far-from-home environment, this assistance
has meant more than words can convey. At the same time, the three years I spent with the
CASCADE team have been a pivotal part of my personal growth. Memories from my journey are
interwoven, and following the path they reveal, my gratitude goes to Lenaick, for welcoming me
warmly on my first day as a PhD candidate and for sharing precious experience, Paola, for her
originality, creativity, and inspiring friendliness, Leonard for enlivening our coffee breaks with
engaging and varied discussions, Michael for his positive energy in both research and everyday
topics, Paul for his kindness, which I deeply respect, Hugo B. for the unforgettable “bzzz”
moments and his great spirit that will stay with me for years, Robert for the enriching discussions
from which I’ve learned so much, Huy for our Vietnamese conversations and beyond, which
nurtured a shared sense of identity, Antoine for the honest and frank chats about CASCADE,
Security, ENS, and more, Guirec for his admirable maturity and disciplined personality, Henry for
his perpetual sharpness in thought and insatiable curiosity, Eric for his cutting-edge rationality,
a rare and precious quality, Nicolas for his constant good humor and inspiring efforts. I am also
grateful to the seniors, including Théo, Baptiste, and Hugo S., as well as the interns and visiting
members including Alexandra, Xiaxi, Quentin, and Théophile, with whom the moments shared
have been most enjoyable. In more recent memories, my gratitude is for the postdocs who chose
CASCADE as a stepping stone in their careers: to Huyền for her positive and energetic attitude,
to Florette for her praiseworthy attention to detail, to Wissam for his excellent openness to
exploration and discussion. I also send my best wishes to the newer generation of CASCADE,

including Amine, Cédric, Florian, Jules, and Laurent, hoping that their upcoming journeys,
whether doctoral or postdoctoral, will be fruitful. My respect and appreciation also go to the
permanent members of CASCADE over the years, from my pre-doctoral studies to the present:
to Michel Abdalla for his warm friendliness and vast knowledge of cryptography, to Brice Minaud
for his essential coffee supply and for keen intellect, to Céline Chevalier for her remarkable
dedication to teching and mentoring, to Phong Nguyen for opening doors to new perspectives
throughout my studies in such a didactic manner, to Hoeteck Wee for the fascinating discussions
and his sublime attention to refinement. I’m also profoundly grateful to David Naccache for his
critical thinking and his relentless pursuit of dissecting questions from multiple angles.

I am also deeply thankful to the Maths-Info group of Vietnamese students at ENS, including
Linh, Tùng, Quân, Tâm, and Trung, for all our discussions on mathematics and computer
science—whether around a blackboard, a dinner table, or a ping-pong table. Speaking of ping-
pong, a special shoutout goes to Hiếu, Tài, and our ever-expanding ping-pong group. The time
we spent together at ENS and other occasions has been a transformative part of my journey.
From ENS, my wholehearted gratitude goes to Ariane Mézard for everything I learned during
my Bachelor-Master years in her classes and far beyond. Her recommendations for learning
opportunities during my PhD were very helpful, I will always cherish and appreciate them. I
also want to give a huge thank-you to Sasha, who has been amazing since the very first hours of
our class of 2018 at ENS. The projects we worked on together, and our first paper, have left a
lasting impact on my intellectual growth. Moreover, I am grateful for the chance to have met so
many incredible individuals, including Dung, Duy, Hiền, Hoa, Khánh, Mahshid, Phương, Pouria,
Quang (Quang Dao), Yingfei. The shared moments at conferences and seminars were not only
great fun but also helped broaden my learning and perspectives far beyond the ENS environment.

Fragments of memories transcend spatial constraints, and I extend my deepest gratitude to
An Khương, whose close guidance, sharing, and support during my time in Vietnam laid the
foundation not only for my professional progress but also for my personal growth. I am honored
to count myself as one of his students. Thanks from the bottom of my heart to Thành, Hạnh,
Phước, Danh Nam with whom I shared intensive seminar sessions, as well as to Quang, who has
always been wonderful company in the extended seminar group. I am profoundly grateful to Hà
Dương and Bảo Châu (Chau Ngo), who, alongside my supervisors Hiệu and David, initiated the
scholarship program that enabled me to study at ENS. Without this opportunity, my academic
journey would not have been possible. My warmest cheers go to my former CTF team, Efiens,
and to Thái (Thai Duong). The CTF competitions we participated in together, along with
Thái’s insightful blogs, were my first introductions to security and cryptography - sparking my
interest in this fascinating field and guiding me toward the culmination of this thesis. A special
shoutout goes to Sang, who has been incredible from our days of racing against deadlines during
our bachelor years to now, as we both pursue doctoral studies in French cities thousands of miles
away from Vietnam.

Among the most precious memories of my journey lies my most profound gratitude to my
family - my father Huynh, my mother Dịu, and my brother Bình - for their unwavering support
as I embarked on this path, overcoming the highs and lows while being far from home. Tôi xin
cảm ơn bố tôi, mẹ tôi, em tôi. Tôi luôn tin tấm lòng quý của bậc nghiêm-đường, dùng làm tấm
gương mà so sánh, làm mối dẫn-lộ để rèn luyện cái lịch-duyệt, trong cái cơn hồ nghi không biết
ăn ở thế nào cho phải của thằng con trẻ. Có duyên giao-kết với mọi người, đến nay đã trải mấy
năm giời xa nhà, học xem, học xét, thì tưởng cũng không phải là câu chuyện vô ích. Nay, lúc nào
cần mỉm cười tôi xin mỉm cười thành thực, lúc nào cần hiểu rõ lòng của nhau tôi sẽ đi sang câu
chuyện cảm tình. Lastly, I address my gratitude to those I have never met, those I may never
know, and those who has quietly contributed to this unfolding story. Whether for better or for
worse, they continue to uncover the infinite table, as the oracle writes and the story carries on...

vi

Contents

Résumé i

Abstract iii

Acknowledgments v

I Introduction and Preliminaries 1

1 Introduction en Français 3
1.1 Motivations . 3
1.2 Mode d’Emploi . 6

2 Introduction 9
2.1 Context and Motivations . 9
2.2 Research Questions . 14
2.3 Contributions . 15

2.3.1 MCFE with Access Control . 15
2.3.2 Strong Admissibility . 16
2.3.3 MCFE: Upgrades . 19
2.3.4 FH-DMCFE . 22
2.3.5 Other Contributions . 23

3 Preliminaries 27
3.1 Notations . 27
3.2 Hardness Assumptions . 27
3.3 DPVS . 28
3.4 LSSS . 31
3.5 Cryptographic Primitives . 32

3.5.1 Key-policy Attribute-Based Encryption (KP-ABE) 32
3.5.2 Functional Encryption (FE) . 33
3.5.3 Multi-Input Functional Encryption (MIFE) 33

II Security Models of Multi-Client Functional Encryption: Access Control
and Stronger Admissibility 37

4 MCFE with Access Control 39
4.1 Introduction . 40
4.2 Technical Overview . 42

4.2.1 Formalizing Access Control in Functional Encryption 42
4.2.2 Adaptively Secure Single-Client Construction 43

4.2.3 The “Duplicate-and-Compress” Technique 45
4.3 IPFE for LSSS . 48
4.4 IP-MCFE for LSSS . 52

4.4.1 Definitions . 52
4.4.2 Construction . 54
4.4.3 Adaptive Security . 55
4.4.4 Revisiting MIFE in the Standard Model 58

5 DMCFE Security 61
5.1 Introduction . 62
5.2 Technical Overview . 64

5.2.1 Motivations for a Refinement on Admissibility 64
5.2.2 Towards a New Admissibility Condition under Separated Corruption of Keys 64
5.2.3 Optimality of the New Admissibility: A Conceptual Challenge 65
5.2.4 DMCFE for Inner Products with Refined Security Model 66

5.3 Strong Admissibility . 69
5.3.1 Optimality of Admissibility as per Definition 5.4 71

5.4 IP-DMCFE with Stronger Security . 78
5.4.1 Basic Construction . 78
5.4.2 Adaptive Security against Incomplete Queries and Static Corruptions of

Secret Keys . 79
5.4.3 Constructions with Stronger Security against Incomplete Queries 80

III Further MCFE Security Extension 85

6 MCFE: Upgrades 87
6.1 Introduction and Motivation . 87
6.2 Technical Overview . 90
6.3 MCFE with Public Inputs . 93

6.3.1 Definitions . 93
6.3.2 Implications between Notions: MCFE, MIFE, and more 96

6.4 AB-IP MCFE . 100
6.4.1 Definitions . 100
6.4.2 Extension to Sub-vectors . 101
6.4.3 Upgrading Security . 113

7 FH-DMCFE 115
7.1 Introduction . 115
7.2 Overview: Selective Case . 118
7.3 More Preliminaries . 122
7.4 A FH-DMCFE for Inner Products . 127

7.4.1 Swapping Lemma . 127
7.4.2 Basic Construction . 140
7.4.3 Upgrading Security . 142

IV Conclusion and Future Works 143

8 Conclusion 145

viii

Part I

Introduction and Preliminaries

1

Chapter

1
Introduction en Français

Chapter content
1.1 Motivations . 3
1.2 Mode d’Emploi . 6

1.1 Motivations

Quelques mots sur le Contenu. Si l’on devait situer cette thèse, elle se trouverait probablement
dans le déjà vaste, mais toujours en expansion, paysage de la recherche en cryptographie moderne.
Le traitement rigoureux dont fait l’objet la cryptographie moderne est sans doute l’un des aspects
les plus fascinants de l’informatique à ce stade de l’histoire. Contrairement à la cryptographie
“classique” où la préoccupation constante est de savoir comment communiquer ce que nous voulons
à qui nous voulons, sans avoir le contrôle sur le canal de communication, la cryptographie moderne
porte sur ses épaules bien plus de tâches : établir une communication privée et authentifiée sur
Internet, organiser des votes électroniques secrets et inviolables, déployer des calculs multi-parties
“résistants aux fautes”, et bien plus encore. En particulier, des notions telles que l’indistinguabilité
calculatoire, la propriété pseudoaléatoire, les preuves à divulgation nulle de connaissance sont
introduites, des applications importantes telles que le chiffrement et les signatures numériques sont
fondées sur des bases théoriques solides, et bien d’autres directions sont explorées. Cette thèse
s’intéresse aux deux principales activités de la cryptographie moderne - l’activité définitionnelle
et l’activité constructive - tout en recourant inexorablement à la difficulté calculatoire.

Les problèmes abordés dans cette thèse passent d’abord par une étape définitionnelle, où
une fonctionnalité claire est provisoirement donnée dans un modèle clairement défini. Elle est
“provisoirement donnée” en raison de l’identification inhérente d’un objectif intuitif sous-jacent,
qui mène ensuite à un problème cryptographique adéquat. Il est irréaliste et sujet à l’erreur
de lister toutes les situations souhaitées concernant le problème cryptographique en question.
Ainsi, la fonctionnalité est décrite dans un modèle bien défini (possiblement idéalisé), et nous
exigeons que toute solution candidate émule cette opération dans des modèles plus concrets
et clairement spécifiés (qui détaillent les capacités de l’attaquant). Ensuite vient la tâche de
construction. Étant donné la fonctionnalité frâıchement définie, l’objectif de toute tentative de
construction est non seulement de maintenir la correction en “opération normale”, mais aussi de
viser la sécurité contre tout adversaire qui essaierait de manipuler le système pour l’éloigner des
états typiques. Cet objectif est notoirement difficile. Les tentatives adversariales peuvent être
conçues après la construction terminée, elles peuvent dévier de toutes les actions envisagées lors
de la conception. On ne peut pas se contenter d’avoir une solution qui fonctionne uniquement
pour une liste prédéterminée de stratégies, et les heuristiques peuvent seulement fournir des idées
sur l’environnement fonctionnellement envisagé pour l’opération mais pas sur l’environnement
hostilement choisi. Pour rendre les choses encore plus difficiles, les constructions candidates pour
une utilisation pratique doivent également satisfaire certaines exigences d’efficacité.

En remontant à l’aube de la cryptographie moderne, ces deux étapes interdépendantes,

1.1. MOTIVATIONS CHAPTER 1. INTRODUCTION EN FRANÇAIS

définition-construction, apparaissent de manière omniprésente dans tous les travaux fondateurs sur
le chiffrement [GM84], les signatures numériques [GMR88], les générateurs pseudo-aléatoires [BM84,
Yao82], les preuves à divulgation nulle de connaissance [GMW86], les protocoles multi-parties
pour calculer de manière sécurisée des fonctions générales [Yao86, GMW87], et bien d’autres.

Cette thèse se concentre sur le chiffrement et ses notions avancées, qui est l’un des problèmes
les plus emblématiques de la cryptographie moderne. Dans tous les chapitres, la structure suit de
près le paradigme en deux étapes mentionné ci-dessus : nous identifions d’abord la préoccupation
naturelle et le problème cryptographique sous-jacent (via une vue d’ensemble technique), puis
nous définissons formellement le problème, et enfin nous montrons que des solutions candidates
peuvent exister. Pour cette dernière partie, nous nous limitons à fournir une preuve de faisabilité :
en principe, les problèmes que nous définissons peuvent être résolus. Nous ne visons pas à fournir
des solutions pratiques, bien que certaines discussions sur l’(im)praticabilité des solutions soient
données à l’occasion.

Chiffrement fonctionnel (FE). La communication sécurisée utilise fondamentalement des
schemas de chiffrement comme bloc de construction : seul un destinataire ayant une clé de
déchiffrement peut déchiffrer un chiffré pour obtenir le message sous-jacent, sinon il est garanti
par la sécurité sémantique du schéma qu’aucune information sur les données en clair ne fuite.
Cette nature de tout-ou-rien est restée la norme pendant longtemps. Cependant, l’apparition de
systèmes de communication plus complexes et hiérarchiques implique un besoin accru de contrôle
plus fin sur les fuites d’information qui viennent des chiffrés. Ainsi, une grande motivation pour
les notions avancées de chiffrement est née. Le progrès culmine avec le Chiffrement Fonctionnel
(FE) [SW05, BSW11] introduit par Boneh, Sahai et Waters. Le FE permet un traitement plus fin
de ce qu’un destinataire peut recevoir : chaque clé de déchiffrement est associée à une fonction et
le résultat du déchiffrement selon cette clé est garanti de ne révéler rien de plus que l’évaluation de
cette fonction sur le texte en clair sous-jacent. En principe, ces clés de déchiffrement fonctionnelles
permettent de contrôler la quantité d’information à ce qui correspond au maximum à l’analyse
fonctionnelle sur le texte en clair, et rien de plus.

FE reçoit un grand intérêt de la part de la communauté des cryptographes, premièrement en
tant qu’une généralisation du chiffrement basé sur l’identité (IBE) [Sha84, Coc01, BF01, BGH07]
et du chiffrement basé sur les attributs (ABE) [SW05, GPSW06, OSW07, ALdP11, OT12b], qui
malheureusement ne fournissent qu’un contrôle d’accès sur le déchiffrement en conservant un
résultat tout-ou-rien. Abdalla et al. [ABDP15] sont les premiers à réaliser du FE pour des classes
concrètes de fonctions, où une clé de déchiffrement fonctionnelle permet de déchiffrer en obtenant
un produit scalaire entre un vecteur-fonction et un vecteur-message. Un tel FE est appelé inner
product FE (IPFE). Une série d’études sur le IPFE s’étend sur plus d’une décennie, apportant
plusieurs résultats intéressants, visant à améliorer les constructions existantes pour les produits
scalaires [ALS16, BBL17, CLT18] ou pour atteindre les fonctions quadratiques [BCFG17, Gay20,
AS17, Lin17], ou pour concocter de nouvelles notions avancées [GVW15] ainsi que des liens avec
d’autres aspects de la cryptographie moderne [AJ15, BV15]. En particulier, un intérêt énorme
se manifeste dans le cadre multi-utilisateurs [CDG+18b, ABKW19, ABG19, LT19, CDSG+20,
AGT21b, SV23, NPP23a, NPS24b]. Ce cadre autorise un grand nombre d’utilisateurs à rejoindre
un système de FE et à contribuer soit à un chiffré conjoint soit à une clé conjointe. L’agrégation
des clés conjointes permettra de déchiffrer l’agrégation des chiffrés conjoints sous certaines
conditions, e.g. ces clés partielles partagent un tag fonctionnel identique et ces chiffrés partiels
partagent un horodatage identique. Différentes notions de FE peuvent émerger avec différentes
variantes de sécurité, avec ou sans la confidentialité des fonctions, par rapport à la corruption
des clés des utilisateurs, ainsi que la flexibilité dans le nombre d’utilisateurs. À première vue,
ce cadre ressemble aux protocoles multi-parties (MPC), où les joueurs fournissent leurs entrées
pour une évaluation fonctionnelle commune tout en maintenant la confidentialité de leurs entrées.
Cependant, la principale différence réside dans le fait que le FE est censé être non-interactif à la

4

CHAPTER 1. INTRODUCTION EN FRANÇAIS 1.1. MOTIVATIONS

fois en termes de chiffrement et de déchiffrement, et sera ainsi préféré dans un environnement
décentralisé ou dynamique. FE avec un seul chiffreur pourrait être intéressant d’un point de vue
théorique, mais dans la vie réelle, le nombre de fonctions vraiment utiles peut être limité. Quand
ce nombre de fonctions est faible, n’importe quel PKE peut être converti en FE en chiffrant de
plus les évaluations selon plusieurs fonctions sous une clé spécifique. Cette approche n’est pas
possible pour plusieurs utilisateurs, même lorsqu’il n’y a qu’une fonction unique à considérer.

Ainsi, le cœur de cette thèse se concentre sur les schémas de FE dans le cadre multi-utilisateurs
pour des classes concrètes de fonctions telles que les produits scalaires.

Plus sur le Cadre Multi-Utilisateurs. En examinant de plus près comment définir raisonnablement
le FE dans le cadre multi-utilisateurs, il apparâıt que des changements définitionnels sont
nécessaires. Näıvement, comme nous l’avons soulevé ci-dessus, quand le nombre de fonctions
utiles est polynomialement borné, le Chiffrement à Clé Publique (PKE) peut être utilisé
pour chiffrer chaque évaluation de fonction en utilisant une clé publique différente, lors de la
participation d’un unique chiffreur. Malheureusement, dans le contexte avec plusieurs utilisateurs
où évaluer une fonction requiert des entrées différentes provenant de différents utilisateurs, cette
approche basée sur le PKE est impossible puisque le résultat n’est pas connu lors du chiffrement,
même s’il n’y a qu’une seule fonction. Une étude systématique du Chiffrement Fonctionnel à
Plusieurs Entrées (MIFE) et du Chiffrement Fonctionnel à Plusieurs Clients (MCFE) est conduite
dans [GGG+14, GKL+13]. Les deux mécanismes, MIFE et MCFE, permettent de déchiffrer une
évaluation de fonction sur une liste d’entrées. Dans le MIFE, un seul chiffreur peut chiffrer
différentes entrées dans cette liste à des moments distincts, tandis que dans le MCFE il y a
plusieurs clients qui chiffrent indépendamment leurs entrées respectives. Une autorité fiable est
demandée pour délivrer des clés de déchiffrement fonctionnelles afin de déchiffrer les chiffrés.
Enfin, à cause des combinaisons potentielles parmi les chiffrés pour le déchiffrement, MIFE et
MCFE sont définis comme des primitives à clé secrète pour avoir des propriétés de sécurité
non-triviales.

Techniquement, dans le cas du MCFE, un index i pour chaque client et un tag tag (typiquement
de type horodatage) sont utilisés pour chaque chiffrement : (c1 = Enc(1, x1, tag), . . . , cn =
Enc(n, xn, tag)). Une personne qui possède une clé de déchiffrement fonctionnelle dkf , pour une
fonction f n-aire et plusieurs chiffrés (pour le même tag, dans le cas de MCFE) peut calculer
f(x1, . . . , xn) mais rien de plus sur les xi individuels. Implicitement, les clients doivent avoir
la possibilité de se coordonner sur les tags, et sur leur usage pratique. En particulier, dans
le MCFE, une combinaison des chiffrés qui ont été générés avec des tags différents ne donne
pas un chiffré global valide et l’attaquant n’apprendra rien sur cette combinaison. Cela mène
à plus de versatilité parce que chiffrer xi sous tag apporte un sens distinct de chiffrer xi sous
tag′ ≠ tag. D’un autre côté, le MIFE n’utilise pas de tags et dès qu’un chiffré est calculé, il
peut être utilisé autant de fois pour des combinaisons différentes. En revanche, dans les deux
situations de MIFE/MCFE, nous rappelons que le chiffrement doit requérir une clé secrète, sinon
n’importe qui pourrait compléter le vecteur de chiffrés initialisé par un utilisateur de plusieurs
façons, et ainsi obtenir plusieurs évaluations à partir d’une clé de déchiffrement fonctionnelle.
Mais parce que le chiffrement nécessite maintenant une clé secrète dans MCFE, pour chaque
composant ci du chiffré, un sous-ensemble de ces clés peut être corrompu. Cette thèse se focalise
sur le MCFE et sa généralisation telle que le MCFE Décentralisé (DMCFE). Dans la suite, nous
révisons d’abord les propriétés additionnelles qui peuvent accompagner les clés fonctionnelles,
puis nous donnons un point de vue plus développé du FE multi-utilisateur au-delà du MCFE.

Propriétés des clés de déchiffrement fonctionnelles. Les deux propriétés naturelles que
nous pouvons demander d’une clé de déchiffrement fonctionnelle concernent un contrôle sur leur
usage et la confidentialité de la fonction associée.

Contrôle d’Accès Fin sur les Clés de Déchiffrement Fonctionnelles. Même avant l’introduction

5

1.2. MODE D’EMPLOI CHAPTER 1. INTRODUCTION EN FRANÇAIS

du FE, la gestion des clés de déchiffrement était toujours un problème classique non seulement
d’un point de vue théorique mais également dans des scénarios pratiques. Les études sur le
chiffrement par diffusion, les systèmes de révocation, et plus généralement, sur l’ABE lui-même,
e.g. voir [Wee21, Wee22, FWW23] visent tous à aborder cette question dans des situations de
plus en plus complexes. Intuitivement, chaque clé de déchiffrement fonctionnelle fait fuiter de
l’information sur la clé-mâıtre secrète suite aux évaluations de fonction lors du déchiffrement,
e.g. des informations sur les secrets qui sont utilisés pour engendrer cette clé de déchiffrement
fonctionnelle. Cela signifie que lorsqu’une quantité suffisante de fuites est accumulée, il devient
possible pour un attaquant de retrouver la clé-mâıtre de l’autorité. Cette dernière étape peut
être aussi simple que résoudre un système d’équations linéaires, par exemple dans le cas du
IPFE. Nous aimerions souligner le fait que dans le cas des classes de fonctions générales, il
est possible d’imposer un contrôle sur le déchiffrement via la fonction elle-même, au prix de
l’efficacité. Abdalla et al. [ACGU20] a initié une série de travaux sur l’intégration d’un mécanisme
de contrôle basé sur les attributs au IPFE. Les travaux qui suivent incluent [NPP22a, NPP24b]
pour les produits scalaires et [ATY23a] pour la classe des sommes attributs-pondérées. Le défi
principal réside dans le fait qu’ajouter un contrôle non trivial basé sur les attributs aux clés de
déchiffrement, tout en maintenant l’efficacité, implique nécessairement une amélioration de la
classe. Ainsi, un traitement de IPFE avec contrôle d’accès entrâıne un traitement d’une classe
plus riche avec plus de finesse technique.

La Confidentialité de Fonction. La sécurité sémantique du FE garantit tout d’abord la
confidentialité du message, étant donné le chiffré et les clés de déchiffrement fonctionnelles.
Dans des cas d’usage différents, les clés de déchiffrement fonctionnelles d’un schéma de FE
peuvent révéler des informations sur la fonction sous-jacente. Ainsi, de façon symétrique, une
question légitime est de connâıtre la quantité d’information que de telles clés peuvent révéler
sur la fonction, surtout quand cette fonction contient des paramètres sensibles. Des exemples
spécifiques incluent des modèles d’apprentissage profonds dont les paramètres constituent la
fonction à évaluer, et ces paramètres proviennent de processus d’apprentissage coûteux, qu’il est
dans l’intérêt de garder secrets afin d’assurer les services du prestataire. De manière analogue,
le développement d’autres notions avancées du PKE témoigne également de certains besoins
symétriques si nécessaire, tels que des versions anonymes de l’IBE ou des versions à attributs-
cachés/prédicats-cachés de l’ABE. Pour le FE, cette propriété s’appelle function-hiding (FH) et les
schémas FH-FE sont également un objet théorique important. En utilisant un FH-FE, plusieurs
travaux [Lin17, Gay20] explorent des approches différentes pour atteindre du FE par rapport à
la classe des fonctions quadratiques, ou plus récemment [AGT21a, AGT22], réussissent à réaliser
l’évaluation quadratique dans le cadre MIFE. À l’égard de la classe des produits scalaires, la
propriété de function-hiding elle-même inspire certains progrès récents dans le contexte des
multi-utilisateurs [SV23, NPS24b, Ngu24].

1.2 Mode d’Emploi: Comment Lire la Suite

Nous venons de survoler les principaux sujets qui ont été abordés dans notre travail de cette
thèse : le contexte du FE avec plusieurs utilisateurs et deux propriétés qui accompagnent les clés
de déchiffrement fonctionnelles, i.e. un contrôle sur l’usage des clés et la confidentialité de la
fonction associée. Pour conclure cette partie d’introduction en français, nous aimerions présenter
la structure de ce manuscrit de thèse, et des parcours de lecture possible selon les intérêts du
lecteur. Premièrement, les contenus communs pour tout ordre de lecture sont :

1. (Une préparation introductive plus élaborée) Le passage “Extensions of FE in the Multi-
User Setting.” dans la Section 2.1 enchâıne sur notre sujet du MIFE/MCFE ci-dessus. Il
y aura beaucoup plus de détails sur les notions de FE à plusieurs utilisateurs, au-delà du
MCFE, e.g. MCFE Décentralisé (DMCFE) et FE Dynamique et Décentralisé (DDFE). Nous

6

CHAPTER 1. INTRODUCTION EN FRANÇAIS 1.2. MODE D’EMPLOI

donnons des références sur les avancées récentes dans ces domaines.

2. (Des questions de recherche & les contributions) Dans la Section 2.2, nous formulons les
questions qui sous-tendent nos résultats au cours de cette thèse. Puis, la Section 2.3
explicite ce que nous avons obtenu vis-à-vis des dites questions.

3. (Notations & Préliminaires) Des notions des espaces vectoriels duaux avec couplages dans les
groupes bilinéaires sont essentielles, et il est fortement conseillé de parcourir la Section 3.3
qui présente les définitions avec des exemples détaillés.

Ensuite, selon l’intérêt, les chapitres de cette thèse peuvent être parcourus comme suit :

(Sur un contrôle sur l’usage des clés) Le Chapitre 4 détaille nos résultats dans le cas du
MCFE, puis le Chapitre 5 améliore le modèle de sécurité dans le cas du (D)MCFE, qui
s’applique aussi dans le cas avec un contrôle d’accès. Finalement, le Chapitre 6 intègre le
modèle plus fort du Chapitre 5 et étend les résultats du Chapitre 4.

(Sur la propriété function-hiding) Le Chapitre 7 présente notre résultat sur le FH-IP-DMCFE.

(L’usage des espaces vectoriels duaux avec couplages - DPVS) Une preuve détaillée qui
utilise DPVS est donnée pour le Théorème 6.11, qui démontre à la fois son pouvoir
calculatoire et information-théorique. Plus tard, dans le Chapitre 7, un lemme modulaire
du type "swapping" des contenus des vecteurs dans DPVS est annoncé et prouvé en détail,
qui donne un deuxième exemple sur l’utilisation des techniques de changement de base.
Avant toutes ces preuves techniques, nous esquissons les grandes étapes avec des aperçus
techniques.

7

1.2. MODE D’EMPLOI CHAPTER 1. INTRODUCTION EN FRANÇAIS

8

Chapter

2
Introduction

Chapter content
2.1 Context and Motivations . 9
2.2 Research Questions . 14
2.3 Contributions . 15

2.3.1 MCFE with Access Control . 15
2.3.2 Strong Admissibility . 16
2.3.3 MCFE: Upgrades . 19
2.3.4 FH-DMCFE . 22
2.3.5 Other Contributions . 23

2.1 Context and Motivations
From this Thesis: A Point on Expectation. If to be positioned, this thesis is likely finding
itself among the vast and expanding landscape of research in modern cryptography. The witnessed
rigorous treatment of modern cryptography is possibly one of the fascinating sides of computer
science at this stage of history. In contrast to “classical” cryptography in which the everlasting
concern is how to communicate what we want to those we want, without having control over
the channel of communication, modern cryptography carries on its shoulders many more tasks:
establishing private and authenticated communication over the Internet, holding tamper-proof
and secret electronic voting, deploying “fault-resilient” multi-party computation, and more. In
particular, notions such as computational indistinguishability, pseudorandomness, zero-knowledge
proofs are introduced, important applications such as encryption and digital signatures are
founded on firm theoretical backgrounds, and much more directions are uncovered. This thesis
bears some hints to the two main activities of modern cryptography - the definitional activity
and the constructive activity - while inexorably resorting to computational difficulty almost all
over.

The problems that are approached in this thesis go first through a definitional stage, where a
clear functionality is tentatively given in a clearly defined model. It is “tentatively given” due to
the inherent identification of some underlying intuitive objective, which afterwards leads to an
adequate cryptographic problem. It is unrealistic and prone to error to list all desired situations
regarding the cryptographic problem at hand. Hence, the functionality is described operational
in some (possibly idealized) well-defined model and we require any candidate solution emulate
this operation in more concrete and clearly specified models (which details the adversary’s
abilities). Then comes the constructive task. Given the freshly defined functionality, the goal of
any construction attempt is not only maintaining correctness in “normal operation”, but also
aiming for security against any adversary who will try to manipulate the system away from
typical states. This goal is infamously hard. The adversarial attempts can be devised after the
construction is finished, they can deviate from all envisaged actions at designing time. One
cannot be content to have a solution that works only for a fixed predetermined list of strategies,

2.1. CONTEXT AND MOTIVATIONS CHAPTER 2. INTRODUCTION

and heuristics can only go so far as giving ideas on the functionally envisoned environment for
operation but not the maliciously chosen environment. To make things even more challenging,
candidate constructions for practical use also have to satisfy some efficiency requirements.

Tracing back to the dawn of modern cryptography, those two interleaving definitional-
constructive steps appear ubiquitously in all seminal works on encryption [GM84], digital
signatures [GMR88], pseudorandom generators [BM84, Yao82], zero-knowledge proofs [GMW86],
multi-party protocols for securely computing general functions [Yao86, GMW87], and more.

This thesis zooms in on encryption and its advanced notions, which is one of the most
archetypical problems of modern cryptography. In all chapters the structure closely follows the
two-step paradigm that is mentioned above: we first identify the natural concern and underlying
cryptographic problem (via some technical overview), then define formally the problem, then show
that candidate solutions may exist. For the latter part, we limit ourselves to providing a claim
of feasibility: in principle the problems we define may be solved. We do not aim to give practical
solutions, though some discussions on (im)praticality of solutions are given occasionnally.

Functional Encryption (FE). Secure communication fundamentally uses encryption schemes
as its building block: only with a decryption key can a recipient decrypt a ciphertext to obtain
the underlying message, otherwise it is guaranteed by the scheme’s semantic security that nothing
is leaked about the plaintext data. This all-or-nothing nature remains the standard for a long
time. However, the fact that more complex and hierarchical comunication systems appear
means more need of a fine-grained control over the leakage from ciphertexts. Thus a great deal
of motivation into advanced notions of encryption is generated. The progress culminates in
Functional Encryption (FE) [SW05, BSW11] that is introduced by Boneh, Sahai and Waters.
FE allows a finer treatment of what a recipient can obtain: each decryption key is associated
with a function and the decryption result as per this key is guaranteed to reveal no more than
the foregoing function evaluation on the underlying plaintext. In principle, these functional
decryption keys permit controlling the amount of information to be at most the functional analysis
over the plaintext, and not more.

FE received large interest from the cryptographic community, first as a generalization of
Identity-Based Encryption (IBE) [Sha84, Coc01, BF01, BGH07] and Attribute-Based Encryption
(ABE) [SW05, GPSW06, OSW07, ALdP11, OT12b], which unfortunately provieds only access
control over decryption keys while retaining an all-or-nothing result. Realizing FE for concrete
function classes is first done by Abdalla et al. [ABDP15], where a functional decryption key
allows decrypting to an inner product between some function vector and the plaintext vector.
A such FE scheme is coined inner product FE (IPFE). A long line of works on IPFE spans
over almost a decade, with numerous interesting results, to improve existing constructions for
inner products [ALS16, BBL17, CLT18] to move to quadratic functions [BCFG17, Gay20, AS17,
Lin17], or to concoct new advanced notions [GVW15] as well as relate to other notions in
cryptography [AJ15, BV15]. In particular, great enthusiast is manifested in the multi-user
setting [CDG+18b, ABKW19, ABG19, LT19, CDSG+20, AGT21b, SV23, NPP23a, NPS24b].
This setting allows multiple users to take part in an FE system and contribute either to some
joint ciphertext or joint functional key. Aggregation of contributed keys will be able to decrypt
aggregation of contributed ciphertexts upon certain conditions, e.g. those partial keys share
identical function tags and those partial ciphertexts share identical timestamps. A number of
different FE notions can stem from different flavors of security, with or without function privacy,
regarding corruption of users’ keys, as well as flexibility in the number of users. At first sights
this setting seems similar to multi-party computation (MPC), where several players provide
their inputs for a jointly function evaluation while maintaining their input privacy. However,
the principal difference is found in the fact that FE is expected to be non-interactive in both
encryption and decryption, and is thus more preferable in decentralized or dynamic environments.
While FE with a single encryptor might be of theoretical interest, in real-life, the number of

10

CHAPTER 2. INTRODUCTION 2.1. CONTEXT AND MOTIVATIONS

really useful functions may be limited. When this number of functions is small, any PKE can
be converted into FE by additionally encrypting the evaluations by the various functions under
specific keys. This approach is impossible for multiple users, even when a unique fixed function
is considered.

The center of attention of this thesis is FE schemes in the multi-user setting for concrete
function classes such as inner products.

More on Multi-User Settings. Taking a closer look at how to meaningfully define FE in
the multi-user setting, it appears that inherent definitional changes are necesary. Naively,
as mentioned earlier, when the number of useful functions is polynomially large, Public Key
Encryption (PKE) can be used to encrypt each function evaluation using a different public
key. Unfortunately in the multi-user setting where evaluating a function requires different
inputs from different users, this PKE-based approach is impossible as the result is unknown at
encryption time, even when there is only one function. A systematic study into Multi-Input
Functional Encryption (MIFE) and Multi-Client Functional Encryption (MCFE) is then conducted
in [GGG+14, GKL+13]. Both MIFE and MCFE permit decrypting to a function evaluation over
a list of inputs. In MIFE, a single encryptor can encrypt different inputs in the list at different
time, whereas in MCFE there are multiple clients who independently encrypt their respective
input. A trusted authority is required to issue functional keys to decrypt jointly the ciphertexts.
Last but not least, due to possible combination of ciphertexts for decryption, both MIFE and
MCFE are defined as secret-key primitives so as to have non-trivial security guarantees.

Technically, in the case of MCFE, an index i for each client and a (typically time-based) tag
tag are used for every encryption: (c1 = Enc(1, x1, tag), . . . , cn = Enc(n, xn, tag)). Anyone owning
a functional decryption key dkf , for an n-ary function f and multiple ciphertexts (for the same
tag tag, in the case of MCFE) can compute f(x1, . . . , xn) but nothing else about the individual
xi’s. Implicitly, clients have to be able to coordinate together on the tags, and different usability
in practice. In particular, in MCFE, the combination of ciphertexts generated for different tags
does not give a valid global ciphertext and the adversary learns nothing from it. This leads to
more versatility since encrypting xi under tag has a different meaning from encrypting xi under
tag′ ̸= tag. On the other hand, MIFE does not use tags and once a ciphertext of xi is computed,
it can be reused for different combinations. However, in both situations of MIFE/MCFE, we recall
that encryption must require a private key, otherwise anybody could complete the vector initiated
by a user in many ways, and then obtain many various evaluations from a unique functional
decryption key. But then, since encryption needs a private key per client in MCFE, for each
ciphertext component ci, some of these keys might get corrupted. The focal point of this thesis
is narrowed down to MCFE and its generalization such as the Decentralized MCFE (DMCFE). In
the following we first review further properties that can accompany the FE functional keys, then
give a broader point of view of multi-user FE that even goes beyond MCFE for the sake of a
general state of the art.

Properties of Functional Decryption Keys. Two natural and important properties that one
can require from the functional keys consist of controlling their usage and hiding the associated
function.

Fine-Grained Control over Functional Decryption Keys. Even before the dawn of FE, managing
decryption keys is always a classical problem not only from theoretical points of view but also
in real-life scenario. Extensive studies in broadcast encryption, revocation systems, and more
generally, of ABE itself, e.g. see [Wee21, Wee22, FWW23] all aim at tackling this question
in evolvingly more complex situation. Intuitively, each functional decryption key gives away
some information on the master secret key following the function evaluation when decrypting,
e.g. information on the secrets that are used to generate the functional key. This means when
accumulating some sufficient amount of leakage, it is feasible for an adversery to recover the

11

2.1. CONTEXT AND MOTIVATIONS CHAPTER 2. INTRODUCTION

master secret key of the issuance authority. The later recovery step can be as easy as solving linear
equations, for example in the case of IPFE. It is worth noting that for general function classes, one
can impose decryption control in the function itself at the cost of efficiency. For practical interests,
Abdalla et al. [ACGU20] started the line of works on integrating a mechanism of attribute-based
access control into FE for inner products. Follow-up works include [NPP22a, NPP24b] for inner
products and [ATY23a] for the class of attribute-weighted sums. The main challenge resides in
the fact that adding non-trivial access control over decryption keys, while preserving efficiency of
the basic IPFE blueprints, is necessarily an enhancement to the function class. Hence, moving
from IPFE to IPFE with access control incurs dealing with richer classes and with more technical
delicacies.

Function Privacy. Originally an advanced PKE notion, the semantic security of FE guarantees
first and foremost the confidentiality of the plaintext, given the ciphertext and the functional
keys. When deploying in different use cases, the functional keys of an FE scheme can happen to
carry with them information about the underlying function. From a symmetric consideration,
a valid question that can be asked is how much information such keys can reveal about the
function, especially when the function contains sensitive parameters. Specific examples include
models of machine/deep learning whose parameters constitute the function to be evaluated, and
these parameters are often the result of expensive training processes, which are kept secret to
ensure the business model of the service provider. In an analogous manner, the development
of other advanced PKE notions also witness somewhat symmetric privacy requirements when
necessary, such as anonymous versions of IBE or attribute/predicate-hiding versions of ABE. For
FE schemes, this property is named function-hiding (FH) and FH-FE schemes also turn out to be
an important theoretical object. From a FH-IPFE, various works [Lin17, Gay20] exploit different
approaches to achieve FE schemes for quadratic functions, or more recently [AGT21a, AGT22]
succesfully realize quadratic evaluation in the MIFE setting. Sticking to the class of inner
products, the property of function-hiding itself inspires recent progress in the multi-user setting,
e.g. see [SV23, NPS24b, Ngu24].

Extensions of FE in the Multi-User Setting. Not long after the seminal works that
introduce FE [SW05, BSW11], extensions of FE into the multi-user setting are initiated by
Goldwasser et al. [GGG+14, GKL+13] with Multi-Client Functional Encryption (MCFE) and
Multi-Input Functional Encryption (MIFE). Speaking of the concrete class to compute inner
products, efforts are made over the years for more refinements in definitional frameworks, efficiency,
and more [DOT18, CDG+18a, CDG+18b, ACF+18, ABKW19, ABG19, LT19, CDSG+20,
ACGU20, NPP22a]. Going beyond inner products, a rising level of interest is directed towards
quadratic functions [AGT21a, dPP22, AGT22] or attribute-weighted sums [ATY23a, NPS24a,
Ngu24].

(Decentralized) Multi-Client Functional Encryption. As a reminder, from [GGG+14, GKL+13,
CDG+18a] the MCFE setting allows a fixed number of clients to independently encrypt their data
using their private encryption keys, where a functional key can jointly decrypt these ciphertexts
only if they share an identical tag. The trust model requires an authority to issue those functional
keys. It is of immediate preference to remove this reliance on some trusted party. In the
same work, Chotard et al. [CDG+18a] questions the need of a central authority for distributing
functional keys in MCFE and proposes the notion of Decentralized MCFE (DMCFE). In DMCFE,
there is no need of an authority anymore and the key generation can be done by multiple
senders in a collaborative manner. To do so, a fixed number of senders interact during the setup
phase, e.g. in an MPC-based fashion, so that each sender gets a secret key ski. This ski allows
the sender to contribute to the generation of a functional key DKf for a function f , and each
contribution is associated with a key tag tag-f for later joint combination, where tag-f can contain
the description of f itself. As one might expect, liberating DMCFE from the requirement of a
trusted authority at the cost of one more interactive phase during setup is a significant change

12

CHAPTER 2. INTRODUCTION 2.1. CONTEXT AND MOTIVATIONS

in terms of the trust model. After [CDG+18a] many follow-up works dive into different angles,
ranging from constructions and applications [LT19, ABKW19, ABG19, QLH+24] to security
enhancements [NPP23a, NPS24c]. In terms of the supported functions, all aforementioned works
focus on the class of inner products, while some progress for more expressive classes to compute
attribute-weighted sums is only achieved very recently in [ATY23a, Ngu24]. More interestingly,
the two works [ATY23a, Ngu24] focus on a more general version of DMCFE, which is coined
Dynamic Decentralized Functional Encryption (DDFE) and in the end gives implicit constructions
of DMCFE. We will come back to the notion of DDFE in the following, after addressing a technical
subtlety of the message/key tags up to the current notion of DMCFE.

Repetitions under One Message/Key Tag. It should be clear from our discussion so far that
the functionality of DMCFE requires ciphertexts to share identical tags tag and keys to share
identical key tags tag-f so that they can be combiningly decrypted. From a security standpoint,
an almost immediate question is what kind of properties we need regarding these tags. Initial
works and follow-ups on DMCFE [CDG+18a, LT19] ignore repeated adversarial queries to some
slot i under the same tag tag or tag-f. It is argued in [CDG+18a] that it is up to the user’s
responsibility not to use the same mesage and key tag twice, neither for encryption nor for
key-generation, respectively. Nonetheless, we believe that proving security under a repeated
usage of tags is still important. First of all, mistakenly or maliciously re-using of tags can happen
in practice. Furthermore, given a (D)MCFE that is provably secure even when an adversary can
obtain different ciphertexts on the same (i, tag), one can get a MIFE [GGG+14, GKL+13] for
the same function class whose semantic security is preserved from the (D)MCFE. In short, the
MIFE fixes a public tag and runs the algorithms of the (D)MCFE using that public tag for all
encryption/decryption. Any MIFE adversary that tries to combine MIFE ciphertexts are essentially
some (D)MCFE adversary who tries to break the semantic security using repeated ciphertexts
under the fixed public tag. This connection is studied in preceding works [ABKW19, ABG19]
and recently confirmed in [ATY23a, NPP24b]. Our final aim for the security of DMCFE and the
like will allow repetitions on both message/key tags.

Dynamic Decentralized Functional Encryption. An attentive reader may notice that one
shortcoming of DMCFE is the obligation of fixing the numbers of clients and senders at setup
time. Despite a great advantage in terms of trust model, resolving this rigidity of DMCFE can
enable even more applications in which users can enter the system flexibly at various stages.
Chotard et al. [CDSG+20] generalize DMCFE and define the notion of Dynamic Decentralized
Functional Encryption (DDFE). All decentralized properties of DMCFE are preserved in DDFE,
whereas the latter allows a non-interactive global setup instead of an interactive setup in DMCFE.
More specifcally, this global setup provides some public parameters using which any user, clients
and senders alike, can run their local setup and generate their secret-public keys pair to join
the system. At any time, any set of users UM can independently encrypt their individual data
to contribute to a list of ciphertexts (CTi)i∈UM

under some message tag tag. Similarly, a set of
users UK can independently contribute to a list of functional keys (DKi)i∈UK

under some key tag
tag-f. We recall the usage of tags here is similar to that in (D)MCFE: the ciphertexts and the
functional keys can be combined only if they have the same message and key tags, respectively.
A DDFE scheme allows jointly decrypting a list of ciphertexts (CTi)i∈UM

using a list of functional
keys (DKi)i∈UK

, without resorting to any central authority. Chotard et al. [CDSG+20] provide
a DDFE for the class of inner products, which is then followed by [AGT21b] that revisits and
improves by first constructing a FH-MCFE for inner products and then lifting it to a FH-DDFE
for inner products. In terms of more expressive function classes, [ATY23a] presents the first
DDFE to compute attribute-weighted sums (AWS). All constructions attain only selective security
under static corruption in the ROM, i.e. the adversary makes all encryption, key-generation
and corruption queries up front in one shot. Very recently, [Ngu24] leverages the state-of-the-art
from [AGT21b, ATY23a] to give the first FH-DDFE for inner products and DDFE for AWS
without ROM. All mentioned works allow repetitions for message tags. Regarding the security

13

2.2. RESEARCH QUESTIONS CHAPTER 2. INTRODUCTION

against repetitions on key tags, [AGT21b] and the FH-IP-DDFE of [Ngu24] explicitly exclude
them from their security model, whereas [CDSG+20, ATY23a] and the DDFE for AWS of [Ngu24]
consider a simplified functionality that does not consider key generation with respect to tags,
thus there is no notion of repetition for key tags.

A Closer Look: How to Define Security of Multi-User FE? The preceding paragraphs
elaborate long lines of works on FE in the multi-user setting, from the seminal MIFE/MCFE to
the recent DDFE notion. As the notion evolves, or more properties are required such as function-
hiding/access control over keys, the security model is necessarily becoming more complicated. It
is important to notice that since the introduction of (D)MCFE in [CDG+18a], their security model
for (D)MCFE schemes is widely used as a standard. In short, the power of an adversary in the
security model of (D)MCFE allows some corruption with respect to the secret keys of the client (to
encrypt) or sender (to generate partial functional keys), the security must take into account these
corrupted keys, and exclude attacks that trivially breaks the scheme. For instance, in the “vanilla”
setting of MCFE, that is, without function-hiding nor key access control, whenever an encryption
key eki is corrupted, the adversary must query the same challenges x(0)

i = x(1)
i for the corrupted

client i following the work of [CDG+18a]. In the discussion after [CDG+18a, Def. 2], it was
justified that “since the encryption might be deterministic, if we allow Left-or-Right encryption
queries even for corrupted encryption keys, these queries should be on identical messages: with
the encryption key, the adversary could simply re-encrypt and compare in case of deterministic
encryption”. However, it is also left open whether one can relax this constraint, which will lead
to a stronger security model, as hinted in [CDG+18a] by using probabilistic encryption schemes.

2.2 Research Questions

The above expository discussion leads us to various research questions. The body of works
that build up to this thesis focuses on MCFE up to their generalization DMCFE/DDFE for
inner products or for attribute-weighted sums, with or without access-control, with or without
function-hiding. The following questions may overlap, but we break them down into different
aspects for the sake of clarity. It should be clear that resolving multiple of them at the same
time is notoriously hard:

1. Following the introduction of (D)MCFE in the seminal paper [CDG+18a], all follow-
up studies on (D)MCFE, for instance [CDG+18b, ABKW19, ABG19, LT19, CDSG+20,
AGT21b], administered an admissibility condition and restricted particularly adversaries
to asking the challenge components x(0)

i = x(1)
i in case of a corrupted i. Can we relax

this constraint, which will lead to a stronger security model for (D)MCFE, as hinted
in [CDG+18a]?

2. All cited DDFE schemes [CDSG+20, AGT21b, ATY23a, Ngu24] attain only selective
security under static corruption. How far can we push for adaptive security of DDFE?

3. Regarding the attribute-based access control over functional keys, existing works can go as
far as MIFE, for inner products in [ACGU20] and for attribute-weighted sums in [ATY23a].
How further can we integrate access control into the multi-user setting, e.g. starting from
MCFE and potentially all the way up to DDFE?

4. All cited DDFE schemes [CDSG+20, AGT21b, ATY23a, Ngu24] rely on group-based
assumptions and do not provide post-quantum security. The only multi-user FE scheme in
the post-quantum regime comes from the DMCFE of [LT19] for inner products and relies
on the Learning with Error (LWE) assumption. How far can we push for post-quantum
security for DDFE?

14

CHAPTER 2. INTRODUCTION 2.3. CONTRIBUTIONS

5. The security against repetitions on key tags is either excluded in the FH-IP-DDFE
from [AGT21b, Ngu24], or not explicitly considered in [CDSG+20] for IP-DDFE and
in [ATY23a, Ngu24] for AWS-DDFE. How can we achieve security against repetitions for
both encryption and key-generation queries in the FH-DDFE and/or DDFE with access
control setting?

2.3 Contributions

We present in this thesis some of our principal contributions that resolve completely or partially
the questions from Section 2.2. In each subsection (2.3.1, 2.3.2, 2.3.3, 2.3.4), we detail the main
results that will be presented in this thesis, and relate them to the research questions. Other
related contributions and other miscellaneous ongoing works that are not presented in this thesis
are mentioned in Section 2.3.5.

2.3.1 Contributions: Multi-Client Functional Encryption with Access Control

We have argued above that one important aspect of the functional keys is how to control them,
especially given the fact that in standard FE schemes, any functional key can be used unlimitedly
after a legitimate issuance. The work by Abdalla et al. [ACGU20] is the first to deal with this
problem of controlling decryption keys in FE, for the practical function class to compute inner
products. This thesis contains follow-up results of [ACGU20], including in paricular [NPP22a]
that gives a definitional framework for treating access control in MCFE and in particular gives
concrete MCFE scheme for inner products with Linear Secret Sharing access control. This resolves
partially question 3 at the level of MCFE. We briefly summarize our results below and refer to
Chapter 4 for more extensive motivations behind our work. Other results that advance further
this result and can be found in Section 2.3.3, for a later chapter of this thesis, and in Section 2.3.5,
for those that are not presented.

Single-client setting. We propose new single-client schemes whose selectively-secure version
is almost as efficient as the selectively-secure version in [ACGU20] and the adaptively-secure
version is nearly three times as efficient as the adaptively-secure version in [ACGU20]. More
importantly, our schemes can be extended to multi-client settings. Our constructions exploit the
Dual Pairing Vector Spaces that are proposed by Okamoto-Takashima [OT10, OT12b].

Multi-client setting. Our main contribution is an extension from single-client to multi-client
without linearly increasing the complexity in the number n of clients. The generic transformation
proposed by Abdalla et al. [ACGU20, Theorem 6.3] results in a degradation of factor n in both
construction and security reduction. As it turns out from [ACGU20, Sect. 6.2], Abdalla et
al.’s generic transformation can only help to achieve a multi-input scheme and is unlikely to be
generalized to a multi-client scheme without further seriously degrading efficiency. On the other
hand, because MIFE can be defined as MCFE with a fixed public constant tag, our construction
yields a much more efficient MIFE with access control than the Abdalla et al.’s scheme (in fact,
n times more efficient). More concretely, the total communication among n clients in our MCFE
construction is a linear function in n and does not suffer a quadratic blow-up of n2 group elements
as in [ACGU20].

Comparisons. Our concrete constructions focus on the functionality class whose member’s
description contains inner-product evaluation functions and binary relations to describe access
control. In the pairing-based setting, we give comparisons with existing works in Table 2.1. Recall
that in MCFE, n can be a large number of clients, while d is the number of attributes, generally
small, used in a policy. Concretely, we can consider identity-based functional encryption, as

15

2.3. MCFE WITH ACCESS CONTROL CHAPTER 2. INTRODUCTION

Scheme P F |ct| Security

[ACGU20, Sect. 3.1] MSP; CP F IP,poly
n,q,MSP n+ 2d+ 2 sel-sim

[ACGU20, Sect. 3.2] roMSP; CP F IP,poly
n,q,roMSP 3nd+ 3d+ 2 ad-ind

Sect. 4.3, Fig. 4.1 LSSS; KP F IP,poly
n,q,LSSS nd+ 2n+ 7d+ 3 ad-ind

[ACGU20, Sect. 6.2] MSP; CP F IP,poly
n,q,MSP n2 + 2nd+ 2n mi-ad-indapplied to [ACGU20, Sect. 3.1]

Sect. 4.4.2 LSSS; KP F IP,poly
n,q,LSSS 8nd+ 5n mc-ad-ind

Table 2.1: We compare our constructions with existing works, in terms of the number of group elements in the ciphertext
(column |ct|), the largest predicate class that can be handled (column P), the function class (column F), security (column
Security). We denote by d the number of attributes needed by the policy in a ciphertext. All our schemes are defined
for the functionality class F IP,poly

n,q,LSSS = F IP × LSSS constituted by F IP = {Fy : Zn
q → Zq; x 7→ ⟨x,y⟩ ∈ R(Zq)} and LSSS of

Linear Secret Sharing Schemes over attributes in Zq, where n, q ∈ N, q is prime and |R(Zq)| = poly(log q). The schemes
from [ACGU20] are constructed for F IP×MSP and F IP× roMSP, where MSP, roMSP are classes of monotone span programs,
read-once monotone span programs over attributes in Zq . The shorthands (mc,mi, sel, ad, ind, sim) denote multi-client setting,
multi-input setting, selective security, adaptive security, indistinguishability-based, simulation-based.

outlined in [ACGU20], where d = 1, whatever the size of n: our ciphertext’s size is linear instead
of quadratic in n as in [ACGU20].

Related Work. Recently, [LLW21] improves upon the single-client construction based on
Learning with Errors (LWE) from [ACGU20], for IPFE with access control expressed by bounded
depth boolean circuits, achieving better security along with smaller ciphertexts. In another
work, [PD21] also studies LWE-based single client constructions for IPFE with access control
expressed by general boolean functions but under selective challenge attributes. The single-client
LWE-based construction in [PD21] is later lifted to an MIFE using the generic transformation
from [ACGU20].

Also in the single-client setting, another line of works attempts to construct FE for a
general uniform functionality class such as Turing machines (TMFE), which naturally captures
inner-product evaluation under LSSS access control. The work of Agrawal et al. [AMVY21]
provided a non-adaptively simulation-based secure construction for TMFE in the dynamic bounded
collusion model under sub-exponential LWE. The construction is later improved in [AKM+22] to
achieve adaptive security under polynomial LWE, DDH or bilinear decisional Diffie-Hellman in
specific groups, or quadratic residuosity. Towards this goal, both works of [AMVY21, AKM+22]
additionally gave constructions of FE for circuits of unbounded size and depth, which can also
encompass inner-product computation under LSSS access control, based on various standard
assumptions such as computational Diffie-Hellman, factoring, or polynomial LWE. All single-
client constructions from [AMVY21, AKM+22] use a wide range of cryptographic primitives in a
generic manner, which deviates from our goal to give explicit constructions in the multi-user
setting.

2.3.2 Contributions: Optimal Security for (Decentralized) Multi-Client Functional
Encryption

Being inspired by the possibility of enhancing the security model of (D)MCFE from [CDG+18a],
we reexamine the constraints and corruption model in the context of DMCFE. Concerning the
corruption model, it is proposed in [CDG+18a] that when an adversary corrupts a client i, they
receive both the encryption key eki (for encryption) and the secret key ski (for key generation).
However, in real life these two types of keys might have different levels of protection, or they
are independent and non is included in the other. Concerning the constraint of x(0)

i = x(1)
i for

the corrupted client i, it is partially justified by that fact that deterministic encryption is used
in [CDG+18a] and is left open by [CDG+18a] to lift this constraint, by necessarily relying on
probabilistic encrypting mechanism. We summarize our results below, taken from [NPP23a]: we

16

CHAPTER 2. INTRODUCTION 2.3. STRONG ADMISSIBILITY

give a more relaxed version of admissibility for (D)MCFE, along with a definitional framework
that argues why our version is optimal, i.e. it cannot be relaxed further. This resolves question 1
at the level of (D)MCFE. Other results that advance further this result and can be found in
Section 2.3.3, for a later chapter of this thesis.

An Improved Security Model for DMCFE. Since previous security notions of DMCFE turn
out unstable, the main goal of our results in [NPP23a] is to propose a fair and optimal security
model.
Separating Corruptions of eki and ski. Our first step is thus to separate the corruption of
skj from that of eki, i.e. the adversary must specify which type of keys it wants to corrupt. This
gives more flexibility to the adversary. However, its goal remains the same: distinguish between
the encryption of x(0) and x(1) in the challenge ciphertext. We notice that this new corruption
model captures the previous “both-or-nothing” model in previous works and any scheme that
is secure in this new fine-grained model will also be secure in the old one. A very recent work
by Agrawal et al. [AGT21b] also defined a security model with similar fine-grained corruption,
though as mentioned later (see footnote 1 in Chapter 5) their subsequent DMCFE scheme for
inner products has ski = eki for every i and by corrupting one an adversary will obtain both
keys.
Refining Admissibity for A Stronger Security. Our next objective consists in challenging
the belief from previous admissibility conditions and relaxing the restriction x(0)

i = x(1)
i in case of

a corrupted i. A more relaxed admissiblity means more attacks will be considered, leading to a
stronger security notion. To summarize, we revise the security model for (D)MCFE and

1. We provide a new security model for DMCFE under separated corruption of
keys and less restrictive admissibility condition. Our security model covers the
security model in all previous works, in the sense that being secure in the former
implies being secure in the latter.

In Section 5.2.1, we give the intuition of our new formulation for admissibility condition. This
new definition will require probabilistic encryption, which excludes the need of private encryption
keys. Our security model will thus also consider public-key encryption, as some security still
holds when all the encryption keys eki are corrupted. Note however this might make sense for
limited classes of functions only and becomes completely meaningless when both (eki, ski) can be
corrupted at once.

Optimality. At the core of our new security model is a more relaxed admissibility condition. Up
to this point one may well wonder if there is still room to relax our condition, in the same way
we have done to the admissibility condition put forth since the birth of DMCFE in [CDG+18a].
Our goal is to analyze this question in a rigorous manner. This turns out to be notoriously hard
because we aim to settle this infamous problem with satisfactory justifications whenever a new
condition is introduced. Intuitively, since all prior works did not elaborate formally whether an
admissibility condition must be respected or it is just optional, we have to start from scratch to
formalize how “indispensable” a condition is. We thus address this optimality question and this
leads to our second contribution:

2. We provide a new framework to prove the optimality of our new notion of
admissible attacks. More formally, this allows us to show that any non-admissible
attack would actually break any efficient construction for the functionality. This
proves that we only exclude attacks that are at the functionality level and not at
the scheme level.

We believe that the conceptual message from our methodology is one main contribution. We refer
to Section 5.2.3 for a detailed explanation of our modeling choices as well as the encountered
problems.

17

2.3. STRONG ADMISSIBILITY CHAPTER 2. INTRODUCTION

Impact and Feasibility. While we have shown our security notion to be optimal w.r.t. the
functionality for a class of functions, there are two remaining questions, with respect to this new
admissibility notion: are the previous constructions secure? Can we construct concrete schemes
for non-trivial functionalities?

First, we can show that the class of inner products is a non-trivial class. Furthermore, it
has been widely studied, with several candidates: the DDH-based MCFE for inner products
from [CDG+18a, ABG19, CDSG+20] cannot be proven secure in our model, due to the following
attack, which was artificially excluded in the previous security models. For any corrupted key eki,
it was required that x(0)

i = x(1)
i , because of the deterministic encryption: an adversary corrupts

client 1 among n clients to get ek1, then queries the function y with y1 = 0 and challenges
(x(0)

i ,x
(1)
i)i∈[n] such that the first coordinates x(0)

1 ̸= x(1)
1 and ⟨x(0),y⟩ = ⟨x(1),y⟩. Then, the

adversary encrypts x(1)
1 on their own using ek1. By comparing with the obtained ciphertext on

x(b)
1 , such an adversary can decide correctly on b. In addition to these DDH-based constructions,

in a work by Libert and Titiu [LT19], the authors proposed the first LWE-based MCFE in the
standard model. The ciphertext components of this scheme is somewhat randomized by some
small Gaussian error, but the above attack still works by choosing x(0)

1 ≠ x(1)
1 that are far from

each other, then deciding based on the norm of the two ciphertexts’ difference1. We note that
the above attack gives a byproduct that complements our first contribution

1-bis. Our security model is strictly stronger than the security model in almost
all previous works, in the sense that prior concrete schemes cannot be proven
secure in ours.

Besides the theoretical part introducing and proving our optimal security notion for DMCFE, we
also propose new constructions in the DDH setting which meet the proposed level of security. This
requires a number of new technical ideas, in particular a technique for achieving admissibility via
revocation (in a different way than [ABP+17]) and using dual pairing vector spaces (DPVS) [OT10,
OT12a, OT12b], to build a probabilistic encryption scheme.

Roughly speaking, our new admissibility when translated for the particular cases of inner-
products introduces one condition that for all corrupted clients i, for eki, for all functional key
query y, it must hold that

(x(0)
i − x(1)

i) · yi = 0 . (2.1)

Previous security models required x(0)
i = x(1)

i , but we now have to deal with the case x(0)
i ≠ x(1)

i and
yi = 0 additionally. A necessary condition is that our encryption must be probabilistic (otherwise,
the attack described in the previous paragraph applies). However, that is not enough because
we want semantic security for the ciphertext component cti of x(b)

i as well, where b $← {0, 1} is
the challenge bit. When we view this problem under the lens of revocation systems, similarities
emerge: as soon as the special value 0 is set for yi, we want to nullify the ability for recovering
information about x(b)

i . The foregoing fits well in the context of revocation. Conveniently, the
work by Agrawal et al. [ABP+17] solved the “dual” problem, namely using IPFE to construct
revocation systems, and along the way, the authors of [ABP+17] presented a DDH-based IPFE
that we can embed locally into the vectors in DPVS, components by components. We leverage
this idea to concoct DPVS-based DMCFE schemes for inner-product functionality and achieve
security under the condition (2.1). In the end, our third contribution is

3. We demonstrate the feasibility of our new security model by presenting DDH-
based DMCFE schemes for inner products over polynomially bounded ranges

1We use the metrics employed in the context of the LWE-based (D)MCFE in [LT19].

18

CHAPTER 2. INTRODUCTION 2.3. STRONG ADMISSIBILITY

using pairings, the first concrete scheme whose security holds against fine-grained
corruptions and a less restrictive admissiblity.

2.3.3 Contributions: Multi-Client Functional Encryption with Public Inputs
and Strong Security

Our results on improving the security model of (D)MCFE in Section 2.3.2 serve as an indication
of more natural connections between different FE notions. This section summarizes our
results from [NPP24b] and we refer to Chapter 6 for more thorough discussion. Roughly
speaking, throughout our previous mentionning of (D)MCFE, they are secret-key primitives.
Our improvement from Section 2.3.2 necessitates that the underlying (D)MCFE scheme has
probabilistic encryption, which intriguingly raises the question of relation to public-key single
client FE à la [SW05, BSW11]. Moreover, an observation will point out that our improved
condition (2.1) in Section 2.3.2 works in the situation where each client encrypts one scalar. The
situation where each client can encrypt a vector, if one wants to connect to single client FE of
vector encryption, is still left unresolved. In addition, given the results from Section 2.3.1 on
controlling decryption keys, another interesting direction is to study our optimal security from
Section 2.3.2 in conjunction with access control, which furthermore will provide connection to
public-key ABE2.

A Simple Extension of MCFE to also Cover MIFE, public-key FE and ABE. From the
above discussion, one crucial question is:

How can we extend MCFE in a minimal way to encompass all the settings, from MIFE to
public-key FE and ABE?

Thus appears the motivation behind proposing MCFE with public inputs, wherein we simply
augment the ciphertexts of the MCFE with a public inputs. This part of public inputs is taken
care by the function evaluation. However, in order to cover public-key FE, we need to consider
the stronger notion of admissibility with the possibility to handle sub-vectors.

Conceptual Contribution. In essence, we propose a simple extension of MCFE with not
only private but also public data to be input to the function evaluation. Combining with the
consideration of a stronger admissibility for adversary and sub-vectors in encryption, we cover
previous primitives such as MCFE, MIFE, public-key single-input FE and ABE. When only private
inputs are considered, if the function involves attributes for access-control, this is necessarily
with the attribute-hiding property, while this is not always required. Hence, we will show this
is quite relevant for MCFE and MIFE with attribute-based access-control. We also describe,
and achieve, a very high security notion that, while considering the multi-client setting with
secret-key encryption, also covers public-key attribute-based encryption.

Strong Admissibility and Public-Key Setting. Recently, a stronger and optimal notion of
the admissibility of an attack was introduced [NPP23a]. Intuitively, to recall, when there is a
unique client, with the initial admissibility from [CDG+18a, ABKW19, ABG19, LT19, CDSG+20,
AGT21b], when the encryption key of this single user is corrupted, the only queries that the
reduction can forward are the trivial one from the FE adversary where x(0) = x(1), hence it is not
sufficient to capture the reduction from MCFE to FE with meaningful CPA-security. With strong
admissibility from [NPP23a], i.e. without the requirement that x(0)

i = x(1)
i for corrupted i ∈ C,

2For general function classes it is known that public key single client FE implies public key ABE. Nevertheless,
for concrete single client FE with respect to inner products, it is not immediate how to derive public key ABE.
Therefore, approaching from single client FE for inner products with access control to derive ABE seems plausible.

19

2.3. MCFE: UPGRADES CHAPTER 2. INTRODUCTION

we show that the reduction can capture the security of the public-key FE by making public the
encryption key. In particular, within the function class to compute inner products, addressing
strong admissibility also necessitates the ability to manage sub-vectors in encryption. This is
a technically relevant issue because under this stronger admissibility, moving to public-key FE
gives the usual functionality of inner products, and not just scalar products.

Our work extends the work from [NPP23a], and we will develop more the conceptual
implications in the next paragraph, as well as the concrete case in Constructive Contributions
below. A discussion on our strong admissiblity is given in paragraph Discussion on admissibility
after the formal definition in Definition 6.3. The aforementioned implications can be summarized
with the following simplified diagram (more details are given in Theorem 6.6), where

MCFErep-priv MIFE

FEw-pub KP-ABE

• MCFErep-priv is our new notion of MCFE, with strong admissibility and public inputs, but
repetitions are only allowed on the private inputs (multiple encryption queries with the
same tag must be with the same public input);

• MIFE is the usual definition, with private inputs only, with repetitions, without tags nor
corruptions. The implication comes from the allowed repetitions on private inputs in our
MCFE;

• FEw-pub is the classical public-key single-input FE definition enhanced with public inputs.
Implication comes from the strong-admissibility that allows to deal with public-key
encryption when there is a unique client;

• KP-ABE denotes the usual definition of key-policy ABE. The implication comes from the
public inputs in FEw-pub, that can be used to encode the attributes in a non-hiding way.

It is very interesting that MCFE with the strong admissibility from [NPP23a] leads to public-key
single-input FE, when there is a unique client, and even to Key-Policy ABE when allowing public
inputs (to provide the attributes in the ciphertext).

Constructive Contributions. These implications depend on the actual classes of functions.
As a constructive result, we propose an MCFE with the class of functions that combines inner-
products (on private inputs) and attribute-based access control (on public inputs) for LSSS
policies. It achieves the strong admissibility notion, in the adaptive setting (whereas [ATY23a]
only provides selective security), with repetitions on the private inputs and static corruptions. It
also deals with sub-vectors (whereas [NPP22a, NPP23a] only consider scalars). As a consequence,
removing the tags, the corruptions and the public inputs, we obtain an MIFE for inner products,
with strong admissibility and adaptive security; limiting to one client, one gets public-key single-
input inner-product FE and KP-ABE for LSSS, with adaptive security. Our construction uses
pairings in the ROM, and we note that there exists other approaches to tackle IPFE with access
control using lattices, e.g. [LLW21, PD21], though they are only single-client to our knowledge.

We would like to emphasize that strong admissibility is not only theoretical (as it allows us
to cover public-key single-input inner-product FE) but also more intuitive: the only restriction
we impose on the adversary is to prevent them from choosing challenge messages in such a
way that, with their corrupted keys and the function evaluation, they cannot trivially win the
game by evaluating the function on chosen messages. Requiring the adversary to use the same
message for corrupted users as in the previous admissibility now seems somewhat artificial to
us. Achieving strong admissibility is also more challenging as it requires the encryption to be

20

CHAPTER 2. INTRODUCTION 2.3. MCFE: UPGRADES

Scheme F (priv,pub)-inp Eval Security

[ATY23a, Sect. 5] FABP
n,(Ni)i

(
(zi,j)j , (xi,j)j

) ∑
i∈[n]

∑
j∈[Ni]⟨fi(xi,j), zi,j⟩ sel,w-rep, stat,wk-adm

[NPP22a, Sect. 5.4] F IP,B
n,q × LSSS (x[i],Si)

(∧
i LSSS(Si)

)
· ⟨x,y⟩ ad, no-rep, dyn,wk-adm

[NPP23a, Sect. 6] F IP,B
n,q (x[i],⊥) ⟨x,y⟩ ad,w-rep, stat, s-adm

Corol. 6.13 F IP
subvec,B × LSSS (xi, Si)

(∧
i LSSS(Si)

)
·
∑n
i=1⟨xi,yi⟩ ad, rep-priv‡, stat, s-adm

‡ This intermediate notion only provides security against repetitions on private inputs, and not on public inputs.

Table 2.2: We compare our MCFE with existing MCFE, casting the function class into the syntax with public inputs. The
MCFE in [ATY23a, Sect. 5] is defined for the function class of attribute-weighted sums FABP

n,(Ni)i
containing (fi)i∈[n] of

arithmetic branching programs. that evaluates on public inputs (xi,j)j ∈ (ZN0
q)Ni and private inputs (zi,j)j ∈ (ZN1

q)Ni ,
where Ni is some parameter for slot i, and N0, N1 ∈ N. The MCFE schemes in [NPP22a, Sect. 5.4] are defined for the
functionality class F IP,B

n,q × LSSS, that evaluates on public attributes Si and private inputs x[i] ∈ Zq, where n, q ∈ N, q is
prime, maxi(|x[i]|) < B, and B = poly(λ) ∈ N is a polynomial; Meanwhile MCFE from [NPP23a, Sect. 6] is implied by
the DMCFE therein and is for F IP,B

n,q without access control. Sect. 6.4 extends MCFE to the class F IP
subvec,B × LSSS and

F IP
subvec,B that evaluates on public attributes Si and private inputs xi ∈ (Zq)Ni where for all i, max(∥xi∥∞, ∥yi∥∞) < B,

where B = poly(λ) ∈ N is a polynomial. We also use the shorthand (no-rep,w-rep) to indicate whether repetitions at
positions under a challenge tag are allowed, and (sel, ad) to indicate whether adaptive challenge ciphertext are allowed. The
shorthand (stat, dyn) indicates whether the corruption is static or dynamic. Finally, (wk-adm, s-adm) indicates whether the
weak [CDG+18a] or strong admissibility [NPP23a] is considered. The preferred properties are underlined.

probabilistic and any deterministic encryption cannot meet strong admissibity as we already
explained. Consequently, the only two existing AB-IP-MCFE schemes [NPP22a, ATY23a] are not
secure when considering strong admissibility as the encryptions in these schemes are deterministic.
Of course, we do not claim to break the schemes [NPP22a, ATY23a], because we consider a
stronger security level. We would propose that strong admissibility should be considered in the
multi-user setting of FE.

In summary, we propose the first AB-IP-MCFE with strong admissibility and with adaptive
security for inner-product functionality while [ATY23a] considers a slightly larger functionality of
average weighted sum but with selective security on the challenge messages. In term of efficiency,
we have the same asymptotic efficiency as [ATY23a]: each client sends a ciphertext of linear size
in the size of its subvector message, independent of the total number of clients. In table 2.3, we
compare our construction with existing works.

Relation with Multi-Party Functional Encryption. Our MCFE with Public Input can be
seen as a special case of Multi-Party Functional Encryption (MPFE) [AGT21b]. However, our
goal is not to define yet another new and more general primitive, but only to add the minimal
extension to an existing well-studied primitive to reconcile with other primitives. By simply
considering public inputs for MCFE with a stronger admissibility notion, we cover not only
attribute-based access control, but also public-key single-input FE. While MPFE is very general,
it only considers the secret-key encryption setting and does not cover public-key single-input FE.
Up to the notions of MCFE, our results complete the picture of unifying MCFE/MIFE/FE/ABE,
by considering the public inputs and the strong admissibility notion. The strong admissibility
is necessary (see the paragraph From Secret-key MCFE to Public-key FE in Chapter 6), in
order to capture the security of public-key FE from the security of MCFE, and is then proven
sufficient in our Theorem 6.6. The public inputs are necessary to capture the non-attribute-hiding
property of KP-ABE/IBE in the syntax of FE (see the paragraph Final Syntactical Point: Public
Inputs in Chapter 6), inherits the same spirit of empty-key function in [BSW11], and is cleanly
demonstrated in our Theorem 6.6. Finally, our concret final AB-IP-MCFE in Corollary 6.13 is
the first to achieve adaptive security for inner-product functionality in the multi-client setting,
with public inputs, and with strong admissibility.

21

2.3. FH-DMCFE CHAPTER 2. INTRODUCTION

2.3.4 Contributions: Function-Hiding DMCFE

To the best of our knowledge, the only candidate of FH-IP-DMCFE comes from [AGT21b],
implicitly as a result of their function-hiding FH-IP-DDFE. The implied security of their
FH-IP-DMCFE is selectively indistinguishability-based in the ROM under static corruption,
where the adversary makes all encryption, key generation and corruption queries up front in one
shot, with repetitions with respect to encryption tags and no repetitions with respect to key
generation tags. This state-of-the-art leads us to the following question:

How far can we raise the security level of pairing-based function-hiding IP-DMCFE in the
ROM?

Our results, taken from [NPS24b], strictly improve on various aspects of security compared
with [AGT21b]. We partially resolve question 2 of adaptive security for FH-secure at the level of
DMCFE, and partially question 5 of repetitions for FH-security at the level of DMCFE. Other
results that advance further this result and can be found in Section 2.3.5, for those that are not
presented.

Below and in Table 2.3 are presented a summary of our contributions and a comparison with
existing works:

1. Function-Hiding IP-DMCFE. We construct the first FH-IP-DMCFE that tolerates adaptive
encryption queries (with unbounded repetitions) and adaptive key generation queries with a
fixed polynomially large number repetitions, under static corruption. The bounded number
of repetitions on key generation queries can be polynomially large and is specified at setup
time of the scheme. Our FH-DMCFE thus handles up to an exponentially large number of
mix-and-match of key repetitions under the same tag tag-f, which is determined by the
scheme’s parameters. It uses pairings and is provably secure in the ROM. Details about
our construction are explained in Section 7.4.

2. Technical Contribution. Along the way, we push forward the study of DPVS techniques.
We state a novel lemma that shows the indistinguishability of two distributions in a setting
where not all input data is known up front. This lemma proves to be the key ingredient
for the security proof of our FH-IP-DMCFE scheme in the adaptive setting. Due to its
oracle-based general formulation, we believe that the lemma can find other applications
in the future. The formal statement (Lemma 7.7) and a proof overview can be found in
Section 7.4.1. Basic definitions for the DPVS framework are provided in Section 3.3.

Existing Function-Hiding FE Schemes in the Literature. Bishop et al. [BJK15] presented
the first IPFE scheme that guaranteed a weak variant of the function-hiding property. This
construction was lifted to fully function-hiding security by Datta et al. [DDM16, DDM17]. This
was further improved in terms of efficiency and/or computational hardness assumptions by works
of [TAO16, KKS19, KLM+18, Tom19, Tom20]. The constructions of [BJK15, DDM16, TAO16]
all leverage the power of dual pairing vector spaces (DPVSes) developed by Okamoto and
Takashima in [OT10, OT12a, OT12b]. Alternatively, Lin [Lin17] used a different approach
to get simpler constructions of FH-IPFE from the ABDP IPFE. Using the same blueprint
and exploiting the specific algebraic properties of the underlying inner-product MIFE scheme
carefully, Abdalla et al. [ACF+18] were able to construct function-hiding MIFE for inner
products (FH-IP-MIFE). In [AGT21b], Agrawal et al. came up with the first construction
of function-hiding MCFE for inner products (FH-IP-MCFE) that is inspired by the FH-IP-MIFE by
Datta et al. [DOT18]. Very recently, Shi and Vanjani [SV23] presented a generic transformation
from single-client to multi-client functional encryption, preserving the function-hiding property
and leading to the first FH-IP-MCFE with adaptive security. Remarkably, their security proof
does not rely on random oracles. As a follow-up attempt on removing reliance on the ROM,

22

CHAPTER 2. INTRODUCTION 2.3. FH-DMCFE

Scheme Type
Oracle Queries

Assumptions†† ROM
Enc KeyGen

[AGT21b, Section 6.2] FH-IP-MCFE sel,w-rep sel† SXDH ✓

[SV23, Section B.3] FH-IP-MCFE adap,w-rep adap† D-Lin ✗

[AGT21b, Section 6.3] FH-IP-DMCFE⋆ sel,w-rep sel, no-rep SXDH ✓

[Ngu24, Section 4.1] FH-IP-DMCFE ‡ sel,w-rep sel, no-rep SXDH ✗

Corollary 7.9 FH-IP-DMCFE adap,w-rep adap, bnd-rep SXDH ✓

† For MCFE, there is no notion of tags for key generation, hence no notion of repetitions.
‡ This FH-IP-DMCFE is implied by the FH-IP-DDFE of [Ngu24, Section 4.1].
††All mentioned constructions use pairing groups.
⋆ This FH-IP-DMCFE is implied by the FH-IP-DDFE of [AGT21b, Section 6.3].

Table 2.3: We compare our constructions with existing works, in terms of the type of primitives with function-hiding
security (Type), whether the encryption oracle (Enc) and key generation oracle (KeyGen) can be queried adaptively and
with repetitions (Oracle Queries), which assumptions are used for the security proof (Assumptions), and whether the
security is proven in the ROM (✓) or not (✗) (ROM). The shorthands (sel, adap) denote selective or adaptive oracle queries.
The shorthands (w-rep, bnd-rep, no-rep) indicates whether the adversary can demand repetitive queries to the same slot and
tag unboundedly, under a fixed bound, or not, in that order. All schemes are defined for the inner-product functionality of
their respective type of primitive (see Def. 7.1) and consider only static corruption. Preferred properties are underlined.

Nguyen [Ngu24] gives the fisrt FH-IP-DDFE that relies on SXDH while not using ROM, thus
extending the results of [SV23] to the more general setting of DDFE for inner products.

In [CDSG+20], Chotard et al. generalized DMCFE and defined the notion of Dynamic
Decentralized Functional Encryption (DDFE) that allows users to join at various stages during the
lifetime of a system, while maintaining all decentralized features of DMCFE. Notably, the setup
of DDFE is non-interactive and decentralized, while that of DMCFE is a priori interactive. In the
end, a DDFE scheme allows aggregating data from different sources by decrypting an independent
list of ciphertexts using an independent list of functional keys, both of which are fabricated in a
completely decentralized manner by users with their ski, while requiring no trusted third party.
To these extents, DDFE is a primitive strictly stronger than DMCFE, given that the function
class of the former contains functions that are well-defined relating to a given list of functional
keys and those functions can be expressed by the function class of the latter3. In [AGT21b], the
authors revisits DDFE for the class of inner products (IP-DDFE) and provide a transformation
from FH-IP-MCFE to FH-IP-DDFE, following the approach of Chotard et al. [CDSG+20] who
presented a similar transformation in the non-function-hiding setting. As a consequence, the
FH-IP-DDFE scheme of [AGT21b] entails an FH-IP-DMCFE scheme.

It is worth noting that all known constructions that guarantee function-hiding security rely
on pairings. A recent work by Ünal [Üna20] shows that in the manner of most lattice-based
approaches, there is little hope to achieve function privacy in IPFE schemes, in the setting of
multi-user or not.

2.3.5 Other Contributions

On FE and its extensions. Having at disposal the results on MCFE with fine-grained access
control (Section 2.3.1), a provably optimal security notion for the plain (D)MCFE (Section 2.3.2),
the improvement on the two (Section 2.3.3), as well as the study on function-hiding security
(Section 2.3.4) we ask new questions on :

1. (Dynamic Decentralized Functional Encryption: Generic Constructions with Strong Security)
In a joint work with David Pointcheval and Robert Schädlich, we present new generic

3With an appropriate formalization, all function classes in this work, including inner products, satisfy this
property.

23

2.3. FH-DMCFE CHAPTER 2. INTRODUCTION

compilers which, when instantiated with existing schemes from the literature, improve
over the state-of-the-art in terms of security, computational assumptions and functionality.
Specifically, we obtain the first adaptively secure DDFE schemes for inner products in
both the standard and the stronger function-hiding setting which guarantees privacy not
only for messages but also for the evaluated functions. Furthermore, we present the first
DDFE for inner products whose security can be proven under the LWE assumption in the
standard model. Finally, we give the first construction of a DDFE for the attribute-weighted
sums functionality with attribute-based access control (with some limitations). All prior
constructions guarantee only selective security, rely on group-based assumptions on pairings,
and cannot provide access control. Relating to our research questions in Section 2.2, this
work give:

(a) Concrete Instantiations - IP-DDFE. With respect to the inner-product functionality, we
show how to instantiate our compiler with the DMCFE schemes of [CDG+18a, LT19].
In this way, we obtain the first adaptively secure IP-DDFE’s, with tag repetition
under the SXDH assumption in the ROM, and without tag repetition under the LWE
assumption in the standard model. This provides an affirmative answer to questions 2, 4
and 5 in the case of IP-DDFE.

(b) Concrete Instantiation - FH-IP-DDFE. In the function-hiding setting of the inner-
product functionality, we instantiate our compiler with the FH-DMCFE scheme
of [NPS24c]. This gives the first adaptively secure FH-IP-DDFE, with full repetitions
on message tags and an a priori polynomially bounded number of repetitions on key
tags under the SXDH assumption in the ROM. This provides an affirmative answer
to question 2 and partially resolves question 5 in the case of FH-IP-DDFE.

(c) Concrete Instantiation - AB-AWS-DDFE. Beyond inner products towards AB-AWS,
we instantiate our compilers with a new DMCFE for AWS with access control that is
also constructed in this work. We achieve semi-adaptive security (i.e. the encryption
oracle cannot be called anymore after the first key generation query) under the
SXDH and LWE assumptions in the ROM, thereby resolving question 3 and partially
question 2 in the case of DDFE for AB-AWS.

This work is currently in submission [NPS24a].

2. (Chosen-Ciphertext Security for MCFE) In the setting of PKE, it is widely agreed that
the correct and most suitable security notion for practical use is security against chosen-
ciphertext attacks (CCA). In the FE regime, the widely known existing work is [BBL17] on
single client FE with CCA security. In a joint work with David Pointcheval and Duong
Hieu Phan, we embark on studying this question for MCFE, in particular:

(a) (Definitions) We give definitions of the notion for CCA security with respect to MCFE.
(b) (Generic Construction) Given our definitional framework, from

– an IND-CPA secure MCFE,
– a perfectly binding and computationally hiding commitment scheme,
– a secure PRF,
– a NIZK for a relation that ensures encryption consistency (by messages and by

keys) together with commitment opening, satisfying correctness, zero-knowledge,
and statistical adaptive soundness,

– an equivocable-extractable commitment scheme,
we can obtain an IND-CCA secure MCFE whose security levels are preserved from
the underlying IND-CPA MCFE.

24

CHAPTER 2. INTRODUCTION 2.3. FH-DMCFE

(c) (Concrete Instantiations) We instantiate our generix transformation for the function
class to compute inner products as per Section 2.3.3 and Chapter 6. In particular, we
achieve efficiency by relying on the famous Groth-Sahai NIZK, and the equivocable-
extractable commitment scheme from [ABB+13].

This work is currently in progress [NPP24a].

3. (Traceable Multi-client Functional Encryption) We consider the problem of traceability in
MCFE, where functional decryption keys with embedded identities can be traced, given
access to a pirate decoder. The ongoing project is twofold: we first propose a new security
model for MCFE with traceability, and then provide a concrete construction for the class of
inner products:

(a) (Strong Tracing Definitions) We define the notion of traceable MCFE, whose tracing
security is more general than existing works [DPP20, LAKWH22] that apply only for
the single client case as well as their naive generalization to the multi-client setting.
In a nutshell, our tracing security does not impose all functions F that are asked by
the adversary to differ on all messages that are asked by the same adversary. This
generalizes the notion of [LAKWH22]. Moreover, our notion is distinguisher-based,
whereas that of [DPP20] is decoder-based and inherently needs the constraint where
all functions F must differ on all asked messages by the adversary.

(b) (Necessity of Stronger Admissibility) Interestingly, the notion of stronger admissiblity
(Section 2.3.2, Chapter 5) plays a central role in identifying the power of our tracing
model. We prove two definitional results:

i. Under the strong admissibility as per (Section 2.3.2, Chapter 5), under our
distinguisher-based tracing security, modulo black-box techniques, there cannot
exist a secure traitor tracing MCFE with a public tracing algorithm that has only
black-box access to some decoder, i.e. a public black-box tracing algorithm, which
is resulted from a tracing adversary that queries only functions that do not differ
on the demanded challenge messages.

ii. To complement the above result, under the strong admissibility as per (Section 2.3.2,
Chapter 5), under our distinguisher-based tracing security, modulo black-box
techniques, there cannot exist a secure traitor tracing MCFE with a tracing
algorithm that has only black-box access to some decoder, traces successfully some
function that is asked by the adversary while that function does not differ on the
demanded challenge messages.

(c) (Concrete Instantiations) We extend the classical embedded-identity private linear
broadcast encryption (EIPLBE) introduced in [GKW19] and give constructions from
both pairings and lattices assumptions.

This work is curently in progress [DMN+24].

Other miscellaneous works. In parallel with main works on FE, additional reseach projects
on various topics throughout the course of this thesis include:

1. (Cumulatively All-Lossy-But-One Trapdoor Functions) Chakraborty, Prabhakaran, and
Wichs (PKC’20) recently introduced a new tag-based variant of a theoretical object termed
lossy trapdoor functions, coined cumulatively all-lossy-but-one trapdoor functions (CALBO-
TDFs). Informally, CALBO-TDFs allow defining a public tag-based function with a
(computationally hidden) special tag, such that the function is lossy for all tags except
when the special secret tag is used. In the latter case, the function becomes injective and
efficiently invertible using a secret trapdoor. This notion has been used to obtain advanced

25

2.3. FH-DMCFE CHAPTER 2. INTRODUCTION

constructions of signatures with strong guarantees against leakage and tampering, and
also by Dodis, Vaikunthanathan, and Wichs (EUROCRYPT’20) to obtain constructions
of randomness extractors with extractor-dependent sources. While these applications are
motivated by practical considerations, the only known instantiation of CALBO-TDFs so
far relies on the existence of indistinguishability obfuscation (iO).
With Benôıt Libert and Alain Passelègue, we propose the first two instantiations of CALBO-
TDFs based on standard assumptions, circumventing the use of iO by relying on lossy
modes and trapdoor mechanisms enabled by these assumptions. This work is published at
SCN 2022 - the 13th Conference on Security in Communication Networks [LNP22].

2. (Pairing-free Blind Signatures from Standard Assumptions in the ROM) Blind Signatures
are a useful primitive for privacy preserving applications such as electronic payments,
e-voting, anonymous credentials, and more. However, existing practical blind signature
schemes based on standard assumptions require either pairings or lattices. We present the
first practical construction of a round-optimal blind signature in the random oracle model
based on standard assumptions without resorting to pairings or lattices. In particular,
our construction is secure under the strong RSA assumption and DDH (in pairing-free
groups). For our construction, we provide a NIZK-friendly signature based on strong RSA,
and efficiently instantiate a variant of Fischlin’s generic framework (CRYPTO’06). Our
Blind Signature scheme has signatures of size 4.28 KB and communication cost 10.98 KB.
On the way, we develop techniques that might be of independent interest. In particular,
we provide efficient relaxed range-proofs for large ranges with subversion zero-knowledge
and compact commitments to elements of arbitrary groups. This work is a joint work
with Julia Kastner and Michael Reichle, is published at CRYPTO 2024 - the 44th Annual
International Cryptology Conference [KNR24].

All the works in this thesis were supported in part by the French ANR Project ANR-19-
CE39-0011 PRESTO.

26

Chapter

3
Preliminaries

Chapter content
3.1 Notations . 27
3.2 Hardness Assumptions . 27
3.3 DPVS . 28
3.4 LSSS . 31
3.5 Cryptographic Primitives . 32

3.5.1 Key-policy Attribute-Based Encryption (KP-ABE) 32
3.5.2 Functional Encryption (FE) . 33
3.5.3 Multi-Input Functional Encryption (MIFE) 33

3.1 Notations

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we let Zq denote
the ring of integers with addition and multiplication modulo q. For a prime q and an integer
N , we denote by GLN (Zq) the general linear group of of degree N over Zq. We write vectors as
row-vectors, unless stated otherwise. For a vector x of dimension n, the notation x[i] indicates
the i-th coordinate of x, for i ∈ [n]. We will follow the implicit notation in [EHK+13] and use
JaK to denote ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This implicit
notation extends to matrices and vectors having entries in Zq. We use the shorthand ppt for
“probabilistic polynomial time”, and the symbol := for assignment/definition when appropriate.

3.2 Hardness Assumptions
We state the assumptions needed for our constructions.

Definition 3.1. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c $← Zq. The DDH assumption in G assumes that no ppt adversary can solve the DDH
problem with non-negligible probability.

Definition 3.2. In a cyclic group G of prime order q, the Decisional Separation Diffie-
Hellman (DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {x, y, (J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b
$← Zq. The DSDH assumption in G assumes that no ppt adversary

can solve the DSDH problem with non-negligible probability.

3.3. DPVS CHAPTER 3. PRELIMINARIES

Definition 3.3. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Symmetric eXternal
Diffie-Hellman (SXDH) assumption makes the DDH assumption in both G1 and G2.

Definition 3.4. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Decisional Bilinear
Diffie-Hellman (DBDH) problem is to distinguish the distributions

D0 = {(JaK1 , JbK1 , JbK2 , JcK2 , JabcKt)} D1 = {(JaK1 , JbK1 , JbK2 , JcK2 , JrKt)}.

for a, b, c, r $← Zq. The DBDH assumption in (G1,G2,Gt, g1, g2, gt, e, q) assumes that no ppt
adversary can decide the DBDH problem with non-negligible probability.

3.3 Dual Pairing Vector Spaces

We use prime-order bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written
additively. Let us fix N ∈ N and consider GN

1 having N copies of G1. Any x = J(x1, . . . , xN)K1 ∈
GN

1 is identified as the vector (x1, . . . , xN) ∈ ZNq . The 0-vector is 0 = J(0, . . . , 0)K1. The
addition of two vectors, and Zq-scalar multiplication, in GN

1 are defined by coordinate-wise
addition. Viewing ZNq as a vector space of dimension N over Zq with the notions of bases, we
can obtain naturally a similar notion of bases for GN

1 . More specifically, any invertible matrix
B ∈ GLN (Zq) identifies a basis B of GN

1 , whose i-th row bi is
q
B(i)y

1, where B(i) is the i-th
row of B. Naturally we can extend basis changes in GLN (Zq) to changes of bases of GN

1 by
the fact that G1 is cyclic. Treating GN

2 similarly, we can furthermore define a product of two
vectors x = J(x1, . . . , xN)K1 ∈ GN

1 ,y = J(y1, . . . , yN)K2 ∈ GN
2 by x × y :=

∏N
i=1 e(x[i],y[i]) =

J⟨(x1, . . . , xN), (y1, . . . , yN)⟩Kt. Given a basis B = (bi)i∈[N] of GN
1 , we define B∗ to be a basis

of GN
2 by first defining B′ := (B-1)⊤ and the i-th row b∗i of B∗ is

q
B′(i)

y
2. It holds that

B(B′)⊤ = IN the identity matrix and bi × b∗j = Jδi,jKt for every i, j ∈ [N], where δi,j = 1 if
and only if i = j. We call the pair (B,B∗) a pair of dual orthogonal bases of (GN

1 ,GN
2). If B is

constructed by a random invertible matrix B $← GLN (Zq), we call the resulting (B,B∗) a pair of
random dual bases. A DPVS is a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q,N) with dual
orthogonal bases.

Basis Changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2). Let (U = (ui)i,U∗ = (u∗i)i) be a pair of dual bases of (GN

1 ,GN
2), corresponding to an

invertible matrix U ∈ ZN×Nq . Given an invertible matrix B ∈ ZN×Nq , the basis change from U
w.r.t B is defined to be B := B ·U, which means:

(x1, . . . , xN)B =
N∑
i=1

xibi = (x1, . . . , xN) ·B = (x1, . . . , xN) ·B ·U

= (y1, . . . , yN)U where (y1, . . . , yN) := (x1, . . . , xN) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN)B = ((x1, . . . , xN) ·B)U ; (y1, . . . , yN)U =
(
(y1, . . . , yN) ·B-1

)
B

. (3.1)

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1

)⊤
:

(x1, . . . , xN)B∗ =
(
(x1, . . . , xN) ·B′

)
U∗ ; (y1, . . . , yN)U∗ =

(
(y1, . . . , yN) ·B⊤

)
B∗

. (3.2)

It can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N] of indices in the representation

28

CHAPTER 3. PRELIMINARIES 3.3. DPVS

w.r.t basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly
the entries of B outside this block are taken from the identity matrix IN .

The basis changes are particularly useful in our security proofs. Intuitively these changes
constitute a transition from a hybrid G having vectors expressed in (U,U∗) to the next hybrid
Gnext having vectors expressed in (B,B∗). We focus on two types of basis changes, which are
elaborated below. For simplicity, we consider dimension N = 2:

Formal Basis Changes: We change (U,U∗) into (B,B∗) using

B :=
[
1 0
1 1

]
1,2

B′ :=
(
B−1

)⊤
=
[
1 −1
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

We use this type in situations such as: in G we have vectors all of the form (x1, 0)U, (y1, 0)U∗ ,
and we want to go to Gnext having vectors all of the form (x1, 0)B, (y1, y1)B∗ . The simulator
writes all vectors (x1, 0)U, (y1, 0)U∗ in (U,U∗) and under this basis change they are written
into

(x1, 0)U = (x1 − 0, 0)B = (x1, 0)B; (y1, 0)U∗ = (y1, 0 + y1)B∗ = (y1, y1)B∗

following the calculations in (3.1) and (3.2). The products between two dual vectors are
invariant, all vectors are formally written from (U,U∗) (corresponding to G) to (B,B∗)
(corresponding to Gnext), the adversary’s view over the vectors is thus identical from G
to Gnext. In particular, this is a kind of information-theoretic property of DPVS by basis
changing that we exploit to have identical hybrids’ hop in the security proof. We list some
formal basis changes that are extensively used in this work:

1. (Duplication) This is the above example, vectors b2,b∗1 are secret:

B :=
[
1 0
1 1

]
1,2

B′ :=
(
B−1

)⊤
=
[
1 −1
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(x1, 0)U, (y1, 0)U∗} ≡
{

(x1, 0)B, (y1, y1)B∗

}
.

2. (Quotient, by randomness r $← Z∗q) The matrices, vector b1 is secret, are:

B :=
[
r 0
0 1

]
1,2

B′ :=
(
B−1

)⊤
=
[
1/r 0
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(x1, 0)U, (y1, 0)U∗} ≡
{

(x1 · r , 0)B, (y1 · 1/r , 0)B∗

}
.

3. (Formal Switch) this is the same as (Duplication), but the starting coordinates are
not 0:

B :=
[
1 0
1 1

]
1,2

B′ :=
(
B−1

)⊤
=
[
1 −1
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(x1, x2)U, (y1, y2)U∗} ≡
{

(x1 − x2 , x2)B, (y1, y2 + y1)B∗

}
.

29

3.3. DPVS CHAPTER 3. PRELIMINARIES

Computational Basis Change: Given an instance of a computational problem, e.g. J(a, b, c)K1 of
DDH in G1 where c− ab = 0 or δ $← Zq, we change (U,U∗) into (B,B∗) using

B :=
[
1 0
a 1

]
1,2

B′ :=
(
B−1

)⊤
=
[
1 −a
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

One situation where this type of basis change can be useful is: in G we have some target
vectors of the form (0, rnd)U, where rnd $← Zq is a random scalar, together with other
(z1, z2)U, and all the dual is of the form (0, y2)U∗ . We want to go to Gnext having
(r̃nd , rnd)B masked by some randomness r̃nd $← Zq, while keeping (0, y2)B∗ . Because JaK1
is given, the simulator can simulate vectors (z1, z2)U directly in B using JaK1 and some
known coordinates z1, z2. The basis change will be employed for the simulation of target
vectors:

(c, b)U + (0, rnd)B = (c− a · b, rnd + b)B;
(0, y2)U∗ = (0, y2 + a · 0)B∗ = (0, y2)B∗

where all vectors in B∗ must be written first in U∗, since we do not have JaK2, to see how
the basis change affects them. Using the basis change we simulate those target vectors by
(c−a·b, rnd+b)B with rnd implicitly being updated to rnd+b, the uninterested (z1, z2)B are
simulated correctly in B, meanwhile the dual vectors (0, y2)B∗ stays the same. Depending
on the DDH instance, if c − ab = 0 the target vectors are in fact (0, rnd)B and we are
simulating G, else c− ab = δ

$← Zq the target vectors are simulated for Gnext and r̃nd := δ.
Hence, under the hardness of DDH in G1, a computationally bounded adversary cannot
distinguish its views in the hybrids’ hop from G to Gnext. Under the SXDH assumption in
the DPVS setting, we list some computational basis changes that are extensively used in
this work:

1. (Subspace) Given the DDH instance J(a, b, c)K in the group w.r.t B, this is the above
example, the matrices, vectors b2,b∗1 are secret, are:

B :=
[
1 0
a 1

]
1,2

B′ :=
(
B−1

)⊤
=
[
1 −a
0 1

]
1,2

B = B ·U B∗ = B′ ·U∗ .

and {(z1, z2)B, (0, rnd)U, (0, y2)B∗} ≈c
{

(z1, z2)B, (r̃nd , rnd)B, (0, y2)B∗

}
.

2. (Swap) Given the DDH instance J(a, b, c)K in the group w.r.t B, the matrices, vectors
b3,b∗1,b∗2 are secret, are:

B :=

 1 0 0
0 1 0
−a a 1

1,2,3

B′ :=
(
B−1

)⊤
=

1 0 a
0 1 −a
0 0 1

1,2,3

B = B ·U B∗ = B′ ·U∗ .

and {(z1, z2, z3)B, (x, 0, y)U, (r, r, r′)U∗} ≈c
{

(z1, z2, z3)B, (0, x , y)B, (r, r, r′)B∗

}
.

We remark that the basis changes will modify basis vectors and for the indistinguishability to
hold, perfectly in formal change and computationally in computational changes, all impacted
basis vectors must not be revealed to the adversary.

30

CHAPTER 3. PRELIMINARIES 3.4. LSSS

Additional Notations. Any x = J(m1, . . . ,mN)K1 ∈ GN
1 is identified as (m1, . . . ,mN) ∈ ZNq .

There is no ambiguity because G1 is a cyclic group of order q prime. The 0-vector is 0 =
J(0, . . . , 0)K1. The addition of two vectors in GN

1 is defined by coordinate-wise addition. The
scalar multiplication of a vector is defined by t · x := Jt · (m1, . . . ,mN)K1, where t ∈ Zq and
x = J(m1, . . . ,mN)K1. The additive inverse of x ∈ GN

1 is defined to be −x := J(−m1, . . . ,−mN)K1.
The canonical basis A of GN

1 consists of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN :=
J(0, . . . , 0, 1)K1. By convention the writing x = (m1, . . . ,mN) concerns the canonical basis A.

The Masking Lemma with Repetitions. We state a technical lemma that is employed
throughout our proofs. This is a generalized version of [NPP22a, Lemma 4], where the masks can
be introduced even when repetitions of c-vectors over j and root are allowed. A detailed proof
can be found in [NPP24b]. How the lemma and the DPVS basis changes technique are used in
security proof can be examined in the proof of Theorem 6.11. By starting with getting familiar
with the above basis change examples, then going over the proof of Theorem 6.11 (optionally the
proof of [NPP24b, Lemma 1]), a comprehensive of the DPVS techniques is hopefully conveyed.
As another example of how DPVS is employed in our security proofs, though it will in a different
context of FH-IP-DMCFE, readers are also encouraged to look at Lemma 7.7 in Section 7.4.1.

Lemma 3.5. Let A be an LSSS-realizable over a set of attributes Att ⊆ Zq. We denote by
List-Att(A) the list of attributes appearing in A and by P the cardinality of List-Att(A). Let
S ⊆ Att be a set of attributes. Let (H,H∗) and (F,F∗) be two random dual bases of (G2

1,G2
2)

and (G8
1,G8

2), respectively. The vectors (h1, f1, f2, f3) are public, while all other vectors are
secret. Suppose we have two random labelings (aj)j∈List-Att(A) ← Λa0(A) and (a′j)j ← Λa′

0
(A)

for a0, a
′
0

$← Zq. Let J denote the maximum number of repetitions at each j ∈ S for cj or
for croot. Then, under the SXDH assumption in (G1,G2), the following two distributions are
computationally indistinguishable:

(x(rep)), y
c(rep)

j∈S = (σ(rep)
j (1,−j), ψ(rep), 05)F

k∗
j∈List-Att(A) = (πj · (j, 1), ajz, 05)F∗

c(rep)
root = (ψ(rep), 0)H

k∗
root = (a0z, 0)H∗

 ;

(x(rep)), y
c(rep)

j∈S = (σ(rep)
j (1,−j), ψ(rep), 02, τzjx

(rep) , 02)F

k∗
j∈List-Att(A) = (πj(j, 1), ajz, 02, a′

jy/zj , 02)F∗

c(rep)
root = (ψ(rep), τx(rep))H

k∗
root = (a0z, a′

0y)H∗

for any x(rep), y ∈ Zq, where rep ∈ [J], and zj , σj , πj , ψ, τ, z, r′0

$← Zq.

3.4 Access Structure and Linear Secret Sharing Schemes

We recall below the vocabularies of access structures and linear secret sharing schemes that will
be used in this work. Let Att = {att1, att2, . . . , attm} be a finite universe of attributes. An access
structure over Att is a family A ⊆ 2Att \ {∅}. A set in A is said to be authorized; otherwise it
is unauthorized. An access structure A is monotone if S1 ⊆ S2 ⊆ Att and S1 ∈ A imply S2 ∈ A.
Given a set of attributes S ⊆ Att, we write A(S) = 1 if and only if there exists A ⊆ S such
that A is authorized. A secret sharing scheme for an access structure A over the attributes
Att = {att1, att2, . . . , attm} allows sharing a secret s among the m attributes attj for 1 ≤ j ≤ m,
such that: (1) Any authorized set in A can be used to reconstruct s from the shares of its
elements; (2) Given any unauthorized set and its shares, the secret s is statistically identical to a
uniform random value. We will use linear secret sharing schemes (LSSS), which is recalled below:

Definition 3.6 (LSSS [Bei96]). Let K be a field, d, f ∈ N, and Att be a finite universe of
attributes. A Linear Secret Sharing Scheme LSSS over K for an access structure A over Att is
specified by a share-generating matrix A ∈ Kd×f such that for any I ⊂ [d], there exists a vector
c ∈ Kd with support I and c ·A = (1, 0, . . . , 0) if and only if {atti | i ∈ I} ∈ A.

31

3.5. CRYPTOGRAPHIC PRIMITIVES CHAPTER 3. PRELIMINARIES

In order to share s using an LSSS over K, one first picks uniformly random values v2, v3, . . . , vf
$←

K and the share for an attribute atti is the i-th coordinate s[i] of the share vector s :=
(s, v2, v3, . . . , vf) ·A⊤. Then, only an authorized set {atti | i ∈ I} ∈ A for some I ⊆ [d] can
recover c to reconstruct s from the shares by: c · s⊤ = c · (A · (s, v2, v3, . . . , vf)⊤) = s. Some
canonical examples of LSSS include Shamir’s secret sharing scheme for any f -out-of-d threshold
gate [Sha79] or Benaloh and Leichter’s scheme for any monotone formula [BL90]. An access
structure A is said to be LSSS-realizable if there exists a linear secret sharing scheme implementing
A.

Let y ∈ Zq where q is prime and for the sake of simplicity, let Att ⊂ Zq be a set of attributes.
Let A be a monotone access structure over Att realizable by an LSSS over Zq. A random labeling
procedure Λy(A) is a secret sharing of y using LSSS:

Λy(A) := (y, v2, v3, . . . , vf) ·A⊤ ∈ Zdq (3.3)

where A ∈ Zd×fq is the share-generating matrix and v2, v3, . . . , vf
$← Zq.

3.5 Cryptographic Primitives

3.5.1 Key-policy Attribute-Based Encryption (KP-ABE)

A key-policy attribute-based encryption scheme is defined by a tuple of algorithms (Setup,KeyGen,Enc,
Dec). The Setup algorithm takes as input a security parameter 1λ and outputs a public key pk
and a master secret key msk. The KeyGen algorithm takes as input a master secret key msk, a
policy A, and outputs a secret key skA. The Enc algorithm takes as input a public key pk, a
message m in some message spaceM, and a set of attributes S, and outputs a ciphertext ctS. The
Dec algorithm takes as input a secret key skA and a ciphertext ctS, and outputs a message m. A
KP-ABE is correct if for all λ ∈ N, all (pk,msk)←Setup(1λ), all A ∈ Pol, all S ⊆ Att, all m ∈M,
and all skA←Keygen(msk,A), if Pol accepts S, it holds that Dec(skA,Enc(pk,m,S)) = m.

The security of a KP-ABE is defined below.

Definition 3.7. A KP-ABE scheme E with respect to a class of policies Pol having attribute
space Att is CPA-secure if for every ppt adversary A, the following probability is negligible in λ:

Advkpabe
Pol,Att,A(1λ) :=

∣∣∣∣Pr[Exprkpabe
Pol,Att,A(1λ) = 1]− 1

2

∣∣∣∣
where the experiment Exprkpabe

Pol,Att,A(1λ) is defined as follows:

1. The challenger runs Setup(1λ) to obtain (pk,msk) and outputs pk to A. In the following
the adversary A can make queries adaptively in any order before Finalize.

2. (Key queries) The adversary A adaptively outputs a policy A. The challenger runs skA←
Keygen(msk,A) and returns skA to A.

3. (Challenge) The adversary A outputs a pair of messages (m0,m1) and a set of attributes
S∗. The challenger chooses a bit b ∈ {0, 1} and runs ctS∗←Enc(pk,mb, S∗).

4. (Finalize) The adversary A outputs a guess b̂. If there exists a policy A such that S∗ satisfies
A, then the expriment outputs 0. Otherwise, the experiment outputs b̂ ?= b.

We can define similar weaker notions of selective challenge message and/or selective challenges
attributes.

32

CHAPTER 3. PRELIMINARIES 3.5. CRYPTOGRAPHIC PRIMITIVES

3.5.2 Functional Encryption (FE)

Below is a recall of the syntax and security of (public key) single client FE.

Definition 3.8. A functional encryption scheme for a class F is defined by a tuple of algorithms
(Setup,Extract,Enc,Dec). The Setup algorithm takes as input a security parameter 1λ and outputs
a public key pk and a master secret key msk. The Extract algorithm takes as input a master
secret key msk and a function description Fλ :Mλ → Rλ, and outputs a secret key skF . The
Enc algorithm takes as input a public key pk, a message m in some message space M, outputs a
ciphertext ct. The Dec algorithm takes as input a secret key skF and a ciphertext ct, and outputs
an element in R. An FE for a class F is correct if for all λ ∈ N, all (pk,msk)←Setup(1λ), all
Fλ ∈ F , all m ∈M, and all skF←Keygen(Fλ,msk), it holds that Dec(skF ,Enc(pk,m)) = Fλ(m).

The security of an FE scheme is defined below.

Definition 3.9. A FE scheme E with respect to a class of functions F is CPA-secure if for every
ppt adversary A, the following probability is negligible in λ:

Advfe
E,F ,A(1λ) :=

∣∣∣∣Pr[Exprfe
E,F ,A(1λ) = 1]− 1

2

∣∣∣∣
where the experiment Exprfe

E,F ,A(1λ) is defined as follows:

1. The challenger runs Setup(1λ) to obtain (pk,msk) and outputs pk to A. In the following
the adversary A can make queries adaptively in any order before Finalize.

2. (Key queries) The adversary A adaptively outputs a function description Fλ. The challenger
runs skF←Extract(Fλ,msk) and returns skF to A.

3. (Challenge) The adversary A outputs a pair of messages (m0,m1). The challenger chooses
a bit b ∈ {0, 1} and runs ct∗←Enc(pk,mb).

4. (Finalize) The adversary A outputs a guess b̂. If there exists a function description Fλ such
that F (m0) ̸= F (m1), then the expriment outputs 0. Otherwise, the experiment outputs
b̂

?= b.

We can define similar weaker notions of selective challenge message and/or selective functional
decryption key queries. The notion of FE with access control can be captured by considering the
class F that does not only include the calulating function Fλ, but also the access control policies
A given any member (Fλ,A) in F (see Section 4.4.1 for a formal treatment in the case of MCFE).
The correctness is adapted that the decryption key skF,A can only decrypt the ciphertexts ct to
F (m) if the access control policy A accepts the attributes S of the ciphertext ct←Enc(pk,m, S).
The notion of security is defined similarly as Definition 3.9, except that the syntax is adapted to
the FE with access control.

3.5.3 Multi-Input Functional Encryption (MIFE)

We recall in the following the syntax and security of multi-input functional encryption, following [GGG+14].

Definition 3.10. A multi-input functional encryption scheme is defined by a tuple of algorithms
(Setup,Extract,Enc,Dec). The Setup algorithm takes as input a security parameter 1λ and a
number of slots n, and outputs a public parameter pp, a master secret key msk, and n encryption
keys eki. The Extract algorithm takes as input a function description Fλ :

∏n
i=1Dλ,i → Rλ and

the master secret key msk, and outputs a decryption key dkF . The Enc algorithm takes as input
an encryption key eki and a message mi in some message space Dλ,i, and outputs a ciphertext cti.

33

3.5. CRYPTOGRAPHIC PRIMITIVES CHAPTER 3. PRELIMINARIES

The Dec algorithm takes as input a decryption key dkF and a vector of ciphertexts cti of length
n, and outputs an element in Rλ or ⊥. An MIFE for a class F is correct if for all λ ∈ N, all
(pp,msk, (eki)i∈[n])←Setup(1λ, 1n), all Fλ ∈ F , all mi ∈ Dλ,i, and all dkF←Extract(Fλ,msk), it
holds that Dec(dkFλ

, (Enc(eki,mi))i∈[n]) = Fλ(mi)i∈[n].

The security of an MIFE is defined below.

Definition 3.11. An MIFE scheme E with respect to a class of functions F is secure if for every
ppt adversary A, the following probability is negligible in λ:

Advmife
F ,A(1λ) :=

∣∣∣∣Pr[Exprmife
F ,A(1λ) = 1]− 1

2

∣∣∣∣
where the experiment Exprmife

F ,A(1λ) is defined as follows:

1. The challenger runs Setup(1λ, 1n) to obtain (pp,msk, (eki)i∈[n]) and outputs pp to A. In
the following the adversary A can make queries adaptively in any order before Finalize.

2. (Corruption) In the works of [ACGU20, AGT22], the adversary against the MIFE is
futhermore allowed to corrupt eki for some i ∈ [n]. This notion of security for MIFE with
corruption allows one more oracle for the adversary to corrupt eki for any slot i ∈ [n] of
their choices.

3. (Key queries) The adversary A adaptively outputs a function description Fλ. The challenger
runs dkF←Extract(Fλ,msk) and returns dkF to A.

4. (Challenge) The adversary A outputs a query (i,m(0)
i ,m

(1)
i) for some i ∈ [n]. The challenger

chooses a bit b ∈ {0, 1} and encrypts m(b)
i to obtain cti←Enc(eki,m(b)

i). The ciphertext cti
is returned to A.

5. (Encryption) The adversary A outputs a query (i,mi) for some i ∈ [n]. The challenger
encrypts mi to obtain cti←Enc(eki,mi). The ciphertext cti is returned to A.

6. (Finalize) The adversary A outputs a guess b̂. If the following conditions is satisfied, the
experiment outputs b̂ ?= b. Otherwise, the experiment outputs 0. Let I ⊂ [n] be the set of
corrupted indices, for b ∈ {0, 1} we define X(b) := {x(b)

1,j , . . . , x
(b)
n,j}

q
j=1 to be the q queried

challenges

(a) The pair X(0),X(1) satisfies that for all F queried by A, all I ′ = {i1, . . . , it} ⊆ I, all
{x′i1 , . . . , x

′
it}, all j1, . . . , jn−t ∈ [q] we have

F
(
order

(
x(0)
i1,j1

, . . . , x(0)
in−t,jn−t

, x′i1 , . . . , x
′
it

))
= F

(
order

(
x(1)
i1,j1

, . . . , x(1)
in−t,jn−t

, x′i1 , . . . , x
′
it

))
(b) The set {F} queried by A satisfies that for all X(0),X(1) challenges, all I ′ = {i1, . . . , it} ⊆

I, all {x′i1 , . . . , x
′
it}, all j1, . . . , jn−t ∈ [q] we have

F
(
order

(
x(0)
i1,j1

, . . . , x(0)
in−t,jn−t

, x′i1 , . . . , x
′
it

))
= F

(
order

(
x(1)
i1,j1

, . . . , x(1)
in−t,jn−t

, x′i1 , . . . , x
′
it

))
such that the ℓ-input receives its correspond value by the permutation order(·). Intuitively
the set of inputs {x′i1 , . . . , x

′
it} represents whatever the adversary can put into the (subsets

of) corrupted slots, and syntactically we use the permutation order(·) to map values to their
correct ordered arguments of the function (e.g. input value x′i1 to argument k if i1 = k ∈ N).

34

CHAPTER 3. PRELIMINARIES 3.5. CRYPTOGRAPHIC PRIMITIVES

We can define similar weaker notions of selective challenge message and/or selective functional
decryption key queries. The notion of MIFE with access control can be done in the same manner
as we do for FE with access control in the previous paragraph. The correctness is adapted that
the decryption key skF,A can only decrypt the ciphertexts (cti)i to F ((mi)i) if the access control
policy A accepts the attributes Si of the ciphertext cti←Enc(pk,mi,Si) for all slots i ∈ [n].

35

3.5. CRYPTOGRAPHIC PRIMITIVES CHAPTER 3. PRELIMINARIES

36

Part II

Security Models of Multi-Client
Functional Encryption: Access

Control and Stronger Admissibility

37

Chapter

4
Multi-Client Functional
Encryption with Fine-Grained
Access Control

Chapter content
4.1 Introduction . 40
4.2 Technical Overview . 42

4.2.1 Formalizing Access Control in Functional Encryption 42
4.2.2 Adaptively Secure Single-Client Construction 43
4.2.3 The “Duplicate-and-Compress” Technique 45

4.3 IPFE for LSSS . 48
4.4 IP-MCFE for LSSS . 52

4.4.1 Definitions . 52
4.4.2 Construction . 54
4.4.3 Adaptive Security . 55
4.4.4 Revisiting MIFE in the Standard Model 58

Multi-Client Functional Encryption (MCFE) and Multi-Input Functional Encryption (MIFE)
are very interesting extensions of Functional Encryption for practical purpose. They allow
to compute joint functions over data from multiple parties. Both primitives are aimed at
applications in multi-user settings where decryption can be correctly output for users with
appropriate functional decryption keys only.

While the definitions for a single user or multiple users were quite general and can be realized
for general classes of functions as expressive as Turing machines or all circuits, efficient schemes
have been proposed so far for concrete classes of functions: either only for access control, i.e. the
identity function under some conditions, or linear/quadratic functions under no condition.

In this chapter, we target classes of functions that explicitly combine some evaluation functions
independent of the decrypting user under the condition of some access control. More precisely,
we introduce a framework for MCFE with fine-grained access control and propose constructions
for both single-client and multi-client settings, for inner-product evaluation and access control via
Linear Secret Sharing Schemes (LSSS), with selective and adaptive security. Our starting point
was a work by Abdalla et al. (Asiacrypt ’20) that combines functional encryption in multi-user
setting with access control, which relies on a generic transformation from the single-client schemes
to obtain MIFE schemes. The scheme by Abdalla et al. suffers a quadratic factor of n (where n
denotes the number of clients) in the ciphertext size. We follow a different path, via MCFE: we
present a duplicate-and-compress technique to transform the single-client scheme and obtain a
MCFE with fine-grained access control scheme with only a linear factor of n in the ciphertext
size. Our final scheme thus outperforms the Abdalla et al.’s scheme by a factor n, as one can
obtain MIFE from MCFE by making all the labels in MCFE a fixed public constant. The concrete

4.1. INTRODUCTION CHAPTER 4. MCFE WITH ACCESS CONTROL

constructions are secure under the SXDH assumption, in the random oracle model for the MCFE
scheme, but in the standard model for the MIFE improvement.

The results on MCFE for inner products with LSSS-based access control also serve as a base
for further improvements in our later Chapter 6: though having more compact ciphertexts and
full adaptive security comparing to Abdalla et al.’s scheme, our final MCFE scheme with access
control (accordingly the implied MIFE scheme) allows only encrypting scalar messages and only
one-time use of messages/attributes per client per tag, à la Chotard et al. (Asiacrypt ’18) that
gives a widely used model of security for MCFE. We refer to Chapter 6 about how to lift some of
these restrictions.

4.1 Introduction

One classical issue with encryption is the decryption key, even if legitimately obtained: once
delivered, it can be used forever. One may expect revocation, or access control with more fine-
grained authentication. This has been extensively studied with broadcast encryption, revocation
systems and more generally, with attribute-based encryption (ABE) [Wee21]. Finally, as already
explained, FE is a generalization of IBE and ABE, and after having been illustrated with IBE and
ABE, linear evaluations [ALS16, ABDP16, BBL17, CLT18] and quadratic evaluations [BCFG17,
Gay20, AS17, Lin17] have been proposed. However, there are still very few works that combine
function evaluation and access control with concrete schemes. This could provide FE, with
concrete function evaluation for some target users, or revocation (of users or functions). Abdalla
et al. [ACGU20] have been the first to address this problem, for enhancing FE and MIFE with
access control. In addition, they informally argue that from an ABE for MIFE one can lift it for
free to get MCFE, thus solving both problems at the same time. Precisely, they mentioned “by
resorting for instance, to the notion of multi-client IPFE, where ciphertexts are associated with
time-stamps, and only ciphertext with matching time-stamps can be combined (e.g. [CDG+18a])
we believe that our proposed primitive provides a more general and versatile solution to the
problem”. Their idea can be interpreted as: tags can be used as specific attributes, and tags
can be embedded in policies to automatically obtain multi-client settings. This argument seems
formally valid when considering the general form of MIFE and MCFE. However, when considering
concrete classes of functions, which is our main focus in this chapter, it is unlikely to be efficiently
feasible and we will explain the reason in the technical overview in Section 4.2. We underline
that the principal difference between MCFE and MIFE is the presence of tags for producing the
ciphertext components, which can be jointly decrypted only if all tags are equal. Thus, we can
retrieve an MIFE from MCFE by fixing and publishing one tag, which retains the same ciphertext’s
size from the MCFE scheme to the new MIFE one. Moreover, since the combination of ciphertext
components in MCFE is restrained by the tags, its security model is far less restrictive than the
security model of MIFE that has to deal with arbitrary combination of ciphertext components.
For these reasons, our main objective becomes constructing an MCFE having smaller ciphertext
size while permitting access control over decryption keys.

We take a completely different approach than in [ACGU20] to answer this question. Borrowing
the terminology from ABE, our work will focus on key-policy (KP) constructions, where the policy
is defined at the moment of key extraction and a ciphertext associated with certain attributes can
be decrypted only if those attributes satisfy the policy. The dual notion of ciphertext-policy (CP)
constructions is already studied in [ACGU20]. We concentrate solely on particular functionality
classes whose description contains two separate parts: a description of functions exclusively for
evaluation and a binary relation exclusively for modeling access control. Although this conceptual
point of view does not take us out of the FE realm and thus can be captured by the general FE
notion, it suits perfectly our purpose to compute inner-products along with fine-grained access
control provided by Linear Secret Sharing Schemes (LSSS) in this work. Then, we start from
single-client IPFE schemes with LSSS access control and leverage them to get an MCFE scheme,

40

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.1. INTRODUCTION

where only tags are needed for hashing during encryption, and the hash function is modeled as
a random oracle. Removing labels by fixing a public tag for all ciphertexts leads to an MIFE
scheme in the standard model that is more efficient than the one from [ACGU20].

Chapter Outline. We start by a technical overview of the definitional framework for access
control in FE in Section 4.2; Then, we present our single-client IPFE scheme with LSSS access
control in Section 4.3; We extend this scheme to a multi-client setting in Section 4.4.2. It is
worth emphasizing that the definitional choices we make is important for a solid modelisation of
access control in FE, while taking into account previous informal attempts in previous works
such as [ACGU20]. Moreover, in a later significant generalization, this framework turns out to
be a case of what we coin function classes with public inputs in Chapter 6. In Section 4.4.2 for
the MCFE construction, we also elaborate on intermediate steps and on connections to MIFE.
All abridged proofs can be found in the full version [NPP22b] of [NPP22a].

41

4.2. TECHNICAL OVERVIEW CHAPTER 4. MCFE WITH ACCESS CONTROL

4.2 Technical Overview

4.2.1 Formalizing Access Control in Functional Encryption

First of all, we discuss how we formalize access control in the notion of functional encryption,
which will affect our formal definitions in both single-client setting and in particular, multi-client
setting (Definition 4.2). On the one hand, accompanying an encryption scheme with access
control over decryption keys is already expressed by ABE, which in itself is a special case of FE.
Thus, FE schemes with fine-grained access control can be described by the general FE notion
for any class of functions that can handle the desired access control along with the required
computation.

On the other hand, when working with concrete functionality, we usually find ourselves in
the context where the evaluation cannot express the access control and they cannot be described
abstractly using a single functionality. Therefore, in this chapter we consider FE with access
control as FE schemes for particular functionality class whose description can be separated into
two parts F × AC-K: (1) a first part F ∈ F for evaluation, (2) and a second part for access
control captured by a binary relation Rel : AC-K× AC-Ct→ {0, 1}, for some sets AC-K,AC-Ct.
The key extraction is done with respect to (ac-k ∈ AC-K, F), meanwhile the encryption procedure
will receive (ac-ct ∈ AC-Ct, x). A key skac-k,F can decrypt a ciphertext ctac-ct(x) to F (x) if and
only if Rel(ac-k, ac-ct) = 1. We stress that this way of formulation does not take us out of the
FE regime, as it is still captured by the general FE notion.

We show how the above fomalization is used in a concrete case. In the following discussion we
will distinguish the input during encryption from the parameters during key extraction. The
simplest non-trivial example for access control is identity-based control, i.e. AC-K = AC-Ct = ID
for some identity space ID and Relibe(id-k, id-ct) =

(
id-k ?= id-ct

)
. In this chapter we focus on

F ∈ F IP = {Fy : Znq → Zq} for computing inner products over Znq for some prime q and
n ∈ N, where Fy(x) := ⟨x,y⟩1. The functional keys are extracted using (id-k,y) and the
ciphertexts are encrypted using (id-ct,x) . First of all, it is not immediate how F IP can be used
to implement the check τz ·(id-k − id-ct) for the identity-based control, where τ and z are random
values generated for encryption and key extraction, respectively, together acting as a mask of
the decryption value. Notably, the value z cannot be specified as part of the inner-product
evaluation function, because the inner-product evaluation itself must be independent of users at
the time of generating functional keys, nor as part of the ciphertext. It thus seems indispensable
to treat the functionality as F IP × ID: the functional key is generated w.r.t Fy ∈ F IP and
id-k ∈ ID, while the ciphertext is encrypted w.r.t (id-ct ∈ ID,x ∈ Znq) . During decryption for
obtaining ⟨x , y ⟩ + τz · (id-k − id-ct), the ID-part of the functional key will implement the
control τz · (id-k − id-ct) whilst the F IP-part will compute ⟨x , y ⟩.

Treatment of Tags in MCFE with Access Control. As mentioned in the introduction, our
current objective is constructing MCFE schemes with access control having smaller ciphertexts.
We use the functionality F IP×ID as a running example. The input x for inner-product calculation
is broken down into n components for the entries xi of x . The encryption procedure takes
(xi, id-cti, tagi) and outputs a ciphertext component cti, for some identity id-cti and a tag
tagi . The decryption procedure receives a functional key, which is derived from Fy ∈ F IP

and id-k ∈ ID, and the n ciphertext components (cti)ni=1. The decrypted result is ⟨x , y ⟩ if
id-cti = id-k for all i and tagi = tagj for all i, j. In the setting that the identities and tags can

1This chapter deals with inner products where each client encrypts a scalar xi of one vector x to decrypt to
⟨x,y⟩ with respect to some function vector y. Chapter 6 extends the treatment to encryption of one vector xi per
client and the decryption gives sums of inner products

∑
i
⟨xi,yi⟩ with respect to an ensemble of vectors (yi)i in a

functional key.

42

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.2. TECHNICAL OVERVIEW

be public, if the identity control does not pass or if the tags are not the same, a totally random
value is returned by the decryption procedure. We now face the same problem of checking
equality among tagi in the same manner that has to be done for identities from ID.

First of all, it is unlikely that we want to embed the checks tagi
?= tagj in the F IP-part. More

specifically, we would have to make the decryption compute (
∑n
i=1 xi , yi) + τz · (id-k − id-cti) +∑n−1

i=1 zi(tagi − tagi+1) from n ciphertext components cti of (xi, id-cti) , for some random values
z, zi

$← Zq and y = (y1, ..., yn) . It is worth noting that the check zi(tagi − tagi+1) needs two
values defined at encryption time and not key extraction time. Therefore, in order for the
functional key to “perform” the n required checks, all n tags (tag1, . . . , tagn) must be encrypted
in an IBE-style in cti. Roughly speaking, this makes each cti of size linear in n, due to the
number of group elements required for encrypting the n tags, in addition to a constant number of
group elements for encrypting (xi, id-cti) . Thus the total communication increases to quadratic
in n over all n components cti, which is exactly what we are trying to avoid.

Furthermore, it might be tempting to embed the equality checks in the access control but
because tagi, tagj are defined only at encryption time, they are unknown to the key extraction
for the ID-part. More generally, in a setting that permits a different 2 attribute set Si in each
individual ciphertext, one can try to regard tagi as an attribute in Si . The correctness insists
on the condition A

(
Si
)

= 1 for all i and the equality checks tagi
?= tagj must somehow be

done by A
(

Si
)
, which is not possible due to the fact that tagj is independent of both A

and Si . Consequently, we have to cope with the tags independently from the functionality’s
description. As a final remark, this also demonstrates the gap between MIFE and MCFE for the
concrete functionality to compute inner products under access control by access structures, even
though the general notion of MIFE can describe MCFE, provided that the evaluation functions of
the underlying functionality class can test equality between tagi .

4.2.2 Adaptively Secure Single-Client Construction

Our construction for functional encryption schemes with fine-grained access control is using
Dual Pairing Vector Spaces (DPVSes). We highlight our main ideas to achieve adaptive security.
We refer to Section 3.3 for background on DPVSes. Our schemes are key-policy, such that the
access structure A is expressed in the key using vectors {(k∗j)j∈List-Att(A),kroot} over G2 and a
set S of attributes are embedded in the ciphertext using vectors {(cj)j∈S, croot} over G1, where
List-Att(A) is the list of attributes appearing in the access structure A. We use a linear secret
sharing scheme based on A to create the shares (aj)j∈List-Att(A) of a0

$← Zq. The shares will then
be embedded in the functional secret key components (k∗j)j∈List-Att(A). When all the components
corresponding to an authorized set in A are present, the shares can be combined to reconstruct
the secret value a0, which is now embedded in a key component k∗root. In all vectors (cj)j and
croot, we put a random value ψ. Intuitively, Jψa0Kt is masking the IPFE-related ciphertext of
Agrawal et al.’s type [ALS16]. The vectors ((k∗j)j∈List-Att(A),k∗root) and ((cj)j∈S, croot) lie in the
dual orthogonal bases. Performing the products cj × k∗j and combining over j ∈ S, where S is an
authorized set, will permit recovering Jψa0Kt that can be used to cancel out Jψa0Kt in croot×kroot:

cj (· · · ψ 0 · · ·)F ;
k∗

j (· · · aj 0 · · ·)F∗ ;
croot (· · · ψ 0 · · ·)H
k∗

root (· · · a0 0 · · ·)H∗

We use the techniques for adaptively-secure ABE introduced in the original work of Okamoto
and Takashima [OT10, OT12a, OT12b] in the ensuing steps. In vein of the dual-system

2If all clients must use the same set of attributes S , we can treat tagi as a virtual attribute in S, while
enforcing the same S for all i. This implies that all tagi must be the same. However, this approach requires a
consensus among all n clients on S, which general might be more complicated than agreeing on tag.

43

4.2. TECHNICAL OVERVIEW CHAPTER 4. MCFE WITH ACCESS CONTROL

methodology, there are two modes of operation for keys and ciphertexts: a normal mode and
a semi-functional mode. A normal key can decrypt any ciphertext, a semi-functional key can
decrypt only normal ciphertexts, and decrypting semi-functional ciphertexts using semi-functional
keys gives totally random values. The dual-system method proves security by a sequence of
indistinguishable changes to make the challenge ciphertext semi-functional, then to make the
keys semi-functional and in the end the challenge message will be perfectly hidden from the
adversary. Interestingly, there is a twist stemming from the security model when integrating this
technique into our security proofs for FE with access control: an adversary can additionally query
for keys that work with the challenge ciphertext, i.e. the key’s policy is satisfied. So as to achieve
adaptive security, we have to be much more careful about which key to turn semi-functional,
because the keys whose policies are satisfied should be capable of decrypting the (semi-functional)
challenge ciphertext.

Our goal is to mask the value a0 in k∗root by introducing a random mask a′0y in the coordinate
of hidden basis vectors, i.e. those that are not used at all in real life and are defined only for the
proof, while the facing coordinate in croot is also changed to τx so as to mask ψ:

cj (· · · ψ τxzj · · ·)F ;
k∗

j (· · · aj a′
jy/zj · · ·)F∗ ;

croot (· · · ψ τx · · ·)H

k∗
root (· · · a0 a′

0y · · ·)H∗
.

The values x, y are known constants, τ, a′0, (zj)j
$← Zq, and (a′j)j∈List-Att(A) is another ensemble

of secret shares for a′0. Consequently, this will introduce a value Jτa′0xyKt masking Jψa0Kt when
performing the product croot × kroot. We note that the value a′0 is related to (a′j/zj)j by
a′0 =

∑
j∈S′ zj · (a′j/zj) for any S′ such that A(S′) = 1. In the end, if A(S) = 1, from cj and

kj it is possible to reconstruct Jτa′0xyKt and recover Jψa0Kt. Otherwise, the entropy of a′0 is
preserved thanks to the randomness provided by zj

$← Zq for randomizing (a′j)j to (a′j/zj)j in
the components (cj)j of the unique challenge ciphertext3, as well as the fact that A(S) = 0
means there will be some a′j/zj missing in the components (k∗j)j and the value zj is information-
theoretically hidden. Hence, if A(S) = 0 we will be able to change a′0 to an independent and
uniformly random value r0

$← Z∗q . It is obligatory that we apply this argument key by key, while
considering the key’s capability to decrypt the challenge ciphertext, because two different keys
might mutually leak information about the same zj and our statistically argument no longer
holds. After a sequence of hybrids on the functional key queries, we can mask all the keys as
desired so that the key and the challenge ciphertext will become readily semi-functional for later
steps in the proof.

However, only for functional keys whose policy is not satisfied can we perform such a change
from a′0 to r0, and we can decide the satisfiability only when the adversary adaptively queries for
functional keys. Our idea is to introduce r0 in all key components and at the same time use a
mechanism to “cancel out” the masks ((a′j/zj)j , r0) in ((k∗j)j∈List-Att(A),k∗root) if A(S) = 1. It is
indispensable to have this mechanism because otherwise, as soon as we change a′0 to r0, even the
reconstruction

∑
j∈S′ zj · (a′j/zj) = a′0 is not able to remove r0 for a correct decryption. In our

particular setting for computing inner-products, we observe that if A(S) = 1, then ⟨∆x,y⟩ = 0 for
the sake of avoiding trivial attacks, where ∆x := x∗1 − x∗0 is the difference of the two left-or-right
challenge messages and y is specified the functional key. In the selective setting where ∆x is
known in advance, the key and ciphertext components can simply be masked using the constants
(x, y) := (1, ⟨∆x,y⟩). However, for the goal of adaptive security where ∆x is unknown at the
time of key extraction, we have to make a trade-off and use DPVSes of dimensions linear in
the dimension n of vectors for inner-products and mask the key and ciphertext components as
follows:

cj (· · · ψ τzj∆x[1] · · · τzj∆x[n] · · ·)F

k∗
j (· · · aj a′

jy[1]/zj · · · a′
jy[n]/zj · · ·)F∗

croot (· · · ψ τ∆x[1] · · · τ∆x[n] · · ·)H
k∗

root (· · · a0 r0y[1] · · · r0y[n] · · ·)H∗

3Since our single-client scheme is public-key, we can obtain multi-challenge security using a standard hybrid
argument.

44

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.2. TECHNICAL OVERVIEW

where each i-th pair of constants (x, y) is set to (∆x[i],y[i]) for all i ∈ [n]. Our arguments
resort to a slight variant of the technique in [OT10, OT12a, OT12b], stated as a technical lemma
(see [NPP22a, Lemma 4], or its more generalized version of Lemma 3.5). The lemma will use
some auxiliary hidden vectors (which we do not show here) during the masking process and so
as to economize the dimensions of our DPVSes, we apply the lemma n times in a sequence of
hybrids to introduce (τ∆x[i], r0y[i])i while reusing and cleaning those auxiliary hidden vectors
after each application. After successfully laying (r0y[i])i in place, the rest of the proof will
use r0 as a source of randomness to completely hide the challenge message. Our single-client
constructions are presented in Section 4.3.

4.2.3 The “Duplicate-and-Compress” Technique

We give a glimpse of our main technical method to obtain a multi-client construction from
our single-client construction, while maintaining the total ciphertext’s size of order linear in
n. The intriguing point we observe is as long as each client uses an independent DPVS, the
technique we use to take care of the ciphertext/key vectors in the single-client case can be carried
out in a parallel manner, to some extent. Therefore, in the security proof, we can distribute
and accumulate in parallel the necessary information in small-dimension vectors rather than
centralizing such information in few vectors of big dimension. Our treatment for the multi-client
setting is twofold and we give below the main technical ideas.

Randomisation of secret shares. Along these lines of argument we make use of a technique
to randomise secret shares that are integrated in keys for access control. In short, in a
computationally indistinguishable manner, Lemma 3.5 from Section 3.3 allow us to introduce
first a set of shares (a′(ℓ)

i,j)j are secret shares of a′(ℓ)
i,0 . Then the secret-share relation between (a′(ℓ)

i,j)j
and a′(ℓ)

i,0 is lifted by masking independently (a′(ℓ)
i,j)j for each attribute j in the key-policy by a

uniformly random zj
$← Z∗q . Importantly, conditioned that each attribute j emits at most one

time to the adversary, this masking makes each a′(ℓ)
i,j /zj information-theoretically hidden if j is

unknown, i.e. the attributes from the adversary does not contain j and is not satisfying the
policy in the key. These hiding property of a′(ℓ)

i,j /zj is used then for later steps of the proof.
Similar techniques are encountered again in the proof of Theorem 6.11 in Chapter 6, for which
we also give fully formal details.

The more restrictive MCFE. Firstly, Section 4.4.2 presents a construction that enforces
the same S1 = · · · = Sn = S for all clients, by hashing it using a full-domain hash function
modeled as a random oracle (RO), along with the tag at the time of encryption. Indeed, we
will use an argument resembling what we do in the single-client construction and perform
a masking procedure key by key, where the functional key query for (A,y(ℓ)) is indexed by
ℓ. For each i ∈ [n],we mask (k∗i,j)j = (..., a(ℓ)

i,j , a
′(ℓ)
i,j y/zj , ...)j ,k∗i,root = (..., a(ℓ)

i,0, a
′(ℓ)
i,0y, ...) and

(ci,j)j = (..., ψi, τxzj , ...)j , ci,root = (..., ψi, τx, ...), where (a(ℓ)
i,j)j , (a

′(ℓ)
i,j)j are secret shares of a(ℓ)

i,0, a
′(ℓ)
i,0

respectively. In this more restrictive case of Section 4.4.2 where all n clients use the same S,
it entails all clients i ∈ [n] using the same a(ℓ)

0 , a
′(ℓ)
0 with their secret shares (a(ℓ)

j)j , (a′(ℓ)
j)j in

(k∗i,j)j = (..., a(ℓ)
j , a

′(ℓ)
j y/zj , ...)j and k∗i,root = (..., a(ℓ)

0 , a
′(ℓ)
0 y, ...). Afterwards, we want to replace

a′(ℓ)
0 by an independent and uniformly random value r(ℓ)

0
$← Z∗q if A(Si) = 0 and clearing the

masks otherwise. As our first observation, the reasoning is still based crucially on the fact that
in S there will lack some j whose corresponding zj permits recovering a′(ℓ)

0 =
∑
j zj(a

′(ℓ)
j /zj) if

A(S) = 0. It gets clear that as long as A(S) = 0, for all i independently, the same argument will
hold because all i use the same set S of attributes. This observation leads to a compression of
all (ci,j)j , (k∗i,j)j into one pair of dual bases (F,F∗) instead of n separate pairs for each i ∈ [n].
As a second observation,when A(S) = 1, all ciphertext components must be combined together
for a correct decryption. As a result, to program the canceling mechanism, instead of naively
embedding n pairs of constants (∆x[k],y(ℓ)[k])nk=1 in (ci,root, (ci,j)j ,k∗i,root, (k∗i,j)j) for each i, we

45

4.2. TECHNICAL OVERVIEW CHAPTER 4. MCFE WITH ACCESS CONTROL

only need to embed (∆x[i],y(ℓ)[i]) in (ci,root, (ci,j)j ,k∗i,root, (k∗i,j)j). The grouping by i of the
products ci,root × k∗i,root as well as

∑
j ci,j × k∗i,j will retrieve

q
τr(ℓ)

0 ⟨∆x,y(ℓ)⟩
y

t and we proceed
the remaining as in the single-client proof. We point out that in the multi-client setting, it might
be the case that some i are corrupted and the retrieval of

q
τr(ℓ)

0 ⟨∆x,y(ℓ)⟩
y

t is more complicated
when regrouping over i. However, by carefully defining (see Definition 4.3) and considering
only admissible adversaries, i.e. they cannot win by trivial attacks4, it remains the case. This
individual insertion of (∆x[i],y(ℓ)[i]) for each i leads to a duplication of one pair of dual bases
(Hi,H∗i) for each (ci,root,k∗i,root), while all (ci,j)j , (k∗i,j)j are readily put in the same basis following
our first observation:

(Compressing to same bases) for all i ∈ [n] ci,j (· · · ψ τ∆x[i]zj · · ·)F

k∗
i,j (· · · a(ℓ)

j a′(ℓ)
j y(ℓ)[i]/zj · · ·)F∗

(Duplicating bases) for each i ∈ [n] ci,root (· · · ψ τ∆x[i] · · ·)Hi

k∗
i,root (· · · a(ℓ)

0 a′(ℓ)
0 y(ℓ)[i] · · ·)H∗

i

We emphasize that this parallel process is feasible thanks to a conveniently smooth control,
as low as the level of the vectors’ coordinates in DPVSes. This potential of parallelization helps
us spread the necessary information for answering adaptive key queries, which accounts for
the linearly large dimension, into n collections {(k∗i,j)j∈List-Att(A),k∗i,root}i∈[n]. On the one hand,
we change the vectors (k∗i,j , ci,j)i,j in parallel for all i, while these vectors are written in bases
(F,F∗). On the other hand, we change the vectors (k∗i,root, ci,root)i independently for each client
i, using the fact that each pair (k∗i,root, ci,root) belong to a separate pair of dual bases (Hi,H∗i).
In the end, instead of using n bases of dimension n, we can use n bases of constant dimension
for (k∗i,root)i along with one constant-dimension basis for all {(k∗i,j)j∈List-Att(A)}i, saving a factor
n in the ciphertext’s size.

The more flexible MCFE. Section 4.4.4 discusses an extension of the above MCFE construction
where we do not impose the same set of attributes among n clients. Each client i can now encrypt
using a different Si and the decryption can decrypt the inner-product if and only if A(Si) = 1 for
all i. Unsurprisingly, our argument as it is from the previous construction, for masking and for
replacing a′(ℓ)

i,0 by an independent and uniformly random value, does not hold anymore because
there might be two keys corresponding to A(ℓ) and A(ℓ′) such that A(ℓ)(Si) ̸= A(ℓ′)(Si) and the
adversary might try to use key components of the ℓ′-th query to recover a′(ℓ)

i,0 in the ℓ-th query.
We thus make use of another layer of random secret shares (dℓ,i)ni=1 over n components of each
ℓ-th functional key, facing θi in the ciphertext components such that

∑n
i=1 θidℓ,i = 0. The values

(θi)i are generated as part of the master secret key but (dℓ,i)ni=1 are chosen independently for each
key. A fully working key can be obtain only if all the n components corresponding to (dℓ,i)ni=1 are
combined. That will prevent the adversary from trying to mix components between two different
keys, i.e. if A(ℓ)(Si) = 0 we can be sure that a′(ℓ)

i,0 retains its entropy and stays hidden. After a
similar masking step using the secret shares (a′(ℓ)

i,j)j of a′(ℓ)
i,0 independently generated for each i,

the randomness provided by (dℓ,i)ni=1 allows us to tweak a′(ℓ)
i,0 with a uniformly random value r(ℓ)

0 :

(Compressing) for all i ∈ [n] ci,j (· · · ψ τ∆x[i]zj · · · · · ·)F

k∗
i,j (· · · a(ℓ)

j a′(ℓ)
i,j y(ℓ)[i]/zj · · · · · ·)F∗

(Duplicating) for each i ∈ [n] ci,root (· · · ψ τ∆x[i] θi · · ·)Hi

k∗
i,root (· · · a(ℓ)

0 (a′(ℓ)
i,0 + r(ℓ)

0)y(ℓ)[i] dℓ,i · · ·)H∗
i

It is of the utmost importance that we rely on (dℓ,i)ni=1, which is particular for each ℓ-th key,
to carry out this change from a′(ℓ)

i,0 to a′(ℓ)
i,0 + r(ℓ)

0 . Or else, the adversary can mix and match the
4For instance, the adversary might corrupt i∗, query a left-or-right challenge (x0,x1) where ∆x[i∗] := x0[i∗]−

x1[i∗] ̸= 0 and ∆x[i] = 0 for i ̸= i∗, then decrypt the challenge ciphertext with a satisfied key for y(ℓ) whose i∗-th
entry is non-zero.

46

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.2. TECHNICAL OVERVIEW

ℓ-th and ℓ′-th keys to remove a′(ℓ)
i,0 and distinguish the adding of r(ℓ)

0 , regardless whether Si is
authorized or not. The argument is now computational, in contrast to the information-theoretical
indistinguishability when changing from a′(ℓ)

0 to r(ℓ)
0 in the more restrictive MCFE. We now

perform an unmasking by going backwards to remove the sharing (a′(ℓ)
i,j)j and a′(ℓ)

i,0 in the key.
This transition is completely symmetric. If A(Si) = 1 for all i, then the admissibility requires
⟨∆x,y(ℓ)⟩ = 0 and the noise τr(ℓ)

0 can be removed. Otherwise, in case ⟨∆x,y(ℓ)⟩ ≠ 0, the mask
τr(ℓ)

0 persists but the admissbility implies there exists i such that A(Si) = 0 and the functional
key cannot decrypt the challenge ciphertext. We emphasize that the incapability of the key when
A(Si) = 0 is ensured by (dℓ,i)ni=1. After introducing r(ℓ)

0 , the remaining steps resemble the proof
of the less flexible construction in Section 4.4.2. A desirable byproduct of this more flexible
construction is that the hash function, which is modeled as a random oracle (RO), is now applied
only on the tag. Therefore, we can obtain an MIFE in the standard model that is comparable to
the work in [ACGU20] by fixing the hash value of a tag for all ciphertexts and publishing it as a
parameter of the scheme.

More on Security of MIFE from MCFE. We emphasize that the obtained MIFE after our
more attribute-flexible MCFE with access control in Section 4.4.4 inherits the security from the
latter. Notably, for each challenge tag∗, condition 1 in Definition 4.3 prohibits the adversary
from querying multiple messages or attributes with the same challenge tag, at the same slot
i. This implies that in the MIFE resultant, security does not hold with repetitions at the same
slot i either. In general, under access control, the transformation from MCFE to MIFE is highly
non-trivial as mentioned in [ATY23a], in order to preserve the security with repetitions on both
messages and attributes. In the later Chapter 6 of this thesis, we presents a MCFE with access
control that allows repetitions on the messages, but still forbidding repetitions on the attributes.

47

4.3. IPFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

4.3 Single-Client Functional Encryption For Inner Products with
Fine-Grained Access Control via LSSS

We present constructions of FE for the inner-product functionality with attribute-based control
expressed using linear secret sharing schemes, starting with the simpler single-client setting.
We are in the bilinear group (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are written additively.
The function class of interests is F IP × LSSS where F IP contains Fy :

(
Z∗q
)n
→ Zq defined as

Fy(x) := ⟨x,y⟩. The access control is given by Rel : LSSS×2Att → {0, 1}, where Rel(A, S) = A(S),
the class LSSS contains Linear Secret Sharing Schemes over Att, and 2Att denotes the superset of
an attribute space Att ⊆ Zq. Our constructions are key-policy, where A is embedded in the key
and S is specified in the ciphertext. In order to facilitate the understanding and the motivation
of our later multi-client constructions in Section 4.4, we present both selectively-secure and
adaptively-secure single-client constructions in Figure 4.1. We leverage the selectively-secure
scheme to obtain the adaptively-secure one by replacing certain elements in the former by
the corresponding boxed components for the latter.

The main difference between the adaptive version and the selectively-secure version is the
increase in the dimension of dual bases, from constant dimensions to dimensions linear in n.
The details can be found in Figure 4.1. The computation for encrypting and decrypting stays
essentially the same. We refer to the technical overview in Section 4.2 for the main ideas why
using bigger DPVSes allows us to achieve the stronger adaptive notion. The correctness can
be verified in a straightforward manner. Theorem 4.1 proves the adaptive IND-security for the
construction corresponding to boxed components in Figure 4.1, where the adversary can query
a unique challenge ciphertext and multiple functional keys. Using a standard hybrid argument
and recalling that our scheme is public-key provide us with adaptive security against multiple
challenge ciphertexts. The easier selective security can be proved using similar techniques.

Theorem 4.1. Let E = (Setup,Extract,Enc,Dec) be an IPFE scheme with fine-grained access
control via LSSS presented in Figure 4.1 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q), for
the functionality class F IP × LSSS. Then, E is secure against chosen-plaintext attacks, adaptively
in the attributes and the challenge messages, if the SXDH assumption holds for G1 and G2.
More precisely, for λ ∈ N and for any ppt adversary A, let n be the dimension of vectors for
inner-product computation, K denote the total number of functional key queries, and P denote
the total number of attributes used by the adversary. We have the following bound:

Advind-cpa
E,F IP,LSSS,A(1λ) ≤ (2nK · (P (6P + 3) + 2) + 5) · AdvSXDH

G1,G2 (1λ)

where AdvSXDH
G1,G2 (1λ) denotes the maximum advantage over ppt adversaries against the SXDH

problem in (G1,G2) set up with parameter λ.

The full proof can be found in [NPP22a, NPP22b, Appendix B.3]. We give below the main
ideas and the sequence of games employed in the proof.

Proof (Main ideas). The sequence of games can be found in Figure 4.2. Using the dual-system
methodology, we first change the challenge ciphertext into semi-functional and then we want
to change the functional keys into semi-functional as well. This can be done only for the keys
corresponding to (A,y) such that

⟨x∗0,y⟩ ≠ ⟨x∗1,y⟩ . (4.1)

According to the model of security, condition (4.1) implies that the access structure A is not
satisfied by the attributes S in the challenge ciphertext. Hence, changing the foregoing key into
semi-functional does not affect the fact that the ciphertext, which is already semi-functional,

48

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.3. IPFE FOR LSSS

Setup(1λ): Choose two pairs of dual orthogonal bases (F,F∗) and (H,H∗) where (H,H∗) is a
pair of bases of the dual pairing vector spaces (G4

1,G4
2) (Gn+3

1 ,Gn+3
2) , and (F,F∗) are dual

bases of (G8
1,G8

2) (Gn+7
1 ,Gn+7

2) . We write

H = (h1,h2,h3,h4) H∗ = (h∗1,h∗2,h∗3,h∗4)
H = (h1,h2,h3,h4, . . . ,hn+3) H∗ = (h∗1,h∗2,h∗3,h∗4, . . . ,h∗n+3)

F = (f1, f2, f3, f4, f5, f6, f7, f8) F∗ = (f∗1 , f∗2 , f∗3 , f∗4 , f∗5 , f∗6 , f∗7 , f∗8)
F = (f1, f2, f3, f4, . . . , fn+5, fn+6, fn+7) F∗ = (f∗1 , f∗2 , f∗3 , f∗4 , . . . , f∗n+5, f∗n+6, f∗n+7)

and sample µ, z $← Z∗q , S, U
$← (Z∗q)n and write S = (s1, . . . , sn), U = (u1, . . . , un). Output

the public key and the master secret key as pk :=
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i∈[n]

)
msk := (z, S, U, (f∗i)i∈[3], (h∗i)i∈[3]) .

Extract(msk,A,y ∈ Znq): Let A be an LSSS-realizable monotone access structure over a set of
attributes Att ⊆ Zq. First, sample a0

$← Zq and run the labeling algorithm Λa0(A) (see (3.3))
to obtain the labels (aj)j where j runs over the attributes in Att. In the end, it holds
that a0 =

∑
j∈A cj · aj where j runs over an authorized set A ∈ A and cA = (cj)j∈A is the

reconstruction vector from LSSS w.r.t A. We denote by List-Att(A) the list of attributes
appearing in A, with possible repetitions. Parse msk = (z, S, U, (f∗i)i∈[3], (h∗i)i∈[3]).
Compute:

k∗j := (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

k∗j := (πj · (j, 1), aj · z,
n times︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

m∗i := Jy[i]K2 for i ∈ [n]

k∗ipfe := (⟨S,y⟩, ⟨U,y⟩, a0 · z, 0)H∗ k∗ipfe := (⟨S,y⟩, ⟨U,y⟩, a0 · z,
n times︷ ︸︸ ︷

0, . . . , 0)H∗

where πj
$← Zq. Output skA,y :=

((
k∗j
)
j
, (m∗i)i∈[n] ,k∗ipfe

)
.

Enc(pk,x,S): Parse the public key pk =
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i∈[n]

)
and S ⊆

Att ⊆ Zq as the set of attributes, then sample ω, ψ $← Zq. Compute

cj = σj · f1 − j · σj · f2 + ψ · f3 = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F for each j ∈ S

cj = (σj · (1,−j), ψ,
n times︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0, 0)F for each j ∈ S

where σj
$← Zq. Finally, compute

ti = ω · Jsi + µ · uiK1 + Jx[i]K1 = Jω · (si + µui) + x[i]K1 for i ∈ [n]

cipfe = ω · (h1 + µh2) + ψ · h3 = (ω, µω, ψ, 0)H cipfe = (ω, µω, ψ,
n times︷ ︸︸ ︷

0, . . . , 0)H

where σi
$← Zq for every i ∈ [n] and output ct :=

(
(cj)j∈S , (ti)i∈[n], cipfe

)
.

Dec(skA,y, ct): Parse ct =
(
(cj)j∈S , (ti)i∈[n], cipfe

)
and skA,y :=((

k∗j
)
j∈List-Att(A)

, (m∗i)i∈[n] , k∗ipfe

)
. If there exists A ⊆ S and A ∈ A, then compute the

reconstruction vector c = (cj)j of the LSSS for A and

JoutKt =
∑
j∈A

cj × (cj · k∗j) +
n∑
i=1

(e(ti,m∗i))−
(
cipfe × k∗ipfe

)

Finally, compute the discrete logarithm and output out ∈ Zq. Else, output ⊥.

Figure 4.1: The selectively-secure and adaptively-secure single-client constructions for IPFE with fine-grained access
control via LSSS. The high-level ideas can be found in the technical overview of Section 4.2 and more details are presented
in [NPP22a, Section 4].

49

4.3. IPFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

Game G0 : aℓ,0
$← Zq, (aℓ,j)j∈List-Att(A) ← Λaℓ,0(A), pk :=(

h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i
)
, F ∈ G(n+7)×(n+7)

1 , H ∈ G(n+3)×(n+3)
1

cj (σj · (1,−j) ψ 0 · · · 0 0 0 0 0)F
k∗ℓ,j (πℓ,j · (j, 1) aℓ,j · z 0 · · · 0 0 0 0 0)F∗

ti Jω · (si + µui) + x∗b [i]K1
m∗ℓ,i Jyℓ[i]K2

cipfe (ω µω ψ 0 · · · 0)H
k∗ℓ,ipfe (⟨s,yℓ⟩ ⟨u,yℓ⟩ aℓ,0z 0 · · · 0)H∗

Game G1 : r′ℓ,0
$← Zq, ∆x := x∗b − x∗1, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
cj (σj · (1,−j) ψ 0 · · · 0 0 0 0 0)F
k∗ℓ,j (πℓ,j · (j, 1) aℓ,j · z 0 · · · 0 0 0 0 0)F∗

cipfe (ω µω ψ τ∆x[1] · · · τ∆x[n])H
k∗ℓ,ipfe (⟨s,yℓ⟩ ⟨u,yℓ⟩ aℓ,0 · z r′ℓ,0yℓ[1] · · · r′ℓ,0yℓ[n])H∗

Game G2 : ω′ $← Zq, pk :=
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
ti

r
ω · si + ω′ · ui + x∗b [i]

z

1
m∗ℓ,i Jyℓ[i]K2

cipfe (ω ω′ ψ τ∆x[1] · · · τ∆x[n])H
k∗ℓ,ipfe (⟨s,yℓ⟩ ⟨u,yℓ⟩ aℓ,0 · z r′ℓ,0yℓ[1] · · · r′ℓ,0yℓ[n])H∗

Game G3 : ω′, r′′ℓ,0
$← Zq, s′ = s + ∆s,u′ = u + ∆u, where ∆s,∆u ∈ Znq s.t. ω ·∆s + ω′ ·∆u =

xb − x0 and ∆s + µ ·∆u = 0, pk =
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
ti Jωs′i + ω′u′i + x∗0[i]K1
m∗ℓ,i Jyℓ[i]K2

cipfe (ω ω′ ψ τ∆x[1] · · · τ∆x[n])H

k∗ℓ,ipfe (⟨ s′ ,yℓ⟩ ⟨ u′ ,yℓ⟩ aℓ,0 · z r′′ℓ,0yℓ[1] · · · r′′ℓ,0yℓ[n])H∗

Figure 4.2: Games for Theorem 4.1. The index i runs in {1, . . . , n}. The index j runs in List-Att(A) for key components
and in S for ciphertext components. The index ℓ runs in {1, . . . ,K} for the functional key queries. The transition from
G0 to G1 can be found in [NPP22a, Lemma 24], which will make use of the auxiliary vectors in (F,F∗) and (H,H∗) and
contains applications of the “swapping” lemma [NPP22a, NPP22b, Lemma 4]. The generalized version of “swapping” lemma
can also be found in Lemma 3.5.

cannot be decrypted using this key. On the other hand, for the functional secret key associated
to (A,y) where ⟨∆x,y′⟩ = 0 and ∆x := x∗1 − x∗0, it can remain normal. These keys include
those whose policy is satisfied by the attributes in the challenge ciphertext and the decryption
will return ⟨x∗0,y⟩ = ⟨x∗1,y⟩ as expected. To prove the adaptive version, we need a strategy to
change the challenge ciphertext and the keys into semi-functional such that the masks in the
vectors exist only when condition (4.1) holds. Moreover, because the functional keys might be
queried before the challenge messages are declared (we are in the adaptive setting), the keys
should still allow correct decryption of normal ciphertexts, which the adversary can compute
using pk as well as the later challenge ciphertext if the policy in the key is satisfied. Using
the terminology from [OT12b], our main idea is using auxiliary hidden vectors (f4, . . . , fn+7)
over F and (h4, . . . ,hn+3) over H, as well as their dual counterparts in F∗,H∗. These hidden
subspace vectors will accommodate τ∆x[i] in the (i+ 3)-th coordinate of the challenge ciphertext
cipfe, and r0y[i] in the (i + 3)-th coordinate of functional key kipfe corresponding to y, for
each i ∈ [n] and the random masks τ, r0

$← Zq. Then, when taking the products of vectors in
DPVS, there will be a term τr0

∑
i∈[n] ∆x[i]y[i] = τr0⟨∆x,y⟩ and it will act as a mask only

when ⟨∆x,y⟩ ≠ 0. The masking is done by each index i ∈ [n], applying Lemma 3.5. For each
i ∈ [n], so as to introduce r0 · y[i] in kipfe we will have to use 5 auxiliary hidden vectors in cj

50

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.3. IPFE FOR LSSS

for (τ∆x[i], 0, τzj ·∆x[i], 0, 0)F for all j ∈ S and zj
$← Zq. This explains why we need n more

coordinates in (F,F∗) to accommodate n values (τzj ·∆x[i], a′jy[i]/zj) in (cj ,k∗j) ∈ F× F∗, for
each j, and 4 more auxiliary hidden vectors, besides the 3 vectors used in real life. The same
goes for the need of n+ 3 basis vectors in (H,H∗).

We remark that Lemma 3.5 only helps us mask the ℓ-th key components k∗ℓ,ipfe by another
random labeling based on a′ℓ,0

$← Zq. However, after all the masks (a′ℓ,0 ·y[i])i∈[n] are in the vector
k∗ℓ,ipfe, thanks to the fact that the product in DPVS will give us τa′ℓ,0⟨∆x,y⟩, we can change
(a′ℓ,0 · y[i])i∈[n] to (r′ℓ,0 · y[i])i∈[n] all at once. If the access structure in the key is not satisfied by
the challenge attributes, there does not exist any authorized set in S. In other words, there will
exist j ∈ S such that τzj ·∆x[i] appears in the unique challenge ciphertext but zj is totally hidden
in the current ℓ-th key. Thanks to the fact that (a′ℓ,j/zj)j is perfectly randomized by (zj)j from
the labeling (a′ℓ,j)j of a′ℓ,0, it implies that a′ℓ,0 is statistically hidden and (a′ℓ,0 · y[i])i∈[n] can be
replaced by (r′ℓ,0 · y[i])i∈[n] for some uniformly independent random value r′ℓ,0

$← Zq. Otherwise,
if A(S) = 1, the security model enforces that ⟨∆x,y⟩ = 0 and the result does not depend on a′ℓ,0
anymore. In either case, changing from (a′ℓ,0 · y[i])i∈[n] to (r′ℓ,0 · y[i])i∈[n] can be justified. We
have to perform this masking by r′ℓ,0y[i] for only one key at a time; Or else two different ℓ-th and
k-th keys containing the randomized labels (a′ℓ,j/zj , a′k,j/zj)j might mutually leak information
about zj for some j embedded in (τzj)j of the unique LoR ciphertext.

The last step is to virtually modify (S,U) in the master secret key msk so that the challenge
ciphertext is now encrypting x∗0[i] and is no longer depending on b. The new (S′, U ′) will respect
the relation dictated in pk, which is known by the adversary. For any functional key corresponding
to yℓ such that ⟨∆x,yℓ⟩ = 0, simulating the key using (S,U) is identical to doing so using
(S′, U ′). On the other hand, in the case where ⟨∆x,yℓ⟩ ̸= 0, simulating the functional key for yℓ
using (S,U) introduces errors when we update (S,U) to (S′, U ′). These errors can be corrected
using the random mask from previous steps, under the SXDH assumption, to make the keys be
in the correct form w.r.t (S′, U ′). Finally, because the challenge ciphertext no longer depends on
b, the advantage becomes 0 and we can conclude.

51

4.4. IP-MCFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

4.4 Multi-Client Functional Encryption for Inner-Product with
Fine-Grained Access Control via LSSS

First of all, we define and give the model of security for multi-client functional encryption
with fine-grained access control in Section 4.4.1. We then present our main contribution by
extending our FE scheme in Section 4.3 from the single-client setting to the multi-client setting
in Section 4.4.2, for the functionality class to evaluate inner-products under access control by
linear secret-sharing schemes. Theorem 4.8 proves its adaptive security. Finally, in Section 4.4.4
we discuss further our construction and revisit the MIFE regime for comparison with [ACGU20].

4.4.1 Definitions

We extend the notion of functional encryption with fine-grained access control to the multi-client
setting. The access control is defined via a relation Rel : AC-K×AC-Ct1 × · · · ×AC-Ctn → {0, 1},
for some sets AC-Ct1, . . . ,AC-Ctn and AC-K. A plaintext for client i consists of (ac-cti, xi) ∈
AC-Cti ×Dλ, whose corresponding ciphertext can be decrypted to Fλ(x) using the functional key
skFλ,ac-k for ac-k ∈ AC-K if and only if Rel(ac-k, (ac-cti)i) = 1.

Definition 4.2 (Multi-client functional encryption with fine-grained access control).
A multi-client functional encryption (MCFE) scheme with fine-grained access control for the
functionality class F × AC-K consists of four algorithms (Setup,Extract,Enc,Dec):

Setup(1λ): Given as input a security parameter λ, output a master secret key msk and n = n(λ)
encryption keys (eki)i∈[n] where n : N→ N is a function.

Extract(msk, Fλ, ac-k): Given ac-k ∈ AC-K, a function description Fλ ∈ F , and the master secret
key msk, output a decryption key dkFλ,ac-k.

Enc(eki, xi, tag, ac-cti): Given as inputs ac-cti ∈ AC-Cti, an encryption key eki, a message
xi ∈ Dλ, and a tag tag, output a ciphertext cttag,i.

Dec(dkFλ,ac-k, c): Given the decryption key dkFλ,ac-k and a vector of ciphertexts c := (cttag,i)i of
length n, output an element in Rλ or an invalid symbol ⊥.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n])←Setup(1λ), (Fλ, ac-k) ∈ F ×
AC-K and dkFλ,ac-k←Extract(msk, Fλ, ac-k), for all tag and (ac-cti)i satisfying Rel(ac-k, (ac-cti)i) =
1, for all (xi)i∈[n] ∈ Dnλ , if Fλ(x1, . . . , xn) ̸= ⊥, the following holds with overwhelming probability:

Dec
(
dkFλ,ac-k, (Enc(eki, xi, tag, ac-cti))i∈[n]

)
= Fλ(x1, . . . , xn)

where Fλ : Dnλ → Rλ and the probability is taken over the coins of algorithm.

Security. We define an indistinguishability-based security notion taking into account the
attribute-based access control as well as the possibility of corruption among multiple clients. We
define the admissibility of an adversaryA in the security game against E = (Setup,Extract,Enc,Dec).
Intuitively, we consider only admissible adversaries who do not win our security game in a trivial
manner as well as other meaningful restrictions in the multi-client setting. The admissibility
additionally takes into account the satisfiability of the relation for access control, which also
complicates the way we model the security notion. In the plain setting, interested readers can
refer to [CDG+18a] or [LT19] for more details.

Definition 4.3 (Admissible adversaries). Let A be a ppt adversary and let E = (Setup,Extract,
Enc,Dec) be an MCFE scheme with fine-grained access control for the functionality class F×AC-K.

52

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.4. IP-MCFE FOR LSSS

In the security game given in Figure 4.3 for A considering E, let the sets (C,Q,H) be the sets
of corrupted clients, functional key queries, and honest clients, in that order. We say that A is
NOT admissible w.r.t (C,Q,H) if any of the following conditions holds:

1. There exist two different partial ciphertexts for x(b)
i ̸= x(b)

i
′, for some b ∈ {0, 1}, under one

challenge tag tag that is queried to LoR.

2. There exist a tag tag and i, j ∈ H such that i ̸= j, there exists a query (i, x(0)
i , x

(1)
i , tag, ac-cti)

to LoR but there exist no query (j, x(0)
j , x

(1)
j , tag, ac-ctj) to LoR.

3. There exists (tag, ac-cti) for i ∈ [n], a function F ∈ F , and ac-k ∈ AC-K such that

• We have Rel(ac-k, (ac-cti)i) = 1 and (F, ac-k) ∈ Q.
• For all i ∈ H, there exists a query (i, x(0)

i , x
(1)
i , tag, ac-cti) to LoR for (x(0)

i , x
(1)
i).

• For all i ∈ C, it holds that x(0)
i = x(1)

i .
• It holds that F ((x(0)

i)i) ̸= F ((x(1)
i)i).

Otherwise, we say that A is admissible w.r.t (C,Q,H).

Remark 4.4. As in the plain MCFE with no attribute-based access control in [CDG+18a, LT19],
we will consider security with no repetitions (cf. condition 1), i.e. the adversary cannot query
Enc nor LoR for multiple ciphertexts under the same (i, tag, ac-cti). Moreover, the adversary is
not allowed to query the encryption oracle Enc for ciphertexts under the challenge tag∗ that was
previously queried to LoR. The intuition of this restriction is to prevent trivial attacks where,
by querying for ciphertexts under tag∗, the adversary can combine them with the challenge
ciphertext under the same tag∗ to learn much more information about the challenge bit b and win
the game. In addition, for every honest clients i, there must be a ciphertext query to LoR under
the challenge (tag, ac-cti). That is, we do not take into account the scenario where only partial
(in terms of honest clients) challenge ciphertext is queried to LoR. We can relax this condition
and allow partial challenge ciphertexts by adding a layer of All-or-Nothing Encapsulation (AoNE).
The AoNE encapsulates the partial components from clients and guarantees that all encapsulated
components can be decapsulated if and only if all components are gathered, otherwise the original
information remain hidden. The work by Chotard et al. [CDSG+20] presents constructions for
AoNE in the prime-order (asymmetric) bilinear groups compatible with our current setting. In
the MIFE realm, the work of [ACGU20] considers the similar restriction and expects all honest
slots i ∈ [n] are queried to LoR.

Remark 4.5. Our syntax and model of MCFE with fine-grained access control require that in
order to combine the ciphertext components, they must be encrypted under the same tag and
the same set of attributes. One can aim for a more flexible notion in which each client i can
encrypt their ciphertext component under a different (tag, ac-cti). However, this creates a much
more intricate situation and we have to take into account non-trivial attacks where two different
functional keys, whose policies are satisfied by different subsets of clients, may be combined to
evaluate the underlying plaintext components of the union of the foregoing subsets. By hashing
the tags and attributes during encryption, our concrete constructions enforce the same set of
attributes embedded in the ciphertext components. In Section 4.4.4, we discuss how to relax the
constraint and achieve the flexible notion where each client i can use a different (tag, ac-cti) and
hash only tag. As a result, this more flexible MCFE scheme in the RO model can be morphed
into an MIFE scheme in the standard model by fixing a public tag and publishing its hash (see
Section 4.4.4). The security of the MIFE is deduced from that of the MCFE under this fixed and
hashed pubic tag.

We are now ready to give the definition for the indistinguishability-based security.

53

4.4. IP-MCFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

Initialise(1λ) Initialise(1λ, (x(0)
i , x

(1)
i)i∈[n])

b
$← {0, 1}

(msk, (eki)i∈[n])←Setup(1λ)
Q := ∅, C := ∅, H := [n]
Return pk

LoR(i, x(0)
i , x

(1)
i , tag∗, ac-ct∗

i) LoR(i, tag∗, ac-ct∗
i)

If (i, tag∗, ac-ct∗
i) appears previously:

or another (i, tag′, ac-ct′
i) was queried:

Ignore
Else:Enc(eki, x

(b)
i , tag∗, ac-ct∗

i)→ ct(b)
tag∗,i

Return ct(b)
tag∗,i

Finalise(b′)
If A is NOT admissible w.r.t (C,Q,H):

return 0

Else return
(
b′ ?= b

)
Extract(F, ac-k)
Q := Q∪ {(F, ac-k)}
dkF,ac-k←Extract(msk, F, ac-k)
Return dkF,ac-k

Enc(i, xi, tag, ac-cti)
If (i, tag, ac-cti) appears previously
or tag = tag∗:

Ignore
Else: return Enc(eki, xi, tag, ac-cti)

Corrupt(i)
C := C ∪ {i}
H := H \ {i}
Return eki

Figure 4.3: The security games Exprmc-ind-cpa
E,F,AC-K,A(1λ), Exprmc-sel-ind-cpa

E,F,AC-K,A(1λ) and Exprmc-ind-1chal-cpa
E,F,AC-K,A (1λ) for Definition 4.6

Definition 4.6 (IND-security for MCFE with fine-grained access control). An MCFE
scheme with fine-grained access control E = (Setup,Extract,Enc,Dec) for the functionality class
F × AC-K is IND-secure if for all ppt adversaries A, and for all sufficiently large λ ∈ N, the
following probability is negligible

Advmc-ind-cpa
E,F ,AC-K,A(1λ) :=

∣∣∣∣Pr[Exprmc-ind-cpa
E,F ,AC-K,A(1λ) = 1]− 1

2

∣∣∣∣ .
The game Exprmc-ind-cpa

E,F ,AC-K,A(1λ) is depicted in Figure 4.3. The probability is taken over the random
coins of A and the algorithms. Weaker notions include selectively IND-secure and one-time
IND-secure and are defined using the corresponding games in Figure 4.3.

Lemma 4.7 allows us to concentrate on the notion of one-time IND-security for our construction.

Lemma 4.7. Let E = (Setup,Extract,Enc,Dec) for the function class F × AC-K be an MCFE
scheme with fine-grained access control. If E is one-time IND-secure, then E is IND-secure.

4.4.2 Construction

This section presents a multi-client FE scheme with fine-grained access control, as defined in
Section 4.4.1. We are in the bilinear group (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are written
additively. In our concrete construction, the functionality class of interests is F IP × LSSS and
F IP contains Fy :

(
Z∗q
)n
→ Zq that is defined as Fy(x) := ⟨x,y⟩. The access control is given

by Rel : LSSS ×
(∏n

i=1 2Att
)
→ {0, 1}, where Rel(A, (Si)i) =

∏
iA(Si), the class LSSS contains

Linear Secret Sharing Schemes over Att, and 2Att denotes the superset of an attribute space
Att ⊆ Zq. Our constructions are key-policy, where A is embedded in the key and S is specified in
the ciphertext. The tag space Tag contains the tags that accompany plaintext components at
the time of encryption.

54

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.4. IP-MCFE FOR LSSS

We also need a full domain hash function H : Tag × 2Att → G2
1, where Tag denotes the set of

tags and 2Att contains the subsets of attributes of Att. The details of our construction is given in
Figure 4.4. We remark that currently all clients i ∈ [n] must use the same S for encrypting their
inputs xi, because S is hashed together with tag by H. Section 4.4.4 presents another construction
that relaxes the matching condition on S and H then receives only tag as inputs. We note that
the duplicate-and-compress technique is used by putting the vectors {(ci,j ,ki,j)j} in the same
pair of dual bases (F,F∗) for all client i ∈ [n], meanwhile each pair of vectors (ci,ipfe,ki,ipfe) is
put in bases (Hi,H∗i) for each client i ∈ [n]. In the proof of Theorem 4.8 we detail how the basis
changes in [NPP22a, NPP22b, Lemma 4], or its more generalized version of Lemma 3.5, can be
done in parallel for (Hi,H∗i), (F,F∗) for all i ∈ [n]. The correctness of the scheme is verified by:

JoutKt =
n∑
i=1

∑
j∈A

ci,j × (cj · ki,j)

− (ci,ipfe × ki,ipfe) + e(ti,mi)

=

n∑
i=1

(
Jψia0zKt −

q
ωpi · ⟨S,y⟩+ ω′pi · ⟨U,y⟩+ ψia0z

y
t +

q
(ωsi + ω′ui + xi)yi

y
t

)
= J⟨x,y⟩Kt

4.4.3 Adaptive Security

We now present the main ideas of the adaptive proof for the multi-client construction described
in Section 4.4.2, the detailed proof is presented in the full version [NPP22a, Appendix B.4]. A
high-level intuition can be revisited in Section 4.2, as well as in the main ideas of the proof that
are given below.

Theorem 4.8. Let E = (Setup,Extract,Enc,Dec) be a multi-client IPFE scheme with fine-
grained access control via LSSS for the functionality class F IP×LSSS, constructed in Section 4.4.2
in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q). Then, E is one-time IND-secure if the
SXDH assumption holds for G1 and G2. More specifically, for λ ∈ Z and for any adversary A,
let K denote the total number of functional key queries, P denote the total number of attributes
used by A, and Q denote the maximum number of random oracle (RO) queries. We have the
following bound:

Advmc-ind-1chal-cpa
E,F IP,LSSS,A (1λ) ≤ (2KP · (6P + 3) + 2K + 2Q+ 5) · AdvSXDH

G1,G2 (1λ)

where AdvSXDH
G1,G2 (1λ) denotes the maximum advantage over ppt adversaries against the SXDH

problem in (G1,G2) set up with parameter λ.

By combining with Lemma 4.7, we have the following Corollary:

Corollary 4.9. Let E = (Setup,Extract,Enc,Dec) be a multi-client IPFE scheme with fine-
grained access control via LSSS, for the functionality class F IP×LSSS, constructed in Section 4.4.2
in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q). Then, E is IND-secure if the SXDH
assumption holds for G1 and G2.

Proof (of Theorem 4.8 - Main ideas). Recall that in the security proof for single-client adaptive
security (Theorem 4.1) we switch the ℓ-th functional key to semi-functional by augmenting the
dimension of the dual bases so that the challenge ciphertext is masked by τ∆x[i], facing the mask
r(ℓ)

0 y(ℓ)[i] in the corresponding coordinate of the ℓ-th key and τ, r(ℓ)
0

$← Zq where ∆x := x(1) − x(0).
Afterwards, when doing the product of vectors in the dual bases, there will exist the quantity∑n
i=1 τr

(ℓ)
0 ∆x[i]y(ℓ)[i] = τr(ℓ)

0 ⟨∆x,y(ℓ)⟩, which is non-zero when ⟨∆x,y(ℓ)⟩ ≠ 0. The dual bases
now must have dimension at least n in order to accommodate all the n terms ∆x[i]y[i]. However,
in the multi-client setting, we are already using n different dual basis pairs (Hi,H∗i) for n clients

55

4.4. IP-MCFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

Setup(1λ): Choose n+ 1 pairs of dual orthogonal bases (Hi,H∗i) for i ∈ [n] and (F,F∗)where (Hi,H∗i) is a pair of
dual bases for (G4

1,G4
2) and (F,F∗) is a pair of dual bases for (G8

1,G8
2). We denote the basis changing matrices

for (F,F∗), (H,H∗i) as (F, F ′ := (F−1)⊤), (Hi, H
′
i := (H−1

i)⊤) respectively (see Section 3.3 for basis changes in
DPVS):

(Hi = Hi ·T; H∗i = H ′i ·T∗)i∈[n] (F = F ·W; F∗ = F ′ ·W∗)

where Hi, H
′
i ∈ Z4×4

q , F, F ′ ∈ Z8×8
q and (T = JI4K1 ,T∗ = JI4K2), (W = JI8K1 ,W∗ = JI8K2) are canonical bases

of (G4
1,G4

2), (G8
1,G8

2) respectively, for identity matrices I4 and I8. We recall that in the multi-client setting
the scheme must be a private key encryption scheme. For each i ∈ [n], we write

Hi = (hi,1,hi,2,hi,3,hi,4) H∗i = (h∗i,1,h∗i,2,h∗i,3,h∗i,4)
F = (f1, f2, f3, f4, f5, f6, f7, f8) F∗ = (f∗1 , f∗2 , f∗3 , f∗4 , f∗5 , f∗6 , f∗7 , f∗8)

and sample µ $← Z∗q , S, U,
$← (Z∗q)n and write S = (s1, . . . , sn), U = (u1, . . . , un). Perform an n-out-of-n secret

sharing on 1, that is, choose pi ∈ Zq such that 1 = p1 + · · · + pn. Output the master secret key and the
encryption keys as {

msk := (S, U, f∗1 , f∗2 , f∗3 , (h∗i,1,h∗i,2,h∗i,3)i∈[n])
eki := (si, ui, pi ·H(1)

i , pi ·H(2)
i , hi,3, f1, f2, f3) for i ∈ [n]

where H(k)
i denotes the k-th row of Hi.

Extract(msk,A,y ∈ Znq): Let A be an LSSS-realizable monotone access structure over a set of attributes Att ⊆ Zq.
First, sample a0

$← Zq and run the labeling algorithm Λa0(A) (see Equation (3.3)) to obtain the labels (aj)j
where j runs over the attributes in Att. In the end, it holds that a0 =

∑
j∈A cj · aj where j runs over an

authorized set A ∈ A and c = (cj)j is the reconstruction vector from LSSS w.r.t A. We denote by List-Att(A) the
list of attributes appearing in A, with possible repetitions. Parse msk = (S, U, f∗1 , f∗2 , f∗3 , (h∗i,1,h∗i,2,h∗i,3)i∈[n])
and write y = (y1, . . . , yn). For each i ∈ [n], compute mi := JyiK2 and

ki,j = (πi,j · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)
ki,ipfe := (⟨S,y⟩, ⟨U,y⟩, a0 · z, 0)H∗

i

where z, πi,j
$← Zq. Output dkA,y :=

(
(ki,j)i,j , (mi,ki,ipfe)i∈[n]

)
.

Enc(eki, xi, tag,S): Parse eki := (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3) and S ⊆ Att ⊆ Zq as the set of attributes,
compute H(tag,S)→ (JωK1 , Jω′K1) ∈ G2

1 and sample ψi
$← Zq. Use piH(1)

i and piH
(2)
i to compute

piH
(1)
i · JωK1 + piH

(2)
i ·

q
ω′

y
1 = pi ·

(
ωH

(1)
i · g1 + ω′H

(2)
i · g1

)
= pi · (ωhi,1 + ω′hi,2) .

For each j ∈ S, compute

ci,j = σi,j · f1 − j · σi,j · f2 + ψi · f3 = (σi,j · (1,−j), ψi, 0, 0, 0, 0, 0)F

where σi,j
$← Zq. Finally, compute

ti = si · JωK1 + ui ·
q
ω′

y
1 + JxiK1 =

q
ω · si + ω′ · ui + xi

y
1

ci,ipfe = pi · (ω · hi,1 + ω′ · hi,2) + ψi · hi,3 = (ωpi, ω′pi, ψi, 0)Hi

and output cttag,i :=
(
(ci,j)j , ti, ci,ipfe

)
.

Dec(dkA,y, c := (cttag,i)): Parse cttag,i = ((ci,j)j∈S, ti, ci,ipfe) and dkA,y := ((ki,j)i∈[n],j∈List-Att(A), (mi,ki,ipfe)i∈[n]).
If there exists A ⊆ S and A ∈ A, then compute the reconstruction vector c = (cj)j of the LSSS for A and

JoutKt =
n∑
i=1

∑
j∈A

ci,j × (cj · ki,j)

− (ci,ipfe × ki,ipfe) + e(ti,mi)

Finally, compute the discrete logarithm and output the small value out.

Figure 4.4: The construction for multi-client IPFE with fine-grained access control via LSSS from Section 4.4.2.

56

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.4. IP-MCFE FOR LSSS

and the correctness of the construction in Section 4.4.2 makes sure that only when gathering all
n ciphertext parts can we decrypt to obtain the inner product. Therefore, it suffices to introduce
only τi∆x[i] in the component ci,ipfe returned from LoR of client i and only r(ℓ)

i,0y(ℓ)[i] in the
corresponding key component k∗i,ipfe, while duplicating the pair of bases (Hi,H∗i) for each i ∈ [n].
Indeed, this is also the best we can do because a client i is not supposed to know other inputs
x(b)[j] of other clients j, where b $← {0, 1} is the challenge bit. At the same time, we compress the
components of the access control part (ci,j)j , (k∗i,j)j into the same pair of bases (F,F∗) for all
clients i. We refer to the introduction for more intuition on this duplicate-and-compress process.

There are some further technical tweaks to be done when applying Lemma 3.5 (only its simpler
version as in [NPP22a, NPP22b, Lemma 4] is needed). First of all, we need the factors τi, r(ℓ)

i,0 to
be the same, for the grouping later when doing products of vectors in DPVS. This can be done
by using the same τi = τ for all i and during the basis change to mask the ciphertext component
there will be a factor ∆x[i]. Our argument to introduce r(ℓ)

i,0 in fact does not depend on i and
therefore we can use the same r(ℓ)

i,0 = r(ℓ)
0 for all i as well. One might wonder if the dependence

of the masks still relies on ⟨∆x,y(ℓ)⟩ because the adversary is not supposed to query LoR for
corrupted clients and we can only introduce the masks in the vector components of honest i.
As a result, the product of vectors in the dual bases in the end will have

∑
i∈H τr

(ℓ)
0 ∆x[i]y(ℓ)[i].

However, the security model imposes that for all corrupted i, the challenge message satisfies
x(1)[i] = x(0)[i] and consequently, ⟨∆x,y(ℓ)⟩ = 0 if and only if

∑
i∈H∆x[i]y(ℓ)[i] = 0. This implies

that the mask τr(ℓ)
0
∑
i∈H∆x[i]y(ℓ)[i] persists only when ⟨∆x,y(ℓ)⟩ ≠ 0, which is our goal. The

masking of ciphertext and key components results from the application of Lemma 3.5 as we are
in the adaptive setting and not knowing what policy the ciphertext’s attributes will satisfy. The
lemma will mask all vectors k(ℓ)

i,ipfe with a′(ℓ)
0

$← Zq, using which we perform a random labeling,
and under the constraint that all clients i use the same S, the mask a′(ℓ)

0 will either appear for all
i or neither. This enables us to replace it with r(ℓ)

0 . We recall that currently the constraint on
using the same S for all i is guaranteed by hashing (tag, S) together. The more complicated and
flexible case with possibly different Si for each i is discussed in Section 4.4.4. The application
of Lemma 3.5 needs some auxiliary vectors in the dual bases (F,F∗), which are not needed in
the real usage of the scheme. Following the terminology of Okamoto-Takashima [OT12b], those
auxiliary vectors form a hidden part of the bases.

The final steps are to change (si, ui) in the challenge ciphertext to (s′i, u′i) so that the ciphertext
from LoR is encrypting x(0) instead of x(b) by solving a linear system for (∆S,∆U) depending
on x(b) − x(0). We stress that the simulation of corrupted keys can still be done using (si, ui)
regardless of the order of LoR query, under the admissibility from condition 3 in Definition 4.3
that requires ∆x[i] = x(1)[i]− x(0)[i] = 0 if i is corrupted.

In the case of ⟨∆x,y⟩ ≠ 0, which then implies A(S) ̸= 0, the functional key queries that are
simulated using (⟨S,y⟩, ⟨U,y⟩) are computaionally indistinguishable from the ones in correct
forms using (⟨S′,y⟩, ⟨U ′,y⟩), under the SXDH assumption. However, the situation is more
complicated than the single-client construction because the oracle Enc is using (si, ui) as well.
In order to be able to perform the correction step on the functional key, we have to program the
full-domain hash function, which is modeled as an RO, such that for all queries (tag′, S′) different
from the challenge (tag,S), the value H(tag′,S′) belongs to span(J(1, µ)K1) ⊆ G2

1, for µ $← Zq.
For the challenge (tag,S), the value H(tag,S) remains a pair of random group elements. The
main reason behind this is that our correction step requires H(tag′, S′) belongs to span(J(1, µ)K1)
so that it will not affect the normal ciphertext returned from Enc. This implies a linear relation
between ∆S := S′−S and ∆U := U ′−U . However, if we put H(tag, S) on the line span(J(1, µ)K1)
as well, then the intention to switch from x(0) to x(b) in the ciphertext from LoR will create
another linear relation, which reduces significantly the degree of freedom to choose (∆S,∆U) in
order to make the simulation successful. In the end, the challenge ciphertext no longer depends
on b and the advantage becomes 0, concluding the proof.

57

4.4. IP-MCFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

4.4.4 Revisiting MIFE in the Standard Model

We recall that currently our MCFE scheme from Section 4.4.2 enforces the same (tag,S) when
encrypting for all client i ∈ [n], by hashing them using the full-domain hash function that is
modeled as an RO in the security proof. In practice, this could render a significant cost for
synchronisation among clients so as to agree on tag and the attributes S at the time of encryption.
In addition, by fixing one public tag, one can only obtain an MIFE scheme whose security can be
proven in the ROM because we still need the random oracle to process S.

If we allow different (tag,Si) for each client i and during encryption the input for hashing
depends only on tag, i.e.

q
(ωtag, ω

′
tag)

y
1 ← H(tag), there is a mix-and-match attack among

functional keys that has to be considered. More precisely, suppose for two clients {1, 2} encrypting
x = (x1, x2) under different sets (S1, S2) of attributes, the ℓ-th and ℓ′-th key queries have access
structures A and A′ where A(S1) = A′(S2) = 1 and A′(S1) = A(S2) = 0, for the same inner-
product with y = y′ = (y1, y2). Neither of these keys should decrypt x1y1 + x2y2 for the
sake of security. However, the construction from Figure 4.4 permits an adversary to use the
vectors {(c1,j)j , (k1,j)j , c1,ipfe,k1,ipfe} to recover p1ωtag⟨S,y⟩+ p1ω

′
tag⟨U,y⟩. Similar computation

allows the same adversary to obtain p2ωtag⟨S,y⟩+p2ω
′
tag⟨U,y⟩ using {(c2,j)j , (k2,j)j , c2,ipfe,k2,ipfe}.

Finally, observing that p1 +p2 = 1, exploiting the linear combination y1 ·
q
ωtags1 + ω′tagu1 + x1

y
1 +

y2 ·
q
ωtags2 + ω′tagu2 + x2

y
1 permits finding ⟨x,y⟩. This demonstrates the main reason why we

put S as part of the input to the hash function H in our current scheme. The core of the above
problem is the fact that the construction from Section 4.4.2 does not prohibit combining different
“root” vectors k1,ipfe and k2,ipfe w.r.t different access structure A and A′.

In this section we present a solution, with minimal modifications to the scheme, to overcome the
need for hashing S. Suppose now we are in the more flexible setting where

q
(ωtag, ω

′
tag)

y
1←H(tag)

during encryption. During setup phase, the pair (Hi,H∗i) is a pair of dual bases for (G5
1,G5

2),
with one more dimension compared to our less flexible construction. The master secret key msk
stays the same, while the encryption key eki now contains furthermore θihi,5 for some θi

$← Zq.
Given an LSSS-realizable monotone access structure A, the key extraction Extract(msk,A,y ∈ Znq)
returns dkA,y := ((ki,j)i,j , (mi,ki,ipfe)i∈[n]). The encryption Enc(eki, xi, tag,Si) returns cttag,i :=
((ci,j)j , ti, ci,ipfe) for each i ∈ [n]. There is a new element dA,i appearing in the extra coordinate
in ki,ipfe for every i ∈ [n], where (dA,i)i satisfies

∑n
i=1 θidA,i = 0, independently chosen for each

functional keys. The vectors are essentially the same as in Figure 4.4, except (ci,ipfe,ki,ipfe) for
each i as follows:

eki := (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, θihi,5, f1, f2, f3)
msk := (S, U, (θi)i, f∗1 , f∗2 , f∗3 , (h∗i,1,h∗i,2,h∗i,3)i∈[n])

ci,ipfe := (ωtagpi, ω
′
tagpi, ψi, 0, θi)Hi

ki,ipfe := (⟨S,y⟩, ⟨U,y⟩, ai,0 · z, 0, dA,i)H∗
i

The decryption calculation stays invariant because
∑n
i=1 θidA,i = 0. In retrospection, the mix-

and-match attack we gave at the beginning of this section no longer works, because A ̸= A′ and
θ1dA,1 + θ2dA′,2 = 0 only with negligible probability over the choices of θ1, θ2, dA,1, dA′,2

$← Zq, for
two independent random families (dA,i)i∈[2] and (dA′,i)i∈[2]. More formally, the security proof for
this modified scheme, where we exploit the one extra 5-th coordinate in (Hi,H∗i), can be obtained
with recourse to the proof of Theorem 4.8 in Section 4.4.2 under few changes. We sketch the proof
and highlight the main differences compared to the less flexible scheme in [NPP22a, NPP22b,
Appendix B.5].

Remark 4.10. Adding this new layer of masking increases the ciphertext’s size by only a factor
linear in n. Moreover, given this new construction where the set of attributes does not involve in
the computation of the full-domain hashing anymore, we can obtain an MIFE in the standard
model by fixing one tag for every ciphertext. The random oracle can be removed by publishing a

58

CHAPTER 4. MCFE WITH ACCESS CONTROL 4.4. IP-MCFE FOR LSSS

random fixed value corresponding to H(tag) for encryption. In the end, we obtain an attribute-
based MIFE for inner-products with adaptive security in the standard model, where the adversary
can make the challenge query to LoR at most once for each slot i ∈ [n]. To achieve security
w.r.t multiple queries for same slot, we can apply the technique in [CDG+18b] to enhance our
construction with repetitions. Finally, we can apply a layer of All-or-Nothing Encapsulation to
the ciphertext components of construction in this Section 4.4.4, so as to remove the tradeoff with
respect to partial challenge ciphertexts in case of (tag, Si) for different Si.

Last but far from the least, we recall that in our MCFE security, for each challenge tag∗,
condition 1 in Definition 4.3 prohibits the adversary from querying multiple messages or attributes
with the same challenge tag, at the same slot i. Therefore, in the MIFE that is obtained in
the end, its security does not hold with repetitions at the same slot i either. Generally, the
access control complicates the transformation from MCFE to MIFE as pointed out in [ATY23a],
regarding especially repetitions on both messages and attributes. The later Chapter 6 of this
thesis presents a MCFE with access control that allows repetitions on the messages, but still
forbidding repetitions on the attributes.

59

4.4. IP-MCFE FOR LSSS CHAPTER 4. MCFE WITH ACCESS CONTROL

60

Chapter

5
Optimal Security Notion for
Decentralized Multi-Client
Functional Encryption

Chapter content
5.1 Introduction . 62

5.2 Technical Overview . 64

5.2.1 Motivations for a Refinement on Admissibility 64

5.2.2 Towards a New Admissibility Condition under Separated Corruption of
Keys . 64

5.2.3 Optimality of the New Admissibility: A Conceptual Challenge 65

5.2.4 DMCFE for Inner Products with Refined Security Model 66

5.3 Strong Admissibility . 69

5.3.1 Optimality of Admissibility as per Definition 5.4 71

5.4 IP-DMCFE with Stronger Security 78

5.4.1 Basic Construction . 78

5.4.2 Adaptive Security against Incomplete Queries and Static Corruptions of
Secret Keys . 79

5.4.3 Constructions with Stronger Security against Incomplete Queries 80

In the previous Chapter 4, we see various results on the study of advanced function classes
of inner products where access control is integrated for some finer management of decryption
keys. Throughout our proof overview of Theorem 4.8, for instance, a vital element for a
meaningful provable security is the notion of admissible adversaries. This notion of admissibility
is fundamental for the security notion that underlies the very active research on (Decentralized)
Multi-Client Functional Encryption (or (D)MCFE), with interesting constructions, especially
for the class of inner products. However, the security notions have been evolving over the time.
While the target of the adversary in distinguishing ciphertexts is clear, legitimate scenarios that
do not consist of trivial attacks on the functionality are less obvious.

In this chapter, we come back to the security notions of FE and wonder whether only trivial
attacks are excluded from previous security games. And, unfortunately, this was not the case.

We then propose a stronger security notion, with a large definition of admissible attacks, and
prove it is optimal: any extension of the set of admissible attacks is actually a trivial attack on
the functionality, and not against the specific scheme. In addition, we show that all the previous
constructions are insecure with respect to this new security notion. Eventually, we propose new
DMCFE schemes for the class of inner products that provide the new features and achieve this
stronger security notion.

5.1. INTRODUCTION CHAPTER 5. DMCFE SECURITY

5.1 Introduction

Decentralized Multi-Client Functional Encryption. From the previous Chapter 4, it
appears that Multi-Input Functional Encryption (MIFE) and Multi-Client Functional Encryption
(MCFE), together with their decentralized variants [GGG+14, GKL+13, CDG+18a], have been
receiving a strong interest from the cryptographic community. They generalize the nice functional
encryption primitive [SW05, BSW11] where the single input x, in the encryption procedure,
is split into an input vector (x1, . . . , xn), and the components can be encrypted independently,
possibly by different senders/clients in MCFE. An index i for each component, and a (typically
time-based) tag tag for MCFE, are used for every encryption ci = Enc(i, tag, xi). From the n
encrypted components under the same tag tag, anyone owning a functional decryption key dkf ,
for the n-ary function f , can compute f(x1, . . . , xn) but nothing else about the individual xi’s.
In this chapter, we focus on a standard and optimal security model for the most general form of
MCFE, namely decentralized MCFE, where the generation of functional decryption keys is also
split between multiple clients.

Previous Corruption Model for (D)MCFE. In previous (D)MCFE, encryption was claimed
to require a private key eki per client, for each component ci, because of deterministic encryption.
Then, some of these keys might get corrupted. In DMCFE, where multiple senders contribute to
generate the decryption functional keys and also own secret keys ski, and some can get corrupted.
Therefore, there exists potential corruption of two categories of keys regarding DMCFE that
need to be dealt with: a private encryption key eki for encryption and a secret key ski for
generating functional keys. The proposed corruption model in the work on DMCFE by Chotard
et al. [CDG+18a] is: when an adversary corrupts a client i, it receives both (ski, eki). However,
this does not reflect the real-life situation. In fact, the encryption keys eki’s and the secret keys
ski’s can have different levels of protection (ski looks more critical than eki) and can be stored
on different devices. This is thus a strong restriction to get both keys in case of corruption.
Actually, this corruption model was employed in the previous DMCFE constructions for inner
products fy(x) = ⟨x,y⟩, as the numbers of ski’s and eki’s are equal, and in most of them
particularly, ski is either included in eki, e.g. [CDG+18a, CDG+18b, LT19], or they are the same,
e.g. [ABKW19, ABG19, AGT21b]1. But this might not always be the case. Specifically, for
quadratic functions computing fA(x) = x⊤Ax as considered in [AGT21a, AGT22], one could
have n2 secret keys skj for the square matrix A and n encryption keys eki only for the input
vector x. Hence, the holders of skj ’s and eki’s might differ.

Previous Notions of Admissible Attacks against (D)MCFE. Generally, studying an
advanced cryptographic primitive involves formalizing the ubiquitous perception of trivial attacks
when devising its security notion, those that exploit only the functionality of the primitive
to trivially break any specific constructions. A standard example is the case of identity-based
encryption [Sha84, Coc01, BF01, BGH07], of which the widely agreed security notion forbids the
adversary to obtain the secret key of any identity that could decrypt the challenge ciphertext.
In our case of (D)MCFE, everything becomes much more complicated due to the computational
aspect of the function class and the corruption in multi-user setting. Following the introduction
of (D)MCFE in the seminal paper [CDG+18a], to the best of our knowledge, all follow-up
studies on (D)MCFE, for instance [CDG+18b, ABKW19, ABG19, LT19, CDSG+20, AGT21b],
administered an admissibility condition in order to prohibit trivial attacks, and restricted
particularly adversaries to asking the challenge components x(0)[i] = x(1)[i] in case of a corrupted

1The work of [AGT21b] constructs function-hiding dynamic decentralized FE, which directly yields a DMCFE
with a stronger property of function secrecy. Even though their proposed security model captures separated
corruption of eki and ski, implying they are different, their dynamic decentralized FE construction uses the same
key for both and so does the resulting DMCFE, i.e. ski = eki for every i.

62

CHAPTER 5. DMCFE SECURITY 5.1. INTRODUCTION

i. Attacks that satisfy the admissibility condition are called admissible attacks. Nonetheless,
there was no satisfactory justification for such a restriction, except that all the constructions
used a deterministic encryption, and so the corruption of eki could allow to re-encrypt x(0)[i]
and compare with the challenge ciphertext. This was thus also the similar argument to support
private encryption keys. Since then, relaxing the foregoing constraint was widely believed to be
insurmountable for constructing (D)MCFE schemes and proving their security.

Chapter Outline. This chapter develops further our results for an improved security model
for DMCFE, which are introduced in Section 2.3.2. We start with the technical overview in
Section 5.2 that provides high-level details on the motivation behind our refined security notion
for DMCFE: (i) allowing an adversary to separately corrupt the secret key (skj for partial
key generation corresponding to some j-th function parameter) or the encryption key (eki for
encrypting messages of the i-th client), (ii) a more relaxed admissiblity condition that implies
more attacks are considered in our new security notion, and (iii) a framework to argue whether
our new notion is optimal, i.e. cannot be relaxed further. Formal definitions are given in
Section 5.3. A concrete study for the class computing inner products, with various intermediate
steps, is presented in Sections 5.4.1 and 5.4.3. In following chapters of this thesis, this stronger
security notion of DMCFE will be examined again in Chapter 6 with respect to more complex
function classes than inner products. All abridged proofs and technical details can be found in
the full version [NPP23b] of [NPP23a].

63

5.2. TECHNICAL OVERVIEW CHAPTER 5. DMCFE SECURITY

5.2 Technical Overview

5.2.1 Motivations for a Refinement on Admissibility

In the seminal work on DMCFE for a function class F by Chotard et al. [CDG+18a], the authors
define the security game with oracles

(Initialize,Corrupt,LoR,DKeyGenShare,Enc,Finalize)

between a challenger and an adversary. The oracle Initalize sets up the parameters, including the
number of clients n and their secret-encryption key pairs (ski, eki). The oracle DKeyGenShare
produces functional key components for F ∈ F using ski under some function tag tag-f ∈ Tag,
while LoR is the left-or-right oracle, which outputs the challenge ciphertext component of x(b)[i]
under tag ∈ Tag upon receiving (x(0)[i],x(1)[i]) for b $← {0, 1}. An adversary can corrupt any
client i of his choice by querying Corrupt so as to receive both (ski, eki).

In the end, a set of conditions is specified such that the adversary wins the game only when
they conform to these conditions and outputs a correct b′ equal to the challenge bit b. The main
reason there are such conditions is to focus only on the scenarios where a notion of semantic
security really makes sense in this DMCFE setting. We call an attack that satisfies such conditions
an admissible attack. Checking these conditions is done by a Finalize procedure in the security
game, according to the sets C of corrupted clients (asked to Corrupt), H of honest clients, and
Q of key queries (asked to DKeyGenShare) during the attack. To recall from [CDG+18a,
Def. 2, Def. 5], the adversary’s output is ignored and replaced by a random bit, i.e. the attack is
NOT admissible if one of the following holds:

1. There exists a corrupted client i ∈ C such that the i-th components of the challenge
messages (x(0),x(1)) are not the same, i.e. x(0)[i] ̸= x(1)[i].

2. There exists a tag tag ∈ Tag (respectively, tag-f ∈ Tag) and i ̸= j ∈ H such that the
j-th challenge component (respectively, key component) is queried but the i-th challenge
component (respectively, key component) is not.

3. None of the two above conditions are satisfied, but there exists a function F queried to
DKeyGenShare that differs on (x(0),x(1)), i.e. F (x(0)) ̸= F (x(1)).

Our observation is that only the condition 3 can be justified for the sake of avoiding trivial attacks,
while the other conditions 1 and 2 do not have satisfactory explanations. About condition 1, we
have seen from the attacks in the paragraph Impact and Feasibility of Section 2.3.2 that this
condition is artificial and unfortunately excludes also non-trivial attacks. About condition 2,
follow-up works [CDG+18b, CDSG+20] and other results on the subject [AGRW17, DOT18,
ABKW19, ABG19] show that we can completely remove this constraint. Our objective now
becomes devising a less restrictive admissible condition, which should capture and generalize only
condition 3. We recall that a less restrictive condition implies more attacks will be considered
non-trivial and we obtain a stronger security model.

5.2.2 Towards a New Admissibility Condition under Separated Corruption of
Keys

Our first step is to separate the corruption of ski from that of eki, i.e. the adversary has to
specify which type of keys with respect to component i he wants to corrupt. All prior works
allow the adversary to corrupt both keys at once. This separation helps us define in a finer
way which information the adversary can deduce using each type of corrupted keys, and thus
even deal with public-key encryption. As a result, we have sets of corrupted and honest clients
(Cskey,Hskey), (Cekey,Hekey), independently for the secret keys (skj)j and the encryption keys

64

CHAPTER 5. DMCFE SECURITY 5.2. TECHNICAL OVERVIEW

(eki)i. This even allows to have independent sets of clients owning the secret keys (skj)j and
the encryption keys (eki)i. Our complete security experiment can be found in Figure 5.1. Being
already mentioned in Previous Corruption Model for (D)MCFE of Section 5.1, to the best
of our knowledge, almost all prior proposed contructions of (D)MCFE cannot handle separate
corruption of eki and ski, for example, see [CDG+18a, CDG+18b, LT19, ABKW19, ABG19,
AGT21b], despite the fact that a such separation is meaningful and is indeed discussed notably
in the security model of [AGT21b].

Next, we represent an n-ary function F : D1 × · · · × Dn → R of a function class F by a
length-m vector of parameters from Param1 × · · · × Paramm, given by a deterministic encoding
p : F → Param1 × · · · × Paramm and m can be different from n. Given such representations
as vectors for both inputs and functions, we define the notion deducible inputs and functions
(see Definition 5.1). More specifically, let Hinp ⊆ [n],Hfunc ⊆ [m] and suppose we are given
xinp ∈ (Di)i∈Hinp and yfunc ∈ (Parami)i∈Hfunc as lists of inputs and parameters that are indexed by
Hinp,Hfunc respectively. A vector z is deducible from xinp if their coordinates at positions in Hinp
are the same. Similarly, a function G is deducible from yfunc if its parameters coincide at positions
in Hfunc with yfunc. Intuitively, the lists (xinp,yfunc) play the role of “honest” predetermined
input’s components and function’s parameters, whilst the deducible (z, G) signifies what the
adversary can infer by manipulating the remaining “corrupted” parts of the input and function.

Being equipped with this notion of deducible inputs and functions, our admissible condition
is formulated as:

Given the sets (Hskey,Hekey), an attack is NOT admissible if there exist tag, tag-f ∈ Tag, a
function F ∈ F with parameters y = (yj)j∈[m], two challenges (x(0),x(1)) := (x(0)

i , x
(1)
i)i∈[n]

such that (F, tag-f) is queried to DKeyGenShare, ((x(0)
i , x

(1)
i)i∈[n], tag) is queried to LoR

and there exists a pair (z(0), z(1)) deducible from (x(0)
ekey,x

(1)
ekey), a function G deducible from

yskey satisfying G(z(0)) ̸= G(z(1)) where we define yskey := (yi)i∈Hskey and for b ∈ {0, 1},
x(b)

ekey := (x(b)
i)i∈Hekey .

It can be verified that if an attack satisfies the previous notion of admissibility in the original
work [CDG+18a], such an attack will satisfy our notion of admissibility as well. Moreover, we can
adapt naturally our admissibility from DMCFE to MCFE2 and also demonstrate that the prior
DDH-based constructions for MCFE with deterministic encryption, for example from [CDG+18a,
ABG19, CDSG+20] to name a few, as well as an LWE-based construction for MCFE from [LT19]
with slightly randomized encryption by Gaussian errors, cannot be proven secure in our new
model by giving a concrete admissible attack, as already explained in Section 5.1.

5.2.3 Optimality of the New Admissibility: A Conceptual Challenge

After formulating a new admissibility condition, one natural question arises: Is this the most
suitable condition? From a conceptual point of view, we want to prove that

For certain function classes, our admissibility cannot be relaxed, i.e. one cannot admit
some non-admissible attack following our definition and still hope to be able to construct
some specific efficient scheme that is provably secure.

Unsurprisingly, this poses a great definitional problem.
First of all, in all previous studies on (D)MCFE starting from [CDG+18a], the admissibility

concerns adversaries in the security game. Hence, if we want to prove the above claim, we need
to consider all possible adversaries that can run non-admissible attacks and argue that they
must be excluded. This is hard to argue rigorously, for example, what happens if a “dummy”

2The admissibility for MCFE is the particular condition when Hskey = [m] and thus yskey = y, meaning the only
deducible function is F itself.

65

5.2. TECHNICAL OVERVIEW CHAPTER 5. DMCFE SECURITY

adversary behaves in a non-admissible way but in the end outputs only a random guess for the
challenge bit? Therefore, our very first step is to define the admissibility condition differently
and take into account general attacks instead of adversaries. Afterwards, our optimality notion
for an admissibility condition on attacks is stated that:

An admissibility is optimal for F if we can construct a passive ppt distinguisher S that
receives some non-admissible attack coming from the queries of an adversary A to a
challenger Chall in the game for a DMCFE E , uses only properties of F , and devises a
generic strategy to output the correct challenge bit with significant probability in the
security game against any arbitrary DMCFE E ′.

Intuitively, S passively observes the non-admissible queries in the attack from some specific
interaction between A against some specific scheme E . Yet, these queries helps S come up
with a general approach to win significantly against any DMCFE scheme in a game that allows
such non-admissible behaviors. This means it is impossible to prove security whenever this
kind of behaviors is allowed. We formalize all these details in Definition 5.9 and Theorem 5.10,
Remark 5.12 elaborates more on the proof of our optimality claim. In [NPP23b, Appendix B.1],
our admissibility’s optimality is verified for concrete most-studied function classes. Informally,
we will explain in Section 5.3 the framework we proposed for arguing the optimality of an
admissibility. Finally, the detailed admissibility condition for the class of inner products is given
in Remark 5.14.

5.2.4 DMCFE for Inner Products with Refined Security Model

After introducing a new notion of admissibility in the security model for DMCFE and argue
its optimality, we provide concrete constructions of DMCFE for inner products that are secure
in this model. Our results are twofold. In Section 5.4.1 we give an intermediate construction
where the new admissibility is translated in the case of inner-products together with the complete
queries restriction (similar to condition 2 in previous works). In Section 5.4.3, we leverage this
backbone construction from Section 5.4.1 to remove this complete queries restriction via a generic
transformation as well as a concrete scheme with improved security.

In the following we highlight the main ideas of our backbone construction in Section 5.4.1.
Our function class of interest is for computing inner products F IP = {Fy} and Fy :

(
Z∗q
)n
→ Zq

is defined as Fy(x) := ⟨x,y⟩. The parameter vector of Fy is simply y = (y1, . . . , yn) ∈ Znq and
thus the number of parameters is the same as the dimension of the Zq-vector space for a prime q.
Our construction relies on the notion of Dual Pairing Vector Spaces (DPVSes, see Section 3.3).
We use DPVSes in the (additively written) bilinear group setting (G1,G2,Gt, e, g1, g2, gt). We
sample n pairs of random dual bases (Hi,H∗i)ni=1. Each client i will use their encryption key
eki to encrypt the component xi under some tag to get a ciphertext component cttag,i, which
is a vector of elements in G1 computed using Hi. Accordingly, each secret key ski will be used
by the DKeyGenShare in the decentralized key generation so as to generate a key component
dktag-f,i for yi under some tag-f, which is a vector of elements in G2 computed using H∗i . During
decryption, the product cttag,i × dktag-f,i of vectors lying in dual bases will yield an element in
Gt of the form in the IPFE scheme by Agrawal, Libert, and Stehlé (ALS) [ALS16]. We denote
by S = (s1, . . . , sn), U = (u1, . . . , un) two vectors of secret scalars, intuitively which will be
used in ALS ciphertext components Jsiω + uiω

′ + xiK, where J(ω, ω′)K←H(tag) comes from a
full-domain hash function. In a centralized setting, such as the single-client scheme in [ALS16] or
the MCFE scheme in [CDG+18a], the ALS key extraction provides ⟨S,y⟩ and ⟨U,y⟩ to be used
in decryption.

Decentralizing ALS Key Extraction under Separated Corruption. The first technical
challenge is how to implement the ALS key extraction in a decentralized manner, because each
key generator possessing yi will not be able to compute ⟨S,y⟩ and ⟨U,y⟩ due to the lack of

66

CHAPTER 5. DMCFE SECURITY 5.2. TECHNICAL OVERVIEW

(yj)j ̸=i. Our idea is to use (siyi, uiyi) in the i-th key components, masked by some randomness,
then exploit the properties of products in DPVS that multiply facing coordinates together in
order to “glue” this randomness to appropriate values in the i-th ciphertext component that
enables correct decryption. More specifically, the components have the following form:

cttag,i (· · · ωpi ω′qi ALS-ciph · · ·)Hi ;
dktag-f,i (· · · siyiαi + uiyiγ

′
i siyiγi + uiyiαi yi · · ·)H∗

i
;

where ALS-ciph is the scalar in ALS ciphertext and (pi, qi) in cttag,i together with (αi, γi, γ′i) in
dktag-f,i satisfy piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ

′
i = ζ4 and ζ1, ζ2, ζ3, ζ4

$← Z∗q are determined
at setup time. However, the aforementioned local gluing technique is not enough, as it alone
still reveals information about individual xiyi from cttag,i × dktag-f,i. A remedy is to put another
layer of random secret sharings θi

$← Zq into the partial key components such that
∑n
i=1 θi = 0

so that only when n pairs of ciphertext-key components are combined together will we obtain
the decrypted result. This new secret shares (θi)i are randomized by dtag-f←H(tag-f) for each
functional key, the newly randomized (dtag-fθi)i will behave indistinguishably from a random
independent secret sharing of 0 under DDH. We refer to Section 5.4.1 and the transition G6 → G7
in in the proof of Theorem 5.15 for more details.
Handling Separated Corruption. Each encryption key eki will contain information relevant
to the basis Hi so that client i can compute cttag,i, meanwhile each key generator can use ski
related to the dual basis H∗i for deriving the partial ki,ipfe. It appears that the contents of eki
and ski belong to dual bases, independent for each i, and we handle their separated corruption
by basis changes over (Hi,H∗i) in DPVS. We note that as soon as we program the basis change
of one basis, we cannot control the change on its dual counterpart (defined by linear relations,
see Section 3.3). To this end, our proofs can handle at best the scenario where one key type
must be statically corrupted whereas the other’s corruption can be dynamic, otherwise the fact
that for some i the keys eki and ski can be corrupted dynamically, in separate ways, can lead to
inconsistency between basis changes. In particular, we use basis changes to program the master
secret values (si, ui)i as well as the secret sharings (θi)i, thus we want to program the changes on
the dual bases H∗i . Consequently, we enforce static corruption on ski and perfom those changes
on i corresponding to honest ski3.

Achieving New Admissibility by Embedding Revocation Mechanism into Components.
The second technical challenge is to handle our new admissibility. In the prior weaker admissible
condition introduced in [CDG+18a], where (eki, ski) are corrupted together, if i ∈ [n] is corrupted
then x(0)[i] = x(1)[i]. Putting forward the translation of our new admissibility in the functionality
for inner products, the concrete conditions are: let ∆x[i] := x(0)[i]− x(1)[i], then

1. For all (tag-f,y) ∈ Q,
∑
i∈(Hskey∪Hekey) ∆x[i]y[i] = 0.

2. For all i ∈ Cekey \ Cskey, either x(0)[i] = x(1)[i] or y[i] = 0.

3. For all i ∈ Cskey, x(0)[i] = x(1)[i].

As the main complication compared to [CDG+18a, CDSG+20], when i ∈ Cekey \ Cskey it can be
the case that ∆x[i] ̸= 0 and y[i] = 0. We want to ensure that even in this configuration the
adversary cannot distinguish the i-th ciphertext components.

We interpret this situation in the language of revocation: if the adversary obtains the i-th
key component dktag-f,i for yi := y[i] = 0, which is honestly generated as i ∈ Cekey \ Cskey, then
implicitly we are “revoking” the ability to learn information about the i-th challenge component
using dktag-f,i, even when the adversary can encrypt whatsoever using the corrupted eki, whose
role now resembles a “public key” as in usual revocation systems. This leads us to the idea of

3There are further involved technicalities to ensure that eki is constructed consistently, e.g. see the transition
G7 → G8 in the proof of Theorem 5.15.

67

5.2. TECHNICAL OVERVIEW CHAPTER 5. DMCFE SECURITY

embedding some sort of DDH-based revocation technique into each i-th component. We need to
apply some revocation technique that is compatible with the bilinear group setting and the ALS
ciphertext form, which is current employ at each component i in cttag,i. We turn our attention
to a recent work by Agrawal et al. [ABP+17], which builds public trace-and-revoke systems from
standard assumptions and is particularly suitable for our objective because their constructions
can be generically based on the DDH-based ALS IPFE. At a very high level, the decryption for
m of the precedent scheme for revocation can be recasted as:

ALS-IPFE.Dec(skid, ct)
⟨xid,vS⟩

= ⟨xid,vS ·m⟩
⟨xid,vS⟩

= m (5.1)

where skid is the decryption given for an identity id, xid is some vector associated to id, and vS
is derived from the revoked set S. With overwhelming probability, ⟨xid,vS⟩ ̸= 0 conditioned on
id /∈ S.

To adapt to our situation the division is translated to subtraction of coordinates and our
“revoking” test depends only on a scalar yi and whether yi = 0 or not, the inner product
become scalar multiplications in Z∗q . Consequently, we introduce extra coordinates in the DPVS
bases (Hi,H∗i) to implement the aforementioned revocation technique, locally inside the vector’s
components as follows:

cttag,i (ωpi ω′qi ALS-ciph− rivi riti · · · rand)Hi ;
dktag-f,i (siyiαi + uiyiγ

′
i siyiγi + uiyiαi yi yivi/ti · · · dtag-fθi)H∗

i
;

Using extra coordinates to contain J(ALS-ciph− rivi, riti)K1 in cttag,i as well as J(yi, yivi/ti)K2 in
dktag-f,i helps us perform a “local” ALS+revocation decryption for component i, following the
idea (5.1), when performing cttag,i × dktag-f,i. Intuitively, our uniformly random scalar ri

$← Zq
plays the role similar to that of xid in the blueprint from [ABP+17], that helps proving semantic
security in the case of “revoked” yi = 0 under random basis changes in DPVS using DDH.
This probabilistic layer with ri

$← Zq allows to deal with corrupted encryption keys, even when
x(0)[i] ̸= x(1)[i]. This somehow covers public-key encryption. Our scheme is secure in the stronger
security model under new admissibility and the complete queries restriction, adaptively in the
challenges, with dynamic corruption of eki and static corruption of ski.

68

CHAPTER 5. DMCFE SECURITY 5.3. STRONG ADMISSIBILITY

5.3 A Stronger Security Model for DMCFE
This section presents a new security model for (D)MCFE, in which we refine the admissibility of
adversaries in the security game and allow a more fine-grained corruption of keys. Following the
line of works by Chotard et al. [CDG+18a, CDSG+20], such a notion of admissible adversaries
is for excluding the attacks that are inevitable under which we cannot prove security. Our
objective is to define the admissible condition in a way that excludes as few attacks as possible,
and as soon as such condition is weakened, there is an unconditional generic attack to trivially
win the security game against any concrete scheme. First of all, Definition 5.1 formalizes the
terminologies of parameters of a function and deducible functions/inputs.

Definition 5.1 (Deducible inputs and functions). Fix λ ∈ N and denote by Fλ a family of
n-ary functions indexed by λ, with domain Dλ,1 × · · · × Dλ,n and range Rλ, where n = n(λ) ∈ N
is a function. Let Param1, . . . ,Paramm denote m sets of parameters for functions in Fλ, where
m = m(λ) ∈ N is a function. Suppose there exists a deterministic encoding p : Fλ → Param1 ×
· · · × Paramm, that maps a function Fy ∈ Fλ to its parameters y ∈ Param1 × · · · × Paramm. Let
Hinp ⊆ [n],Hfunc ⊆ [m] and suppose we are given xinp ∈ (Dλ,i)i∈Hinp and yfunc ∈ (Paramj)j∈Hfunc

as lists of inputs and parameters that are indexed by Hinp,Hfunc respectively.
A vector z ∈ Dλ,1 × · · · ×Dλ,n is said to be deducible from xinp if ∀ i ∈ Hinp : z[i] = xinp[i]. A

function G is said to be deducible from yfunc if for all i ∈ Hfunc, we have p(G)[i] = yfunc[i].

Remark 5.2. If yfunc = y, for the parameter y of some function Fy, then the only function
deducible from yfunc is Fy itself. In the DMCFE setting, there will be situations with non-trivial
yfunc where Hfunc ⊊ [m]. For concrete function classes in our construction, we focus on the class
to compute inner products F IP = {Fy} and Fy :

(
Z∗q
)n
→ Zq that is defined as Fy(x) := ⟨x,y⟩.

For inner products, the parameters of a function Fy ∈ F IP can be precisely defined to be
p(Fy) := y ∈ Znq and the number of parameters m is equal to the number of arguments n. When
Fλ is clear from context, we omit the subscript λ.

We now recall the notion of decentralized multi-client functional encryption (DMCFE) whose
syntax is given below.

Definition 5.3 (Decentralized Multi-Client Functional Encryption). A decentralized
multi-client functional encryption (DMCFE) scheme for a function class F consists of five
algorithms

(Setup,DKeyGenShare,DKeyComb,Enc,Dec)
that are defined below:

Setup(1λ): Given as input a security parameter λ and n = n(λ),m = m(λ), generate in a possibly
interactive manner n encryption keys (eki)i∈[n] as well as m secret keys (skj)j∈[m] where
m,n : N→ N are functions.

Enc(eki, tag, xi): Given as inputs an encryption key eki, a message xi ∈ Dλ,i, and a tag tag,
output a ciphertext cttag,i.

DKeyGenShare(skj , tag-f, yj): Given a secret key skj, a tag tag-f ∈ Tag, and the j-th parameter
yj, output a partial functional key dktag-f,j.

DKeyComb((dktag-f,j)j∈[m], tag-f, F): Given a tag tag-f together with a function F and m partial
functional keys dktag-f,j for the parameters p(F), output the functional key dktag-f,F .

Dec(dktag-f,F , c): Given the functional decryption key dktag-f,F and a list of ciphertexts c :=
(cttag,i)ni=1 of length n, output an element in Rλ or an invalid symbol ⊥.

We make the assumption that all public parameters are included in the secret keys and the
encryption keys, as well as the (partial) functional decryption key.

69

5.3. STRONG ADMISSIBILITY CHAPTER 5. DMCFE SECURITY

Correctness. We require that for sufficiently large λ ∈ N, for all tag, tag-f ∈ Tag, for all F ∈ F ,
(xi)i∈[n] ∈ Dλ,1 × · · · × Dλ,n and

skj , (eki)i∈[n]←Setup(1λ); dktag-f,j←DKeyGenShare(skj , tag-f, yj)j∈[m] ;
dktag-f,F←DKeyComb((dktag-f,j)j , tag-f, F); (cttag,i)i←(Enc(eki, tag, xi))i

where i ∈ [n] and j ∈ [m], the following holds with overwhelming probability:

Dec (dktag-f,F , (cttag,i)ni=1) = F (x1, . . . , xn) when F (x1, . . . , xn) ̸= ⊥4 (5.2)

where F : Dλ,1×· · ·×Dλ,n → Rλ and the probability is taken over the random coins of algorithms.

Security. We follow the approach in the work by Chotard et al. [CDG+18a] so as to define the
security game with oracles Initialize, Corrupt, LoR, Enc, DKeyGenShare, and Finalize.
We recall that the oracle Enc is necessary for a simpler notion of one challenge, while retaining
an equivalence to the multi-challenge notion using a hybrid argument shown in Lemma 5.6. The
adversary is also able to corrupt separately the secret key skj of any key-generator j as well as
the encryption key eki of any client i, which is done via requests (i, skey) or (j, ekey) to the oracle
Corrupt, respectively. We need to exclude trivial attacks that can be mounted in the security
experiment. Those restrictions are encompassed in the notion of admissibility, which is extended
from similar notions in the works of [CDG+18a, CDSG+20].

In a nutshell, Definition 5.4 gives the definition of admissibility, generalizing the admissibility
condition that has been consistently used since the seminal work of Chotard et al. [CDG+18a].
We refer to Section 5.2 for a high-level discussion. In the subsequent Section 5.3.1, we give the
full formal treatment to prove the optimality of our admissibility condition in Definition 5.4. The
successive security analyses of our DMCFE schemes rely crucially on this definition, translated
for the concrete class of inner product in Remark 5.14.

Definition 5.4 (Admissibility condition). Let A be a ppt adversary and let

E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec)

be a DMCFE scheme for a function class F set up w.r.t λ ∈ N. In Finalize, considering the
queries (Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))}), we say that the attack corresponding
to these queries is NOT admissible if the following is satisfied

There exist tag, tag-f ∈ Tag, a function F ∈ F having parameters y ∈ Param1×· · ·×Paramm,
two challenges (x(0)

i , x
(1)
i)i∈[n] such that (tag-f, F) ∈ Q is queried to DKeyGenShare,

((x(0)
i , x

(1)
i)i∈[n], tag) is queried to LoR and there exists a pair (z(0), z(1)) deducible from

(x(0)
ekey,x

(1)
ekey), a function G deducible from yskey satisfying

G(z(0)) ̸= G(z(1)) , (5.3)

where we define yskey := (y[i])i∈Hskey and for b ∈ {0, 1}, x(b)
ekey := (x(b)

i)i∈Hekey .

Otherwise, we say that the aforementioned attack is admissible.

Definition 5.5 (IND-security for DMCFE). A DMCFE scheme

E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec)
4See [BO13, ABN10] for discussions about this relaxation. The general reason is that some functionality might

contain ⊥ in its range and if F ((xi)i) = ⊥ we do not impose Dec
(
dktag-f,F , (Enc(eki, xi, tag))n

i=1

)
= F ((xi)i),

neither do we disallow it.

70

CHAPTER 5. DMCFE SECURITY 5.3. STRONG ADMISSIBILITY

for the function class F = {Fλ}λ∈N is xx-secure if for all ppt adversaries A, and for all sufficiently
large λ ∈ N, the following probability is negligible

Advxx
E,F ,A(1λ) :=

∣∣∣∣Pr[Exprxx
E,F ,A(1λ) = 1]− 1

2

∣∣∣∣ .
The game Exprxx

E,F ,A(1λ) is depicted in Figure 5.1. The security level indicator xx can be:
dmc-ind-cpa to indicate IND-security with adaptive challenges, dynamic corruption of ekey, and
dynamic corruption of skey; dmc-sel-ind-cpa to indicate selective IND-security with selective
challenges, dynamic corruption of ekey, and dynamic corruption of skey; dmc-stat-ind-cpa to
indicate static IND-security with adaptive challenges, static corruption of ekey, and static
corruption of skey5; dmc-ind-cpa-1chal indicate one-time IND-security with one adaptive challenge
tag, dynamic corruption of ekey, and dynamic corruption of skey. The probability is taken over
the random coins of A and the algorithms.

Lemma 5.6 below allows us to concentrate on the notion of one-time IND-security for our
DMCFE constructions, whose proof is a standard hybrid argument.

Lemma 5.6. Let E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec) be a DMCFE scheme for the
function class F . If E is one-time IND-secure, then E is IND-secure.

5.3.1 Optimality of Admissibility as per Definition 5.4

In this section, we demonstrate that our notion of admissibility in Definition 5.4 is capturing all
trivial attacks against DMCFE schemes for non-trivial function classes, which include the class of
inner-product and quadratic functionalities. The high-level plan is given below.
Proving Optimality. The general idea on defining the optimality of an admissibility condition
can be revisited in Section 5.2.3. We now explain briefly how one can show that an admissibility
condition is optimal following what we try to define. First and foremost, a notion of optimality
makes sense when we consider only certain functionalities and not any arbitrary class of functions.
For example, for a general functionality, the adversary’s admissibility as defined in Definition 5.4
might not be efficiently decidable. Roughly speaking, Finalize may have to go through all
(z(0), z(1)) deducible from (x(0)

ekey,x
(1)
ekey) and all G deducible from yskey so as to check relation (5.3).

Therefore, we want to focus on classes for which the admissibility can be decided efficiently by
Finalize, at least for the sake of having an efficient challenger in the security game.

In addition, we require a further property of the functionality under consideration: in view of
the admissibility check (5.3), the deduction of (z(0), z(1)) from (x(0)

ekey,x
(1)
ekey) and of a function G from

yskey can be done efficiently. We coin this property fixed-component distinguishability. In summary,
we restrain the optimality evaluation to classes that are (1) fixed-component distinguishable and
(2) for which the admissibility is efficiently decidable. In [NPP23a, Appendix B.1], we prove that
both most studied functionalities for inner products and quadratic evaluations satisfy properties
(1) and (2).

The core of our reasoning that an admissibility condition is optimal comprises building a ppt
distinguisher, which can exerts a non-admissible attack, to trivially win significantly the security
game against any DMCFE scheme. We recall that Definition 5.4 views attacks as ensembles of
queries made by some adversary in its security game. Because the class allows deciding efficiently
the admissibility, our distinguisher can efficiently determine which query in the attack will violate
the check (5.3), and thanks to the fixed-component distinguishability, the triplet (z(0), z(1), G)
can be concretely reconstructed in an efficient manner.

5In addition, we can allow dynamic corruption on one type but static corruption on the other type of keys,
such as dmc-stat-sk-ind-cpa to indicate partially static IND-security with adaptive challenges, dynamic corruption
of ekey, and static corruption of skey.

71

5.3. STRONG ADMISSIBILITY CHAPTER 5. DMCFE SECURITY

Initialize(1λ)
Initialize(1λ, (x(0)

i , x(1)
i)i∈[n],Qkey)

Initialize(1λ, Cstat
ekey, Cstat

skey)

b
$← {0, 1}

(skj)j∈[m], (eki)i∈[n]←Setup(1λ)
Qparam = Q := ∅, Cskey = Cekey := ∅
Hskey = [m],Hekey := [n]
Q := Qkey

Cekey := Cstat
ekey, Cskey := Cstat

skey

Hekey := [n] \ Cekey,Hskey := [m] \ Cskey

Return pk

DKeyGenShare(j, tag-f, yj)

Ignore
Qparam := Qparam ∪ {(tag-f, yj)}
If all parameters (yj)m

j=1 of some F are in Qparam:
Q := Q∪ {(tag-f, F)}

dktag-f,j←DKeyGenShare(skj , tag-f, yj)
Return dktag-f,j

Corrupt(i, type)
If type = skey:

Ignore
Cskey := Cskey ∪ {i}; Hskey := Hskey \ {i}
Return ski

Else:
Ignore
Cekey := Cekey ∪ {i}; Hekey := Hekey \ {i}
Return eki

LoR(i, x(0)
i , x(1)

i , tag∗)
LoR(i, tag∗)

Enc(eki, tag∗, x
(b)
i)→ ct(b)

tag∗,i

Return ct(b)
tag∗,i

Enc(i, tag, xi)
Return Enc(eki, tag, xi)

Finalize(b′)
If the attack is NOT admissible:

return 0

Else return
(
b′ ?= b

)

Figure 5.1: The security games Exprdmc-ind-cpa
E,F,A (1λ), Exprdmc-sel-ind-cpa

E,F,A (1λ) , and Exprdmc-stat-ind-cpa
E,F,A (1λ) for Definition 5.5.

The admissibility condition is defined in Definition 5.4.

In the end, facing any DMCFE challenger that allows the foregoing non-admissible behaviour,
our distinguisher can simply use (z(0), z(1), G) to trivially win the game. This means that whenever
we allow a non-admissible attack, or in other words whenever we try to relax Definition 5.4, no
DMCFE scheme can be proved secure due to the existence of the above distinguisher.

To begin our formal treatment, we restrain our attention to particular function classes that
satisfy certain properties.

Definition 5.7 (Fixed-component distinguishable classes). Fix λ ∈ N and denote by
Fλ = {F : Dλ,1×· · ·×Dλ,n → Rλ} a family of n-ary functions indexed by λ having m parameters,
where m = m(λ), n = n(λ) are functions.

For F ∈ Fλ, a triple (x(0)
inp,x

(1)
inp,Hinp), where x(b)

inp ∈
∏
i∈Hinp Dλ,i for b ∈ {0, 1}, is said to be

distinguishing Fλ with fixed components if there exists a deducible pair (z(0), z(1)) ∈
∏
i∈[n]Dλ,i

such that Fλ(z(0)) ̸= Fλ(z(1)) where{
z(b)[i] = x(b)[i] for b ∈ {0, 1}, i ∈ Hinp

z(0)[i] = z(1)[i] ∀ i ∈ [n] \ Hinp
.

A function F is said to be fixed-component distinguishable if there exists a triple distinguishing

72

CHAPTER 5. DMCFE SECURITY 5.3. STRONG ADMISSIBILITY

F with fixed components and a ppt Turing machine that, given as input this triple, outputs the
corresponding deducible pair.

A function class Fλ is fixed-component distinguishable if for all F ∈ Fλ with parameters
p := p(F), there exists a fixed-component distinguishable function G deducible from (p[i])i∈Hfunc

for some Hfunc ⊆ [m], and a ppt Turing machine that, given as inputs (F,Hfunc), outputs G.

Remark 5.8. We remark that a function class F is fixed-component distinguishable does not
necessarily imply that the admissibility from Definition 5.4 for F can be efficiently decided.
Roughly speaking, given a function among the adversary’s queries, the ppt Turing machine from
fixed-component distinguishability will output some deducible function G for which one can test
the admissible condition (5.3) efficiently. But that is not enough, as to decide the admissibility
of an attack, we need to check all such deducible functions and there is no further guarantee in
the case of general functionalities that we can do this check efficiently. In the concrete cases of
inner products and quadratic functions, the check over all such deducible functions can be done
efficiently by using their linear properties, see [NPP23a, Appendix B.1] for more details.

We now define what means for an admissibility to be optimal for a function class F . For
simplicity, we can consider the one-challenge setting thanks to Lemma 5.6.

Definition 5.9. Let λ ∈ N and denote by F a family of n(λ)-ary functions indexed by λ, with
m(λ) parameters for each member of F . An admissibility condition adm(·) is optimal for F if
there exists a ppt distinguisher S so that for all non-admissible

(Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))})

of some ppt adversary A and against a DMCFE E for F in a security experiment ExprE,F ,A given
in Figure 5.1, we have

Pr
[
S((Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))})) = b : b←Chall(randChall)

]
≥ 1

poly(λ)

where (Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))}) is well-defined at the time of Finalize
and b←Chall(randChall) means the challenger Chall uses the bit b in ExprE,F ,A.

We now state our main theorem for the optimality of our admissibility.

Theorem 5.10. Let F be a function class that has efficient decidability for admissibility and is
fixed-component distinguishable. Then, our admissibility condition as defined in Definition 5.4 is
optimal for F .

Proof (Of Theorem 5.10). Without loss of generality, we consider the one-challenge notion.
We need to prove that: there exists a ppt distinguisher S so that for any non-admissible
(Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))}) of some DMCFE E for F and some ppt adversary
A in a security experiment Exprxx

E,F ,A given in Figure 5.1, we have

Pr
[
S((Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))})) = b : b←Chall(randChall)

]
≥ 1

poly(λ) .

Let Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs) be an abstract DMCFE for F that
satisfies the correctness relation (5.2). We describe the distinguisher S as follows:

1. The distinguisher S parses

(Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))})

then use Eabs and (Q,QEnc, {(x∗0,x∗1, tag)}) for abstracting the key components to obtain
{(dkabs

tag-f,F,j)j∈[m]}(tag-f,F)∈Q, the challenge ciphertext components to obtain (ctabs
tag,i)i∈[n] for

73

5.3. STRONG ADMISSIBILITY CHAPTER 5. DMCFE SECURITY

each {(x∗0,x∗1, tag)}, and the encryption responses to obtain (ctabs,(k)
i)i∈[n]. If there are

corrupted keys skj or eki queried by A, they will also be replaced by their abstracted
counterparts skabs

j or ekabs
i . In the following S only needs the abstract DMCFE Eabs for F ,

no matter what the details of the concrete E are.

2. If there exists (tag-f, F) ∈ Q such that F (x∗0) ̸= F (x∗1), S combines the key components of
(tag-f, F), decrypts the challenge ciphertext components, and outputs 1 if and only if the
result is F (x∗1). All algorithms come from Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,
Decabs). Else, in the following we assume that F (x∗0) = F (x∗1) for all (tag-f, F) ∈ Q.

3. Because this is a non-admissible attack, S uses the efficient decidability of F to find
(tag-f, F) ∈ Q, whose parameters is y := p(F), so that: there exists a pair (z(0), z(1))
deducible from (x(0)

ekey,x
(1)
ekey), a function G deducible from yskey satisfying

G(z(0)) ̸= G(z(1)) ,

where yskey := (y[i])i∈Hskey and x(0)
ekey := (x(0)

i)i∈Hekey , x(1)
ekey := (x(1)

i)i∈Hekey . We remark that
finding F can be done efficiently in Q because the current attack comes from the execution
of some ppt adversary A, which implies the size of Q is polynomially bounded.

4. Because F is fixed-component distinguishable (see Definition 5.7), using F and Cskey, S
can efficiently find a function G deducible from yskey such that G is fixed-component
distinguishable.

5. Thanks to the fixed-component distinguishability of G, using (x(0)
ekey,x

(1)
ekey) and Hekey, the

pair (z(0), z(1)) can be found efficiently by S.

6. The distinguisher S then uses the corrupted keys (ekabs
i)i∈Cekey to compute new ciphertext

components (c̃tabs
tag,i)ni=1 of z(b) implicitly, using (ctabs

tag,i)i∈Hekey for the challenge (x∗b [i])i∈Hekey ,
and using Encabs to encrypt (z(b)[i])i∈Cekeyusing (ekabs

i)i∈Cekey .

7. Next, S uses the corrupted keys (skabs
i)i∈Cskey to compute new key components (d̃kabs

tag-f,G,i)ni=1

of G implicitly, using (dkabs
tag-f,F,i)i∈Hskey , and using DKShareabs to derive (d̃kabs

tag-f,F,i)i∈Cskey

from (p(G)[i])i∈Cskey .

8. Finally, S uses DKeyCombabs to combine the newly generated key components (d̃kabs
tag-f,i)ni=1.

Then S decrypts the newly generated challenge ciphertext (c̃tabs
tag,i)i∈[n] using the abstract

algorithm Decabs, the adversary outputs 1 if and only if the result is equal to G(z(1)).

In the end, S outputs 1 if and only if (Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))}) comes
from an execution of any A against Chall of E in which Chall picks 1 as the challenge bit. This
concludes the proof.

Remark 5.11. The abstract object Eabs in the proof of Theorem 5.10 are used only in our
formal proofs of the optimality for our admissible condition. In the concrete constructions of
DMCFE, no such abstract objects are needed, as the admissibility are examined via concrete tests
over the adversary’s queries in the security game. For instance, see [NPP23a, Appendix B.1] for
the cases of linear and quadratic functions.

Remark 5.12. The generic distinguisher S in Theorem 5.10 is weak in the sense that all it has
is a non-admissible attack with the corresponding

(Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))})

74

CHAPTER 5. DMCFE SECURITY 5.3. STRONG ADMISSIBILITY

determined byA’s behaviour during the security game, not depending on the concrete implementation
of E . However, thanks to the non-admissibility of the given attack and the fixed-component
distinguishability of the function class, S can still output the correct challenge bit, in the security
against any DMCFE scheme. This means that as soon as we allow some non-admissible behaviour,
where the concrete descriptions of A and E can be arbitrary as long as this behaviour stays
the same, there is no hope in proving security regardless of the specific implementation of E .
Equivalently, our Definition 5.4 that excludes exactly these non-admissible attacks cannot be
enlarged in any sense and captures the most attacks against which we can prove security. Last
but not least, we see clearly the role of the abstract DMCFE Eabs: it abstracts out the concrete
details of some specific scheme E from which calculations over the non-admissible queries can be
done, and return the “black-boxed” data that obey the correctness of DMCFE schemes for F .

Optimality in the Case of Inner Products in Polynomially Bounded Range. In our
concrete DDH-based construction of DMCFE for inner products in Section 5.4.1 and Section 5.4.3,
our functionality is not for inner products over Znq set up w.r.t λ ∈ N, but only for bounded
vectors such that the inner product evaluation is polynomially large. More specifically, we name
this class F IP,poly

B,B′ in which any function fy : x 7→ ⟨x,y⟩ receives as inputs x and has parameters y
such that ∥x∥∞ < B and ∥y∥∞ < B′, where B,B′ = poly(λ) ∈ N are polynomials. The concrete
admissibility (see Remark 5.14) is still the same because we are still computing inner products.
Below wse prove that the admissibility as per Definition 5.4 is optimal for F IP,poly

B,B′ .

Theorem 5.13. Let λ ∈ N and F IP,poly
B,B′ be the function class to compute inner products in ranges

parametrized by B,B′. Then, our admissibility condition as defined in Definition 5.4 is optimal
for F IP,poly

B,B′ .

Proof. Without loss of generality, we consider the one-challenge notion. We need to prove that:
there exists a ppt distinguisher S so that for any non-admissible attack of an adversary A against
some DMCFE E for F IP,poly

B,B′ in a security experiment ExprE,F IP,poly
B,B′ ,A

given in Figure 5.1, we have

Pr
[
S(Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))}) = b : b←Chall(randChall)

]
≥ 1

poly(λ) .

Any non-admissible attack will make one of the following hold:

1. There exists (tag-f,y) ∈ Q s.t
∑
i∈H∆x[i]y[i] ̸= 0.

2. There exists i∗ ∈ Cekey \ Cskey s.t (x(0)[i∗]− x(1)[i∗])y[i∗] ̸= 0.

3. There exists i∗ ∈ Cskey s.t x(0)[i∗] ̸= x(1)[i∗].

We describe the distinguisher S as follows and specify the strategy for each case:

1. The distinguisher S parses

(Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))})

then use Eabs and (Q,QEnc, {(x∗0,x∗1, tag)}) for abstracting the key components to obtain
{(dkabs

tag-f,F,j)j∈[m]}(tag-f,F)∈Q, the challenge ciphertext components to obtain (ctabs
tag,i)i∈[n] for

each {(x∗0,x∗1, tag)}, and the encryption responses to obtain (ctabs,(k)
i)i∈[n]. If there are

corrupted keys skj or eki queried by A, they will also be replaced by their abstracted
counterparts skabs

j or ekabs
i . In the following S only needs the abstract DMCFE for F IP,poly

B,B′

Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs)

that satisfies the correctness requirement, no matter what the details of the concrete E are.

75

5.3. STRONG ADMISSIBILITY CHAPTER 5. DMCFE SECURITY

2. If there exists (tag-f,y) ∈ Q such that ⟨x∗0,y⟩ ≠ ⟨x∗1,y⟩, S combines the key components of
(tag-f,y), decrypts the challenge ciphertext components, and outputs 1 if and only if the
result is ⟨x∗1,y⟩. All algorithms come from Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,
Decabs). Else, in the following we assume that ⟨x∗0,y⟩ = ⟨x∗1,y⟩ for all (tag-f,y) ∈ Q.

3. If case 1 happens:

– Let (tag-f,y) ∈ Q be the query such that
∑
i∈H∆x[i]y[i] ̸= 0.

– S uses the corrupted secret keys (ski)i∈Cskey and the honest component (dktag-f,i)i∈Hskey to
compute the partial functional keys (d̃ktag-f,i)ni=1 for ỹ where (ỹ[i])i∈Hskey := (y[i])i∈Hskey

and (ỹ[i])i∈Cskey := 0. The key derivation algorithm is the abstract algorithm
DKShareabs.

– S uses the corrupted encryption keys (eki)i∈Cekey and the honest challenge ciphertext
components (cttag,i)i∈Hekey to compute the ciphertext components (c̃ttag,i)ni=1 for x̃
where implicitly (x̃[i])i∈Hekey := (x∗b [i])i∈Hekey and (x̃[i])i∈Cekey := 0. The encryption is
done using the abstract algorithm Encabs.

– By using DKeyCombabs to combine the newly generated key components (d̃ktag-f,i)ni=1
and Decabs to decrypt the newly generated challenge ciphertext (c̃ttag,i)i∈[n], S outputs
1 if and only if the result is equal to

∑
i∈H x∗1[i]y[i].

4. If case 2 happens:

– If case 1 also happens, S operates as above.
– Else, let i∗ ∈ Cekey \ Cskey s.t (x(0)[i∗]− x(1)[i∗])y[i∗] ̸= 0.
– S uses the corrupted encryption keys (eki)i∈Cekey\{i∗} and the honest challenge ciphertext

components (cttag,i)i∈Hekey as well as cttag,i∗ to compute the ciphertext components
(c̃ttag,i)ni=1 for x̃ where implicitly (x̃[i])i∈Hekey := (x∗b [i])i∈Hekey , (x̃[i])i∈Cekey\{i∗} := 0,
and implicitly x̃[i∗] := x∗b [i∗]. The encryption is done using the abstract algorithm
Encabs.

– S uses the corrupted secret keys (ski)i∈Cskey and the honest component (dktag-f,i)i∈Hskey to
compute the partial functional keys (d̃ktag-f,i)ni=1 for ỹ where (ỹ[i])i∈Hskey := (y[i])i∈Hskey

and (ỹ[i])i∈Cskey := 0. We notice that implicitly ỹ[i∗] := y[i∗] because i∗ ∈ Cekey \ Cskey.
The key derivation algorithm is the abstract algorithm DKShareabs.

– By using DKeyCombabs to combine the newly generated key components (d̃ktag-f,i)ni=1
and Decabs to decrypt the newly generated challenge ciphertext (c̃ttag,i)i∈[n], S outputs
1 if and only if the result is equal to x∗1[i∗]y[i∗].

5. If case 3 happens:

– If case 1 or case 2 also happens, S operates as above.
– Else, let i∗ ∈ Cskey s.t x∗0[i∗] ̸= x∗1[i∗].
– S uses the corrupted secret keys (ski)i∈Cskey\{i∗} and the honest component (dktag-f,i)i∈Hskey

to compute the partial functional keys (d̃ktag-f,i)ni=1 for ỹ where (ỹ[i])i∈Hskey :=
(y[i])i∈Hskey and (ỹ[i])i∈Cskey\{i∗} := 0. If y[i∗] = 0 the distinguisher S sets ỹ[i∗] = z for
some B′ > z ≠ 0 and uses ski∗ to compute d̃ktag-f,i∗ . The key derivation algorithm is
the abstract algorithm DKShareabs.

– S uses the corrupted encryption keys (eki)i∈Cekey\{i∗} and the honest challenge ciphertext
components (cttag,i)i∈Hekey as well as cttag,i∗ to compute the ciphertext components
(c̃ttag,i)ni=1 for x̃ where implicitly (x̃[i])i∈Hekey := (x∗b [i])i∈Hekey , (x̃[i])i∈Cekey\{i∗} := 0,
and implicitly x̃[i∗] := x∗b [i∗]. The encryption is done using the abstract algorithm
Encabs.

76

CHAPTER 5. DMCFE SECURITY 5.3. STRONG ADMISSIBILITY

– By using DKeyCombabs to combine the newly generated key components (d̃ktag-f,i)ni=1
and Decabs to decrypt the newly generated challenge ciphertext (c̃ttag,i)i∈[n], S outputs
1 if and only if the result is equal to x∗1[i∗]y[i∗].

The condition in step 2 can be checked efficiently as A is ppt and Q must thus be of polynomial
size. It can be verified that in all three cases the distinguisher S outputs 1 if and only if the
attack corresponds to an execution in which the challenge picks 1 as the challenge bit, for any
DMCFE scheme E ′. The proof is completed.

Remark 5.14. As a corollary the admissibility’s optimality for the class of inner products
(including for polynomially bounded ranges that is proved in Theorem 5.13 above), we have
specific conditions for admissible attacks in this case:

1. For all vectors (x∗0,x∗1) that is queried to LoR, for all (tag-f,y) ∈ Q,
∑
i∈H∆x[i]y[i] = 0

where ∆x[i] = x∗0[i]− x∗1[i], where H := Hekey ∩Hskey.

2. For all vectors (x∗0,x∗1) that is queried to LoR, for all (tag-f,y) ∈ Q, for all i ∈ Cekey \ Cskey,
either x∗0[i] = x∗1[i] = 0 or y[i] = 0.

3. For all vectors (x∗0,x∗1) that is queried to LoR, for all (tag-f,y) ∈ Q, for all i ∈ Cskey,
x∗0[i] = x∗1[i].

77

5.4. IP-DMCFE WITH STRONGER SECURITYCHAPTER 5. DMCFE SECURITY

5.4 DMCFE for Inner Products with Stronger Security

5.4.1 Basic Construction

This section presents a decentralized multi-client FE scheme, as defined in Section 5.3, for the
function class F IP,poly

B,B′ and Fy :
(
Z∗q
)n
→ Zq is defined as Fy(x) := ⟨x,y⟩ where ∥x∥∞ < B and

∥y∥∞ < B′, where B,B′ = poly(λ) ∈ N are polynomials. The high-level ideas are discussed in
Section 5.2.4. As discussed in Remark 5.2, the parameter vector of F IP,poly

B,B′ is simply y of size n.
Hence the number of secret keys and of encryption keys are equal to n. Our admissibility is also
optimal for F IP,poly

B,B′ , see Theorem 5.13 in the previous Section 5.3.1. We need a full-domain hash
function H1 : Tag→ G2

1, where Tag denotes the set of tags used for ciphertext components and
functional key components. In addition, we also need a hash function H2 : Tag × Znq → Zq.

We are in the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are written
additively. The details of our DMCFE scheme go as follows:

Setup(1λ): Choose n pairs of dual orthogonal bases (Hi,H∗i) for i ∈ [n], where (Hi,H∗i) is a pair
of dual bases for (G6

1,G6
2). We denote the basis changing matrices for (Hi,H∗i) as (Hi, H

′
i):

(Hi = Hi ·T; H∗i = H ′i ·T∗)i∈[n]

where Hi, H
′
i ∈ Z6×6

q and (T = JI6K1 ,T∗ = JI6K2) are canonical bases of (G6
1,G6

2) , for
the identity matrix I6. Sample two full-domain hash functions H1 : Tag → G2

1 and
H2 : Tag × Znq → Zq. We recall that interactions are involved only in this Setup phase. For
each i ∈ [n], we write

Hi = (hi,1,hi,2, . . . ,hi,6) H∗i = (h∗i,1,h∗i,2, . . . ,h∗i,6)

and sample S,U, V, T $← (Z∗q)n where S = (s1, . . . , sn), U = (u1, . . . , un), V = (v1, . . . , vn), T =
(t1, . . . , tn). Sample θi

$← Z∗q such that
∑n
i=1 θi = 0. Then, sample ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ

′
i

$←
Zq, for i ∈ [n], satisfying

piαi = ζ1 qiγi = ζ2 qiαi = ζ3 piγ
′
i = ζ4 (5.4)

and output the secret keys ski and the encryption keys eki as follows

ski :=
(
siαih∗i,1 + siγih∗i,2, uiγ′ih∗i,1 + uiαih∗i,2,

vi
ti

h∗i,3 + h∗i,4, θih∗i,6
)

eki := (piH (1)
i − (ζ1si + ζ4ui)H (4)

i , qiH
(2)
i − (ζ2si + ζ3ui)H (4)

i , tihi,3 − vihi,4, hi,4, H (6)
i)

where H(k)
i denotes the k-th row of Hi for i ∈ [n].

DKeyGenShare(ski, (tag-f, info(y)), yi): We assume that the function tag contains tag-f and public
information about info(y). The i-th parameter is yi := y[i]. Compute H2(tag-f, info(y))→
dtag-f,y ∈ Zq. Parse

ski :=
(
siαih∗i,1 + siγih∗i,2, uiγ′ih∗i,1 + uiαih∗i,2,

vi
ti

h∗i,3 + h∗i,4, θih∗i,6
)

.

Sample z $← Zq then compute

ki,ipfe = yi · (siαih∗i,1 + siγih∗i,2) + yi · (uiγ′ih∗i,1 + uiαih∗i,2) + yi ·
(
vi
ti

h∗i,3 + h∗i,4
)

+ dtag-f,y · θih∗i,6

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi
ti
yi, yi, 0, dtag-f,yθi)H∗

i
.

Output dktag-f,i := ki,ipfe.

78

CHAPTER 5. DMCFE SECURITY 5.4. IP-DMCFE: ADAPTIVE SECURITY

DKeyComb((dktag-f,i)i∈[n], tag-f,y): Output ⊥ if there is any incoherence of dtag-f,y among the
dktag-f,i. Otherwise, parse dktag-f,i := ki,ipfe and output dktag-f,y := (ki,ipfe)i∈[n].

Enc(eki, tag, xi): Parse

eki := (piH (1)
i − (ζ1si + ζ4ui)H (4)

i , qiH
(2)
i − (ζ2si + ζ3ui)H (4)

i , tihi,3 − vihi,4, hi,4, H (6)
i)

and compute H1(tag)→ (JωK1 , Jω′K1) ∈ G2
1 and sample ri

$← Zq. Compute

ci,ipfe = (piH (1)
i − (ζ1si + ζ4ui)H (4)

i) · JωK1 + (qiH (2)
i − (ζ2si + ζ3ui)H (4)

i) ·
q
ω′

y
1

+ ri · (tihi,3 − vihi,4) + xihi,4 +H (6)
i JωK1

= (ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi, 0, ω)Hi .

and output cttag,i := ci,ipfe.

Dec(dktag-f,y, c): Parse dktag-f,y = (ki,ipfe)i∈[n] and c := (cttag,i)i. Finally, compute the discrete
logarithm in base gt of JoutKt =

∑n
i=1 (cttag,i × ki,ipfe) and output the small value out.

The correctness of the scheme is verified by:

JoutKt

=
n∑
i=1

(cttag,i × ki,ipfe)

=
n∑
i=1

(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,

0, ω)Hi

×
(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,

vi
ti
yi, yi,

0, dtag-f,yθi)H∗
i

(∗)=

n∑
i=1

q
ωζ1siyi + ωζ4uiyi + ω′ζ2siyi + ω′ζ3uiyi + θidtag-f,yω

y
t

+
n∑
i=1

q
(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi

y
t

=
q
(ωζ1 + ω′ζ2) · ⟨S,y⟩+ (ω′ζ3 + ωζ4) · ⟨U,y⟩

y
t +

n∑
i=1

Jθidtag-f,yωKt

−
q
(ωζ1 + ω′ζ2) · ⟨S,y⟩+ (ω′ζ3 + ωζ4) · ⟨U,y⟩

y
t + J⟨x,y⟩Kt

= J⟨x,y⟩Kt ,

where the equality (∗) comes from system (5.4). We recall that (θi)i∈[n] is a secret sharing of 0.

5.4.2 Adaptive Security against Incomplete Queries and Static Corruptions
of Secret Keys

We now give the security theorem of one-time IND-security for our construction from Section 5.4.1,
adaptively in the challenge messages with dynamic corruption of encryption keys and static
corruption of secret keys. We refer to Remark 5.14 for the concrete interpretation of the security
model. The full proof can be found in [NPP23b, Theorem 16, Appendix C.2].

Theorem 5.15. Let E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec) be a DMCFE candidate
for F IP from Section 5.4.1 in a bilinear group (G1,G2,Gt, g1, g2, gt, e, q). Then, E is IND-secure
with static corruption of secret keys in the ROM if the SXDH assumption holds for G1 and G2.

79

5.4. IP-DMCFE: INCOMPLETE QUERIES CHAPTER 5. DMCFE SECURITY

More specifically, let n denote the dimension for inner-products, K denote the maximum number
of key queries, and Q1, Q2 denote the maximum number of random oracle (RO) queries to H1,H2
respectively. For any ppt adversary A against E with static secret key corruption and one-time
challenge, we have the following bound:

Advdmc-stat-sk-ind-cpa-1chal
E,F ,A (1λ) ≤ (3 + 2Q1 +K) · AdvSXDH

G1,G2 (1λ) + Q2
2

2q

and in the reduction there is an additive loss O(Q1 · tG1 +Q2 · tG2) in time, where tG1 , tG2 is the
cost for one addition in G1,G2.

5.4.3 Constructions with Stronger Security against Incomplete Queries

Definitions. In this section, we show how to obtain a DMCFE scheme that is IND-secure against
chosen plaintext attacks without complete queries restriction (for high level ideas, see condition 2
in Section 5.2.1), under our stronger admissibility notion. The definition of security notion for the
new setting is restated so that admissible adversaries can query incomplete challenge ciphertexts
as well as incomplete functional keys.

Definition 5.16 (Admissible attacks with incomplete queries). Let A be a ppt adversary
and let

E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec)

be a DMCFE scheme for a function class F set up w.r.t λ ∈ N. We denote by randChall the random
coins of the challenger and randA the random coins of the adversary in an experiment given in
Figure 5.1. In Finalize, considering the queries (Q,QEnc, Cskey, Cekey, {(x∗0,x∗1, tag)}, {(x, tag(k))}),
we say that the attack corresponding to these queries is NOT admissible if the following is satisfied

There exist tag, tag-f ∈ Tag, a function F ∈ F , two challenges (x(0)
i , x

(1)
i)i∈[n] such that

(F, tag-f) is queried to DKeyGenShare for all honest components, ((x(0)
i , x

(1)
i)i∈[n], tag) is

queried to LoR for all honest components, and there exists a pair (z(0), z(1)) deducible from
(x(0)

ekey,x
(1)
ekey), a function G deducible from yskey satisfying

G(z(0)) ̸= G(z(1)) ,

where we define yskey := (yi)i∈Hskey and for b ∈ {0, 1}, x(b)
ekey := (x(b)

i)i∈Hekey .

Otherwise, we say that the attack is admissible.

Definition 5.17 (IND+-security for DMCFE). A DMCFE scheme

E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec)

for the function class F = {Fλ}λ∈N is IND+-secure if for all ppt adversaries A, and for all
sufficiently large λ ∈ N, the following probability is negligible

Advxx+
E,F ,A(1λ) :=

∣∣∣∣Pr[Exprxx+
E,F ,A(1λ) = 1]− 1

2

∣∣∣∣ .
The probability is taken over coins of A and the algorithms. The indicator xx can be among
{dmc-ind-cpa, dmc-sel-ind-cpa, dmc-stat-ind-cpa, dmc-ind-cpa-1chal}6. The experiment Exprxx+

E,F ,A(1λ)
is the same as Exprxx

E,F ,A(1λ) depicted in Figure 5.1, except that we use Definition 5.16 for the
admissibility condition in Finalize.

6Similarly, we can allow dynamic corruption on one type but static corruption on the other type of keys, such
as dmc-stat-sk-ind-cpa+ to indicate partially static IND-security with adaptive challenges, dynamic corruption of
ekey, and static corruption of skey.

80

CHAPTER 5. DMCFE SECURITY 5.4. IP-DMCFE: INCOMPLETE QUERIES

Generic Transformation with Security against Selective Challenges. We follow the same
method in [CDSG+20] and apply generically a layer of using a primitive called All-or-Nothing
Encapsulation (AoNE), so as to make our scheme from Section 5.4.1 secure in our stronger
security model against incomplete queries. Our AoNE-based transformation uses the generic
AoNE from [CDSG+20], which in turn is built on top of a one-time secure symmetric encryption
(OT-SE). In the security proof, which can be naturally adapted from [CDSG+20, Theorem 26],
this OT-SE prevents programing conveniently to achieve adaptive security w.r.t the challenge
ciphertexts. We also remark that the static corruption is unavoidable since the security of AoNE
makes sense only when being applied on honest components, for the security reduction. This
generic transformation is provably secure under static corruption and selective challenges. The
transformation is presented in [NPP23b, Appendix B.2].

Concrete Scheme with Security against Adaptive Challenges. We present a concrete
adaptation of our base DMCFE scheme from Section 5.4.1 to satisfy the stronger security notion
against incomplete challenge ciphertexts as well as incomplete functional keys, with minimal
modifications being put in boxed components for the ease of comparison. The function class
stays the same as in Section 5.4.1, for which our admissibility is optimal (as per Theorem 5.13). In
contrast to the generic transformation, we build the AoNE concretely by combining one-time pad
(OTP) and a random oracle (RO). Then, the programmability of the RO helps us circumvent the
problem of adaptive queries. While programming the RO, we indeed exploits in a non-blackbox
manner the OTP as a summation in Z∗q to accumulate a secret sharing of 0 on the honest parts
(known in advance thanks to static corruption).

The details of our construction go as follows:

Setup(1λ): Sample two full-domain hash functions H1 : Tag → G2
1 and H2 : Tag × Znq → G2.

Choose n pairs of dual orthogonal bases (Hi,H∗i) for i ∈ [n], where (Hi,H∗i) is a pair of
dual bases for (G8

1,G8
2) . We denote the basis changing matrices for (H,H∗i) as (Hi, H

′
i):

(Hi = Hi ·T; H∗i = H ′i ·T∗)i∈[n]

where Hi, H
′
i ∈ Z8×8

q and (T = JI8K1 ,T∗ = JI8K2) are canonical bases of (G8
1,G8

2) , for the
identity matrix I8. We recall that interactions are involved only in this Setup phase. For
each i ∈ [n], we write

Hi = (hi,1,hi,2, . . . ,hi,8) H∗i = (h∗i,1,h∗i,2, . . . ,h∗i,8)

and sample ζ1, ζ2, ζ3, ζ4, S, U, V, T, D,E
$← (Z∗q)n where S = (s1, . . . , sn), U = (u1, . . . , un), V =

(v1, . . . , vn), T = (t1, . . . , tn), D = (d1, . . . , dn), and E = (e1, . . . , en). Sample θ1, . . . , θn
$←

Z∗q such that
∑n
i=1 θi = 0 and for i ∈ [n] let pi, qi, αi, γi, γ′i

$← Zq satisfy

piαi = ζ1 qiγi = ζ2 qiαi = ζ3 piγ
′
i = ζ4

We set the public parameters to be (J⟨E,1⟩K1 , J⟨D,1⟩K2) . Sample ϵ, δ
$← Zq and generate

random n-out-of-n secret sharings (ϵi)i, (δi)i of ϵ, δ so that
∑n
i=1 ϵi = ϵ,

∑n
i=1 δi = δ.

Output the secret keys ski and the encryption keys eki as follows

ski := (ϵi , siαih∗i,1 + siγih∗i,2, uiγ′ih∗i,1 + uiαih∗i,2,
vi
ti

h∗i,3 + h∗i,4, θiH ′
(6)
i − eiH ′

(8)
i , ϵhi,8)

eki := (δi , piH (1)
i − (ζ1si + ζ4ui)H (4)

i − diH
(7)
i , qiH

(2)
i − (ζ2si + ζ3ui)H (4)

i , tihi,3 − vihi,4, hi,4,

H (6)
i , δh∗i,7)

where H(k)
i denotes the k-th row of Hi for i ∈ [n] and 1 = (1, . . . , 1).

81

5.4. IP-DMCFE: INCOMPLETE QUERIES CHAPTER 5. DMCFE SECURITY

DKeyGenShare(ski, (tag-f, info(y)), yi): We assume that the function tag contains tag-f and public
information about info(y). The i-th parameter is yi := y[i]. We will use a full-domain hash
function H2 : Tag × Znq → G2. Parse

ski := (ϵi, siαih∗i,1 + siγih∗i,2, uiγ′ih∗i,1 + uiαih∗i,2,
vi
ti

h∗i,3 + h∗i,4, θiH ′
(6)
i − eiH ′

(8)
i , ϵhi,8) .

Compute H2(tag-f, info(y))→ Jκtag-f,yK2 and

ki,ipfe

= yi · (siαih∗i,1 + siγih∗i,2) + yi · (uiγ′ih∗i,1 + uiαih∗i,2)

+yi(vi
ti

h∗i,3 + h∗i,4) + (θiH ′(6)
i − eiH ′

(8)
i) · Jκtag-f,yK2

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi
ti
yi, yi, 0, κtag-f,yθi, 0,−eiκtag-f,y)H∗

i

e(ϵi · J⟨E,1⟩K1 , Jκtag-f,yK2) = Jϵi⟨E,1⟩κtag-f,yKt

where J⟨E,1⟩K1 is public. Output dktag-f,i := (ki,ipfe, ϵ · hi,8, Jϵi⟨E,1⟩κtag-f,yKt).

DKeyComb(dktag-f,i, tag-f,y): Output ⊥ if there is any incoherence among the dktag-f,i. Else, let
dktag-f,i := (ki,ipfe, ϵ · hi,8, Jϵi⟨E,1⟩κtag-f,yKt).

Compute Jϵ⟨E,1⟩κtag-f,yKt =
∑n
i=1 Jϵi⟨E,1⟩κtag-f,yKt and output

dktag-f,y := ((ki,ipfe, ϵ · hi,8)i∈[n], Jϵ⟨E,1⟩κtag-f,yKt) .

Enc(eki, tag, xi): Parse

eki := (δi, piH (1)
i − (ζ1si + ζ4ui)H (4)

i − diH
(7)
i , qiH

(2)
i − (ζ2si + ζ3ui)H (4)

i , tihi,3 − vihi,4, hi,4,
H (6)
i , δ · h

∗
i,7)

and compute H1(tag)→ (JωK1 , Jω′K1) ∈ G2
1; and sample ri

$← Zq. Compute

ci,ipfe = (piH (1)
i − (ζ1si + ζ4ui)H (4)

i − diH
(7)
i) · JωK1 + (qiH (2)

i − (ζ2si + ζ3ui)H (4)
i) · Jω′K1

+ri · (tihi,3 − vihi,4) + xihi,4 +H (6)
i JωK1

= (ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi, 0, ω, −diω, 0)Hi

e(JωK2 , δi · J⟨D,1⟩K2) = Jδi⟨D,1⟩ωKt

where J⟨D,1⟩K2 comes from the public parameters.
Output cttag,i := (ci,ipfe, δ · h∗i,7, Jδi⟨D,1⟩ωKt).

Dec(dktag-f,y, c): Parse

dktag-f,y = ((ki,ipfe, ϵ · hi,8)i, Jϵ⟨E,1⟩κtag-f,yKt);

c = (ci,ipfe, δ · h∗i,7, Jδi⟨D,1⟩ωKt)ni=1

Compute Jδ⟨D,1⟩ωKt =
∑n
i=1 Jδi⟨D,1⟩ωKt and

JoutKt =
∑n
i=1

(
(cttag,i + ϵ · hi,8)× (ki,ipfe + δ · h∗i,7)

)
+ Jϵ⟨E,1⟩κtag-f,yKt + Jδ⟨D,1⟩ωKt .

Finally, compute the discrete logarithm and output the small value out.

82

CHAPTER 5. DMCFE SECURITY 5.4. IP-DMCFE: INCOMPLETE QUERIES

The correctness of the scheme is verified by:

JoutKt

=
n∑
i=1

(
(ki,ipfe + δ · h∗i,7)× (cttag,i + ϵ · hi,8)

)
+ Jϵ⟨E,1⟩κtag-f,yKt + Jδ⟨D,1⟩ωKt

=
n∑
i=1

(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,

vi
ti
yi, yi,

0, κtag-f,yθi, δ,−eiκtag-f,y)H∗
i

×
(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,

0, ω,−diω, ϵ)Hi

+ Jϵ⟨E,1⟩κtag-f,yKt + Jδ⟨D,1⟩ωKt

(∗)=
n∑
i=1

q
ωζ1siyi + ωζ4uiyi + ω′ζ2siyi + ω′ζ3uiyi + θiωκtag-f,y

y
t

+
n∑
i=1

q
(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi

y
t

+
n∑
i=1

q
(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi

y
t

= J⟨x,y⟩Kt .

where the equality (∗) comes from system (5.4). We recall that (θi)i∈[n] is a secret sharing of 0.

Security. We prove the one-time static security of our DMCFE scheme in the ROM, where
the full-domain hash functions are modeled as random oracles, the sets of corrupted clients
Cekey as well as Cskey must be sent up front (static corruption), while the challenges (x∗0,x∗1)
can be adaptively chosen (adaptive challenge). We note that we can achieve a better level of
security in our concrete instantiation compared to the generic transformation. On one hand, our
transformation follows the same blueprint in the work by Chotard et al. [CDSG+20], which is the
most relevant to our DMCFE setting. We apply a layer of All-or-Nothing Encapsulation (AoNE)
to our ciphertext and key components, which ensures that the orignal key/ciphertext components
can be recovered only when all parts are gathered. Our concrete DMCFE in Section 5.4.3
builds the AoNE directly by combining one-time pad (OTP) and a random oracle (RO). Then,
the programmability of the RO helps us circumvent the problem of adaptive queries. While
programming the RO, we indeed exploits in a non-blackbox manner the OTP as a summation in
Z∗q to accumulate a secret sharing of 0 on the honest parts (known in advance thanks to static
corruption).

Theorem 5.18. Let E = (Setup,DKeyGenShare,DKeyComb,Enc,Dec) be the DMCFE constructed
in Section 5.4.3. Then, E is one-time statically IND+-secure in the ROM following the security
model in Definition 5.17 if the SXDH and DBDH assumptions hold for G1 and G2. More
specifically, let n denote the dimension for inner-products, Q1, Q2 denote the maximum number
of random oracle (RO) queries to H1,H2 and K denote the total number of functional key queries.
For any one-time challenge ppt adversary A against E with static corruption of secret keys and
encryption keys, we have the following bound:

Advdmc-stat-1chal+
E,F IP,A (1λ) ≤ (K + 1)AdvDBDH

G1,G2 (1λ) + (3 + 2Q1 +K)AdvSXDH
G1,G2 (1λ) + Q2

2
2q .

Details can be found in [NPP23b, Appendix C.3].

83

5.4. IP-DMCFE: INCOMPLETE QUERIES CHAPTER 5. DMCFE SECURITY

84

Part III

Further MCFE Security Extension

85

Chapter

6
Multi-Client Functional
Encryption with Public Inputs
and Strong Security

Chapter content
6.1 Introduction and Motivation . 87
6.2 Technical Overview . 90
6.3 MCFE with Public Inputs . 93

6.3.1 Definitions . 93
6.3.2 Implications between Notions: MCFE, MIFE, and more 96

6.4 AB-IP MCFE . 100
6.4.1 Definitions . 100
6.4.2 Extension to Sub-vectors . 101
6.4.3 Upgrading Security . 113

In Chapter 4, we observe that the challenge becomes more important when combined with
access control, such as attribute-based encryption (ABE), which was actually not covered by the
FE and MCFE frameworks. On the other hand, as for complex primitives, many works including
some results of this thesis in Chapter 5 have studied the admissibility of adversaries to ensure
that the security model encompasses all real threats of attacks. The concrete function class that
is studied in Chapter 5 focuses on computing inner products alone. A natural question then
arises: how to study the optimal admissibility for function classes that capture access control?

In this chapter, adding a public input to FE/MCFE, we cover many previous primitives,
notably attribute-based function classes. Furthermore, with the strongest admissibility for
inner-product functionality, our framework is quite versatile, as it encrypts multiple sub-vectors,
allows repetitions and corruptions, and eventually also encompasses public-key FE and classical
ABE, bridging the private setting of MCFE with the public setting of FE and ABE.

Finally, we propose an MCFE with public inputs with the class of functions that combines
inner-products (on private inputs) and attribute-based access-control (on public inputs) for
LSSS policies. We achieve the first AB-MCFE for inner-products with strong admissibility
and with adaptive security. This also leads to MIFE for inner products, public-key single-input
inner-product FE with LSSS key-policy and KP-ABE for LSSS, with adaptive security while the
previous AB-MCFE construction of Agrawal et al. from CRYPTO ’23 considers a slightly larger
functionality of average weighted sum but with selective security only.

6.1 Introduction and Motivation

On the reconciliation between MCFE and MIFE. At first glance, MIFE appears to be just
MCFE with a constant label. However, the distinction is more significant because in MIFE, there

6.1. INTRODUCTION CHAPTER 6. MCFE: UPGRADES

is only one encryptor, while in MCFE, there are multiple encryptors (clients). Therefore, whereas
there is no corruption of users in MIFE, dealing with corruptions in MCFE is a main concern. In
summary, recent works [NPP22a, NPP23a, AGT22, ATY23a] agree on two principal advantages
of MCFE over MIFE:

• with a label associated to each encrypted input, one can limit the combinations of the
inputs for each evaluation

• as inputs can be encrypted by different clients, multiple independent secrets are involved,
for each client, then one can deal with corruption of individual keys in MCFE, whereas in
MIFE there is a unique encryptor and no corruption can be allowed.

At this point, it seems that MCFE is strictly stronger than MIFE. However, again, the situation
is more complicated because, as pointed out by [CDG+18b], in the original definition of
MCFE [GGG+14, CDG+18a], the clients were assumed not to encrypt two messages under
the same label. Under this restriction, one cannot turn a MCFE to a MIFE. In short, MIFE, when
augmented with labels, can be seen as an MCFE with repetitions but without corruption.

But the story is not at the end yet, especially when one wants to combine MCFE and MIFE
with other functionalities, such as attribute-based access-control [NPP22a, ATY23a], where the
conversion MCFE to MIFE is highly non-trivial as mentioned in [ATY23a]. As a final remark,
our context of multi-client/multi-input setting for FE with access control is different from the
setting of multi-authority ABE, e.g. as studied in [DP23], where in our case there is always only
one authority generating the functional decryption keys.

From Secret-key MCFE to Public-key FE. We now consider a viewpoint that is independent
of the multi-user setting. Following the first formalization in [CDG+18a], many follow-up studies
on MCFE, for instance [ABKW19, ABG19, LT19, CDSG+20, AGT21b], set down an admissibility
condition in order to exclude trivial attacks: for any corrupted client i and challenge message-pair
(x(0)
i , x

(1)
i) for i, it requires that x(0)

i = x(1)
i . This is indeed the right condition if the secret-key

encryption is deterministic, which was considered on the first period of development of MCFE, as
with the corruption of the encryption key eki, the adversary could re-encrypt x(0)

i and compare
with the challenge ciphertext. However, we argue in Chapter 5 of this thesis that if the encryption
is probabilistic, this condition is not well justified and appears too restrictive. We refer to
Section 5.2.1 for the motivations and extensive discussion on why there is a need of some less
restrictive admissibility when one considers (D)MCFE with probabilistic encryption.

In the particular context of the current chapter, we observe that it is this condition where
for all i ∈ C all challenge pairs x(0)

i = x(1)
i that prevents to go from the secret-key MCFE to the

public-key FE. To obtain a public-key FE from a secret-key MCFE, the natural approach is to
instantiate the MCFE with n = 1 client, then to publish the only client’s encryption key ek as
the public key. Under the early admissibility condition as per [CDG+18a] of the underlying
MCFE, in order to base the security of the public-key FE on the security of the MCFE, the only
queries that the reduction can forward to its MCFE challenger are the trivial one from the FE
adversary where x(0) = x(1), and this is far weaker than the standard CPA-security of public-key
FE. It is now clear that a less restrictive notion of admissibility, equivalently a stronger notion of
security that we discuss in Chapter 5, is needed to capture the security of public-key FE from
the security of MCFE.

Final Syntactical Point: Public Inputs. When reviewing the existing initial definitions of
FE [BSW11], MCFE [CDG+18a], and MIFE [GGG+14], we observe that the syntax of encryption
in these definitions themselves a priori does not allow parts of the plaintext to be public. When
denoting encryption keys eki (in the secret-key MCFE/MIFE setting) or public key pk (in the
public-key single-client FE), specifically the MIFE syntax in [GGG+14, Section 2.1] is written

88

CHAPTER 6. MCFE: UPGRADES 6.1. INTRODUCTION

c←Enc(eki, x) given the i-th plaintext x, the MCFE syntax in [CDG+18a, Definition 1] is written
c←Enc(eki, x, tag) given the i-th plaintext x and the tag tag, and the FE syntax in [BSW11,
Definition 2] is written c←Enc(pk, x) given the plaintext x.

First of all, having the encryption as they are listed above, the IND-CPA security alone
implies that no partial information about the plaintext is leaked. This applies to the case
x = (m, S) where m is the contents of the message and S is some attribute/index in the context of
KP-ABE or IBE. As such, without further specifications, how to derive non-attribute/index-hiding
KP-ABE/IBE from the existing definitions of FE, MCFE, and MIFE is not clear. It then necessarily
requires more properties on the function class so as to capture the non-attribute-hiding property.
We emphasize that this is also the approach that was taken in [BSW11], where the authors
introduced the notion of empty key that defines a function such that “anyone can [...] obtain all
the information about x that intentionally leaks from c” [BSW11, Page 3]. A similar notion to
this empty-key function is indeed what we need to capture the non-attribute-hiding property
when expressing KP-ABE/IBE in the syntax of FE. With respect to [BSW11], when describing
how to capture KP-ABE or Ciphertext-Policy ABE [BSW11, Page 5], the empty-key function
however is not made clear in the key space of all poly-sized boolean formula in the former,
nor in the key space of all poly-long bitstrings of variables in the latter. In the multi-user
setting of MCFE/MIFE, no such property of empty-key function is mentioned in the introduced
definitions [GGG+14, CDG+18a].

Chapter Outline. We first start in Section 6.2 with a high-level overview of our concret
construction of MCFE for the inner product function class with access control by LSSS. Various
technical challenges are explained and we also highlight the techniques we use to resolve them.
In a nutshell, the difficulties come from both aspects at the same time: we integrate access
control to the scheme of [NPP23a] (that is presented in Section 5.4.1) while trying to relax the
admissibility of the AB-MCFE scheme of [NPP22a] (that is presented in Section 4.4). Techniques
of DPVS the are common to both above schemes will be heavily, e.g. see the paragraph Solution
to the Third Obstacle. In particular, in the Proof Overview for Theorem 6.11 we make clear
principal steps that need DPVS and other techniques for the security proof. We hope that the
Proof Overview for Theorem 6.11 culminates sufficiently substantial ideas on how to use DPVS
in proving security, which has been the case also in Chapters 4 and 5. The formal definitions of
function classes with public inputs are given in Section 6.3. Section 6.4 then presents formally
our concrete construction, while casting funtion classes with access control in terms of function
class with public inputs in Section 6.4.1 before diving into details of the particular case for
inner products with LSSS policies in Section 6.4.2. All abridged proofs can be found in the full
version [NPP24b].

89

6.2. TECHNICAL OVERVIEW CHAPTER 6. MCFE: UPGRADES

6.2 Technical Overview

Given the above conceptual overview, we now highlight the technical points for our concrete
construction of MCFE to compute inner products under access control in Section 6.4. All relevant
points that relate to the security proof are given by a dedicated overview in paragraph Proof
Strategy before the proof of Theorem 6.11. The functionality of interest is F IP

subvec,B × LSSS
and F IP

subvec,B contains Fy1,...,yn :
∏
i∈[n]

(
ZNi
q

)
→ Zq that is defined as Fy1,...,yn(x1, . . . ,xn) :=∑n

i=1⟨xi,yi⟩, where for all i, max(∥xi∥∞, ∥yi∥∞) < B, where B = poly(λ) ∈ N is a polynomial.
For the ease of notation, we can assume the subvectors are of length N = maxi(Ni). The access
control is given by Rel : LSSS×

(∏n
i=1 2Att

)
→ {0, 1}, where Rel(A, (Si)i) =

∏
iA(Si), the class

LSSS contains Linear Secret Sharing Schemes over Att, and 2Att denotes the superset of an
attribute space Att ⊆ Zq.

First Technical Obstacle: Admissibility with vectors and probabilistic encryption.
Our goal is to handle the less restrictive admissibility condition w.r.t the function calculating
Fy1,...,yn(x1, . . . ,xn) :=

∑n
i=1⟨xi,yi⟩, under access control from Rel. Each of the n clients in our

MCFE scheme are encrypting a vector xi, together with a tag tag and their set of attributes Si.
The fact that we are working with vectors is generalizing first and foremost the construction by
Nguyen et al. [NPP22a] (Chapter 4) that only supports scalar inputs xi ∈ Zq. Moreover, under
the new admissibility that is studied in [NPP23a] (Chapter 5), the conditions for the challenge
ciphertexts in terms of corrupted clients i become less restrictive. To recall, the admissibility
in [NPP22a] is inherited from the orginal one introduced in [CDG+18a] and will require that
for any corrupted i ∈ C, it holds that x(0)

i = x(1)
i . Following the motivation that is put forth

in [NPP23a] so as to relax the foregoing condition, in the case of scalars where inputs to clients i
have dimension 1, the stronger admissibility condition is that for any corrupted i ∈ C, for any
key queries with yi as the i-th parameter for inner products, it must hold (x(0)

i − x
(1)
i) · yi = 0.

In our case, having the goal of generalizing [NPP22a] (Section 4.4.2) to encrypt vectors under
the stronger admissibility, the condition becomes: for any corrupted i ∈ C, for any key queries
with yi as the i-th parameter for inner products, it must hold ⟨x(0)

i − x(1)
i ,yi⟩ = 0. This opens

up much more liberty to the adversary in terms of what they can challenge. That is, as soon
as the dimension of the vectors (x(0)

i ,x
(1)
i ,yi) is at least 2, the adversary can choose (x(0)

i ,x
(1)
i)

such that x(0)
i − x(1)

i is orthogonal to yi, where both x(0)
i − x(1)

i ̸= 0,yi ̸= 0. In retrospective, the
scalar version of [NPP23a] (Section 5.4) implies already that either (x(0)

i − x
(1)
i) = 0 or yi = 0,

which is a special case of the vector version. Last but not least, regarding honest i ∈ H := [n] \ C,
it must hold that for all key queries with (yi)i∈H as the parameters corresponding to honest
slots,

∑
i∈H⟨x

(0)
i − x(1)

i ,yi⟩ = 0. Particularly, the condition ⟨x(0)
i − x(1)

i ,yi⟩ = 0 for any i ∈ C and
any (i,x(0)

i ,x
(1)
i , tag) to LoR already implies that encryption of our MCFE must be necessarily

probabilistic, because the adversary is allowed to makes challenge queries x(0)
i − x(1)

i ≠ 0. This is
highlighted in paragraph Strong Admissibility and Public-Key Setting of our introduction (in
Section 2.3.3).

Solution to the First Obstacle: Probabilistic Vectorization of the Scheme of [NPP22a].
Our starting point is the scalar construction of [NPP22a] (Section 4.4.2), in the bilinear setting
(G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The crux of our vectorization
is to use the dual pairing vector spaces (DPVSes) to encode the vectors xi and yi. In particular,
each client encrypt their vector xi by c-vectors in G1, and the functional key for yi is encoded in
k∗-vectors in G2. The importance is randomness must be added to the c-vectors individually by
each i, which cannot be founded on RO or pseudorandom functions as in previous works [NPP22a,
ATY23a]. To implement such randomness and ensure that correctness is preserved, we make
use of the concrete fact of DPVS that it provides linear combinations of vectors in G1 and

90

CHAPTER 6. MCFE: UPGRADES 6.2. TECHNICAL OVERVIEW

G2. This can be verified when viewing a DPVS as a Zq-algebra, sastisfying Zq-linearity and
being equipped with an product operation that is provided by the bilinear map e. We refer
to Section 6.4 for more details and Algorithm 6.2 to see how the decryption is done. In contrast
to the construction of [NPP22a, NPP23a], the decryption becomes much more complicated. The
probabilistic vectorization is also used to handle the repetitions of challenge ciphertexts, as we
will see in the below paragraph.

Second Technical Obstacle: Repetitions and Access Control. We have mentioned in the
introduction that tolerating repetitions of challenge messages x(0)

i ,x
(1)
i is a crucial requirement for

MCFE, in order for MCFE to imply MIFE in terms of provably secure cryptographic primitives.
In our setting with both private and public inputs, the challenge ciphertexts given private
(x(0)
i ,x

(1)
i) are encrypted with public parts comprising of a tag and the set of attributes Si. This

means that repetitions are now must be vis-à-vis the public parts, in particular Si. The latter
complicates significantly the situation, which is already observed in a very recent work by
Agrawal et al. [ATY23a]. Indeed on one hand, for a specific slot i ∈ [n] and tag, full repetitions of
(x(0,ji)
i ,x(1,ji)

i) and S(ji)
i mean that the MCFE should be resilient against attacks that try combining

different attribute set S(ji)
i ̸= S(̃ji)

i at slot i, where A(S(ji)
i) ̸= A(S(̃ji)

i). On the other hand, in
terms of the inner product calculation, allowing repetitions on the private inputs x(0)

i ,x
(1)
i for a

fixed (i, tag) needs being taken into account by the admissibility: for all keys who decrypt (the
key-policy A is satisfied), for all repetitions ji∑

i∈H
⟨x(0,ji)
i − x(1,ji)

i ,yi⟩ = 0 (6.1)

This implies for each i ∈ H, over all repetitions ji, the term ⟨x(0,ji)
i − x(1,ji)

i ,yi⟩ is constant. At
the same time, for all i ∈ C that are corrupted, under repetitions ji, it must be

⟨x(0,ji)
i − x(1,ji)

i ,yi⟩ = 0 . (6.2)

This makes sense even in the case of static corruption, since we do not prohibit such queries
even after the set C is fixed. Finally, condition (6.2) does not need to cover private inputs of
corrupted i ∈ C that are not queried to the oracle LoR because there exists no challenge bit b in
those self-crafted ciphertexts using (i ∈ C, eki, tag) on some zi, and derypting jointly with others
challenge ciphertexts under some key dkA,(yi)i∈[n] always gives the same i-th component ⟨zi,yi⟩
regardless of b. Last but not least, fir keys that do not decrypt (the key-policy A is satisfied), we
do not have the guarantees from the admissibility but the adversary still tries to mix-and-match
different repetitive attributes S(ji)

i ,S(̃ji)
i , for instance.

Solution to the Second Obstacle: Masking with (Private-only) Repetitions. In this
work we restrain our focus to the case where the repetitions are only allowed for the private inputs
(x(0)
i ,x

(1)
i). That is, the adversary is allowed to query multiple (x(0,ji)

i ,x(1,ji)
i), indexed by ji, for a

fixed (i, tag,Si). Dealing with private-input repetitions is handled by our generalization of the
masking lemma from [NPP22a]. The formal statement of the lemma can be found in Lemma 3.5.
At a high level, the setting of Lemma 3.5 contains a set of c-vectors in which attributes j are
encoded, and a set of k∗-vectors that encode a policy A by secret shares (aj)j∈List-Att(A) w.r.t the
policy A. The lemma proves that for any given repetitive x(rep) and y ∈ Zq, where rep ∈ [J], we
can randomize the c-vectors by random zj

$← Z∗q , at the same time encoding (a′j/zj)j∈List-Att(A) in
the k-vectors. Particularly (a′j/zj)j∈List-Att(A) is a decorrelated set of shares (a′j)j∈List-Att(A) w.r.t
the policy A to share a′0

$← Zq. In the proof of the MCFE, we alllow repetitions of the challenge
ciphertexts while fixing (i, tag, Si). After applying Lemma 3.51, as soon as A(Si) = 0, there is an

1The randomness that is needed for the masking also comes from our above probabilistic vectorization, wherever
we need individual randomness.

91

6.2. TECHNICAL OVERVIEW CHAPTER 6. MCFE: UPGRADES

attribute j whose zj
$← Z∗q never appears in the c-vectors returned to the adversary, thanks to

the fact that (i, tag,Si) is fixed once for all repetitions of private inputs at i. That implies the
decorrelated (a′j/zj)j∈List-Att(A) cannot be related together, in an information theoretical sense,
to recover (a′j)j∈List-Att(A) and reconstruct the shared value. We are then allowed to switch a′0
into a uniformly random value for further steps in the MCFE proof. Finally, as demonstrated in
Theorem 6.6, even in this setting of private-only repetitions, our MCFE with public inputs still
cover MIFE, and the concrete scheme for inner products with access control in Section 6.4 gives
MIFE for inner products.

Third Technical Obstacle: Adaptive Security. Another technical hurdle with which we
successfully deal in our MCFE is the adaptive security of the challenge queries x(0,ji)

i ,x(1,ji)
i indexed

by repetitions ji along with public inputs (i, tag, Si). Existing comparable schemes either achieves
selective security [ATY23a], or considers the simpler scalar case [NPP22a].

Solution to the Third Obstacle: Adaptive Security via Perfect Indistinguishability
and Complexity Leveraging. Aiming at adaptive security w.r.t (x(0,ji)

i ,x(1,ji)
i) with public

inputs (i, tag,Si), we employ a complexity leveraging technique that is based on formal basis
changes in the dual pairing vector spaces. More specifically, in order to prove two hybrids
Gi,Gi+K for some fixed K, are indistinguishable in the adaptive security proof, we define an
event E that happens with fixed probability and whose probability space depends on the data
that can be adaptively chosen by the adversary. Then, condition on E we move to the selective
version G∗i ,G∗i+1, . . . ,G∗i+K . If we can prove the sequence of perfect indistinguishability involving

{G∗i | E} ≡ {G∗i+1 | E} ≡ · · · ≡ {G∗i+K | E}

where E happens with fixed probability and is independent of the view of the adversary during
the reductions {G∗i+t E} ≡ {G∗i+t+1 | E} in the sequence, for all t ∈ [K − 1], then a probabilistic
argument concludes that {Gi} ≡ {Gi+1} ≡ · · · ≡ {Gi+K}. The formal basis changes are used to
achieve perfect indistinguishability between these selective versions {G∗i+t | E} of the game. In
the MCFE adaptive proof, the adaptive data include (x(0,ji)

i ,x(1,ji)
i) indexed by multiple repetitions

ji. We extensively use admissibility conditions (6.1) as well as (6.2) to define the basis changes.
Details can be found in the proof of Theorem 6.11, the final probabilistic calculation for complexity
leveraging can be examined in (6.9), for instance. As a reminder, an integral overview that puts
together all above solutions, and more, is given in the paragraph Proof Strategy before the
proof of Theorem 6.11.

92

CHAPTER 6. MCFE: UPGRADES 6.3. MCFE WITH PUBLIC INPUTS

6.3 Multi-Client Functional Encryption with Public Inputs

In this section we refine the definition of multi-client functional encryption in which at the time of
encryption, each client can specify their own public data, while the function class contains functions
that evaluate both the combined private and public data of clients. In Section 6.3.2 we prove that
this general notion covers the original MCFE notion with and without fine-grained access control,
and even more, e.g. the notion of public-attributes ABE. Interestingly, the syntax of previous
formal definitions of FE, either in single-client [BSW11] or multi-client [GGG+14, CDG+18a],
allows no public data and let public-attributes ABE escape their scope, or has to include an
artificial function in the class. More specifically, we discuss in Theorem 6.6 how our formal
definition of MCFE with public inputs can be related to other existing primitives.

6.3.1 Definitions

Definition 6.1 (Functions with public inputs). Let λ, n ∈ N and let Dλ,i and Rλ be domains
and ranges indexed by λ in some ensembles {Dλ,i}λ where i ∈ [n], {Rλ}λ, respectively. A function
class F = {Fλ,n}λ,n with public inputs (Zλ,i)i∈[n], where Zλ,i := {0, 1}poly(λ), is defined to contain
Fλ,n :

∏n
i=1 (Dλ,i ×Zλ,i)→ Rλ.

In the following the index n is a function in λ and we omit it for clarity.

Definition 6.2 (Multi-client functional encryption with public inputs). A multi-client
functional encryption (MCFE) scheme with public inputs, for the class F with public inputs
(Zλ,i)i∈[n] where Zλ,i := Tag × Z̃λ,i for some set Tag = {0, 1}poly(λ), consists of four algorithms
(Setup,Extract,Enc,Dec):

Setup(1λ, 1n): Given as inputs 1λ for a security parameter λ, and a number of clients n, output
a master secret key msk and n encryption keys (eki)i∈[n].

Extract(msk, Fλ): Given a function description Fλ :
∏n
i=1 (Dλ,i ×Zλ,i) → Rλ in F , and the

master secret key msk, output a decryption key dkFλ
.

Enc(eki, xi, zi): Given as inputs public data zi = (tag, z̃i) ∈ Zλ,i that contains some tag, an
encryption key eki, a message xi ∈ Dλ,i, output a ciphertext (cttag,i, zi). For a specific
client i, the sets Dλ,i and Zλ,i are indexed by λ in some ensembles {Dλ,i}λ, {Zλ,i}λ.

Dec(dkFλ
, c): Given the decryption key dkFλ

and a vector of ciphertexts c := (cttag,i, zi)i of length
n, output an element in Rλ.

Our syntax can be seen as a particular case of the general primitive Multi-Party Functional
Encryption (MPFE) [AGT21c] in which we consider the particular case of multi-client while
the key generation stays centralized. The main difference is in terms of security where ours is
less restrictive (see Definition 6.3), which is sufficient to for establishing connection to other
primitives as we will see in Section 6.3.2. Regarding the concrete class calculating inner products
with access control, we will revisit the connection from MIFE to MCFE in Section 6.4.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n])← Setup(1λ), all functions
Fλ,n :

∏
i (Dλ,i ×Zλ,i) → Rλ and dkFλ,n

← Extract(msk, Fλ,n), for all tag ∈ Tag and (zi)ni=1 ∈
Zλ,1×· · ·×Zλ,n, for all (xi)i∈[n] ∈ Dλ,1×· · ·×Dλ,n, if Fλ((xi, zi)i) ̸= ⊥ and zi = (tag, z̃i) ∈ Zi for
all i, the following holds with overwhelming probability, over the random coins of the algorithms:

Dec
(
dkFλ

, (Enc(eki, xi, zi))i∈[n]

)
= Fλ,n((xi, zi)i) .

93

6.3. MCFE WITH PUBLIC INPUTS CHAPTER 6. MCFE: UPGRADES

Security. First of all we define admissible adversaries A against an MCFE E . We use the recent
formulation of admissibility in [NPP23a] (Definition 5.4).

Definition 6.3 (Admissible adversaries with public inputs). Let A be a ppt adversary
and let E = (Setup,Extract,Enc,Dec) be an MCFE scheme with public inputs for the function
class F with public inputs Zλ,i := Tag × Z̃λ,i. In the security game given in Figure 6.1 for A
considering E, let the sets (C,Q,H) be the sets of corrupted clients, functional key queries, and
honest clients, in that order. We say that A is NOT admissible w.r.t (C,Q,H) if the following
condition holds:

There exist tag ∈ Tag, a function F ∈ F is queried to Extract, challenges
(x(0)
i , x

(1)
i , (tag, z̃(chal)

i))i∈[n] is queried to LoR, with public inputs z̃(chal)
i ∈ Z̃λ,i, and

there exist vectors (t(0), t(1),v(chal)) so that ∀ i ∈ H : t(b)[i] = x(b)
i and v(chal)[i] =

z̃(chal)
i satisfying

F ((t(0)[i], (tag,v[i]))i∈[n]) ̸= F ((t(1)[i], (tag,v[i]))i∈[n]) . (6.3)

Otherwise, we say that A is admissible w.r.t (C,Q,H).

Discussion on admissibility. We develop below some discussion on the admissibility notion in
Definition 6.3:

• (Repetitions) In comparison to the original security of MCFE in [CDG+18a], an adversary
is still admissible if they query multiple times to the challenge oracle for a fixed (i, tag),
whereas an admissible adversary as per [CDG+18a] is allowed to query at most once for
each (i, tag). This aspect of repetitions in the admissibility was first studied in [CDG+18b]
and later generalized in [CDSG+20]. It is important that when repetitions are allowed
for ciphertexts, the security model of MCFE automatically encompasses that of MIFE by
replacing tags with a constant value, as confirmed in recent works [ATY23b]. Lastly, in
our notion of MCFE with public inputs, we can also consider restricted repetitions only on
the private parts (x(0)

i , x
(1)
i) (see the weaker notion rep-priv in the following) and not on the

public parts z(chall)
i to the challenge oracle. This form of restricted repetitions gives a weaker

notion of security, but it still covers the security of classical MIFE without public inputs, as
studied in [GGG+14, AJ15, AGRW17, DOT18, ACF+18, Tom19, AGT21a, AGT22].

• (Weaker constraints) Regarding the corrupted i ∈ C in general, the admissibility check is
done in Finalise at the end of the security experiment, and Definition 6.3 per se allows the
adversary to query the challenge oracle LoR, whether the corruption is static or not, on

i, x(0)
i , x

(1)
i , (tag∗, z̃(chal)

i)

where x(0)
i ̸= x(1)

i . The adversary stays admissible as long as the condition (6.3) is not
satisfied, i.e. the foregoing x(0)

i ̸= x(1)
i of corrupted i ∈ C does not make F differ with

respect to the challenge bit b $← {0, 1}. The original security of MCFE in [CDG+18a] does
not allow attacks where there exists i ∈ C such that x(0)

i ̸= x(1)
i . By allowing a such query,

we apparently allow more attacks than the original security model of MCFE in [CDG+18a].
The work [NPP23a] examines the legitimacy of this condition in the plain (Decentralized)
MCFE (DMCFE) setting and proposes a stronger security model that does allow x(0)

i ̸= x(1)
i

of corrupted i ∈ C (thus considers more attacks admissible).

• (Corrupted ciphertexts) In terms of usage of the corrupted eki, for the admissible conditions 6.3
we do not put any quantifier on the ciphertexts that can be crafted by the adversary
using a corrutped eki for i ∈ C. Because when decrypting jointly a such ciphertext

94

CHAPTER 6. MCFE: UPGRADES 6.3. MCFE WITH PUBLIC INPUTS

c̄ti←Enc(eki, x̄i, z̄i) with other challenge ciphertext components (up to repetitions) vis-à-
vis a function F , the evaluation will provide

F ((t(b)[j], (tag,v[j]))j ̸=i, (x̄i, z̄i), (t(b)[j′], (tag,v[j′]))j′ ̸=i)

that always has the same i-th argument and cannot change the output of F . The same
reasoning applies when the adversary crafts themselves multiple corrupted ciphertexts.

• (Checking admissibility) The admissiblity in Definition 6.3 for general function class may
not be efficiently decidable. As we will see later in Section 6.4, within the scope of this
paper, the class of functions is restricted to computing inner products with access control
by LSSS, and the admissibility can be decided efficiently using concrete conditions 1 and 2
prior to the proof of Theorem 6.11.

In Theorem 6.6 we discuss how an MCFE that is provably secure under the admissibility in
Definition 6.3 will imply a provably secure MIFE, and more. For the concrete class of computing
inner products with access control which is the main subject of Section 6.4, we refer to Remark 6.14.

Definition 6.4 (IND-security with repetitions for MCFE with public inputs). An
MCFE scheme with public inputs E = (Setup,Extract,Enc,Dec) for the function class F with
public inputs is IND-secure if for all ppt adversaries A, and for all sufficiently large λ ∈ N, the
following probability is negligible

Advmc-w-rep
E,F ,A (1λ) :=

∣∣∣∣Pr[Exprmc-ind-cpa
E,F ,A (1λ) = 1]− 1

2

∣∣∣∣ .
The security game Exprmc-ind-cpa

E,F ,A (1λ) is depicted in Figure 6.1. The probability is taken over the
random coins of A and the algorithms.

In a more relaxed notion, the scheme E is selectively IND-secure with the security game
Exprmc-sel-ind-cpa

E,F ,A (1λ), where the challenges are chosen before the setup.

Weaker notions. We can relax the admissibility notion from Definition 6.3, with more exclusions,
to obtain weaker security notions considered in literature. They are simpler to achieve, and some
generic conversions allow to lift from a weaker to a stronger scheme.

• In previous works, one can consider a weaker notion of security for MCFE in which either
all or none of honest components in the challenge are queried. In this case, we say that the
MCFE scheme is secure against complete queries only and add the following exclusion to
the admissibility:

There exist a tag tag and i, j ∈ H such that i ̸= j, there exists a query
(i, x(0)

i , x
(1)
i , (tag, ∗)) to LoR but there exist no query (j, x(0)

j , x
(1)
j , (tag, ∗)) to

LoR.

We denote the corresponding experiment with this weaker notion in admissibility, i.e. which
is called pos-security in the literature, with the flag pos in the name of the experiment.

• One can also keep the original security notion from [CDG+18a] by imposing the same
challenge components for corrupted i ∈ C. We then add the exclusion to the admissibility:

There exists i ∈ C such that x(0)
i ̸= x(1)

i .

We denote the corresponding experiment with this weaker notion in admissibility, with the
flag wk.

95

6.3. MCFE WITH PUBLIC INPUTS CHAPTER 6. MCFE: UPGRADES

Initialise(1λ) Initialise(1λ, (x(0)
i , x

(1)
i)i∈[n])

b
$← {0, 1}

(msk, (eki)i∈[n])←Setup(1λ)

Q := ∅, C := ∅, H := [n]

LoR(i, x(0)
i , x

(1)
i , (tag∗, z̃(chal)

i)) LoR(i, (tag∗, z̃(chal)
i))

Enc(eki, x
(b)
i , (tag∗, z̃(chal)

i))→ ct(b)
tag∗,i

Return ct(b)
tag∗,i

Enc(i, xi, (tag, z̃i))

Return Enc(eki, xi, (tag, z̃i))

Corrupt(i)

C := C ∪ {i}

H := H \ {i}

Return eki

Finalise(b′)

If A is NOT admissible w.r.t (C,Q,H):

return 0

Else return
(
b′ ?= b

)

Extract(F)

Q := Q∪ {F}

dkF←Extract(msk, F)

Return dkF

Figure 6.1: The security game Exprmc-ind-cpa
E,F,A (1λ), Exprmc-sel-ind-cpa

E,F,A (1λ) for Definition 6.4

• We also define a notion of security where only one challenge tag tag∗ is allowed, with the
following exclusion to the admissibility:

There exist two tags tag ̸= tag′ and queries (∗, ∗, ∗, (tag, ∗)), (∗, ∗, ∗, (tag′, ∗))
to LoR.

That is, the scheme E is one-time IND-secure, with the flag 1chal in the name of the
experiment.

• Finally, if we allow only repetitions on the private parts (x(0)
i , x

(1)
i) and not on the public

parts z(chal)
i to LoR (or xi and not on zi to Enc), we denote the corresponding experiment

with this weaker notion with the flag rep-priv, with the additional exclusion:

There exist a tag tag, an index i and two public values z ̸= z′, with queries
(i, ∗, ∗, (tag, z)) to LoR or (i, ∗, (tag, z)) to Enc, and (i, ∗, ∗, (tag, z′)) to LoR
or (i, ∗, (tag, z′)) to Enc.

All these flags pos, wk, 1chal, rep-priv can be combined and added to the experiments presented
in Figure 6.1.

Lemma 6.5 allows us to concentrate on the notion of one-time IND-security for our construction.
The proof is a standard hybrid argument, thanks to the Enc-oracle access (in the case of secret-key
encryption), in addition to LoR.

Lemma 6.5. Let E = (Setup,Extract,Enc,Dec) for the function class F be an MCFE scheme
with public inputs. If E is one-time IND-secure, then E is IND-secure.

6.3.2 Implications between Notions: MCFE, MIFE, and more

Since its introduction in [GGG+14], a long line of works [AJ15, AGRW17, DOT18, ACF+18,
Tom19, AGT21a, AGT22] considers MIFE having only one encryptor who can use a master secret
key to encrypt independent components of a message. Our definition of MCFE from Definition 6.2

96

CHAPTER 6. MCFE: UPGRADES 6.3. MCFE WITH PUBLIC INPUTS

can capture this widely studied (one-encryptor) notion of MIFE, with and without access control,
and in the latter case with public attributes. Generally, Theorem 6.6 demonstrates that given a
secure MCFE as per Definition 6.4 for a strong enough function class with public inputs, we can
obtain secure instantiations of standard existing MIFE/MCFE notions in the secret-key setting as
well as (single-client) FE/KP-ABE notions in the public-key setting. Relevant notions are recalled
in Section 3.5.

Theorem 6.6. Let F be a function class with public inputs (Zλ,i)i∈[n] where Zλ,i := Tag × Z̃λ,i
for some tag space Tag = {0, 1}poly(λ). The elements of F are Fλ,n :

∏n
i=1 (Dλ,i ×Zλ,i) → Rλ.

Suppose that F contains the identity function F id
λ,n where for all (xi, zi)i, F id

λ,n((xi, zi)i) = (xi, zi)i.
We suppose further that Fλ,n can encode a policy class Pol whose attributes are contained in
Att ⊆ Z̃λ,i for all i ∈ [n]. We have the following commutative diagram:

MCFE xxx--rep-priv[F , (Zλ,i)i∈[n]] MIFE xxx-[F]

FE xxx-[F , (Zλ,i)i∈[n]] KP-ABE xxx-
pub [Pol,Att]

rep-priv

adm (Def. 6.3)
pub. input

Att⊆Z̃λ,i

where

• Each arrow “→” preserves the IND-CPA security level xxx ∈ {sel, adp, stat} of challenge-
selective, challenge-adaptive, static corruption security respectively. The label of the arrow
indicates the necessary property for it to hold, detailed in the proof.

• MIFE xxx-[F] denotes an MIFE following Definition 3.11, that can be adapted to capture
MIFE for calculations in F without access control as defined in [AJ15, AGRW17, DOT18,
ACF+18, Tom19, AGT21a, AGT22].

• FE xxx-[F , (Zλ,i)i∈[n]] following Definition 3.9, that can be adapted to capture FE with access
control as in [ACGU20, NPP22a, ATY23a], or without access control [BSW11].

• KP-ABE xxx-
pub [Pol,Att] denotes a KP-ABE for the policy class Pol with public attributes. The

notion follows Definition 3.7.

Proof. We perform the reductions below. Let MCFE xxx-[F , (Zλ,i)i∈[n]] be a secure MCFE following
Definition 6.4. We denote by (Setupmc,Extractmc,Encmc,Decmc) the algorithms of the MCFE. We
use ϵ to denote the empty string.

From MCFE to MIFE. Following Definition 3.10, we consider the notion of MIFE having only
one encryptor who can use a master secret key to encrypt independent components of a message.
The function class is F containing Fλ,n :

∏n
i=1 (Dλ,i ×Zλ,i)→ Rλ. There is no public inputs as

we are concentrating on the classic MIFE as per [GGG+14] that is recalled in Definition 3.10.
The obtained MIFE is defined by the algorithms:

Setupmi(1λ, 1n): Run Setupmc(1λ, 1n)→ (mskmc, (ekmc
i)i). Sample a tag tag $← Tag and output

msk := mskmc, (eki := (ekmc
i , tag))i.

Extractmi(msk, Fλ): Run Extractmc(mskmc, Fλ)→ dkFλ
and output dkFλ

.

Encmi(eki, xi): Parse eki := (ekmc
i , tag). Run Encmc(ekmc

i , xi, (tag, ϵ))→ cti as there is no public
inputs in classical MIFE, then output cti.

Decmi(dkFλ
, (cti)i): Run and output Decmc(dkFλ

, (cti)i).

97

6.3. MCFE WITH PUBLIC INPUTS CHAPTER 6. MCFE: UPGRADES

Correctness follows from the correctness of the MCFE. In terms of security, let A be an
adversary against the MIFE as per Definition 3.11. We construct an adversary B breaking
MCFE xxx--rep-priv[F , (Zλ,i)i∈[n]] using A.

The adversary B simulates the MIFE game by (i) first querying its MCFE challenger on
(1λ, 1n) to obtain the public parameters (if any) then forwards to A ; (ii) simulating the
MIFE’s encryption/challenge queries by fixing a tag tag for all encryption (respectively challenge)
ciphertexts and forwarding the encryption (that is, (i, xi, (tag, ϵ))) (respectively challenge (that
is, (i, x(0)

i , x
(1)
i , (tag, ϵ)))) queries given (i, xi) or (i, x(0)

i , x
(1)
i) by A against the MIFE; (iii) the

key-extraction queries are forwarded to the MCFE challenger in a straightforward manner. In
the end B outputs the same as A. If A wins the MIFE game, then B wins the MCFE game. We
remark that when A makes repetitions over the encryption queries (i.e. same i but different
messages), the forwarded queries to the MCFE challenger are repetitions over the private inputs as
well, while the public inputs stay (tag, ϵ) for both Enc and LoR). In particular if A is admissible
following Definition 3.11, all queries by B to its challenger are admissible as per Definition 6.3,
in the private-only repetitions, because the conditions of MIFE security imposes more restricting
conditions, due to the fact that there are more possibilities to combine ciphertexts2.

From MCFE to (single-client, public-key) FE. The function class is F containing Fλ :
Dλ ×Zλ → Rλ. Following Definition 3.8, the obtained FE is defined by algorithms:

Setuppk(1λ): Run Setupmc(1λ, 11)→ (mskmc, ekmc). Output msk := mskmc, pk := (ekmc).

Extractpk(msk, Fλ): Run Extractmc(mskmc, Fλ)→ dkFλ
and output dkFλ

.

Encpk(pk, x, z): Parse pk := (ekmc) and z := (ϵ, z̃) as there is no tag in single client and public
key FE. Sample tag $← Tag and run Encmc(ekmc, x, (tag, z̃))→ ct. Finally output ct.

Decpk(dkFλ
, ct): Run and output Decmc(dkFλ

, ct).

Correctness follows from the correctness of the MCFE. If the function class captures access
control, then the FE is for the same class having access control as well. In terms of security, let
A be an adversary against the FE as per Definition 3.9. We construct an adversary B breaking
MCFE xxx--rep-priv[F , (Zλ,i)i∈[n]], with static corruptions, using A. The adversary B simulates the
FE game by (i) first querying its MCFE challenger on (1λ, 1) to obtain the public parameters
pp (if any) then queries Corrupt(1), gets ek, and forwards pk := ek together with pp to A. We
note that the corrupted client is known from the beginning; (ii) simulating the FE’s challenge
queries by forwarding the challenge queries (i.e. sample tag $← Tag and define the challenge to be

(1, x(0), x(1), (tag, z̃(chal)))) to its MCFE challenger given
((
x(0), (ϵ, z̃(chal))

)
,
(
x(1), (ϵ, z̃(chal))

))
by A ;

(iii) the key extraction queries are forwarded to the MCFE challenger in a straightforward manner.
If the FE adversary A is admissible, i.e. x(0) ̸= x(1) but F (x(0), (ϵ, z̃(chal))) = F (x(1), (ϵ, z̃(chal))) for
all F queried to Extract, then the challenge query (1, x(0), x(1), (tag, z̃(chal))) is on a pair of inputs
(x(0), (tag, z̃(chal))) ̸= (x(1), (tag, z̃(chal))) conforming to the admissibility. This implies that B is also
admissible following Definition 6.3. Moreover, the fact that every encryption query is defined on
a freshly sampled tag implies that there is no repetitions for any pair (1, tag) registered to the
MCFE challenger. This allows us to allow encrypting different public inputs even though the
MCFE is for private inputs repetitions only. Therefore, if A wins the FE game, then B wins the
MCFE game.

2In the one-encryptor setting there is no corruption oracle in the MIFE game, e.g. see the original in [GGG+14].

98

CHAPTER 6. MCFE: UPGRADES 6.3. MCFE WITH PUBLIC INPUTS

Implication to KP-ABE. The implication to KP-ABE follows from the (single-client, public-
key) FE case for F containing Fλ : Dλ ×Zλ → Rλ. Moreover, the identity function is in F and
allows the all-or-nothing decryption of KP-ABE, without any evaluation on the plaintext. In
particular, thanks to the hypothesis that the function class F can encode a policy class Pol, and
the attribute space Att is contained in Zλ. A reduction from FE to KP-ABE can be obtained with
ease. Once again, even though the MCFE is set up for one slot, each time an encryption is created,
a fresh tag is sampled therefore not leading to a fully repetitive on both private and public inputs.
This thus allows encrypting on different attribute sets while there is no full repetitions for any
pair (1, tag) registered to the MCFE challenger. Finally, an adversary breaking the KP-ABE
allows breaking the MCFE.

Remark 6.7. (From secret key to public key) We emphasize that the crucial point allowing
us to go from the secret key setting of MCFE to the public key setting of FE is the admissibility in
Definition 6.3 under corruption. More specifically, Definition 6.3 allows the reduction to forward
the challenge queries of its (public key) FE to the MCFE challenger, for the only client as n = 1,

(x(0), (tag, z̃(chal))) ̸= (x(1), (tag, z̃(chal)))

as long as F (x(0), (ϵ, z̃(chal))) = F (x(1), (ϵ, z̃(chal))) for all F queried to Extract. The only secret
encryption key ek is corrupted up front and known to the FE adversary as a public key pk.
Comparing to existing admissibility notions in [CDG+18a], which excludes attacks where there
exists i ∈ C such that x(0)

i ̸= x(1)
i , the only queries that the reduction can forward are the trivial one

from the FE adversary where x(0) = x(1). Hence, existing admissibility notions in [CDG+18a] and
subsequent works are not sufficient to capture the reduction from MCFE to FE with meaningful
CPA-security. Furthermore KP-ABE is made possible (without attribute-hiding) thanks to the
public inputs.

Remark 6.8. (Concrete instantiations) Another key observation of Theorem 6.6 is that
starting from any provably MCFE, we obtain an MIFE for the same function class by fixing
one public tag for all ciphertexts. The security of the resulted MIFE comes from the fact that
the security of the underlying MCFE allows repetitions at each position i, under the fixed tag,
thanks to the admissibility in Definition 6.3. In this chapter, our final construction for MCFE
with access-control (see Corollary 6.13) satisfies this security with repetitions along with other
favorable properties to be lifted to an MIFE with access-control. We consider the function class
F IP

subvec,B ×LSSS as defined in Definition 6.10. Applying Theorem 6.6 to our MCFE in Section 6.4
gives concrete instantiations of the corresponding primitives.

99

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

6.4 MCFE with Access Control: Revisited
First of all, we specialize the general notion of MCFE with public inputs so as to define and
give the model of security for multi-client functional encryption with fine-grained access control
in Section 6.4.1. Our main goal is to improve the MCFE construction in [NPP22a, Section 5],
which supports only encrypting scalars and does not tolerate repetitions of challenge ciphertexts.
Section 6.4.2 gives an extension to encrypt subvectors, in a security model where the admissibility
allows repetitions at positions under a challenge tag. Towards Corollary 6.13, we remove all
one-challenge and complete challenge queries, and the resulted MCFE can be made MIFE by
fixing a public tag. This clarifies the conversion from MCFE to MIFE in [NPP22a, Remark 16]. A
subtlety is that the fixed public tag is processed by hashing, leading to a MIFE that inherits all
security properties of the MCFE but without tags and without corruption. Hence, putting forward
the fact that our MCFE does not allow repetitions on the attributes per client but only repetitions
their private inputs, the obtained MIFE is secure only against repetitions on private inputs, i.e.
potentially repetitive private xi and no repetitions on the attributes Si of each i. We discuss
further our construction and revisit the MIFE regime for comparison with [ACGU20, NPP22a] in
Remark 6.14.

6.4.1 Definitions

We specialize the notion of MCFE with public inputs in Definition 6.2 to define the notion of
multi-client functional encryption with fine-grained access control, key-policy and with public
attributes.

Specialized function class with access control. Let λ ∈ N be a security parameter and we
denote by n the number of clients in the system, which is fixed at set up time. We describe
the function class F × AC-K for the multi-client functional encryption with fine-grained access
control below:

• The public attributes of each client i come from Zλ,i := Tag × AC-Cti for some set AC-Cti
and a tag space Tag = {0, 1}poly(λ).

• The access control is defined via a relation Rel : AC-K× AC-Ct1 × · · · × AC-Ctn → {0, 1},
for some set AC-K.

• The function class F × AC-K contains (Fλ, ac-k) having public inputs (Zλ,i)i∈[n].

A plaintext for client i consists of xi ∈ Dλ,i, where Dλ,i denotes the domain from which each
client i gets their inputs. The corresponding ciphertext can be decrypted to Fλ(x) using the
functional key skFλ,ac-k for ac-k ∈ AC-K if and only if Rel(ac-k, (ac-cti)i) = 1. Given the above
specialization, the syntax of MCFE with access control can be derived from the general syntax
of MCFE with public inputs in Definition 6.2. For the sake of analysis of our scheme later on,
we give below only the correctness and security definitions for the specialized function class
F × AC-K.

Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n])← Setup(1λ), (Fλ, ac-k) ∈
F × AC-K and dkFλ,ac-k ← Extract(msk, Fλ, ac-k), for all tag and (ac-cti)i, for all (xi)i∈[n] ∈
Dλ,1 × · · · × Dλ,n, the following holds with overwhelming probability: if Rel(ac-k, (ac-cti)i) = 1
and Fλ(x1, . . . , xn) ̸= ⊥

Dec
(
dkFλ,ac-k, (Enc(eki, xi, zi := (tag, ac-cti)))i∈[n]

)
= Fλ(x1, . . . , xn)

where Fλ : Dλ,1 × · · · × Dλ,n → Rλ and the probability is taken over the coins of algorithm.

100

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

Security. The security game is depicted in Figure 6.1, where the functionality class is F ×AC-K,
the set of public data for each client i is Zλ,i := Tag × AC-Cti. We recall that our general
admissibility in Definition 6.9 allows an adversary to query multiple times to the challenge oracle
for a fixed (i, tag). In particular, we consider also attacks where multiple x(rep)

i are queried for
the same (i, tag) to the oracle LoR, namely with repetitions at position i under the challenge
tag tag. The formal definition, which is concretely interpreted for the class F × AC-K based on
the general Definition 6.9 of MCFE with public inputs, is given below.

Definition 6.9 (Admissible adversaries with fine-grained access control). Let A be a
ppt adversary and let E = (Setup,Extract,Enc,Dec) be an MCFE scheme with fine-grained access
control for the functionality class F × AC-K. In the security game given in Figure 6.1 for A
considering E, let the sets (C,Q,H) be the sets of corrupted clients, functional key queries, and
honest clients, in that order. We say that A is NOT admissible w.r.t (C,Q,H) if any of the
following conditions holds:

There exist tag ∈ Tag, a function (F, ac-k) ∈ Q is queried to Extract, two
challenges (x(0)

i , x
(1)
i , (tag, ac-cti))i∈[n] are queried to LoR, with public inputs

ac-cti ∈ AC-Ctλ,i, a pair (t(0), t(1),v(chal)) so that for b ∈ {0, 1}, ∀ i ∈ H : t(b)[i] =
x(b)
i and v(chal)[i] = ac-cti, and

• The policy passesa: Rel(ac-k,v(chal)) = 1.
• The function evaluation differs:

F
(
t(0)) ̸= F

(
t(1)) . (6.4)

aThis is up to attributes replacement in the corrupted slots i ∈ C, therefore we only required v(chal) to
coincide with only with the honest attributes (ac-cti)i∈H and leave free the corrupted part.

Otherwise, we say that A is admissible w.r.t (C,Q,H).

We recall the weaker notion considering only complete queries, while facing repetitions, for this
concrete F × AC-K.

Weaker notions. We can relax Definition 6.9 to obtain weaker notions, in a similar manner
which we use to relax Definition 6.3. The selective, private-input only repetitions, complete, and
one-time security relaxations are straightforward.

6.4.2 Extension to Sub-vectors

In this section we present an MCFE scheme with fine-graine access control whose i-th ciphertext
can encrypt subvectors of length Ni. In Remark 6.14 we discuss how to turn our final MCFE for
inner products with access control, into an MIFE in the standard model, for computing inner
products without access control. The bilinear group is (G1,G2,Gt, g1, g2, gt, e, q). The function
class of interests is F IP

subvec,B × LSSS as defined in Definition 6.10.

Definition 6.10 (Inner Products with LSSS). We consider the functionality F IP
subvec,B ×

LSSS and F IP
subvec that contains Fy1,...,yn :

∏
i∈[n]

(
ZNi
q

)
→ Zq defined as Fy1,...,yn(x1, . . . ,xn) :=∑n

i=1⟨xi,yi⟩, which receives as inputs and parameters where for all i, max(∥xi∥∞, ∥yi∥∞) <
B, with B = poly(λ) ∈ N being a polynomial. The access control is given by Rel : LSSS ×(∏n

i=1 2Att
)
→ {0, 1} as Rel(A, (Si)i) =

∏
iA(Si). The class LSSS contains Linear Secret Sharing

Schemes over Att, and 2Att denotes the superset of an attribute space Att ⊆ Zq.

101

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

Construction. The details are given below:

Setup(1λ): Choose n+ 1 pairs of dual orthogonal bases (Hi,H∗
i ,Bi,B∗

i) for i ∈ [n] and (F,F∗,G,G∗),(Hi,H∗
i) is a pair of

dual bases for (G2N+4
1 ,G2N+4

2), (Bi,B∗
i) is a pair of dual bases for (GN+4

1 ,GN+4
2), (F,F∗) is a pair of dual bases

for (G2N+6
1 ,G2N+6

2), (G,G∗) is a pair of dual bases for (G2N+6
1 ,G2N+6

2) 3. Sample µ $← Z∗
q ,S,U,

$←
∏n

i=1(Z∗
q)N

and write S = (s1, . . . , sn), U = (u1, . . . ,un). Perform an n-out-of-n secret sharing on 1, that is, choose pi ∈ Zq

such that 1 = p1 + · · ·+ pn. Then, for each i ∈ [n], sample N random values θi,k
$← Zq. Output the master secret

key and the encryption keys as

msk :=
(

S, U, (θi,k)i∈[N],k∈[N], (b∗
i,k)k∈[N+2], f∗

1 , f∗
2 , f∗

3 ,

g∗
1 , g∗

2 , g∗
3 , (h∗

i,1,h
∗
i,2,h

∗
i,3, (h∗

i,N+3+k)N
k=1)i∈[n]

)
eki :=

(
si, ui, (B(k)

i)k∈[N+2],bi,N+3, f1, f2, f3,

g1, g2, g3, pi ·H
(1)
i , pi ·H

(2)
i , hi,3, (θi,khi,N+3+k)N

k=1

)
where H(k)

i , B
(k)
i denotes the k-th row of Hi, Bi respectively.

Extract(msk, (yi)i∈[n] ∈
∏n

i=1 ZN
q , ac-k := A): Let A be an LSSS-realizable monotone access structure over a set of attributes

Att ⊆ Zq . First, sample ai,0
$← Zq and run the labeling algorithm Λai,0 (A) (see Definition 3.3) to obtain the labels

(ai,j)j where j runs over the attributes in Att. In the end, it holds that ai,0 =
∑

j∈A
ci,j ·ai,j where j runs over some

authorized set Ai ∈ A and ci = (ci,j)j is the reconstruction vector from LSSS w.r.t Ai. We denote by List-Att(A) the
list of attributes appearing in A, with possible repetitions. For each i ∈ [n], each k ∈ [N], sample dA,i,k

$← Zq such
that

∑n

i=1

∑N

k=1 θi,kdA,i,k = 0. For each i ∈ [n], compute

mi :=

(
yi,

n∑
i=1

ai,0, rndi, 0, 0

)
B∗

i

; m̃i,j := (π̃i,j · (j, 1), ai,j , 0N , 0, 0N , 0, 0)G∗ for j ∈ List-Att(A)

ki,j := (πi,j · (j, 1), ai,j · z, 0N , 0, 0N , 0, 0)F∗ for j ∈ List-Att(A)

ki,ipfe :=

(
n∑

i=1

⟨si,yi⟩,
n∑

i=1

⟨ui,yi⟩, ai,0 · z, 0N , (dA,i,k)N
k=1, rndi,ipfe

)
H∗

i

where z, πi,j , rndi, rndi,ipfe
$← Zq . Output dkA,y :=

((
ki,j , m̃i,j

)
i,j
, (mi,ki,ipfe)i∈[n]

)
.

Enc(eki,xi ∈ ZN
q , zi := (tag,Si)): Parse

eki :=
(

si, ui, (B(k)
i)k∈[N+2],bi,N+3, f1, f2, f3,g1,g2,g3, pi ·H

(1)
i , pi ·H

(2)
i , hi,3, (θi,khi,N+3+k)N

k=1

)
and Si ⊆ Att ⊆ Zq as the set of attributes, compute H(tag)→ (JωK1 , Jω′K1) ∈ G2

1 . Use piH
(1)
i and piH

(2)
i to compute

piH
(1)
i · JωK1 + piH

(2)
i ·

q
ω′y

1 = pi ·
(
ωH

(1)
i · g1 + ω′H

(2)
i · g1

)
= pi · (ωhi,1 + ω′hi,2) .

For each j ∈ Si, sample ψi, νi
$← Zq and compute

t̃i,j = (σ̃i,j · (1,−j), νi, 0N , 0, 0N , 0, 0)G

ci,j = σi,j · f1 − j · σi,j · f2 + ψi · f3 = (σi,j · (1,−j), ψi, 0N , 0, 0N , 0, 0)F

where σ̃i,j , σi,j
$← Zq . Finally, compute

ti :=
∑

k∈[N]

(
JωK1 · si[k] ·B(k)

i +
q
ω′y

1 · ui[k] ·B(k)
i + Jxi[k]K1

)
+ νi · bi,N+1 + ρi · bi,N+3

= (ω · si + ω′ · ui + xi, νi, 0, ρi)Bi

ci,ipfe := pi · (ω · hi,1 + ω′ · hi,2) + ψi · hi,3 +
N∑

k=1

θi,khi,N+3+k = (ωpi, ω
′pi, ψi, 0N , (θi,k)N

k=1, 0)Hi

and output cttag,i :=
((

ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
.

3We denote the basis changing matrices for (F,F∗), (Bi,B∗
i), (Hi,H∗

i) as (F, F ′ := (F−1)⊤), (Bi, B
′
i :=

(B−1
i)⊤), (Hi, H

′
i := (H−1

i)⊤) respectively (see Section 3.3 for basis changes in DPVS).

102

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

Dec(dkA,y, c := (cttag,i), aux-d := tag): Parse

cttag,i =
((

ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
and dkA,y :=

((
ki,j , m̃i,j

)
i,j
, (mi,ki,ipfe)i∈[n]

)
.

For each i ∈ [n], if there existsAi ⊆ Si andAi ∈ A, then compute the reconstruction vector (ci,j)j of forAi and perform
Algorithm 6.2. Finally, compute the discrete logarithm and output the small value out ∈ [−nNB2, nNB2] ⊊ Zq

4.

Input: cttag,i =
((

ci,j , t̃i,j

)
j
, ti, ci,ipfe

)
and dkA,y :=

((
ki,j , m̃i,j

)
i,j
, (mi,ki,ipfe)i∈[n]

)
, as well as the

reconstruction vector (ci,j)j of the LSSS for a reconstruction set Ai for each i

1. For each j in the reconstruction set A, compute

t̃0,j =
∑

i

t̃i,j = (σ̃0,j · (1,−j),
∑

i

νi, 0N , 0, 0N , 0, 0)G

where σ̃0,j =
∑

i
σ̃i,j being a uniformly random value as σ̃i,j

$← Zq .

2. For each i compute

Xi =
∑
j∈Ai

t̃0,j × (ci,j · m̃i,j) =

u

w
v(
∑

i

νi) ·

(∑
j∈Ai

ci,j · ai,j

)}

�
~

t

=

u

v(
∑

i

νi) · ai,0

}

~

t

Yi =
∑
j∈Ai

ci,j × (ci,j · ki,j) = Jψi · ai,0 · zKt

and in the end summing all Xi to obtain mask =
∑

i
Xi =

r
(
∑

i
νi) · (

∑
i
ai,0)

z

t

3. Compute

W =
∑

i

ti ×mi =

u

v
∑

i

(
ω · ⟨si,yi⟩+ ω′ · ⟨ui,yi⟩+ ⟨xi,yi⟩

)
+ (
∑

i

νi) · (
∑

i

ai,0)

}

~

t

as well as Z =
∑

i

(
ci,ipfe × ki,ipfe − Yi

)
=

r
ω ·
∑

i
⟨si,yi⟩+ ω′ ·

∑
i
⟨ui,yi⟩

z

t
thanks to∑n

i=1

∑N

k=1 θi,kdA,i,k = 0 and
∑

i
pi = 1.

4. Finally, compute out = W − Z − mask =
r∑

i
⟨xi,yi⟩

z

t
and then a discrete log of out in base gt to obtain∑

i
⟨xi,yi⟩.

Figure 6.2: The final computation of decryption for the MCFE in Section 6.4, whose correctness can be verified according
to construction. We note that because of all the probabilistic vectorization during encryption (cf. Solution to the First
Obstacle in Section 6.2), the decryption algorithm is much more complex than the one in [NPP22a] and [NPP23a].

We now state the security theorem. For simplicity, this theorem proves a weaker notion
following Definition 6.3. In the subsequent lemmas we will show how to remove most of the
above constraints.

Theorem 6.11. Let E be a MCFE scheme with fine-grained access control for the function class
F IP

subvec,B×LSSS, given in Section 6.4 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q). Then,
in the random oracle model, E is one-time statically IND-secure against complete challenge
queries with private-inputs only repetitions (as per Definition 6.3), under the SXDH in G1 and
G2.

4we represent Zq as the ring of integers with addition and multiplication modulo q, containing the representatives
in the interval (−q/2, q/2).

103

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

Concrete Interpretation of Admissibility. Before going into the proof, we present specific
conditions for admissible attacks in the case of one-challenge, complete, with repetitions on
private inputs with repect to Definition 6.3:

1. For all vectors (x(0,ji)
i ,x(1,ji)

i , (tag, Si)) that is queried to LoR, for all ((yi)i∈[n],A) ∈ Q, let
H be the set of honest clients and b $← {0, 1} be the challenge bit. Then fof any ji ∈ [Ji], if∏
iA(Si) = 1 then:

∑
i∈H⟨x

(b,ji)
i − x(1,ji)

i ,yi⟩ = 0. This implies ⟨x(b,ji)
i − x(1,ji)

i ,yi⟩ is constant
for any ji ∈ [Ji]. We recall that we are in the private-inputs only repetitions and therefore
there are no repetitions over (tag, Si).

2. For all vectors (x(0,ji)
i ,x(1,ji)

i , (tag,Si)) that is queried to LoR, for all ((yi)i∈[n],A) ∈ Q.
Let C := [n] \ H be the set of corrupted clients. Then, for all i ∈ C, all ji ∈ [J]:
⟨x(b,ji)
i − x(1,ji)

i ,yi⟩ = 0.

We recall that these conditions are for the one-challenge, complete, with repetitions on private
inputs case and are checked in Finalise procedure at the end of the security experiment.
Particularly, condition 2 is checked for all corrupted clients i ∈ C and all ji ∈ [J], given any
queries that are made to the oracle LoR for i ∈ C by the adversary. This makes sense even
in the case of static corruption, since we do not prohibit such queries even after the set C is
fixed. Finally, condition 2 does not need to cover private inputs of corrupted i ∈ C that are not
queried to the oracle LoR because there exists no challenge bit b in those self-crafted ciphertexts
cttag,i←Enc(eki, zi, (tag, Si)). Decrypting cttag,i jointly with others challenge ciphertexts ct(b)

tag,j ̸=i
under some key dkA,(yi)i∈[n] always gives the same i-th component ⟨zi,yi⟩ regardless of b. Last
but not least, as a corollary of Theorem 5.13, the above admissibility is optimal for the class
F IP

subvec,B × LSSS in Definition 6.10.

Proof Strategy. Before presenting the details of the proof, we give an overview of the strategy.
The sequence of games is given in Figure 6.3, 6.4, and 6.5. The high level objective of each step
is described:

G0: We start from the first game G0 which is the security experiment for one-time statically
IND-security against complete challenge queries with private-inputs only repetitions. For
simplicity, we add a constraint that the challenge tag tag is not queried to Enc. This incurs
a multiplicative loss factor in advantage up to an inverse of polynomial in λ, where we can
reduce to the normal 1chal by guessing the challenge tag among the tags for encryption,
and responding all of its Enc queries (i,xi, (tag, ac-cti)) by LoR(i,xi,xi, (tag, ac-cti)).

G0 → G1: To go to G1, we perform a sequence of hybrids over the key queries, which are indexed
by ℓ ∈ [K]. The main goal is to introduce ∆xi ← x(b,ji)

i −x(1,ji)
i for each client i ∈ H (known

in advance by static corruption) and repetition ji ∈ [Ji] in one (block of) coordinates of the
challenge components c(ji)

i,j . The corresponding (block of) coordinates in the key component
k(ℓ)
i,j will be modified accordingly to contain a random copy of R · yi for some random
R

$← Zq. The details of the reductions are given in the full proof below, we highlight here
the fact that the correctness is necessarily preserved thanks to the admissiblity. When the
key allows decryption, summing up over all honest clients i ∈ H contains

R ·
∑
i∈H
⟨∆xi,yi⟩ = R ·

∑
i∈H
⟨x(b,ji)
i − x(1,ji)

i ,yi⟩ = 0 . (6.5)

Condition 1 ensures first that x(b,ji)
i − x(1,ji)

i is constant for all ji ∈ [Ji]5 and the sum
over index i ∈ H is well defined. Finally this sum leads to (6.5) which is 0 and does not

5This term ∆xi = 0 the vector of all 0 when b = 1 and can be non-zero when b = 0.

104

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

intervene the correct decryption6. As a final remark, this step exploits the probabilistic
vectorization and its randomness (see overview in Section 6.2)): first to apply Lemma 3.5
and then follow-ups with the complexity leveraging argument, while taking into accounts
the private-input repetitions (Solution to the First/Second Obstacle in Section 6.2).

G1 → G2: After the hybrids G0 → G1, we proceeed to G2 to rewrite the adversary’s view of the
challenge ciphertext component on the aggregation of the honest i for t̃(ji)

i,j : t̃(ji)
0,j =

∑
i∈H t̃(ji)

i,j .
Thanks to static corruption, the set H is known in advance and t̃(ji)

0,j is well defined. This is
a completely formal rewriting that conforms to the calculations in the decryption algorithm
(Algorithm 6.2) and hence preserves correctness.

G2 → G3: In the next step, we proceed to G3 by applying the masking lemma (Lemma 3.5), over
the each key

((
k(ℓ)
i,j , m̃

(ℓ)
i,j

)
i,j
, (m(ℓ)

i ,k
(ℓ)
i,ipfe)i∈[n]

)
that is indexed by ℓ ∈ [K]. This masking

application introduces ∆xi ← x(b,ji)
i − x(1,ji)

i for each client i ∈ H (known in advance by
static corruption) and repetition ji ∈ [Ji] in one (block of) coordinates of the challenge
components t(ji)

i , while the corresponding (block of) coordinates in the key component m(ℓ)
i

will be modified accordingly to contain R · yi. We remark that this pair of masks are the
same as what are introduce in the step G0 → G1, which is feasible under Lemma 3.5, and
are needed for later steps in the proof. The correctness is preserved thanks to a similar
argument as in the previous step.

G3 → G4: We move to the complexity leveraging argument. As already briefly introduced in
paragraph Solution to the Third Obstacle of Section 7.1, the complexity leveraging
argument is a technique that unfolds as follows:

1. We define an event E that happens with fixed probability and whose probability space
depends on the data that can be adaptively chosen by the adversary. Then, condition
on E we move to the selective version G∗i ,G∗i+1, . . . ,G∗i+K .

2. Next, we want to prove the sequence of perfect indistinguishability involving

{G∗i | E} ≡ {G∗i+1|E} ≡ · · · ≡ {G∗i+K | E} (6.6)

where E happens with fixed probability and is independent of the view of the adversary
during the reductions {G∗i+t | E} ≡ {G∗i+t+1|E} in the sequence, for all t ∈ [K − 1].

3. We go back to the orginal adaptive games, without resorting to event E, a probabilistic
argument concludes that {Gi} ≡ {Gi+1} ≡ · · · ≡ {Gi+K}. The main idea is given
any ppt adaptive adversary, we can construct a simulator of the adaptive games
{Gi,Gi+1, . . . ,Gi+K} can (i) first guess the adaptively chosen data for event E,
(ii) interact with its selective challenger, while (iii) using the afterwards selective
challenger’s responses to interact with the adaptive adversary, and (iv) in the end, only
when E holds, forward the adaptive adversary’s final result to the selective challenger.

In the reduction of step 3, the guess at (i) is done by the simulator and following the check
at (iv), it incurs the simulator’s advantage against the selective games being equal to a fixed
loss factor Pr[E] mutiplied to the advantage of the adaptive adversary. However, thanks
to the perfect indistinguishability (6.6), between the selective games for all simulators the
advantage is 0. Therefore, for the particular above simulator the advantage is also 0 and
that implies the arbitrary adaptive adversary’s advantage is 0. It remains constructing the
selective games {G∗i ,G∗i+1, . . . ,G∗i+K} and proving the perfect indistinguishability (6.6). To
this end, we exploit formal basis changes in DPVS (cf. examples 1, 2, 3 in Section 3.3).

6There is a step in this transition we already use complexity leveraging, for a common explanation we refer to
G3 → G4 below.

105

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

In a simplified notation the (block of) coordinares in ciphertexts and keys are changed as
follows:

(Formal quotient)

{
c(ji)

i,ipfe = (· · · , r · 1∆xi
, r′ · 1 , · · ·)Hi

;

k(ℓ)
i,ipfe = (· · · , R · (∆xi ◦ y(ℓ)

i) , (θi,k · d(ℓ)
A,i,k

)N
k=1 , · · ·)H∗

i
;

(Formal switch, b to 1) ≡

t(ji)

i = (ω · si + ω′ · ui + x(1,ji)
i , · · · ,∆xi, · · ·)Bi

m(ℓ)
i = (y(ℓ)

i , · · · , R′ · y(ℓ)
i , · · ·)B∗

i

c(ji)
i,ipfe = (· · · , r · 1∆xi

, (r′ + r) 1, · · ·)Hi

k(ℓ)
i,ipfe = (· · · , R′ ·

(
∆xi ◦ y(ℓ)

i

)
, (θi,k · d(ℓ)

A,i,k
)N
k=1 , · · ·)H∗

i

(Redo formal quotient) ≡

{
c(ji)

i,ipfe = (· · · , ∆xi , (θi,k)N
k=1 , 0)Hi

k(ℓ)
i,ipfe = (· · · , R′ · y(ℓ)

i , (d(ℓ)
A,i,k

)N
k=1 , rnd(ℓ)

i,ipfe)H∗
i

where R,R′ $← Zq, ∆xi ← x(b,ji)
i − x(1,ji)

i is constant for i ∈ H over repetitions. We refer to
the definition of the event for guesses in (6.10), which ensures that under those formal basis
changes correctness is preserved necessarily and we obtain the desired effects on vectors.

G4 → G5: The remaining step is to clean auxiliary coordinates we have modified in the previous
steps.

Full Proof. The full proof that develops all details of the above steps is given below.

Proof (Of Theorem 6.11). The sequence of games can be found in Figure 6.3, 6.4, and 6.5. The
full-domain hash function H : Tag × 2Att → G2

1 is modeled as a random oracle and we denote by
Q the number of random oracle queries by the adversary. The changes that make the transitions
between games are highlighted in boxed . The advantage of an adversary A in a game Gi is
denoted by Adv(Gi) := |Pr[Gi = 1]− 1/2| where the probability is taken over the random choices
of A and coins of Gi.

Game G0: This is the adaptive security game, where the private-input repetitions at each
position i ∈ [n] are indexed by rep ∈ [Ji] where Ji is the maximum repetitions queried
for position i. We note that for different i, the bound Ji can be different. The challenge
ciphertext encrypts subvectors x(b,rep)

i ∈ ZNq . For simplicity, we add a constraint that the
challenge tag tag is not queried to Enc. This incurs a multiplicative loss factor in advantage
up to an inverse of polynomial in λ, where we can reduce to the normal 1chal by guessing
the challenge tag among the tags for encryption, and responding all of its Enc queries
(i,xi, (tag, ac-cti)) by LoR(i,xi,xi, (tag, ac-cti)).

Game G1: We perform a sequence of hybrids over the key queries (y(ℓ)
i)i for ℓ ∈ [K]. We denote

G0.ℓ the hybrid where all the ≤ (ℓ− 1)-th key is programmed as responses from LoR

t(ji)
i (ω · si + ω′ · ui + x(b,ji)

i ν
(ji)
i 0 0 ρ

(ji)
i)Bi

m(≤ℓ−1)
i (y(≤ℓ−1)

i

∑n

i=1 a
(≤ℓ−1)
i,0 0 rnd(≤ℓ−1)

i 0)B∗
i

c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

k(≤ℓ−1)
i,ipfe (

∑
i
⟨si,y(≤ℓ−1)

i ⟩
∑

i
⟨ui,y(≤ℓ−1)

i ⟩ a
(≤ℓ−1)
i,0 z(≤ℓ−1) R · y(≤ℓ−1)

i (d(≤ℓ−1)
A,i,k

)N
k=1 rnd(≤ℓ−1)

i,ipfe)H∗
i

while other ciphertext components from Enc are kept in normal form. It holds that
G0 = G0.0. For ℓ ∈ [K], the transition from G0.ℓ−1 to G0.ℓ is as follows: G0.ℓ.0 is the same
as G0.ℓ−1 .
G0.ℓ.1 is the same as G0.ℓ.0 except that we apply Lemma 3.5 to introduce a set of masks in
the ciphertexts : ∆xi ← x(b,ji)

i − x(1,ji)
i . The proof of Lemma 3.5 can be found in [NPP24b,

Appendix B]. We remark that ∆xi is a vector of differences of the challenge ciphertexts

106

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

Game G0 : H(tag)→ (JωtagK1 ,
q
ω′tag

y
1), H(tag′)→ (

q
χtag′

y
1 ,

r
χ′tag′

z

1
), (for Enc queries H on

tag′ are noted by χ and χ′) ; ℓ ∈ [K] indexes key queries
a(ℓ)
i,0

$← Zq, (a(ℓ)
i,j)j∈List-Att(A)←Λ

a
(ℓ)
i,0

(A),
∑n
i=1

∑N
k=1 d

(ℓ)
A,i,kθi,k = 0

LoR c(ji)
i,j (σ

(ji)
i,j · (1,−j) ψ

(ji)
i 0 0 0 0 0)F

LoR t̃(ji)
i,j (σ

(ji)
i,j · (1,−j) ν

(ji)
i 0 0 0 0 0)G

Enc c(ji)
i,j (σ′i,j · (1,−j) ψ

(ji)
i 0 0 0 0 0)F

k(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j · z(ℓ) 0 0 0 0 0)F∗

m̃(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j 0 0 0 0 0)G∗

LoR t(ji)
i (ω · si + ω′ · ui + x(b,ji)

i ν
(ji)
i 0 0 ρ

(ji)
i)Bi

Enc t(ji)
i (χ · si + χ′ · ui + x(ji)

i ν
(ji)
i 0 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n
i=1 a

(ℓ)
i,0 0 rnd(ℓ)

i 0)B∗
i

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i 0 (θi,k)Nk=1 0)Hi

Enc c(ji)
i,ipfe (piχtag′ piχ

′
tag′ ψ

(ji)
i 0 (θi,k)Nk=1 rnd(ℓ)

i,ipfe)Hi

k(ℓ)
i,ipfe (

∑
i⟨si,y

(ℓ)
i ⟩

∑
i⟨ui,y

(ℓ)
i ⟩ a(ℓ)

i,0z
(ℓ) 0 (d(ℓ)

A,i,k)Nk=1 rnd(ℓ)
i,ipfe)H∗

i

Game G1 : zj
$← Z∗q , ∆xi ← x(b,ji)

i − x(1,ji)
i (Masking Application - Lemma 3.5, hybrids over each

key query (y(ℓ)
i)i, using the DPVS basis changes from Section 3.3, i.e. formal ones (1, 2, 3) and

computational ones (1, 2))

G0.ℓ.1 where ℓ ∈ [K] and K is the maximum number of key queries. We are in the setting of private-input
only repetitions a′

i,0
$← Zq, (a′

i,j)j∈List-Att(A)←Λa′
i,0

(A)

LoR c(ji)
i,j (σ

(ji)
i,j · (1,−j) ψ

(ji)
i 0 0 zj ·∆xi 0 0)F

k(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j · z

(ℓ) 0 0 (a′
i,j/zj) · y(ℓ)

i 0 0)F∗

LoR t(ji)
i (ω · si + ω′ · ui + x(b,ji)

i ν
(ji)
i 0 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n

i=1 a
(ℓ)
i,0 0 rnd(ℓ)

i 0)B∗
i

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a(ℓ)
i,0z

(ℓ) a′
i,0 · y(ℓ)

i (d(ℓ)
A,i,k)N

k=1 rnd(ℓ)
i,ipfe)H∗

i

G0.ℓ.2 : R $← Zq, ∆xi ← x(b,ji)
i − x(1,ji)

i (Randomization, the honest H and corrupted C are known due to
static corruption, use formal basis changes)

LoR c(ji)
i,j (σ

(ji)
i,j · (1,−j) ψ

(ji)
i 0 0 zj ·∆xi 0 0)F

k(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j · z

(ℓ) 0 0 (a′
i,j/zj) · y(ℓ)

i 0 0)F∗

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a(ℓ)
i,0z

(ℓ) (a′
i,0 +R) · y(ℓ)

i (d(ℓ)
A,i,k)N

k=1 rnd(ℓ)
i,ipfe)H∗

i

G0.ℓ.3 : R $← Zq, ∆xi ← x(b,ji)
i −x(1,ji)

i (Reverse Masking Application - Lemma 3.5, only mask R ·y(ℓ)
i remains

in k(ℓ)
i,ipfe for i ∈ H)

LoR c(ji)
i,j (σ

(ji)
i,j · (1,−j) ψ

(ji)
i 0 0 0 0 0)F

LoR t̃(ji)
i,j (σ

(ji)
i,j · (1,−j) ν

(ji)
i 0 0 0 0 0)G

k(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j · z

(ℓ) 0 0 0 0 0)F∗

m̃(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j 0 0 0 0 0)G∗

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a(ℓ)
i,0z

(ℓ) R · y(ℓ)
i (d(ℓ)

A,i,k)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

G1 := G0.K.3, where ℓ ∈ [K] and K is the maximum number of key queries.

Figure 6.3: Games G0,G1 for Theorem 6.11.

at position i, being constants at each i over all repetitions ji, under the admissibility.

107

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

Game G2 : R $← Zq, ∆xi ← x(b,ji)
i − x(1,ji)

i (Rewriting game’s description, summing of t̃(ji)
i,j over

i ∈ H known statically, not affecting correctness)

LoR c(ji)
i,j (σ

(ji)
i,j · (1,−j) ψ

(ji)
i 0 0 0 0 0)F

LoR t̃(ji)
0,j =

∑
i∈H t̃(ji)

i,j (σ
(ji)
i,j · (1,−j)

∑
i∈H ν

(ji)
i 0 0 0 0 0)G

k(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j · z(ℓ) 0 0 0 0 0)F∗

m̃(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j 0 0 0 0 0)G∗

LoR t(ji)
i (ω · si + ω′ · ui + x(b,ji)

i ν
(ji)
i 0 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n
i=1 a

(ℓ)
i,0 0 rnd(ℓ)

i 0)B∗
i

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)Nk=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i⟨si,y

(ℓ)
i ⟩

∑
i⟨ui,y

(ℓ)
i ⟩ a(ℓ)

i,0z
(ℓ) R · y(ℓ)

i (d(ℓ)
A,i,k)Nk=1 rnd(ℓ)

i,ipfe)H∗
i

Game G3 : R $← Zq, ∆xi ← x(b,ji)
i − x(1,ji)

i (Masking Application - Lemma 3.5, hybrids over each
key query (y(ℓ)

i)i, similar to G1 → G2)

LoR t̃(ji)
0,j =

∑
i∈H t̃(ji)

i,j (σ
(ji)
i,j · (1,−j)

∑
i∈H ν

(ji)
i 0 0 0 0 0)G

m̃(ℓ)
i,j (π(ℓ)

i,j · (j, 1) a(ℓ)
i,j 0 0 0 0 0)G∗

LoR t(ji)
i (ω · si + ω′ · ui + x(b,ji)

i ν
(ji)
i ∆xi 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n
i=1 a

(ℓ)
i,0 R · y(ℓ)

i rnd(ℓ)
i 0)B∗

i

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)Nk=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i⟨si,y

(ℓ)
i ⟩

∑
i⟨ui,y

(ℓ)
i ⟩ a(ℓ)

i,0z
(ℓ) R · y(ℓ)

i (d(ℓ)
A,i,k)Nk=1 rnd(ℓ)

i,ipfe)H∗
i

Figure 6.4: Games G2,G3 for Theorem 6.11.

Moreover, the strong admissibility also ensures that:{ ∑
i∈H⟨∆xi,y(ℓ)

i ⟩ = 0
⟨∆xi,y(ℓ)

i ⟩ = 0 ∀ i ∈ C

corresponding to any inner product function of (yi)i (together with an LSSS). The ℓ-th key
components are programmed to also accomodate newly independent values: a′i,0

$← Zq,
(a′i,j)j∈List-Att(A)←Λa′

i,0
(A), zj

$← Z∗q . We emphasize that the random values introduced in
key components are randomized secret shares (a′i,j/zj) ·yi in which a′i,j are shares of a′i,0 by
the attributes in List-Att(A). Thus, over all honest i ∈ H, due to the simulated vectors at
decryption will cancel the masks, while for corrupted i ∈ C, the masks are already 0 after
performing the product between the i-th ciphertext component and the i-th key component

⟨zj∆xi, a′i,j/zjy
(ℓ)
i ⟩ = ⟨∆xi, a′i,jy

(ℓ)
i ⟩ = a′i,j⟨∆xi,y(ℓ)

i ⟩ = 0 .

Moreover, because we are dealing with vectors ∆xi,y(ℓ)
i , the Lemma 3.5 is applied by

components, which is possible due to the appropriate dimension of c-components and
k-components, as well as the proof of the Lemma 3.5 itself (see [NPP24b, Appendix B]).
G0.ℓ.2 We randomize the values a′i,0 in the key components by adding a independent fixed
random mask R. First of all, we remark that for i ∈ H where A(Si) = 0, where A is the
LSSS associated to the ℓ-th key query, the change is even perfectly indistinguishable. This
is because of the facts that

• the randomized shares a′i,j/zj are uniformly random and independent thanks to zj ,
• even with repetitions at a position i, for a challenge tag tag, the shares zj are

independent for different repetitions given the private-only repetitions.

108

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

Game G4 : R,R′ $← Zq, ∆xi ← x(b,ji)
i − x(1,ji)

i (Switching x(b,ji)
i to x(1,ji)

i , using complexity
leveraging, the invariant coordinates are grouped as “· · · ”)

G3.1 (Formal Quotient, using ∆xi is constant for i ∈ H over repetitions, Hadamard product is denoted “◦”,
see example 2 on DPVS basis changes)

LoR t(ji)
i (ω · si + ω′ · ui + x(b,ji)

i ν
(ji)
i ∆xi 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n

i=1 a
(ℓ)
i,0 R · y(ℓ)

i rnd(ℓ)
i 0)B∗

i

LoR c(ji)
i,ipfe (· · · r1∆xi r′1 0)Hi

i ∈ H k(ℓ)
i,ipfe (· · · R · (∆xi ◦ y(ℓ)

i) (θi,k · d(ℓ)
A,i,k)N

k=1 rnd(ℓ)
i,ipfe)H∗

i

G3.2 (Switching, updating secret shares of 0, Hadamard product is denoted “◦”, see example 3 on DPVS
basis changes)

LoR t(ji)
i (ω · si + ω′ · ui + x(1,ji)

i ν
(ji)
i ∆xi 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n

i=1 a
(ℓ)
i,0 R′ · y(ℓ)

i rnd(ℓ)
i 0)B∗

i

LoR c(ji)
i,ipfe (· · · r1∆xi (r′ − r)1 0)Hi

i ∈ H k(ℓ)
i,ipfe (· · · R′ ·

(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)

A,i,k)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

G4 := G3.3 (Formal Quotient, using ∆xi is constant for i ∈ H over repetitions, see example 2 on DPVS basis
changes)

LoR t(ji)
i (ω · si + ω′ · ui + x(1,ji)

i ν
(ji)
i ∆xi 0 ρ

(ji)
i)Bi

m(ℓ)
i (yi

∑n

i=1 a
(ℓ)
i,0 R′ · y(ℓ)

i rnd(ℓ)
i 0)B∗

i

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi θi,k 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a(ℓ)
i,0z R′ · y(ℓ)

i (d(ℓ)
A,i,k)N

k=1 rnd(ℓ)
i,ipfe)H∗

i

Game G5 : (Cleaning)

LoR t(ji)
i (ω · si + ω′ · ui + x(1,ji)

i ν
(ji)
i 0 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n
i=1 a

(ℓ)
i,0 0 rnd(ℓ) 0)B∗

i

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i 0 θ′i,k 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i⟨si,y

(ℓ)
i ⟩

∑
i⟨ui,y

(ℓ)
i ⟩ a(ℓ)

i,0z
(ℓ) 0 (d(ℓ)

A,i,k)Nk=1 rnd(ℓ))H∗
i

Figure 6.5: Games G4,G5 for Theorem 6.11.

• more importantly, when A(Si) = 0, it holds that zj never appears in any of the
ciphertexts returned to the adversary

• as a consequence, the shares a′i,j/zj is information theoretically hidden and making
a′i,0 information theoretically hidden for the adversary.

In the end, in this case for i ∈ H where A(Si) = 0, what we do is just rewriting an
information theoretically hidden value a′i,0 to another information theoretically hidden
value a′i,0 + R, and this change goes perfectly indistinguishable. However, there can be
the case where some i ∈ H it holds A(Si) = 1. This case can be treated by formal basis
changes together with a complexity leveraging argument. We detail below, the details of
calculation for DPVS basis changes are recalled and can be revised in Section 3.3.
The main idea is to consider the selective version G∗0.ℓ.1.t for t ∈ {1, 2, 3, 4}, where the
values (x(1,ji)

i ,x(0,ji)
i ,y(ℓ)

i)ji∈[Ji]
i∈[n] are guessed in advance. We then use formal argument for

the transitions G∗0.ℓ.1.1 → G∗0.ℓ.1.4 to obtain for j ∈ [3],

Pr[G∗0.ℓ.j = 1] = Pr[G∗0.ℓ.j+1 = 1] . (6.7)

In the end, we use a complexity leveraging argument to conclude that thanks to (6.7), we
have Pr[G0.ℓ.1 = G0.ℓ.1.1 = 1] = Pr[G0.ℓ.2 = G0.ℓ.1.4 = 1].

109

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

For the sequence G0.ℓ.1.1 → G0.ℓ.1.4, we make a guess for the values (x(1,ji)
i ,x(0,ji)

i ,y(ℓ)
i)ji∈[Ji]

i∈[n] ,
choose R $← Z∗q , random secret sharings (θi,k · d(ℓ)

A,i,k)Nk=1 of 0 where θi,k ̸= 0. We define the
event E that the guess is correct on (x(1,ji)

i ,x(0,ji)
i ,y(ℓ)

i)ji∈[Ji]
i∈[n] and for all k ∈ [N]

θi,k · d(ℓ)
A,i,k = −R ·∆xi[k]y(ℓ)

i [k] . (6.8)

We describe the selective games below, starting from G∗0.ℓ.1 = G∗0.ℓ.1.1, where event E is
assumed true:

Game G∗0.ℓ.1 = G∗0.ℓ.1.1: The vectors have form:

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a
(ℓ)
i,0z

(ℓ) a′
i,0 · y

(ℓ)
i (d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

Game G∗0.ℓ.1.2: We perform a formal basis change to the key components, for i ∈ H to
change (Hi,H∗i) following matrices: for r, r′ $← Z∗q ,

Hi[row, col] =

1 if row = col ≤ 3
r

∆xi[z] if ∃z ∈ [N] s.t. row = col = 3 + z ∧ ∆xi[z] ̸= 0
1 if ∃z ∈ [N] s.t. row = col = 3 + z ∧ ∆xi[z] = 0
r′

θi,z
if ∃z ∈ [N] s.t. row = col = N + 3 + z

0 otherwise

;H ′i :=
(
H -1
i

)⊤
.

We remark that the matrix does not have to check non-zeroness of θi,z, as it is guaranteed
by the event E. The vectors have form: we denote the Hadamard product by “◦”, and
1∆xi

is the vector of 1’s at the positions where ∆xi is non-zero
LoR c(ji)

i,ipfe (· · · r · 1∆xi
r′ · 1 0)Hi

i ∈ H k(ℓ)
i,ipfe (· · · a′

i,0 ·
(

∆xi ◦ y(ℓ)
i

)
(θi,k · d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

Game G∗0.ℓ.1.3: We perform a formal basis change to the key components, for i ∈ H to
change (Hi,H∗i) following matrices: for r, r′ $← Z∗q , (for ease of presenting basis changes
we write the transposed matrix H⊤i)

H⊤i [row, col] =

1 if row = col /∈ {4 +N, . . . , 3 + 2N}
1 if row = col ∈ {4 +N, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] ̸= 0
r′

r′+r if row = col ∈ {4 +N, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] = 0
−1 if ∃z ∈ [N] s.t. row = 3 +N + z ∧ col = 3 + z

0 otherwise

; H ′i :=
(
H -1
i

)⊤
.

We note that on the diagonal z̃ := row = col ∈ {4 +N, 3 + 2N} ∧ ∆xi[z̃ −N − 3] = 0,
because coordinate c(ji)

i,ipfe[z̃ −N] = 0 as ∆xi[z̃ −N − 3] = 0, the moving by H⊤i [3 +N +
z̃ −N − 3, 3 + z̃ −N − 3] has no effect on c(ji)

i,ipfe[z̃]. Thus H -1
i [row, col] needs to multiply

a factor (r′ + r)/r′7 to the coordinate c(ji)
i,ipfe[z̃] to make sure that after the basis change it

becomes r′ + r. Dually the coordinate k(ℓ)
i,ipfe[z̃] = θi,k · d(ℓ)

A,i,k stays correctly thanks to the
relation (6.8) and we pay attention that ∆xi[z̃ −N − 3] = 0. The vectors have form: we
denote the Hadamard product by “◦”

LoR c(ji)
i,ipfe (· · · r · 1∆xi

(r + r′) · 1 0)Hi

i ∈ H k(ℓ)
i,ipfe (· · · (a′

i,0 +R) · (∆xi ◦ y(ℓ)
i) (θi,k · d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

using the hypothesis that event E happens along with the relation (6.8) specifically.
Consequently, we just update one secret share of 0 by another. The randomness r′ is
updated to r′ + r, indentically distributed.

7Therefore the corresponding position on the diagonal of H⊤
i [z̃, z̃] = r′

r′+r
.

110

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

Game∗ G∗0.ℓ.1.4: We undo the formal basis changes G∗0.ℓ.1.1 → G∗0.ℓ.1.2, where the division by
1/r, 1/(r+r′) can be done with overwhelming probability since r, r′ $← Z∗q at the beginning
of the game to define the matrices. This gives

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a
(ℓ)
i,0z

(ℓ) (a′
i,0 +R) · y(ℓ)

i (d(ℓ)
A,i,k

)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

The above games demonstrate relation (6.7). We now employ the complexity leveraging
argument. Let us fix j ∈ {1, 2, 3}. For u ∈ {0.ℓ.1.j, 0.ℓ.1.j+ 1} let Advu(A) := |Pr[Gu(A) =
1]− 1/2| denote the advantage of a ppt adversary A in game Gu. We build a ppt adversary
B∗ playing against G∗u such that its advantage Adv∗u(B∗) := |Pr[G∗u(B∗) = 1]− 1/2| equals
γ · Advu(A) for u ∈ {t, t+ 1}, for some constant γ.

The adversary B∗ first guesses the values (x(1,ji)
i ,x(0,ji)

i ,y(ℓ)
i)ji∈[Ji]

i∈[n] , choose R $← Z∗q , random
secret sharings (θi,k · d(ℓ)

A,i,k)Nk=1 of 0. Then B∗ defines the event E that:

the guess is correct on (x(1,ji)
i ,x(0,ji)

i ,y(ℓ)
i)ji∈[Ji]

i∈[n] and for all k ∈ [N], θi,k ·d(ℓ)
A,i,k =

−R ·∆xi[k]y(ℓ)
i [k].

When B∗ guesses successfully and E happens, then the simulation of A’s view in Gt is
perfect. Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E happens
with some fixed probability γ and is independent from the view of A, we have8:

Adv∗u(B∗) =
∣∣∣∣Pr[G∗u(B∗) = 1]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[E] · Pr[G∗u(B∗) = 1 | E] + Pr[¬E]

2 − 1
2

∣∣∣∣
=
∣∣∣∣γ · Pr[G∗u(B∗) = 1 | E] + 1− γ − 1

2

∣∣∣∣
(∗)= γ ·

∣∣∣∣Pr[Gu(A) = 1]− 1
2

∣∣∣∣ = γ · Advu(A) (6.9)

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gu for A,
therefore Pr[Gu(A) = 1 | E] = Pr[G∗u(B∗) = 1 | E], then we apply the independence
between E and Gu(A) = 1. Together with relation (6.7), this concludes that Pr[G0.ℓ.1.j =
1] = Pr[G0.ℓ.1.j+1 = 1] for any fixed j ∈ {1, 2, 3}, in particular Pr[G0.ℓ.1 = G0.ℓ.1.1 = 1] =
Pr[G0.ℓ.2 = G0.ℓ.1.4 = 1].
Union bounds on A(Si) = 0 (perfect indistinguishability by information-theoretic argument
on zj and a′i,j/zj) and A(Si) = 1 (perfect indistinguishability by complexity leveraging)
give the conclusion that the game hop is perfectly indistinguishable.
G0.ℓ.3 Reverse Masking Application - Lemma 3.5, so that only mask Ryi remains for i ∈ H,
in k(ℓ)

i,ipfe. Once again, the mask R will be canceled by the admissibility condition:∑
i∈H
⟨x(b,ji)
i − x(1,ji)

i ,y(ℓ)
i ⟩ = 0 .

We arrive at G1 after G0.K.3.

Game G2: We rewrite the game’s description to program the vectors t̃(ji)
0,j =

∑
i∈H t̃(ji)

i,j . The goal
is to consider t̃(ji)

0,j in the subsequent games, i.e. we look at the vectors t̃(ji)
0,j instead of the

given t̃(ji)
i,j returned to the adversary. The rewriting is totally formal as it follows exactly

what is described in Figure 6.2.
8This calculation (6.9) to relate Adv∗

u(B∗) to Advu(A) is the core of our complexity levaraging argument, being
built upon the previous information-theoretic game transtions and the probability of event E.

111

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

Game G3: We apply similarly Lemma 3.5 as in G1 → G2, by a sequence of hybrids over the
ℓ-th functional key, one after another. We remark that the random factor R $← Zq is the
same as that one introduced in G1 → G2, this simplifies one guess during the complexity
leveraging argument. The formal basis changes resembles those in G1 → G2 and in the end,
the game hop is perfectly indistinguishable.

Game G4: We use a complexity leveraging argument, that depends only on formal basis changes.
The goal is to switch from x(b,ji)

i to x(1,ji)
i for i ∈ H. The details of the selective underlying

games are given in Figure 6.5. First of all, we make a guess for the values (x(1,ji)
i ,x(0,ji)

i ,

y(ℓ)
i)ji∈[Ji]

i∈[n] , choose R $← Z∗q , random secret sharings (θi,k · d(ℓ)
A,i,k)Nk=1 of 0 where θi,k ̸= 0. We

define the event F that

the guess is correct on (x(1,ji)
i ,x(0,ji)

i ,y(ℓ)
i)ji∈[Ji]

i∈[n] and for all k ∈ [N]

θi,k · d(ℓ)
A,i,k = −∆xi[k]y(ℓ)

i [k] , (6.10)

so as to make sure θi,k ·d(ℓ)
A,i,k is a secret sharing of 0 conditioned on F . We give the matrices’

definitions as follows to demonstrate how the calculation is performed:

Game G∗3.1 = G∗3: The vectors have form:

LoR c(ji)
i,ipfe (piωtag piω

′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a
(ℓ)
i,0z

(ℓ) R · y(ℓ)
i (d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

Game G∗3.2: We perform a formal basis change to the key components, for i ∈ H to change
(Hi,H∗i) following matrices: for r, r′ $← Z∗q ,

Hi[row, col] =

1 if row = col ≤ 3
r

∆xi[z] if ∃z ∈ [N] s.t. row = col = 3 + z ∧ ∆xi[z] ̸= 0
1 if ∃z ∈ [N] s.t. row = col = 3 + z ∧ ∆xi[z] = 0
r′

θi,z
if ∃z ∈ [N] s.t. row = col = N + 3 + z

1 if ∃j̃ ∈ [J], z ∈ [N] s.t. row = col = N + 3 + z

0 otherwise

;H ′i :=
(
H -1
i

)⊤
.

We remark that the matrix does not have to check non-zeroness of θi,z, as it is guaranteed
by the event F . The vectors have form: we denote the Hadamard product by “◦”, and
1∆xi

is the vector of 1’s at the positions where ∆xi is non-zero
LoR c(ji)

i,ipfe (· · · r · 1∆xi
r′ · 1 0)Hi

i ∈ H k(ℓ)
i,ipfe (· · · R ·

(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

Game G∗3.3: We perform a formal basis change to the key components, for i ∈ H to change
(Bi,B∗i), (Hi,H∗i) following matrices: for r, r′ $← Z∗q , (for ease of presenting basis changes
we write the transposed matrix H⊤i and B-1

i)

H⊤i [row, col] =

1 if row = col /∈ {4 + n, . . . , 3 + 2N}
1 if row = col ∈ {4 + n, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] ̸= 0
r′

r′+r if row = col ∈ {4 + n, . . . , 3 + 2N} ∧ ∆xi[row −N − 3] = 0
−1 if ∃z ∈ [N] s.t.

row = 3 + z ∧ col = 3 +N + z

0 otherwise

; H ′i :=
(
H -1
i

)⊤

B-1
i [row, col] =

1 if row = col

−1 if ∃z ∈ [N] s.t.
row = 1 +N + z ∧ col = z

0 otherwise

; B′i :=
(
B-1
i

)⊤
.

112

CHAPTER 6. MCFE: UPGRADES 6.4. AB-IP MCFE

Following the matrices
• The formal changes of (Bi,B∗i) switch x(b,ji)

i to x(1,ji)
i for i ∈ H, where for z ∈ [N]

under B-1
i , the coordinate t(ji)

i [z] is updated to

t(ji)
i [z]−∆xi[z] = ω·si[z]+ω′·ui[z]+x(b,ji)

i [z]+x(1,ji)
i [z]−x(b,ji)

i [z] = ω·si[z]+ω′·ui[z]+x(1,ji)
i [z] .

While dually in m(ℓ)
i [1+N +z] the matrix B⊤i introduces R′y(ℓ) := (R+1) ·y(ℓ)

i staying
regroupable with the corresponding ∆xi in t(ji)

i [1 +N + z].
• The changes of (Hi,H∗i) are also to correct R to R′ in the key components, thanks

to (6.10) of the games that we recall under this selective sequence, so that the
decryption’s correctness is preserved. We note that the diagonal of H⊤i also takes
care of the case where ∆xi[z] = 0 for z ∈ [N], in the same manner as we have done
for G∗0.ℓ.1.2 → G∗0.ℓ.1.3 previously.

The vectors have form: we denote the Hadamard product by “◦”

LoR t(ji)
i (ω · si + ω′ · ui + x(1,ji)

i ν
(ji)
i ∆xi 0 ρ

(ji)
i)Bi

m(ℓ)
i (y(ℓ)

i

∑n

i=1 a
(ℓ)
i,0 R′ · y(ℓ)

i rnd(ℓ)
i 0)B∗

i

LoR c(ji)
i,ipfe (· · · r · 1∆xi

(r′ + r) · 1 0)Hi

i ∈ H k(ℓ)
i,ipfe (· · · R′ ·

(
∆xi ◦ y(ℓ)

i

)
(θi,k · d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

using the hypothesis that event F happens along with the relation (6.10) specifically.
Consequently, we just update one secret share of 0 by another. The randomness r′ is
updated to r′ + r, indentically distributed.

Game∗ G∗3.4: We undo the formal basis changes G∗3.1 → G∗3.2 and obtain
LoR c(ji)

i,ipfe (piωtag piω
′
tag ψ

(ji)
i ∆xi (θi,k)N

k=1 0)Hi

i ∈ H k(ℓ)
i,ipfe (

∑
i
⟨si,y(ℓ)

i ⟩
∑

i
⟨ui,y(ℓ)

i ⟩ a
(ℓ)
i,0z

(ℓ) R′ · y(ℓ)
i (d(ℓ)

A,i,k
)N
k=1 rnd(ℓ)

i,ipfe)H∗
i

Game G5: We clean the masks so that the adversary’s view is independent of the challenge b.

The bit b does not appear in the responses to the adversary anymore, completing the proof.

6.4.3 Upgrading Security

Next, we can apply a layer of All-or-Nothing Encapsulation (AoNE) so as to remove the tradeoff
with respect to incomplete challenge ciphertexts (i.e. remove pos-condition in Definition 6.9,
under the private-input repetitions). That is, the adversary can now omit some honest slot
i ∈ H with respect to (tag,Si) for different Si, up to repetition (x(0,ji)

i ,x(1,ji)
i). More specifically,

we apply the generic transformation from [NPS22, Lemma 16], to treat the case of MCFE with
access control as a special case in the above lemma so as to remove pos-condition, given the
private-input repetitions. The formal statement is stated below.

Lemma 6.12 (Incomplete Security with Private-Only Repetitions). Assume there
exist (1) a one-challenge MCFE scheme Epos for the function class F IP

subvec,B ×LSSS that is secure
against complete queries, i.e. satisfying pos-security and (2) an AoNE scheme Eaone whose
message space contains the ciphertext space of Epos. Then there exists a one-challenge MCFE
scheme E for the same function class F IP

subvec,B × LSSS that is even secure against incomplete
queries. More precisely, for any ppt adversary A, there exist ppt algorithms B1 and B2 such that

Advmc-w-rep-xxx-1chal-cpa
E,F IP,poly

(Ni)n
i=1,q,LSSS,A

(1λ) ≤ 12 ·
(

Advmc-w-rep-pos-xxx-1chal-cpa
Epos,F IP,poly

(Ni)n
i=1,q,LSSS,B1

(1λ) + Advmc-w-rep-xxx-1chal-cpa
Eaone,F IP,poly

(Ni)n
i=1,q,LSSS,B2

(1λ)
)

where xxx ⊆ {stat, sel}.

113

6.4. AB-IP MCFE CHAPTER 6. MCFE: UPGRADES

We refer to the proof of the more general lemma in [NPS22, Lemma 16], with repetitions on the
private inputs xi. Finally, by combining with Lemma 6.5 to allow multiple challenge tags, where
the only restriction remains: solely for private inputs, and not public attributes per client, will
repetitions be allowed. We have the following Corollary:

Corollary 6.13. We consider the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and the functionality
is F IP

subvec,B×LSSS. Then, there exists a multi-client IPFE scheme with fine-grained access control
via LSSS that is statically IND-secure in the ROM, against multiple incomplete challenge queries
with repetitions on private inputs, under the SXDH assumption in G1 and G2.

Remark 6.14. (Towards MIFE for inner products) Corollary 6.13 presents an MCFE for
subvectors with fine-grained access control so that its security adapted to the case of subvectors
(see Definition 6.4), with multiple (with possible repetitions on private inputs) , under a given
challenge tag and against incomplete queries. We can obtain an MIFE for inner products in the
standard model by fixing one tag for every ciphertext, i.e. the random oracle can be removed
by publishing a random fixed value corresponding to H(tag) for encryption. The security of the
resulted MIFE is implied from the security of our MCFE in Corollary 6.13 thanks to the fact
that the adversary can make multiple challenge queries to LoR for each slot i ∈ [n], following
the admissiblity in Definition 6.3. In particular, security with possible repetitions on private
inputs of the MCFE implies security of the obtained MIFE when repetitive private xi are used for
the same i. In particular, we obtain an MIFE for inner-products with adaptive security in the
standard model, whose keys can be control by LSSS restraining no repetitions on attributes per
client.

Allowing Repetitions on Attributes. As mentioned at the beginning of this section, the
above Lemma 6.12 deals with incomplete challenge queries, but only with respect to the private
input xi of each client i. It cannot lift our restriction that we do not allow repetitions on the public
attributes Si. This explains why this constraint persists in our final MCFE from Corollary 6.13.
The fact that AoNE cannot deal with repetitions on public attributes is also mentioned in recent
works [ATY23a] and we leave it as potential extension to remove this constraint.

114

Chapter

7
Decentralized Multi-Client
Functional Encryption with
Strong Security

Chapter content
7.1 Introduction . 115
7.2 Overview: Selective Case . 118
7.3 More Preliminaries . 122
7.4 A FH-DMCFE for Inner Products . 127

7.4.1 Swapping Lemma . 127
7.4.2 Basic Construction . 140
7.4.3 Upgrading Security . 142

From the previous chapters of this thesis, our main cryptographic object of interests is MCFE.
Chapter 5 however makes progress in the domain of a more general notion, namely Decentralized
Multi-Client Functional Encryption (DMCFE). In particular, the security model of DMCFE,
which encompasses the weaker case of MCFE, is vigorously studied in Chapter 5. We revisit
DMCFE in this chapter, this time the security model is also the main subject but in a somewhat
different flavor - it looks at the secrecy of the functions in functional decryption keys.

In general, DMCFE extends the basic functional encryption to multiple clients that do not
trust each other. They can independently encrypt the multiple plaintext-inputs to be given
for evaluation to the function embedded in the functional decryption key, defined by multiple
parameter-inputs. And they keep control on these functions as they all have to contribute to the
generation of the functional decryption keys. Tags can be used in the ciphertexts and the keys
to specify which inputs can be combined together. As any encryption scheme, DMCFE provides
privacy of the plaintexts. But the functions associated to the functional decryption keys might
be sensitive too (e.g. a model in machine learning). The function-hiding property has thus been
introduced to additionally protect the function evaluated during the decryption process.

The results that are presented in this chapter provide new proof techniques to analyze a
new concrete construction of function-hiding DMCFE for inner products, with strong security
guarantees in the random oracle model: the adversary can adaptively query multiple challenge
ciphertexts and multiple challenge keys, with unbounded repetitions of the same message tags in
the ciphertext-queries and a fixed polynomially-large number of repetitions of the same key tags
in the key-queries, allowing static corruption of the secret encryption keys. Previous constructions
were proven secure in the selective setting only.

7.1 Introduction
Decentralized Multi-Client Functional Encryption. The setup of MCFE requires some authority
(a trusted third party) responsible for the setup and generation of functional decryption keys.

7.1. INTRODUCTION CHAPTER 7. FH-DMCFE

The authority possesses a master secret key msk that can be used to handle the distribution
of private encryption keys eki and deriving functional decryption keys dkF . When clients
do not trust each other, this centralized setting of authority might be a disadvantage. The
need for such a central authority is completely eliminated in the so-called Decentralized Multi-
Client Functional Encryption (DMCFE) introduced by Chotard et al. [CDG+18a]. In DMCFE,
only during the setup phase do we need interaction for generating parameters that will be
needed by the clients later. The key generation is done independently by different senders,
each has a secret key ski. Agreeing on a function F , each sender generates their functional
key dkF,i using ski, the description of F , and a tag tag-f. Originally in [CDG+18a], the tag
tag-f can contain the description of F itself. Using DMCFE, the need of an authority for
distributing functional keys is completely removed, with minimal interaction required during
setup. The seminal work of [CDG+18a] constructed the first DMCFE for computing inner
products (IP-DMCFE), where n clients can independently contribute to the ciphertext vector
(ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)) and n senders can independently contribute
to the functional keys dky,1 ← DKeyGen(sk1, tag-f, y1), . . . , dky,n ← DKeyGen(skn, tag-f, yn) of
some vector y = (y1, . . . , yn). For the function class to compute inner products, many follow-up
works improve upon the work of [CDG+18a] on both aspects of efficiency as well as security, or
by giving generic transformation to (D)MCFE from single-client FE [LT19, ABKW19, ABG19].

Repetitions under One Tag. Involving tags at the time of encryption and key generation restricts
that only ciphertexts and functional keys having the same tag can be combined in the notion of
DMCFE. This raises a natural question: what security can we guarantee when one client uses the
same tag on multiple data ? We call such multiple usages of the same tag in a DMCFE system
repetitions. In the formal security model of (D)MCFE in [CDG+18a] and subsequent works [LT19],
once the adversary makes a query for (i, tag), further queries for the same pair (i, tag) will be
ignored. This means repetitions are not taken into account. The authors of [CDG+18a] argued
that it is the responsibility of the users not to use the same tag twice. However, a security notion
for DMCFE that captures a sense of protection even when repetitions mistakenly/maliciously
happen will be preferable, e.g. this is indeed studied in some other works [ABKW19, ABG19].
In addition, when repetitions are allowed for ciphertexts, the security model of MCFE strictly
encompasses MIFE by replacing tags with a constant value, as confirmed in recent works [ATY23a].

Function Privacy in FE. Standard security notions of FE ensure that adversaries do not
learn anything about the content of ciphertexts beyond what is revealed by the functions for
which they possess decryption keys. However, it is not required that functional decryption keys
hide the function they decrypt. In practice, this can pose a serious problem because the function
itself could contain confidential data. For example, the evaluated function may represent a neural
network. Training such networks is often time-consuming and expensive, which is why companies
offer their use as a paid service. However, to ensure that customers continue to pay for the use
of the product, it is crucial that the concrete parameters of the network (i.e. the computed
function) remain secret. This additional security requirement for functional encryption schemes
is known as the function-hiding property. As another example, suppose one wants to perform
statistical analysis (e.g. weighted averages) of private data from several companies to get a
better understanding of the dynamics of a sector. This can be implemented using a DMCFE
for inner products. Consulting firms conduct such analyses as a fee-based service. To ensure
that clients continue to pay for updated results in the future, the consulting firm may wish to
hide the concrete parameters of their calculations. This can be achieved by using a DMCFE with
function-hiding security.

Besides practical applications, function-hiding FE schemes for restricted function classes
(such as inner products) have also proven to be an important technical building block for the
construction of FE schemes for broader function classes: Lin [Lin17] employed a function-hiding

116

CHAPTER 7. FH-DMCFE 7.1. INTRODUCTION

IPFE (FH-IPFE) to obtain an FE scheme for quadratic functions. A different technique was
also introduced by Gay in [Gay20] equally aiming at constructing FE for quadratic functions.
With several technical novelties, Agrawal et al. [AGT21a, AGT22] were able to generalize the
aforementioned constructions to obtain MIFE for quadratic functions. Comparisons with existing
works can be revisited in Table 2.3 in Section 2.3.4.

Chapter Outline. We start by giving a high-level overview of the technical constructions
in Section 7.2. The overview is constituted by a simplified selective version of our final adaptive
FH-DMCFE. At the end of Section 7.2 the main challenges towards adaptive security will be
highlighted. More preliminaries are then recalled in Section 7.3. Our principal technical details
can be found in Section 7.4, in which a variant of swapping lemma is given in Section 7.4.1. The
foregoing lemma plays a crucial role for proving security our basic FH-DMCFE in Section 7.4.2.
All abridged proofs and other details can be found in the full version [NPS24c] of [NPS24b].

117

7.2. OVERVIEW: SELECTIVE CASE CHAPTER 7. FH-DMCFE

7.2 Technical Overview: A Simpler Selective Case
In this section of high-level overview, we gives a simpler DMCFE construction with function-hiding
security for computing inner products as per Definition 7.1. The function-hiding security holds
against selective attacks in which the adversary submits up front: (i) all challenge ciphertext
queries (x(0,j)

i ,x(1,j)
i), where the index j denotes the j-th repetition at slot i given the challenge

tag∗ that is queried to the encryption oracle Enc(i, tag∗, ·, ·), and (ii) all challenge key queries
(y(0,j̃)
i ,y(1,j̃)

i), where the index j̃ dentoes the j̃-th repeition at slot i given the challenge tag-f∗ that
is queried to the key-generation oracle DKeyGen(i, tag-f∗, ·, ·). Other tags tagℓ ̸= tag∗ with
respect to the j-th query to Enc for slot i is denoted by x(j)

ℓ,i. In the same manner, we denote
the j̃-th query to DKeyGen for slot i and tag tag-fk ̸= tag-f∗ by y(̃j)

k,i. We also restrict the
setting to one-challenge: there exists a unique challenge tag∗ that is queried to the encryption
oracle Enc(i, tag∗, ·, ·), and there exists a unique tag-f∗ that is queried to the key-generation
oracle DKeyGen(i, tag-f∗, ·, ·). Finally, we also restrict the corruption to be static and on both
(eki, ski) at the time of corruption1, that is, the set C of corrupted i is known before the adversary
receives answers to all of their queries. The contents of this section is three-fold: we first present
the Selective One-time FH-DMCFE, then A One-time Selective Security Proof for the
foregoing FH-DMCFE, and finally Some Challenges towards Adaptive Security.

A One-time Selectively Secure Function-Hiding DMCFE. We use a prime-order bilinear
group setting (G1,G2,Gt, g1, g2, gt, e, q) and write G1,G2,Gt additively. The number n of senders
and of clients is fixed in advance. Given (tag-f,yi), a sender i generates a partial functional key
dki. On the client side, given (tag,xi) a client i generates a ciphertext cti. An ensemble (dki)i∈[n]
with respect to the same tag-f will be able to decrypt an ensemble (cti)i∈[n] with respect to the
same tag. The result evaluation is

∑n
i=1⟨xi,yi⟩. In a nutshell, the main ideas for our simpler

selective FH-DMCFE are presented below:

• Each client encryption for cti is done via randomizing a predetermined share t̃i of some
secret sharing (t̃i)i∈[n] of 0. The share t̃i is given to the client i in their encryption key eki,
along with other secret basis information of DPVS. The randomization can be achieved by
hashing H1(tag)→ JµK1.

• Each decentralized key generation for each dki can be done simply by hashing H2(tag-f)→
JωK2 and masking yi in their corresponding dki.

• Using the DPVS setting, it is design that when decrypting, the sum
n∑
i=1

cti × dki

will contains
∑n
i=1

q
µωt̃i

y
t = J0Kt.

We summarize the construction as follows:

Setup(1λ) : Sample (t̃i)i∈[n]
$← Znq such that

∑
i t̃i = 0; generate n pair of DPVS bases

{(Bi,B∗i)}i∈[n] with respect to (Bi,
(
B-1
i

)⊤
) for some Bi ∈ GLN (Zq); define B′i :=

(
B-1
i

)⊤
and output ski = B′i and eki = (t̃i, Bi) for i ∈ [n].

DKeyGen(ski, tag-f,yi) : Compute JµK2 = H2(tag-f); output dki = (yi, µ,0)B∗
i
.

1We recall that in Chapter 5 a corruption model where eki and ski can be corrupted separately is examined.
As we elaborate in the concrete admissibility for inner products (Remark 5.14, Theorem 5.13), for example, this
can lead to differences in the admissible condition regarding a corrupted i, i.e. it depends on whether corrupting i
reveals ski or not.

118

CHAPTER 7. FH-DMCFE 7.2. OVERVIEW: SELECTIVE CASE

Enc(eki, tag,xi) : Compute JωK1 = H1(tag); output cti = (xi, ωt̃i,0)Bi .

Dec({(dki, cti)}i∈[n]) : Compute the DPVS products cti × dki for all pairs (dki, cti) to recover
JziKt =

q
⟨xi,yi⟩+ µωt̃i

y
t and find discrete log of JzKt =

r∑
i∈[n] zi

z

t
.

Proof of One-time Selective Security. As a reminder, we consider static corruptions (see
Item 1 of Definition 7.2). Additionally, we allow only one challenge tags tag∗ for ciphertexts and
tag-f∗ for keys, against complete queries (see Items 3 and 4). We remark that this is sufficient as
in Section 7.4.3, we show how to remove both restrictions from the security model via a sequence
of generic conversions.

We begin by writing down the view of the adversary, over all received ciphertexts and keys that
are indexed by repetitions (e.g. the adversary can query multiple times at slot i for ciphertexts
under a challenge tag tag∗, and the same is allowed for challenge key queries):

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i := ωℓ · t̃i, 0,0, 0, 0)Bi c(j)
i = (x(b,j)

i , ti := ω · t̃i, 0,0, 0, 0)Bi

d(̃j)
k,i = (y(̃j)

k,i, µk, 0,0, 0, 0)B∗
i

d(̃j)
i = (y(b,j̃)

i , µ, 0,0, 0, 0)B∗
i

(7.1)

Since we are in the static corruption setting, it is declared in advance the set C of corrupted
i whose (eki, ski) are known by the adversary. The admissibility condition from Item 1 of
Definition 7.2 requires that the challenge ciphertexts (c(j)

i)i∈C as well as the challenge keys
(d(̃j)
i)i∈C to be independent from b. Therefore, in the following we can concentrate on those honest

i ∈ H.
Introduction of fresh secret shares. We start by randomizing the values ti and tℓ,i for honest

clients i ∈ H while relying on the DDH assumption in G1. Then, fresh secret sharings (τi)i∈H
and (τℓ,i)i∈H of 0 are embedded in the ciphertexts for i ∈ H as follows:

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i, τℓ,i ,0, 0, 0)Bi c(j)
i = (x(b,j)

i , ti, τi ,0, 0, 0)Bi

d(̃j)
k,i = (y(̃j)

k,i, µk, 1 ,0, 0, 0)B∗
i

d(̃j)
i = (y(b,j̃)

i , µ, 1 ,0, 0, 0)B∗
i

(7.2)

We need the newly introduced secret shares (τi)i∈H and (τℓ,i)i∈H of 0 to be indexed accoridngly
by the indices of tags tag∗ and tagℓ for later steps. Thus, this foregoing change is done by a
sequence of hybrids over the ordering of the tags tag∗ and tagℓ, under the DDH assumption in
G2. In short, each hybrid makes use of the shares tℓ,i, ti and the random self-reducibility of DDH
to insert new random secret shares, then DPVS allows us manipulating these new values and
putting the vectors in desired forms. Two additional coordinates that contain 0 at the end of each
vector permit performing basis changes in DPVS. Later in the proof for our FH-DMCFE based on
DPVS, introducing the new random shares τi, τℓ,i is taken care by Lemma 7.7, using particularly
the DPVS basis changes and DDH. We thus do not write the random share introduction explicitly
in the FH-DMCFE proof and refer to the transitions G0 → G1 in the proof of Lemma 7.7 for more
details.

Preparations for swapping: Copies of x-vectors. We now introduce the vectors x(1)
i and xℓ,i

in the additional 0-coordinates of the ciphertexts of honest clients i ∈ H.

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i, τℓ,i, x(j)
ℓ,i , 0, 0)Bi c(j)

i = (x(b,j)
i , ti, τi, x(1,j)

i , 0, 0)Bi

d(̃j)
k,i = (y(̃j)

k,i, µk, 1,0, 0, 0)B∗
i

d(̃j)
i = (y(b,j̃)

i , µ, 1,0, 0, 0)B∗
i

(7.3)

The change goes indistinguishable under the DDH assumption in G1, by using a Subspace DPVS
basis change (see example 1 in Section 3.3). One delicacy is that we are putting fixed values
into the vectors, so we use (multiplicatively up to a constant loss factor) the equivalent variant
DSDH of DDH (Definition 3.2).

119

7.2. OVERVIEW: SELECTIVE CASE CHAPTER 7. FH-DMCFE

Preparations for swapping: Modifying secret shares under admissibility. For this step, we lean
on the admissibility conditions (items 1 and 2 of Definition 7.2) state for all ji, j̃i that∑

i∈[n]
⟨x(0,ji)
i ,y(0,j̃i)

i ⟩ =
∑
i∈[n]
⟨x(1,ji)
i ,y(1,j̃i)

i ⟩ and
∑
i∈[n]
⟨x(ji)
ℓ,i ,y

(0,j̃i)
i ⟩ =

∑
i∈[n]
⟨x(ji)
ℓ,i ,y

(1,j̃i)
i ⟩

as well as x(0,j)
i = x(1,j)

i and y(0,j̃)
i = y(1,j̃)

i if i ∈ C. From this, it follows for b ∈ {0, 1}2 that

∆(b)
i := ⟨x(b,j)

i ,y(b,j̃)
i ⟩ − ⟨x

(1,j)
i ,y(1,j̃)

i ⟩ and ∆(b)
ℓ,i := ⟨x(j)

ℓ,i,y
(b,j̃)
i − y(1,j̃)

i ⟩

are constant for all repetitions j, j̃, and ∆(b)
i = ∆(b)

ℓ,i = 0 if i ∈ C. Furthermore, we have
that

∑
i∈H∆(b)

i =
∑
i∈H∆(b)

ℓ,i = 0. Together, these conditions imply that the distributions

D0 =
{

(τi)i∈H : (τi)i∈H
$← Z|H|q s.t.

∑
i∈H

τi = 0
}

D1 =
{

(τi)i∈H : (τ ′i)i∈H
$← Z|H|q s.t.

∑
i∈H

τi = 0, τi := τ ′i −∆(b)
i

}

are identical (and a similar result also holds for all (τℓ,i)i∈H). Thus, it is an information-theoretic
change to provide the adversary with

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i, τℓ,i −∆(b)
ℓ,i ,x

(j)
ℓ,i, 0, 0)Bi c(j)

i = (x(b,j)
i , ti, τi −∆(b)

i ,x(1,j)
i , 0, 0)Bi

d(̃j)
k,i = (y(̃j)

k,i, µk, 1,0, 0, 0)B∗
i

d(̃j)
i = (y(b,j̃)

i , µ, 1,0, 0, 0)B∗
i

(7.4)

where the values ∆(b)
ℓ,i,∆

(b)
i are furthermore independent from the repetition indices.

Swapping. We recall that we are in a hybrid over each tag-fk, tag-f∗. Without loss of
generality we suppose the current hybrid is changing the challenge key vectors d(̃j)

i . After all
above preparations, it is now the Lemma 7.7 coming into play. Specifically, Lemma 7.7 helps us
moving y(b,j̃)

i from the first coordinates to other coordinates on the right, changing to y(1,j̃)
i while

facing x(1,j)
i , in d(̃j)

i :

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i, τℓ,i ,x
(j)
ℓ,i, 0, 0)Bi c(j)

i = (x(b,j)
i , ti, τi ,x(1,j)

i , 0, 0)Bi

d(̃j)
k,i = (y(̃j)

k,i, µk, 1,0, 0, 0)B∗
i

d(̃j)
i = (0 , µ, 1, y(1,j̃)

i , 0, 0)B∗
i

(7.5)

Thanks from the step of Modifying secret shares under admissibility, the difference

∆(b)
i = ⟨x(b,j)

i ,y(b,j̃)
i ⟩ − ⟨x

(1,j)
i ,y(1,j̃)

i ⟩

as well as ∆(b)
ℓ,i = ⟨x(j)

ℓ,i,y
(b,j̃)
i − y(1,j̃)

i ⟩ already exists in c(j)
i . It is of utmost importance that theses

differences are in place before the swapping, because moving and changing y(b,j̃)
i to y(1,j̃)

i while
facing x(1,j)

i , will induce the same differences. These differences have to be canceled to preserve
the DPVS product c(j)

i × d(̃j)
i and Lemma 7.7 can be applied3.

When applying similar arguments as in the steps from (7.3) to (7.5) in a hybrid over d(̃j)
k,i for

all k, we finally arrive at:

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i, τℓ,i ,x
(j)
ℓ,i, 0, 0)Bi c(j)

i = (x(b,j)
i , ti, τi ,x(1,j)

i , 0, 0)Bi

d(̃j)
k,i = (0 , µk, 1, y(̃j)

k,i , 0, 0)B∗
i

d(̃j)
i = (0, µ, 1,y(1,j̃)

i , 0, 0)B∗
i

(7.6)

2More precisely, the case b = 0 follows from the admissibility condition while for b = 1, we always have ∆(b)
i =

∆(b)
ℓ,i = 0

3Some steps of this overview are already taken care in Lemma 7.7, because the lemma is designed in a modular
way for treatments of the more complex adaptive security. For instance, the step of Introduction of fresh
secret shares is one of the first steps in Lemma 7.7. Hence, in this simpler overview of selective security, by
“apply Lemma 7.7” we mean an application of the lemma modulo these prepatory steps.

120

CHAPTER 7. FH-DMCFE 7.2. OVERVIEW: SELECTIVE CASE

At this point, we can remove the vectors x(b,j)
i in c(j)

i which gives us a game that is independent
of the bit b. So the adversary’s advantage is 0 and the proof is finished.

c(j)
ℓ,i = (x(j)

ℓ,i, tℓ,i, τℓ,i,x
(j)
ℓ,i, 0, 0)Bi c(j)

i = (0 , ti, τi,x(1,j)
i , 0, 0)Bi

d(̃j)
k,i = (0, µk, 1,y(̃j)

k,i, 0, 0)B∗
i

d(̃j)
i = (0, µ, 1,y(1,j̃)

i , 0, 0)B∗
i

(7.7)

Problems for Adaptive Security. In the above proof for selective security, we highlight
the important role of embedding the differences ∆(b)

i = ⟨x(b,j)
i ,y(b,j̃)

i ⟩ − ⟨x
(1,j)
i ,y(1,j̃)

i ⟩ as well as
∆(b)
ℓ,i = ⟨x(j)

ℓ,i,y
(b,j̃)
i − y(1,j̃)

i ⟩ into the fresh secret shares of c(j)
i before the final swapping. The values

∆(b)
i and ∆(b)

ℓ,i depend on both the challenge ciphertext queries, encryption queries, and challenge
key queries of the adversary. If we allow the adaversary to make queries adaptively, ∆(b)

i and ∆(b)
ℓ,i

can be unknown at the time of responding c(j)
i .

In our main FH-DMCFE construction, in order to deal with this situation to achieve adaptive
security, the information-theoretic properties of DPVSes is used. This is already crucial in our
MCFE construction for inner products of sub-vectors with LSSS access control in Section 6.4.2.
As a reminder, under an sequence of identically distributed hybrids thanks to DPVS, we can
allow the guessing of ∆(b)

i ,∆
(b)
ℓ,i and continue the simulation only when the guesses are correct

(and the step Modifying secret shares under admissibility can be carried out). Because between
two successive hybrids the advantage is 0 for any ppt adversary to distinguish, such guesses that
incur a multiplicative loss factor still keeps the advantage 0. Last but not least, as we mention
in Footnote 3, Lemma 7.7 is designed so that the Swapping step can be performed in the adaptive
setting. This is notably reflected via the lemma’s statement, in which an adversary’s views are
indistingushable given adaptive access to oracles. Those oracles correspond to the execution of
key-generation and ciphertext oracles of the FH-DMCFE security experiment (see Figure 7.1), for
challenge and non-challenge queries. Each time Lemma 7.7 is applied, e.g. the transition G2 → G3
in [NPS24c, Appendix A.3] and its details in the proof, we verify the hypothesis of the lemma
and list the FH-DMCFE security’s oracles outputs in the order of the lemma’s oracles to affect
the correct vectors. A discussion of our adaptively secure FH-DMCFE is given in Section 7.4.2.

121

7.3. MORE PRELIMINARIES CHAPTER 7. FH-DMCFE

7.3 More Preliminaries

The function family F ip
n of bounded-norm inner-product functionalities with n inputs is defined

as follows.

Definition 7.1 (Inner Product Functionality). For n, λ ∈ N, let Dλ = Paramλ = [−B;B]N
and Rλ = [−nNB2;nNB2], where B = B(λ) and N = N(λ) : N → N are polynomials. We
define the inner-product functionality F ip = {F ip

n,λ}n,λ∈N for F ip
n,λ = {fn,λ,(y1,...,yn) : Dnλ →

Rλ}(y1,...,yn)∈Paramn
λ

as the family of functions

fn,λ,(y1,...,yn)(x1, . . . ,xn) =
∑n
i=1⟨xi,yi⟩ .

Since its first introduction [CDG+18a], and as it is used so far also since Chapter 5, a
DMCFE consists of (Setup,DKeyGenShare,DKeyComb,Enc,Dec). The purpose of DKeyComb was
motivated for efficiency reasons in [CDG+18a]. Without lost of generality, in this chapter we
do not explicate DKeyComb and assume that the key combination is done at the beginning of
Dec. That is, for a given function class F , we write E = (Setup,DKeyGen,Enc,Dec) as a DMCFE
scheme for F .

Function-Hiding Security for DMCFE. We define function-hiding, along with standard
security for DMCFE. In the seminal work by Chotard et al. [CDG+18a] and its follow-up
study [CDSG+20], the security notion does not cover the function-hiding requirement for
DMCFE or its more general sibling DDFE. Until recently, the work by Agrawal et al. [AGT21b]
abstracted out DMCFE into the notion of Multi-Party Functional Encryption (MPFE). Or
equivalently, [Ngu24] abstracted out DMCFE into the notion of Dynamic Decentralized Functional
Encryption (DDFE). The authors of [AGT21b] also used MPFE to spell out the function-hiding
security for MCFE as well as for DDFE. The latter does capture DMCFE as a particular case
but for convenience of the reader, we introduce the detailed function-hiding security for DMCFE,
without going through all the abstraction of MPFE nor of DDFE. Our security definition
follows the Game-Playing Framework in [BR06]: Figure 7.1 defines the experiment Expfh

E,F ,A(1λ)
with procedures Initialize, DKeyGen, Enc, Corrupt and Finalize; the adversary A runs
Initialize, can call the oracles in any order and any number of times, and finishes the run by
calling Finalize on input the guess b′.

Definition 7.2 (Function-Hiding Security). Let λ ∈ N be a security parameter. For
a DMCFE scheme E, a function class F = {Fn,λ}n,λ and a ppt adversary A we define the
experiment Expfh

E,F ,A(1λ) as shown in Figure 7.1 and set H := [n] \ C. The oracles Enc,
DKeyGen and Corrupt can be called in any order and any number of times. The adversary
A is NOT admissible with respect to C,QEnc,QKGen, denoted by adm(A) = 0, if either one of the
following holds:

1. There exists a tuple (i, tag, x(0)
i , x

(1)
i) ∈ QEnc or (i, tag-f, y(0)

i , y
(1)
i) ∈ QKGen such that i ∈ C

and x(0)
i ̸= x(1)

i
4 or y(0)

i ̸= y(1)
i .

2. There exist tag, tag-f ∈ Tag, two vectors (x(0)
i)i∈[n], (x(1)

i)i∈[n] ∈ D1 × · · · ×Dn and functions
f (0)

n,λ,(y(0)
1 ,...,y

(0)
n)
, f (1)

n,λ,(y(1)
1 ,...,y

(1)
n)
∈ F having parameters (y(0)

i , y
(1)
i)i∈[n] such that

4This admissibility condition on x(0)
i = x(1)

i for all i ∈ C was introduced in [CDG+18a] then used in all other
works on (D)MCFE [CDG+18a, LT19, ABKW19, ABG19] and later on DDFE [CDSG+20, AGT21b]. A recent
work [NPP23a] studies the relaxation that removes this condition for (D)MCFE, i.e. allowing x(0)

i ̸= x(1)
i for i ∈ C

and more attacks are considered admissible, and gives a provably secure DMCFE candidate computing inner
products. We are not aware of any DMCFE scheme in the literature which is proven secure under the stronger
notion from [NPP23a].

122

CHAPTER 7. FH-DMCFE 7.3. MORE PRELIMINARIES

Initialize(1λ, 1n):

C,QEnc,QKGen←∅; b $← {0, 1}
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)
Return pp

DKeyGen(i, tag-f, y(0)
i , y(1)

i):
QKGen←QKGen ∪ {(i, tag-f, y(0)

i , y(1)
i)}

Return dkf,i←DKeyGen(ski, tag-f, y(b)
i)

Enc(i, tag, x(0)
i , x(1)

i):
QEnc←QEnc ∪ {(i, tag, x(0)

i , x(1)
i)}

Return ct←Enc(eki, tag, x(b)
i)

Corrupt(i):
C←C ∪ {i}; return (ski, eki)

Finalize(b′):
If adm(A) = 1, return β←(b′ ?= b)
Else, return 0

Figure 7.1: Security game Expfh
E,F,A(1λ) for Definition 7.2

• (i, tag, x(0)
i , x

(1)
i) ∈ QEnc and (i, tag-f, y(0)

i , y
(1)
i) ∈ QKGen for all i ∈ H,

• x(0)
i = x(1)

i and y(0)
i = y(1)

i for all i ∈ C, and
• f (0)

n,λ,y
(0)
1 ,...,y

(0)
n

(x(0)
1 , . . . , x

(0)
n) ̸= f (1)

n,λ,y
(1)
1 ,...,y

(1)
n

(x(1)
1 , . . . , x

(1)
n).

Otherwise, we say that A is admissible w.r.t C, QEnc and QKGen and write adm(A) = 1. We call
E function-hiding if for all ppt adversaries A,

Advfh
E,F ,A(1λ) :=

∣∣∣∣Pr
[
Expfh

E,F ,A(1λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Weaker Notions. We define weaker variants of indistinguishability by restricting the access
to the oracles and imposing stronger admissibility conditions. In this chapter we first present
our main technical scheme under some weaker notions in Section 7.4.2, then our final scheme
under stronger notions is obtained following some general lemmas (see Section 7.4.3).

1. Security against Static Corruption: The experiment Expstatfh
E,F ,A(1λ) is the same as Expfh

E,F ,A(1λ)
except that all queries to the oracle Corrupt must be submitted before Initialize is called.

2. Security against Selective Challenges: The experiment Expselfh
E,F ,A(1λ) is the same as

Expfh
E,F ,A(1λ) except that all queries to the oracles KeyGen and Enc must be submitted

before Initialize is called.

3. One-time Security: The experiment Exp1chal-fh
E,F ,A (1λ) is the same as Expfh

E,F ,A(1λ) except
that the adversary must declare up front to Initialize two additional “challenge” tags
tag∗, tag-f∗ ∈ Tag such that for all tag, tag-f ∈ Tag:

• if (i, tag, x(0)
i , x

(1)
i) ∈ QEnc and tag ̸= tag∗, then x(0)

i = x(1)
i ,

• if (i, tag-f, y(0)
i , y

(1)
i) ∈ QKGen and tag-f ̸= tag-f∗, then y(0)

i = y(1)
i .

4. Security against Complete Challenges: The experiment Exppos-fh
E,F ,A(1λ) is the same as

Expfh
E,F ,A(1λ) except that we add the following condition 3 for adm(A) = 0 that we call

the complete-query constraint:

3. There exists tag ∈ Tag so that a query Enc(i, tag, x(0)
i , x

(1)
i) has been asked for some but

not all i ∈ H, or there exists tag-f ∈ Tag such that a query KeyGen(i, tag-f, y(0)
i , y

(1)
i)

has been asked for some but not all i ∈ H.

123

7.3. MORE PRELIMINARIES CHAPTER 7. FH-DMCFE

In other words, we require for an adversary A to be admissible that, for any tag, either A
makes no encryption (resp. key) query or makes at least one encryption (resp. key) query
for each slot i ∈ H.

5. Weak Function-Hiding: We can weaken the function-hiding property by changing condition 2
for adm(A) = 0. More specifically, we replace it by the following condition 2’:

2’. There exist tag, tag-f ∈ Tag, (x(0)
i)i∈[n] and (x(1)

i)i∈[n] in D1 × · · · × Dn and two
functions f (0)

n,λ,(y(0)
1 ,...,y

(0)
n)
, f (1)

n,λ,(y(1)
1 ,...,y

(1)
n)
∈ F having parameters (y(0)

i , y
(1)
i)ni=1 such that

• (i, tag, x(0)
i , x

(1)
i) ∈ QEnc and (i, tag-f, y(0)

i , y
(1)
i) ∈ QKGen for all i ∈ H,

• x(0)
i = x(1)

i and y(0)
i = y(1)

i for all i ∈ C, and
• f (0)

n,λ,(y(0)
1 ,...,y

(0)
n)

(x(0)
1 , . . . , x

(0)
n) ̸= f (1)

n,λ,(y(1)
1 ,...,y

(1)
n)

(x(1)
1 , . . . , x

(1)
n) OR

f (0)

n,λ,(y(0)
1 ,...,y

(0)
n)

(x(0)
1 , . . . , x

(0)
n) ̸= f (1)

n,λ,(y(1)
1 ,...,y

(1)
n)

(x(0)
1 , . . . , x

(0)
n) OR

f (1)

n,λ,(y(1)
1 ,...,y

(1)
n)

(x(0)
1 , . . . , x

(0)
n) ̸= f (1)

n,λ,(y(1)
1 ,...,y

(1)
n)

(x(1)
1 , . . . , x

(1)
n).

The experiment in this weak function-hiding model is denoted by Expwfh
E,F ,A(1λ).

We also give a sequence of generic lemmas that can be used to strengthen the security model
of our basic FH-DMCFE construction from Section 7.4.2. Specifically, we show how to remove
the complete-query constraint and the restriction to one-challenge security. In this way, we
obtain an FH-DMCFE for inner products whose only restrictions on the security model are static
corruptions and a polynomially bounded number of repetitions for decryption keys.

Security against Incomplete Queries. To remove the complete-queries constraint, previous
works [CDSG+20, AGT21b] make use of a technique called all-or-nothing encapsulation (AoNE).
Roughly, AoNE allows all parties of a group to encapsulate individual messages, that can all
be extracted by everyone if and only if all parties of the group have sent their contribution.
Otherwise, no message is revealed. In the constructions of [CDSG+20, AGT21b], such an AoNE
layer is added on top of both ciphertexts and keys. Intuitively, this approach allows the following
reasoning: if an adversary makes encryption queries for all (honest) clients under some tag tag
(i.e. the global query is “complete”), then the AoNE scheme allows to obtain all ciphertexts, and
we can rely on the security of the DMCFE scheme that is secure against complete challenges. On
the other hand, if the adversary queries only some but not all honest clients (i.e. the global query
is “incomplete”), then the security of the AoNE scheme guarantees that the adversary does not
learn anything about the encapsulated messages. While this construction is well known, previous
constructions prove only selective security, even if the employed AoNE scheme is adaptively secure.
Therefore, we think it is important to show that this AoNE layer indeed preserves adaptive
security if the underlying scheme, which is only secure against complete queries, has this property.

More specifically, the notion of AoNE is a particular functionality of DDFE introduced by
Chotard et al. [CDSG+20]. In [AGT21b], AoNE also serves as a building block for their FH-DDFE
scheme, and it is pointed out that function-hiding and standard security are the same for AoNE,
as there is no concept of keys. Since we are focusing on the less general notion DMCFE, we define
AoNE in a less general context as a functionality for DMCFE.

Definition 7.3 (All-or-Nothing Encapsulation). For n, λ ∈ N, let Tagλ = Rλ = {0, 1}poly(λ),
Kλ = ∅, Mn,λ,pub = [n]× Tagλ and Mλ,pri = {0, 1}L for a polynomial L = L(λ) : N→ N. The
all-or-nothing encapsulation functionality faone = {faone

n,λ : {[n]} × ({[n]} ×Mλ)n → Rλ}n,λ∈N is
defined via

faone
n,λ ([n], (i,mi)i∈[n]) =

{
(xi)i∈[n] if condition (∗) holds
⊥ otherwise

124

CHAPTER 7. FH-DMCFE 7.3. MORE PRELIMINARIES

for all n, λ ∈ N, where {[n]} is a singleton consisting of [n] as its only member, and condition
(∗) holds if there exists tag ∈ Tagλ such that for each i ∈ [n], mi is of the form (mi,pri := xi ∈
{0, 1}L,mi,pub := ([n], tag) ∈Mn,λ,pub).

This means in particular that when using DMCFE for the functionality faone, DKeyGen is
not needed and Dec works without taking secret keys as input. The DDFE constructions
from [CDSG+20] yield two constructions of DMCFE for the function class AoNE as per Definition 7.3.
A first generic construction [CDSG+20, Section 4] from identity-based encryption is secure in
the standard model. Another concrete construction [CDSG+20, Section 5] from bilinear maps
under the Decisional Bilinear Diffie-Hellman (DBDH) assumption is proven secure in the ROM.

We present our result in form of a generic conversion that turns any one-challenge DMCFE
scheme secure against complete queries into one that is also secure against incomplete queries.

Lemma 7.4. Assume there exist (1) a one-challenge (weakly function-hiding) DMCFE scheme
Epos for a function class F that is secure against complete queries, and (2) an AoNE scheme Eaone

whose message space contains the ciphertext space of Epos. Then there exists a one-challenge
(weakly function-hiding) DMCFE scheme E for F that is even secure against incomplete queries.
More precisely, for any ppt adversary A, there exist ppt algorithms B1 and B2 such that

Advmc-w-rep-xxx-1chal-cpa
E,F IP,poly

(Ni)n
i=1,q,LSSS,A

(1λ) ≤ 12 · Advmc-w-rep-pos-xxx-1chal-cpa
Epos,F IP,poly

(Ni)n
i=1,q,LSSS,B1

(1λ) + 12 · Adv1chal-xxx-wfh
Eaone,faone,B2(1λ) ,

where xxx ⊆ {stat, sel}.

Our conversion simply adds a layer of DMCFE for AoNE on top of both ciphertexts and keys.
On an intuitive level, our simulator initially guesses whether or not the oracle queries for the
challenge tag tag-f∗ (or tag∗) will be complete. If the guess was “complete” and this guess turns
out to be correct at the end of the game, then the simulator attacks the underlying DMCFE
scheme that is assumed to be secure against complete queries. If the guess was “incomplete” and
the guess is correct, then the simulator attacks the security of the AoNE scheme. If the guess was
incorrect (which happens with probability 1/2), then the simulator aborts with a random bit. In
this way, we can upper bound the advantage of a distinguisher between two successive hybrids in
terms of the advantages that efficient adversaries can achieve against the underlying AoNE and
DMCFE schemes. We point out that this argument crucially relies on the one-challenge setting.
Due to the guess on the (in)completeness of the oracle queries, we lose a factor 1/2 in the security
proof. Thus, a hybrid argument over a polynomial number of incomplete queries would incur an
exponential security loss. Therefore, it is important to add security against incomplete queries in
the one-challenge model.

Details about the conversion as well as the proof are given in [NPS24c, NPS24b, Appendix B.1].
We mention that a concurrent work by Shi and Vanjani [SV23] presents a similar conversion in
the MCFE setting.

Security against Multiple Challenges. It remains to discuss how a one-challenge FH-DMCFE
scheme for inner products can be made resistant against multiple challenge queries. First, observe
that the equivalence of one-challenge and multi-challenge security in the standard setting (without
function privacy) is trivial. Indeed, the proof can be done by a sequence of hybrids over the
different tags queried to the encryption oracle. This approach, however, does not directly
generalize to the function-hiding setting. The problem is that now both encryption and key-
generation queries depend on the challenge bit b ∈ {0, 1}. Since ciphertexts and keys can
be arbitrarily combined in general, such a sequence of hybrids leads to a situation where an
adversary is able to mix ciphertexts that encrypt the left message with keys generated for
the right function or vice versa. However, the function-hiding admissibility does not provide
any security guarantees in the case of such a mixed decryption. Therefore, we cannot change

125

7.3. MORE PRELIMINARIES CHAPTER 7. FH-DMCFE

ciphertexts and keys one by one anymore. We solve this problem by first proving security against
multiple challenges in the weakly function-hiding setting. This model provides us exactly with
the necessary guarantee for mixed decryptions, which allows a hybrid argument over all function
and message tags to subsequently swap keys and ciphertexts. Afterwards, we apply another
standard transformation that turns weakly function-hiding DMCFE schemes for inner products
back into full-fledged function-hiding DMCFE (see Lemma 7.6). Previous works [LV16, ACF+18]
presented that transformation for single-input and multi-input FE schemes.

We state the formal lemmas below. The proofs are standard and the latter is very similar to
[LV16, ACF+18].The full proofs can be referred in [NPS24c, Appendix B.2, B.3] for completeness.

Lemma 7.5. Let E = (Setup,DKeyGen,Enc,Dec) be a DMCFE scheme for the function class
F . If E is one-challenge weakly function-hiding, then it is also weakly function-hiding. More
specifically, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-wfh
E,F ,A (1λ) ≤ (qe + qk) · Adv1chal-xxx-wfh

E,F ,B (1λ) ,

where qe and qk denote the maximum numbers of different tags tag and tag-f that A can query
to Enc and DKeyGen respectively, and xxx ⊆ {stat, sel, pos}.

Lemma 7.6. If there exists a weakly function-hiding DMCFE scheme E for F ip, then there exists
a (fully) function-hiding DMCFE scheme E ′ for F ip. More precisely, for any ppt adversary A,
there exists a ppt algorithm B such that

Advxxx-fh
E ′,F ip,A(1λ) ≤ 3 · Advxxx-wfh

E,F ip,B(1λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

126

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

7.4 A FH-DMCFE for Inner Products

7.4.1 Swapping Lemma

In this section we state a technical lemma that will be the basis of the security analysis of our
function-hiding IP-DMCFE. This lemma plays an important role in the proof of Theorem 7.8 and
is revisited in Section 7.4.2. As a reminder, we refer to the paragraph Problems for Adaptive
Security in the technical overview of Section 7.2 for a discussion on why the oracles in the
following statement of Lemma 7.7 are relevant afterwards in the FH-DMCFE proof.

Lemma 7.7 (Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =
J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H,K,L, Ji, J̃i, N : N → N are polynomials. Let J̃ :=
maxi∈[H]{J̃i}, where the maximum is over polynomial evaluations J̃i(λ) ∈ N. Let (Bi,B∗i), for
each i ∈ [H], be a pair of random dual bases of dimension 2N+2N ·J̃+4 in (G1,G2,Gt, g1, g2, gt, e, q).
All basis vectors are kept secret. Let R,R1, . . . , RK ∈ Zq be some public scalars. For i ∈ [H], ℓ ∈
[L] and k ∈ [K], sample σi, σi,k, r, rℓ

$← Zq conditioned on
∑
i∈[H] σi = R and

∑
i∈[H] σk,i = Rk.

We consider the following oracles:

Õd: On input (ℓ, i,y(rep)
ℓ,i ,y

(rep)′

ℓ,i) ∈ [L] × [H] × ZNq × ZNq , where rep ∈ [Ji] is a counter for the
number of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , 02N ·J̃+1)Bi .

Obd : For b ∈ {0, 1}, on input (i,y(1,j̃i)
i ,y(0,j̃i)

i) ∈ [H] × ZNq , where j̃i ∈ [J̃i] is a counter for the

number of queries of the form (i, ⋆, ⋆), sample ρ(̃ji)
i

$← Zq and output

If b = 0 : d(̃ji)
i = (y(1,j̃i)

i , 0N , r, 0, ρ(̃ji)
i , 02N ·J̃+1)Bi

If b = 1 : d(̃ji)
i = (0N , y(0,j̃i)

i , r, 0, ρ(̃ji)
i , 02N ·J̃+1)Bi .

Oc: On input (i,x(1,ji)
i ,x(0,ji)

i) ∈ [H]× ZNq × ZNq , where ji ∈ [Ji] is a counter for the number of
queries of the form (i, ⋆, ⋆), sample π(ji)

i
$← Zq and output

c(ji)
i = (x(1,ji)

i , x(0,ji)
i , σi, π

(ji)
i , 0, 02N ·J̃+1)B∗

i
.

Õc: On inputs (k, i,x(rep)
k,i) ∈ [K] × [H] × Zq, where rep ∈ [Ji] is a counter for the number of

queries of the form (k, i, ⋆), sample π(rep)
k,i

$← Zq and output

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π

(rep)
k,i , 0, 02N ·J̃+1)B∗

i
.

If
∑H
i=1⟨y

(1,j̃i)
i ,x(1,ji)

i ⟩−⟨y(0,j̃i)
i ,x(0,ji)

i ⟩ = 0 and
∑H
i=1⟨y

(1,j̃i)
i −y(0,j̃i)

i ,x(rep)
i ⟩ = 0 for all j̃i ∈ [J̃i], rep, ji ∈

[Ji], then the following advantage is negligible under the SXDH assumption:∣∣∣∣∣Pr[A
Õd,O0

d
Õc,Oc

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[A
Õd,O1

d
Õc,Oc

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (4nJ̃N + 4) · AdvSXDH

G1,G2 (1λ)

where A can query the oracles Õd,Obd ,Oc,Õc adaptively, i.e. the queries can be made in any
order and any number of times respecting the (polynomial) upper bounds K,L, (Ji, J̃i)i∈[H].

127

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

We give an informal proof sketch of the main ideas. The complete proof is given subsequently.
The DPVS properties are once more used extensively, and the lemma itself is presented in a
fairly modular way for independent interests.

Outline of the Proof. We explain the main steps in our proof as follows, where details about
formal and computational basis changes can be revised from the examples in Basis Changes of
Section 3.3. The proof is done so that for all the repetitions j̃i ∈ [J̃i], we perform the change
from the repetition y(0,j̃i)

i into y(1,j̃i)
i by the j̃i-th block of isolated coordinates in the vectors d(̃ji)

i .
It is crucial that the polynomially large bound J̃ ≥ maxi∈[n],tag-f∈Tag J̃i,tag-f is known in advance,
so as to well define the dimension of DPVS bases.

We start from the game where the sample given to the adversary A follows D0 and the
changes on vectors throughout the games are put in boxes . We use the notation 0 := 0N and
write 0J̃ := 0 ∥ . . . ∥ 0, for J̃ times. Our first step is to exploit the fact that r $← Zq is a uniformly
random value and for each ji ∈ [Ji] all the secret shares σi in c(ji)

i sum to a known constant R.
This helps us perform a computational basis change on (Bi,B∗i) and introduce a value r′ $← Z∗q
in di[2N + 2N · J̃ + 4] as well as random secret sharings of 0, common for ji ∈ [Ji], namely
(τi)Hi=1, (τ ′k,i)Hi=1, in (c(ji)

i [2N + 2N · j̃i + 4])Hi=1, (c(rep)
k,i [2N + 2N · j̃i + 4])Hi=1. We use the hypothesis

that all basis vectors are kept secret so that the computational basis change using DDH cannot
be detected by the adversary. More details can be found in the transition G0 → G1.

After G1, we perform a formal duplication to go to G2 in which we duplicate coordinates
[1, N], [N + 1, 2N] to the J̃ blocks [2N · j̃ + 4, N + 2N · j̃ + 3], [N + 2N · j̃ + 4, 2N + 2N · j̃ + 3],
where j̃ runs in [J̃], in vectors c(ji)

i , c(rep)
k,i for all i ∈ [H], k ∈ [K], ji ∈ [Ji].

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i

(
0 0

)J̃

0)Bi

d(̃ji)
i = (y(1,j̃i)

i 0 r 0 ρ
(̃ji)
i

(
0 0

)J̃

r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0

(
x(1,ji)

i x(0,ji)
i

)J̃

τi)B∗
i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0
(

x(rep)
k,i x(rep)

k,i

)J̃

τ ′
k,i)B∗

i

The duplication is done for all vectors c(ji)
i , c(rep)

k,i also across all repetitions rep ∈ [J]. At a more
technical level, this formal basis change will affect all vectors d(rep)

ℓ,i ,di as well, also across all
repetitions j̃i, rep ∈ [J̃i]. Roughly speaking, by the duality of (Bi,B∗i), this basis change will
incur “moving” coordinates [2N · j̃i+ 4, N + 2N · J̃ + 3], [N + 2N · J̃ + 4, 2N + 2N · J̃ + 3], for each
j̃i ∈ [J̃] to [1, N], [N + 1, 2N] in the d-vectors. In this simple G1 → G2, the moved coordinates
contain 0, so they do not pose any problems.

After G2, in all c-vectors, each of the J̃ blocks [2N · j̃ + 4, N + 2N · j̃ + 3], [N + 2N ·
j̃ + 4, 2N + 2N · J̃ + 3] contains a copy of the coordinates [1, N], [N + 1, 2N]. This allows us
to perform a computational basis change under SXDH in order to swap between [1, N] and
[2N · j̃i + 4, N + 2N · j̃i + 3] in d(̃ji)

i , for each j̃i ∈ [J̃i] and J̃i ≤ J̃ by definition. We stress that
for different j̃i, the swap will move contents of [1, N] to separated coordinates in different d(̃ji)

i .
In other words, for every j̃i, j̃′i, the coordinates [2N · j̃′i + 4, N + 2N · j̃′i + 3] is well defined for
d(̃ji)
i because j̃i ≤ J̃i ≤ J̃ and we have

d(̃ji)
i [2N · j̃′i + 4, N + 2N · j̃′i + 3] =

y(1,j̃′
i
)

i if j̃i = j̃′i
0 if j̃i ̸= j̃′i

. (7.8)

The randomness is taken from ρi at coordinate 2N + 3 in d(̃ji)
i .

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0)Bi

d(̃ji)
i = (0 0 r 0 ρ

(̃ji)
i · · · y(1,j̃i)

i 0 · · · r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τi)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ ′
k,i)B∗

i

128

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

As a sanity check, we observe that this change preserves the products d(̃ji)
i × c(ji)

i and d(̃ji)
i × c(rep)

k,i

for all k ∈ [K], j̃i ∈ [J̃i]. Moreover, the computational basis change allows us to target only the
vectors (d(̃ji)

i)i∈[H] while letting d(rep)
ℓ,i for ℓ ∈ [L], i ∈ [H] unchanged.

Upon reaching G3, we are ready to approach the centerpiece of our proof. A formal basis
change maintains perfectly identical views for the adversary in two games, resulting in a 0
difference in winning advantages under efficient simulation. We combine such formal basis
changes with a complexity leveraging argument. In general, these kinds of arguments degrade
the probability of a succesful simulation by an exponential factor. In our case, however, an
exponential multiple of 0 is still 0. This implies that, as long as we restrict ourselves to formal
bases changes that do not rely on any computational assumption, the simulator can initially
guess all queries submitted by the adversary throughout the game, thus considering the selective
game. We recall that the same strategy is also used previously in the proof of Theorem 6.11 for
our MCFE for the class of inner products with LSSS access control in Section 6.4 of Chapter 6.
The Proof Strategy of Theorem 6.11 can be revisited for the sake of revising the complexity
leveraging technique.

Formal basis changes highlight the information-theoretic properties of DPVS. However,
they are often much harder to use than computational changes. The reason is that a formal
basis change affects all vectors, including all repetitions, in the same manner. In contrast to
computational changes, it is not possible to apply changes only to some vectors. Intuitively, this
is why in G2 and G3 we had to move all repetitions d(̃ji)

i into separate coordinates to prepare for
the formal basis changes.

We now explain the sequence of games on which the complexity leveraging is applied. We
want to perform some sort of swapping between coordinates [2N · j̃i + 4, N + 2N · j̃i + 3] and
[N + 2N · j̃i + 4, 2N + 2N · j̃i + 3] of d(̃ji)

i and reach G6 whose vectors are:
d(rep)

ℓ,i = (y(rep)
ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0)Bi

d(̃ji)
i = (0 0 r 0 ρ

(̃ji)
i · · · 0 y(0,j̃i)

i · · · r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τ̃i)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ̃ ′
k,i)B∗

i

The complexity leveraging will be applied to the selective versions G∗3 → G∗4 → G∗5 → G∗6 and only
formal basis changes will be used in between. In these selective versions the simulator guesses the
values (y(1,j̃i)

i ,y(0,j̃i)
i ,x(1,ji)

i ,x(0,ji)
i)j̃i∈[J̃i],ji∈[Ji]

i∈[H] and the hybrids are conditioned on a “good” event
that these guesses are correct. The “good” event happens with fixed probability. This leads to
an identical adversary’s view:

Pr[G∗3 = 1] = Pr[G∗4 = 1] = Pr[G∗5 = 1] = Pr[G∗6 = 1] . (7.9)

We briefly highlight the selective games’ ideas below:

• In G∗3 → G∗4 a formal basis change is applied to do a quotient by y(1,j̃i)
i [z] for z ∈ [N] over

all J̃ blocks [2N · j̃i + 4, N + 2N · j̃i + 3], [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3], where j̃i runs
in [J̃i], of c-vectors. We refer to matrices (7.12) in the proof for more details. We note that
thanks to (7.8), for j̃i ̸= j̃′i ∈ [J̃], this change makes d(̃ji)

i [2N · j̃i + 4, N + 2N · j̃i + 3] = 1
while d(̃ji)

i [2N · j̃′i + 4, N + 2N · j̃′i + 3] = 0 for j̃′i ̸= j̃i.

• In G∗4 → G∗5, we define a formal basis change that uses the fixed randomness r′ ∈ Z∗q in
d(̃ji)
i [2N + 2N · j̃i + 4] (introduced from G1) to switch 1 to 0 at coordinates [2N · j̃i + 4, N +

2N · j̃i + 4] while marking 1 at coordinates [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3] of d(̃ji)
i , for

all j̃i. The specific matrix definition is given in equation (7.13). Thanks to the observation
at the end of G∗3, for each repetition d(̃ji)

i only the j̃i-th blocks [2N · j̃i + 4, N + 2N · j̃i +
3], [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3] is affected, while other blocks stay 0. We note that
unlike d(̃ji)

i , the vectors d(rep)
ℓ,i stay invariant because d(rep)

ℓ,i [2N + 2N · J̃ + 4] = 0.

129

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

Dually, because of the formal duplication in G2 to all J̃ ≥ J̃i blocks, all c-vectors will be
altered such that the accumulated differences∑
j̃i∈[J̃i]
z∈[N]

c(ji)
i [2N · j̃i + 3 + z]− c(ji)

i [N + 2N · j̃i + 3 + z] = 1
r′

∑
j̃i∈[J̃i]

⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩

will be added to τi in c(ji)
i [2N + 2N · J̃ + 4] (see (7.18) in the proof). For c(rep)

k,i , similarly, we
have the accumulated differences added to τ ′k,i is

∑
j̃i∈[J̃i]
z∈[N]

c(rep)
k,i [2N · j̃i + 3 + z]− c(rep)

k,i [N + 2N · j̃i + 3 + z] = 1
r′

∑
j̃i∈[J̃i]

⟨y(1,j̃i)
i − y(0,j̃i)

i ,x(rep)
k,i ⟩ .

To show that this compensation for the accumulated differences in the τi and τ ′k,i cannot be
noticed by the adversary, we exploit the conditions on the oracle queries in the statement
of the lemma. Specifically, the condition

∑H
i=1⟨y

(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩ = 0 implies
that 1

r′ (⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩) is constant for all j̃i ∈ [J̃], ji ∈ [Ji] (see (7.11) for a
formal argument) and

∑
i∈[H]

1
r′ (⟨y(1,j̃i)

i ,x(1,ji)
i ⟩ − ⟨y(0,j̃i)

i ,x(0,ji)
i ⟩) = 0. From this observation,

it follows that after adding the value 1/r′ · ⟨y(1,j̃i)
i ,x(1,ji)

i ⟩− ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩ to τi for all i ∈ [H],
(τi)i∈[H] is still a secret sharing of 0. The same reasoning applies for 1/r′ ·⟨y(1,j̃i)

i −y(0,j̃i)
i ,x(rep)

k,i ⟩
which is added to the secret sharing (τ ′k,i)Hi=1 in (c(rep)

k,i [2N + 2N · J̃ + 4])Hi=1.

• In G∗5 → G∗6 we redo the quotient, still being in the selective variants conditioned on the
“good” event.

• Finally, we also emphasize that all above DPVS formal basis changes do not depend on
the exponentially large number of combinations (d(̃ji)

i)i∈[H], up to repetitions j̃i ∈ [J̃i]. We
use the fact that each i ∈ [H] has its vectors written in an independent pair of bases
(Bi,B∗i), along with the crucial property (7.8) that allows treating each j̃i-th repetition in
an isolated block of the d(̃ji)

i vector, all (d(̃ji)
i)j̃i∈[J̃i] at the same time. To summarize, the

specific information theoretic property of DPVS formal basis changes makes sure that all
vectors in (Bi,B∗i) will be modified according to the basis matrices. The matrices (7.12)
and (7.13) change consistently the j̃i-th block in all pairs (d(̃ji)

i , c(ji)
i). For different j̃i ̸= j̃′i

property (7.8) makes sure those matrices’ change are trivial, i.e. 0 stays 0, in j̃′i-th block
of d(̃ji)

i . Furthermore, even though all J̃i ≤ J̃ blocks of c(ji)
i are changed consistently by

the matrices, in terms of the contents of all d(̃ji)
i , different c(ji)

i from different i cannot be
combined because they are in different bases. The only constraint is a fixed polynomially
large upper bound J̃ ≥ maxi∈[n],tag-f∈Tag J̃i,tag-f so that the dimensions are well defined.

The probability calculation (see footnote 6) of the complexity leveraging makes use of the fact that
the “good” event happens with a fixed probability in conjunction with property (7.9), leading to
Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. Coming out of the complexity-leveraging
argument, the very last step consists in swapping xi from coordinates [N+2N ·j̃i+3, 2N+2N ·j̃i+3]
back to [1, N] (see G6 → G7) and some cleaning in order to make the vectors follow D1 (see
G7 → G8).

The Full Proof. The full proof is presented below.

Proof (Of Lemma 7.7). The proof is done via a sequence of hybrid games. The games are depicted
in Figure 7.2. Unless stated otherwise, for simpler notations in the following we omit the index i
from ji ∈ [Ji], j̃i ∈ [J̃i],d(̃ji), c(ji) and write j ∈ [J], j̃ ∈ [J̃],d(̃j), c(j). For each i ∈ [H], the value
j denotes the maximum number of possible repetitions (d(rep)

ℓ,i)rep, (c(j)
i)j , and (c(rep)

k,i)rep, indexed

130

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

Game G0: The vectors are sampled according to D0. The poly-bound J̃ ≥ maxi∈[H]{J̃i} is fixed.
Indices are running ji ∈ [Ji], j̃i ∈ [J̃i].
Game G1: (Random 0-Secret Sharing)

∑H
i=1 τi =

∑H
i=1 τ

′
k,i = 0, 0 := 0N

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i 0J̃ 0J̃ 0)Bi

d(̃ji)
i = (y(1,j̃i)

i 0 r 0 ρ
(̃ji)
i 0J̃ 0J̃ r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 0J̃ 0J̃ τi)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 0J̃ 0J̃ τ ′k,i)B∗
i

Game G2: (Formal Duplication from coordinates [1, N], [N+1, 2N] in B∗i , for c(ji)
i the coordinates

[2N · j̃i + 4, 2N · j̃i +N + 3], [3N · j̃i + 4, 4N · j̃i +N + 3] change)

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0)Bi

d(̃ji)
i = (y(1,j̃i)

i 0 r 0 ρ
(̃ji)
i · · · 0 0 · · · r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τi)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ ′k,i)B∗
i

Game G3: (Computational Swapping between [1, N] and [2N · j̃i + 4, 3N · j̃i + N + 3] in d(̃ji)
i

using (2N + 3)-randomness in Bi, by n · J̃ ·N DSDH instances)

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0)Bi

d(̃ji)
i = (0 0 r 0 ρ

(̃ji)
i · · · y(1,j̃i)

i 0 · · · r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τi)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ ′k,i)B∗
i

Inside a complexity leveraging argument, at the same time for all repetitions j̃i ∈ [J̃i] of d(̃ji)
i ,

m runs in [N]:
Game G∗4: (Formal Quotient on coordinates [2N · j̃i + 4, 2N · j̃i + 2N + 3] in Bi)

d(rep)
ℓ,i = (· · · 0 0 · · · 0)Bi

d(̃ji)
i = (· · · 1N 0 · · · r′)Bi

c(ji)
i = (· · · (y(1,j̃i)

i [m]x(1,ji)
i [m])m (y(0,j̃i)

i [m]x(0,ji)
i [m])m · · · τi)B∗

i

c(rep)
k,i = (· · · (y(1,j̃i)

i [m]x(rep)
k,i [m])m (y(0,j̃i)

i [m]x(rep)
k,i [m])m · · · τ ′k,i)B∗

i

Game G∗5: τ̃i := τi + 1
r′
∑
j̃∈[J̃]

(
⟨y(̃ji),x(1,ji)

i ⟩ − ⟨ȳ(̃ji),x(0,ji)
i ⟩

)
, τ̃ ′k,i := τ ′k,i +

1
r′
∑
j̃∈[J̃]

(
⟨y(̃ji),x(rep)

k,i ⟩ − ⟨ȳ(̃ji),x(rep)
k,i ⟩

)
(Formal Swapping)

d(rep)
ℓ,i = (· · · 0 0 · · · 0)Bi

d(̃ji)
i = (· · · 0 1N · · · r′)Bi

c(ji)
i = (· · · (y(1,j̃i)

i [m]x(1,ji)
i [m])m (y(0,j̃i)

i [m]x(0,ji)
i [m])m · · · τ̃i)B∗

i

c(rep)
k,i = (· · · (y(1,j̃i)

i [m]x(rep)
k,i [m])m (y(0,j̃i)

i [m]x(rep)
k,i [m])m · · · τ̃ ′k,i)B∗

i

Game G∗6: (Formal Quotient on coordinates [2N · j̃i + 4, 2N · j̃i + 2N + 3] in Bi)

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0)Bi

d(̃ji)
i = (0 0 r 0 ρ

(̃ji)
i · · · 0 y(0,j̃i)

i · · · r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τ̃i)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ̃ ′
k,i)B∗

i

Game G7: (Computational Swapping between [1, N] and [2N · j̃i + 4, 3N · j̃i + N + 3] in d(̃ji)
i

using (2N + 3)-randomness in Bi, by n · J ·N DSDH instances)

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0)Bi

d(̃ji)
i = (0 y(0,j̃i)

i r 0 ρ
(̃ji)
i · · · 0 0 · · · r′)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τ̃i)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ̃ ′k,i)B∗
i

Game G8: Undo G2, G1 (Cleaning) – Vectors sampled according to D1.

d(rep)
ℓ,i = (y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i 0J̃ 0J̃ 0)Bi

d(̃ji)
i = (0 y(0,j̃i)

i r 0 ρ
(̃ji)
i 0J̃ 0J̃ 0)Bi

c(ji)
i = (x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 0J̃ 0J̃ 0)B∗

i

c(rep)
k,i = (x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 0J̃ 0J̃ 0)B∗
i

Figure 7.2: Games for proving Lemma 7.7.

131

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

by rep and j over all ℓ, k. The bound J̃ ≥ maxi∈[H]{J̃i} of repetitions queried by the adversary
for d-vectors is fixed in advance. For the ease of notation, we define J := maxi∈[H]{Ji} as the
number of repetitions queried by the adversary for c-vectors, not fixed in advance. We note that
the dimensions of the DPVS bases depends on the J̃ , i.e. the maximum number of repetitions
we allow the adversary to make on d(̃j)

i . We use notation 0 := 0N and write 0J̃ := 0 ∥ . . . ∥ 0, for
J̃ times. We describe the sequence of hybrids below.

Game G0: The vectors are computed according to the interaction:

A
Õd,O0

d
Õc,Oc

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
.

Game G1: The transition is completely computational and we can target solely all the j̃-th
repetitions d(̃j)

i , while leaving all d(rep)
ℓ,i unchanged:

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , 02N ·J̃+1)Bi(

d(̃j)
i = (y(1,j̃)

i , 0, r, 0, ρ(̃j)
i , 0J̃ , 0J̃ , r′)Bi

)
i∈[H](

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0, 0J̃ , 0J̃ , τi)B∗

i

)j∈[J]
i∈[H](

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π

(rep)
k,i , 0, 0J̃ , 0J̃ , τ ′k,i)B∗

i

)rep∈[J]
i∈[H],k∈[K] .

where r′ $← Z∗q and for all j ∈ [J], the secret sharings (τi)i and (τ ′k,i)i in ci-vectors satisfies:∑H
i=1 τi =

∑H
i=1 τ

′
k,i = 0, for k ∈ [K]. We emphasize that the same share τi is used across all

repetitions c(j)
i for a given i. Moreover, for the d(rep)

ℓ,i -vectors we do not introduce additional
randomness such as r′, which is enabled by the current computational change where we
can compute vectors in Bi (i.e. d(rep)

ℓ,i -vectors versus d(j′)
i vectors) differently.

We proceed in two steps:

Game G0.1: We first use the subspace-indistinguishability to introduce r′ $← Z∗q at coordinate
2N + 2N · J̃ + 4 of d(̃j)

i , while keeping c(j)
i [2N + 2N · J̃ + 4] = d(rep)

ℓ,i [2N + 2N · J̃ + 4] =
c(rep)
k,i [2N + 2N · J̃ + 4] = 0. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where
δ := c− ab is either 0 or 1, the basis changing matrices are:

Bi =
[
1 a
0 1

]
2N+1,2N+2N ·J̃+4

·Hi; B∗i =
[

1 0
−a 1

]
2N+1,2N+2N ·J̃+4

·H∗i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write
the d-vectors as follows:

d(̃j)
i = (y(̃j)

i , 0, r, 0, ρi, 0J̃ , 0J̃ , 0)Bi + (0, 0, br′, 0, 0, 0J̃ , 0J̃ , cr′)Hi

= (y(̃j)
i , 0, r + br′ , 0, ρi, 0J̃ , 0J̃ , δr′)Bi

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi .

We cannot compute b∗i,2N+1 but can write the c-vectors in H∗ and observe that they
stay invariant in B∗i as the (2N + 2N · J̃ + 4)-th coordinate is 0:

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0, 0J̃ , 0J̃ , 0)H∗

i

= (x(1,j)
i , x(0,j)

i , σi, π
(j)
i , 0, 0J̃ , 0J̃ , 0)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, πk,i, 0, 0J̃ , 0J̃ , 0)H∗

i

= (x(rep)
k,i , x(rep)

k,i , σk,i, πk,i, 0, 0J̃ , 0J̃ , 0)B∗
i
.

132

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

If δ = 0 we are in G0 else we are in G0.1, while updating r to r + br′5. The difference
in advantages is |Pr[G0.1 = 1]− Pr[G0 = 1]| ≤ 2 · AdvDDH

G1 (1λ).
Game G0.2: We use DSDH in G2 to introduce any chosen secret sharings (τi)i∈[H] and

(τ ′k,i)i∈[H] of 0, i.e.
∑H
i=1 τi =

∑H
i=1 τ

′
k,i = 0, such that τi, τ ′k,i ≠ 0 for all i, for every

k ∈ [K]. The secret sharings do not depend on the repetitions. Given a DSDH
instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is either 0 or 1, the bases (Bi,B∗i)
are changed following:

Bi =
[

1 0
−a 1

]
2N+1,2N+2N ·J̃+4

·Hi; B∗i =
[
1 a
0 1

]
2N+1,2N+2N ·J̃+4

·H∗i .

All vectors changed under these bases are secret. We compute B∗i using JaK2 and
write the c-vectors as follows:

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0, 0J̃ , 0J̃ , 0)B∗

i

+ (0, 0, bτi, 0, 0, 0J̃ , 0J̃ , cτi)H∗
i

= (x(1,j)
i , x(0,j)

i , σi + bτi , π
(j)
i , 0, 0J̃ , 0J̃ , δτi)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π

(rep)
k,i , 0, 0J̃ , 0J̃ , 0)B∗

i

+ (0, 0, bτ ′k,i, 0, 0, 0J̃ , 0J̃ , cτ ′k,i)H∗
i

= (x(rep)
k,i , x(rep)

k,i , σk,i + bτ ′k,i , π
(rep)
k,i , 0, 0J̃ , 0J̃ , δτ ′k,i)B∗

i
.

For each j ∈ [J], the secret shares (σi)Hi=1 are updated to (σi + bτi)Hi=1 and still satisfy:
H∑
i=1

(σi + bτi) =
(

H∑
i=1

σi

)
+ b

(
H∑
i=1

τi

)
= R

because (τi)Hi=1 is a secret sharing of 0. Similarly, (σk,i)Hi=1 are updated to (σk,i +
bτ ′k,i)Hi=1 and stay shares of Rk. We cannot compute bi,2N+2N ·J̃+4 but can write the
d-vectors in Hi, for r′′, rℓ

$← Zq, r′
$← Z∗q :

d(̃j)
i = (y(1,j̃)

i , 0, r′′, 0, ρi, 0J̃ , 0J̃ , r′)Hi

= (y(1,j̃)
i , 0, r′′ + ar′, 0, ρi, 0J̃ , 0J̃ , r′)Bi

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Hi

= (y(rep)
ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi ,

while simulating r := r′′ + ar′ perfectly uniformly at random in Zq. If δ = 0 we are in
G0.1, else we are in G0.2 = G1. The difference in advantages is |Pr[G0.2 = 1]−Pr[G0.1 =
1]| ≤ 2 · AdvDDH

G2 (1λ).

After G0.2 = G1, the vectors are now:

d(rep)
ℓ,i = (y(rep)

ℓ,i , x(rep)
ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi

d(̃j)
i = (y(1,j̃)

i , 0, r , 0, ρi, 0J̃ , 0J̃ , r′)Bi

c(j)
i = (x(1,j)

i , x(0,j)
i , σi , π

(j)
i , 0, 02N ·J̃ , τi)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i , πk,i, 0, 02N ·J̃ , τ ′k,i)B∗

i

and in total |Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2 · AdvDDH
G2 (1λ) + 2 · AdvDDH

G1 (1λ).
5It is thanks to the randomness of r $← Zq that allows us to update br′ without changing the distribution.

When applying this swapping lemma for our FH-DMCFE scheme, this random r is provided by the RO while
hashing the tags.

133

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

Game G2: We perform a formal duplication on all c-vectors:

(
c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0,

(
x(1,j)
i , x(0,j)

i

)J̃
, τi)B∗

i

)j∈[J]
i∈[H](

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π

(rep)
k,i , 0,

(
x(rep)
k,i , x(rep)

k,i

)J̃
, τ ′k,i)B∗

i

)rep∈[J]
i∈[H],k∈[K] .

For c(j)
i the coordinates [2N · j̃ + 4, 2N · j̃ +N + 3], [2N · j̃ +N + 4, 2N · j̃ + 2N + 3] change.

We perform a formal basis change to duplicate (x(1,j)
i ,x(0,j)

i) (respectively (x(rep)
k,i ,x

(rep)
k,i)) from

coordinates [1, N], [N + 1, 2N] to [2N · j̃+ 4, 2N · j̃+N + 3], [2N · j̃+N + 4, 2N · j̃+ 2N + 3]
of c(j)

i (respectively of c(rep)
k,i), for all j̃ ∈ [J̃]. We emphasize that the pair (x(1,j)

i ,x(0,j)
i)

(respectively (x(rep)
k,i ,x

(rep)
k,i)) are duplicated J̃ times into J̃ separated blocks [2N · j̃ + 4, 2N ·

j̃ +N + 3], [2N · j̃ +N + 4, 2N · j̃ + 2N + 3] in c(j)
i (respectively in c(rep)

k,i). The bases are
changed following using the following matrices (we denote Bi[row, col] the entry at row
row and column col of Bi)

Bi =

Bi[row, col] = 1 if row = col

Bi[row, col] = 1 if (row, col) ∈ {(2Nj̃ + 4 + d, 1 + d) : d ∈ [0, N − 1], j ∈ [J̃]}
Bi[row, col] = 1 if (row, col) ∈ {(2Nj̃ +N + 4 + d,N + 1 + d) : d ∈ [0, N − 1], j ∈ [J̃]}
Bi[row, col] = 0 otherwise

B′i :=
(
B-1
i

)⊤
Bi = Bi ·Hi; B∗i = B′i ·H∗i .

We write the vectors as follows, observing that the d-vectors stay invariant because for all
j̃, rep ∈ [J̃], their coordinates [2N · j̃ + 4, 2N · j̃ +N + 3], [2N · j̃ +N + 4, 2N · j̃ + 2N + 3]
are all 0 and the duplication is done correctly for the c-vectors:

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Hi

= (y(rep)
ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi

d(̃j)
i = (y(1,j̃)

i , 0, r, 0, ρi, 0J̃ , 0J̃ , r′)Hi

= (y(1,j̃)
i , 0, r, 0, ρi, 0J̃ , 0J̃ , r′)Bi

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0, 0J̃ , 0J̃ , τi)H∗

i

= (x(1,j)
i , x(0,j)

i , σi, π
(j)
i , 0, · · · , x(1,j)

i , x(0,j)
i , · · · , τi)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, πk,i, 0, 0J̃ , 0J̃ , τ ′k,i)H∗

i

= (x(rep)
k,i ,x

(rep)
k,i , σk,i, πk,i, 0, · · · , x(rep)

k,i ,x
(rep)
k,i · · · , τ

′
k,i)B∗

i
.

We are in G1 in bases (Hi,H∗i) and in G2 in bases (Bi,B∗i). The change is formal and we
have Pr[G2 = 1] = Pr[G1 = 1]. Dually, the destination coordinates in the d-vectors are all
0 hence they stay unchanged.

Game G3: For each j̃ ∈ [J̃], we perform a computational swap between [1, N] and [2N ·
j̃ + 4, 2N · j̃ + N + 3] in d(̃j)

i using (2N + 3)-randomness. We need n · J̃ · N DSDH
instances (

r
a(̃j)
i,z

z

1
,
r
b(̃j)
i,z

z

1
,
r
c(̃j)
i,z

z

1
) in G1 where δ(̃j)

i,z := c(̃j)
i,z − a

(̃j)
i,zb

(̃j)
i,z is either 0 or y(1,j̃)

i [z],

for z ∈ [N], j̃ ∈ [J], i ∈ [n]. The basis changes for (Bi,B∗i) will use (
r
a(̃j)
i,z

z

1
,
r
b(̃j)
i,z

z

1
,
r
c(̃j)
i,z

z

1
)

for z ∈ [N], j̃ ∈ [J].
For a fixed i, focusing on the basis change of (Bi,B∗i), to incorporate the separate J̃ ·N
DSDH instances and change the N coordinates over the J̃ repetitions, the computation

134

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

on the c-vectors can be done thanks to the fact that we have enough J̃ separate N ×N
blocks in the matrix, these blocks are defined over the diagonal for the dual effects after
our basis changes (we encourage revisiting Section 3.3 for the dual compuation of DPVS
basis changes). More specifically, each of those distinct N ×N block will change the N
coordinates of each of the J̃ repetitions, where the matrices’ entries are defined as per the
DSDH instances.
The swaps are possible thanks to the pairs (x(1,j)

i ,x(0,j)
i) (respectively (x(rep)

k,i ,x
(rep)
k,i)) in c(j)

i

(respectively in c(rep)
k,i) that are resulted from previous game G2.

It is important that the change is computational using DDH in G1, therefore we can write
the vectors in appropriate bases using DSDH while targeting all the repetitions of (d(̃j)

i)i.
For instance, for a given j̃, we compute Bi using JaK1 and write the d-vectors as follows:

d(̃j)
i = (0, .., 0,y(1,j̃)

i [z], ..,y(1,j̃)
i [N]︸ ︷︷ ︸

first (z−1)-th coords are 0

,0, r, 0, ρi,0, ..,0,y(1,j̃)
i [1], ..,y(1,j̃)

i [z − 1], 0, .., 0︸ ︷︷ ︸
last (N−z+1)-th coords are 0

,0, ..,0, r′)Bi

+ (0, .., 0,−c(̃j)
i,z, 0, .., 0︸ ︷︷ ︸

z-th coord among N

,0, 0, 0, b(̃j)
i,z,0, ..,0, 0, .., 0, c

(̃j)
i,z, 0, .., 0︸ ︷︷ ︸

z-th coord among N

,0, ..,0, 0)Hi

= (0, .., 0, y(1,j̃)
i [z]− δ(̃j)

i,z , ..,y
(1,j̃)
i [N]︸ ︷︷ ︸

first (z−1)-th coords are 0

,

0, r, 0, ρi + b(̃j)
i,z ,0, ..,0,y

(1,j̃)
i [1], ..,y(1,j̃)

i [z − 1], δ(̃j)
i,z , .., 0︸ ︷︷ ︸

last (N−z)-th coords are 0

,0, ..,0, r′)Bi

d(rep)
ℓ,i = (y(rep)

ℓ,i ,y
(rep)′

ℓ,i , rℓ, 0, ρℓ,i,0J̃ ,0J̃ , 0)Bi

where the coordinates (0, · · · ,0) put in Hi will not be affected by the corresponding blocks
in the basis matrix.
For all other c-vectors their coordinates remain intact and are 0.

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0, · · · , x(1,j)

i , x(0,j)
i , · · · , τi)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π

(rep)
k,i , 0, · · · , x(rep)

k,i , x(rep)
k,i , · · · , τ

′
k,i)B∗

i
.

The security loss is 2 · n · J̃ ·N · AdvSXDH
G1,G2 (1λ).

The vectors, when we arrive at G3, are of the form:

d(rep)
ℓ,i = (y(rep)

ℓ,i ,y
(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , · · · ,0,0, · · · , 0)Bi

d(̃j)
i = (0 ,0, r, 0, ρi , · · · , y(1,j̃)

i ,0, · · · , r′)Bi

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π

(j)
i , 0, · · · , x(1,j)

i , x(0,j)
i , · · · , τi)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π

(rep)
k,i , 0, · · · , x(rep)

k,i , x(rep)
k,i , · · · , τ

′
k,i)B∗

i
,

where for each j ∈ [J], (τi)Hi=1,(τ ′k,i)Hi=1 are random secret sharings of 0, with τi, τ
′
k,i ≠ 0 for all

i, and r′
$← Z∗q . Our goal in the next three games G4,G5,G6 is to swap y(1,j̃)

i from coordinates
[2N · j̃ + 4, 2N · j̃ +N + 3] to y(0,j̃)

i coordinates [2N · j̃ +N + 4, 2N · j̃ + 2N + 3] of d(̃j)
i , for all

i ∈ [H]. The main idea is to consider the selective version G∗t for t ∈ {4, 5, 6}, where the values
(y(1,j̃)
i [k],y(0,j̃)

i [k],x(1,j)
i ,x(0,j)

i)j∈[J]
i∈[H],k∈[N] are guessed in advance. We then use formal argument for

the transitions G∗t → G∗t+1 for j ∈ {3, 4, 5} to obtain

Pr[G∗3 = 1] = Pr[G∗4 = 1] = Pr[G∗5 = 1] = Pr[G∗6 = 1] . (7.10)

In the end, we use a complexity leveraging argument to conclude that thanks to (7.10), we have
Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1].

135

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

Temporarily, the index i is put back to emphasize that ji, j̃i might differ among different
i. For the sequence G3 → G6, we make a guess for the values (y(1,j̃i)

i ,y(0,j̃i)
i ,x(1,ji)

i ,x(0,ji)
i) with

ji ∈ [Ji], j̃i ∈ [J̃i], i ∈ [H], choose r′ $← Z∗q , random secret sharings (τi, τ ′k,i, τ̃i, τ̃ ′k,i)Hi=1 of 0 for
each ji ∈ [Ji], with τi, τ

′
k,i ̸= 0 for all i. We define the event E that the guess is correct on

(y(1,j̃i)
i ,y(0,j̃i)

i ,x(1,ji)
i ,x(0,ji)

i)ji∈[Ji],j̃i∈[J̃i]
i∈[H] and for any ji ∈ [Ji]

τ̃i − τi = 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩
)

τ̃ ′k,i − τ ′k,i = 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)
i ,x(rep)

i ⟩ − ⟨y
(0,j̃i)
i ,x(rep)

i ⟩
)
.

Before elaborating the games, we start by showing an important property. The admissibility
condition 2 in Definition 7.2 gives

∑H
i=1⟨y

(1,j̃i)
i ,x(1,ji)

i ⟩ =
∑H
i=1⟨y

(0,j̃i)
i ,x(0,ji)

i ⟩ for any j̃i ∈ [J̃i], ji ∈
[Ji]. Suppose that there exists ∅ ̸= I ′ ⊆ [H] and j′i, j

′′
i ∈ [J] so that

∑
i∈I′

⟨y(1,j̃i)
i ,x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′

i
)

i ⟩ ≠
∑
i∈I′

⟨y(1,j̃i)
i ,x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′′

i
)

i ⟩ ,

while ∑
i∈[H]\I′

⟨y(1,j̃i)
i ,x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′

i
)

i ⟩ =
∑

i∈[H]\I′

⟨y(1,j̃i)
i ,x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′′

i
)

i ⟩ .

Summing both sides give an inequality∑
i∈I′

⟨y(1,j̃i)
i ,x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′

i
)

i ⟩+
∑

i∈[H]\I′

⟨y(1,j̃i)
i ,x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′

i
)

i ⟩

̸=
∑
i∈I′

⟨y(1,j̃i)
i ,x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′′

i
)

i ⟩+
∑

i∈[H]\I′

⟨y(1,j̃i)
i ,x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,j′′

i
)

i ⟩

that contradicts condition 2 in Definition 7.2. The same can be argued w.r.t x(rep)
i . Therefore, for

each i ∈ [H], for all j̃i ∈ [J̃], ji ∈ [J], the terms{
⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩
⟨y(1,j̃i)
i ,x(rep)

i ⟩ − ⟨y
(0,j̃i)
i ,x(rep)

i ⟩
(7.11)

are constants.
From this point, in order to ease the presentation, we omit the index i from ji ∈ [Ji], j̃i ∈

[J̃i],d(̃ji), c(ji) and write j ∈ [J], j̃ ∈ [J̃],d(̃j), c(j). We describe the selective games below, starting
from G∗3, where event E is assumed true:

Game G∗3: This is the selective version of G3, assuming event E is true. For the basis matrices,
thanks to the large enough dimension we can define the entries based on all repetitions
(y(1,j̃)

i [m],y(0,j̃)
i [m])m where j̃ ∈ [J̃]. For different j̃1 ̸= j̃2 ∈ [J̃], the entries in the matrix

that depend on d(̃j1)
i will affect only the 0-entries in d(̃j2)

i , thus not creating errors, and vice
versa.

Game G∗4: Knowing (y(1,j̃)
i ,y(0,j̃)

i ,x(1,j)
i ,x(0,j)

i)j∈[J],j̃∈[J̃]
i∈[H] , we do quotients by Bi defined via

Bi := (Bi[row, col]) (7.12)

136

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

where

Bi[row, col] =

1 if row = col ≤ 2N + 3
1

y(1,j̃)
i [z]

if ∃j̃ ∈ [J], z ∈ [N] s.t.

row = col = 2N · j̃ + 3 + z ∧ y(1,j̃)
i [z] ̸= 0

1 if ∃j̃ ∈ [J], z ∈ [N] s.t.
row = col = 2N · j̃ + 3 + z ∧ y(1,j̃)

i [z] = 0
1

y(0,j̃)
i [z]

if ∃j̃ ∈ [J], z ∈ [N] s.t.

row = col = 2N · j̃ +N + 3 + z ∧ y(0,j̃)
i [z] ̸= 0

1 if ∃j̃ ∈ [J], z ∈ [N] s.t.
row = col = 2N · j̃ +N + 3 + z ∧ y(0,j̃)

i [z] = 0
0 otherwise

B′i :=
(
B-1
i

)⊤
; Bi = Bi ·Hi; B∗i = B′i ·H∗i .

The entries of the matrix take into account several conditions:

• The entries Bi[row, col] = 1, if row = col ≤ 2N + 3, fix the vectors coordinates that
we do not want to change in d(̃j)

i .

• For j̃ ∈ [J], z ∈ [N], the entries

Bi[row, col] =

Bi[row, col] = 1
y(1,j̃)

i [z]
if ∃j̃ ∈ [J], z ∈ [N] s.t.

row = col = 2N · j̃ + 3 + z ∧ y(1,j̃)
i [z] ̸= 0

Bi[row, col] = 1 if ∃j̃ ∈ [J], z ∈ [N] s.t.
row = col = 2N · j̃ + 3 + z ∧ y(1,j̃)

i [z] = 0

will change the coordinate d(̃j)
i [2N · j̃ + 3 + z] into 1 iff y(1,j̃)

i [z] ̸= 0. Dually for all
c-vectors their coordinate 2N · j̃+ 3 + z will be multiply by y(1,j̃)

i [z] ̸= 0. An analogous
computation is performed by

Bi[row, col] =

1
y(0,j̃)

i [z]
if ∃j̃ ∈ [J], z ∈ [N] s.t.

row = col = 2N · j̃ +N + 3 + z ∧ y(0,j̃)
i [z] ̸= 0

1 if ∃j̃ ∈ [J], z ∈ [N] s.t.
row = col = 2N · j̃ +N + 3 + z ∧ y(0,j̃)

i [z] = 0

but with respect to y(0,j̃)
i and for coordinates 2N · j̃ +N + 3 + z, for z ∈ [n].

Game G∗5 : In this game we perform a formal basis change to move all the values 1 from
coordinates [2N · j̃+ 4, 2N · j̃+N + 3] for all to coordinates [2N · j̃+N + 4, 2N · j̃+ 2N + 3]
of di. The basis changing matrices Bi from G∗4 to G∗5 is defined below

Bi := (Bi[row, col]) (7.13)

137

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

where

Bi[row, col] =

1 if row = col
1
r′ if ∃j̃ ∈ [J], z ∈ [N] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) ∧ y(1,j̃)
i [z] ̸= 0

0 if ∃j̃ ∈ [J], z ∈ [N] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) ∧ y(1,j̃)

i [z] = 0
−1
r′ if ∃j̃ ∈ [J], z ∈ [N] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ +N + 3 + z) ∧ y(0,j̃)
i [z] ̸= 0

0 if ∃j̃ ∈ [J], z ∈ [N] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ +N + 3 + z) ∧ y(0,j̃)

i [z] = 0
0 otherwise

B′i :=
(
B-1
i

)⊤
; Bi = Bi ·Hi; B∗i = B′i ·H∗i .

From the previous game it holds that, for j̃ ∈ [J̃], z ∈ [N],

d(̃j)
i [2N · j̃ + 3 + z] = 1 iff y(1,j̃)

i [z] ̸= 0
d(̃j)
i [2N · j̃ +N + 3 + z] = 0 ∀ z (7.14)

while for any j ∈ [J]

c(j)
i [2N · j̃ + 3 + z] = y(1,j̃)

i [z] · x(1,j)
i [m] iff y(1,j̃)

i [z] ̸= 0
c(j)
i [2N · j̃ + 3 + z] = x(1,j)

i [m] iff y(1,j̃)
i [z] = 0

c(j)
i [2N · j̃ +N + 3 + z] = y(0,j̃)

i [z] · x(0,j)
i [m] iff y(0,j̃)

i [z] ̸= 0
c(j)
i [2N · j̃ +N + 3 + z] = x(0,j)

i [m] iff y(0,j̃)
i [z] = 0 .

We again recall that the pairs (x(1,j)
i ,x(0,j)

i) (similarly (x(rep)
k,i ,x

(rep)
k,i) in c(rep)

k,i for the same
argument) in c(j)

i are already in position thanks to G2. The above formal basis change will
modify these d-vectors such that: for j̃ ∈ [J̃], z ∈ [N]

d(̃j)
i [2N · j̃ + 3 + z] = 0∀z ∈ [N] (7.15)

d(̃j)
i [2N · j̃ +N + 3 + z] = 1 iff y(0,j̃)

i [z] ̸= 0 (7.16)
d(̃j)
i [2N · j̃ +N + 3 + z] = 0 iff y(0,j̃)

i [z] = 0 (7.17)

where (7.15) comes from

Bi[row, col] =

1
r′ if ∃j̃ ∈ [J], z ∈ [N] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) ∧ y(1,j̃)
i [z] ̸= 0

0 if ∃j̃ ∈ [J], z ∈ [N] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) ∧ y(1,j̃)

i [z] = 0

,

(7.16) comes from (7.14) and

Bi[row, col] =
{−1

r′ if ∃j̃ ∈ [J], z ∈ [N] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ +N + 3 + z) ∧ y(0,j̃)

i [z] ̸= 0
,

and (7.17) comes again from (7.14) together with

Bi[row, col] =
{

0 if ∃j̃ ∈ [J], z ∈ [N] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ +N + 3 + z) ∧ y(0,j̃)

i [z] = 0
.

138

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

Temporarily until the end of this G6, the index i is put back to emphasize that ji, j̃i might
differ among different i. Accordingly, the c-vectors are changed as follows, for j ∈ [J],

c(ji)
i [2N · j̃i + 2N + 4] = τi + 1

r′

∑
j̃i∈[J̃i]

(∑
z∈[N]

cond E3

y(1,j̃i)
i [z] · x(1,ji)

i [z]− y(0,j̃i)
i [z] · x(0,ji)

i [z]

+
∑
z∈[N]

cond E2

y(1,j̃i)
i [z] · x(1,ji)

i [z]−
∑
z∈[N]

cond E1

y(0,j̃i)
i [z] · x(0,ji)

i [z]
)

= τi + 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩
)
, (7.18)

where the conditions are

(E3) y(1,j̃i)
i [z] ̸= 0 ∧ y(0,j̃i)

i [z] ̸= 0,
(E2) y(1,j̃i)

i [z] ̸= 0 ∧ y(0,j̃i)
i [z] = 0 and

(E1) y(1,j̃i)
i [z] = 0 ∧ y(0,j̃i)

i [z] ̸= 0.

This formal swapping will modify the secret sharings τi, in a given c(ji)
i , into another secret

sharing of 0 for any fixed j̃i, ji thanks to condition
H∑
i=1
⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ =
H∑
i=1
⟨y(0,j̃i)
i ,x(0,ji)

i ⟩ .

Moreover the updated τi does not depend on j̃i, ji because ⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩ is
constant for all j̃i ∈ [J̃i], ji ∈ [Ji], for any fixed i ∈ [H], thanks to the observation (7.11).
In the vectors c(rep)

k,i a similar argument can be done, because the difference being added to
τ ′k,i is 1

r′
∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)
i ,x(rep)

i ⟩ − ⟨y
(0,j̃i)
i ,x(rep)

i ⟩
)

together with the hypothesis
H∑
i=1
⟨y(1,j̃i)
i ,x(rep)

i ⟩ =
H∑
i=1
⟨y(0,j̃i)
i ,x(rep)

i ⟩ .

We will use again the observation (7.11) to conclude that the difference does not depend
on repetitions.

Game G∗6 : The game hop from G∗5 to G∗6 to undo these quotients can be defined similarly as we
have done from G∗3 → G∗4, in order to multiply back y(0,j̃i)

i into coordinates [2N · j̃i +N +
4, 2N · j̃i + 2N + 3].

The above games demonstrate relation (7.10). We now employ the complexity leveraging
argument. Let us fix t ∈ {3, 4, 5}. For u ∈ {t, t+ 1} let Advu(A) := |Pr[Gu(A) = 1]− 1/2| denote
the advantage of a ppt adversary A in game Gu. We build a ppt adversary B∗ playing against G∗u
such that its advantage Adv∗u(B∗) := |Pr[G∗u(B∗) = 1]− 1/2| equals γ · Advu(A) for u ∈ {t, t+ 1},
for some constant γ.

The adversary B∗ first guesses the values (y(1,j̃i)
i ,y(0,j̃i)

i ,x(1,ji)
i ,x(0,ji)

i) with ji ∈ [Ji], j̃i ∈
[J̃i], i ∈ [H], choose r′

$← Z∗q , random secret sharings (τi, τ ′k,i, τ̃i, τ̃ ′k,i)Hi=1 of 0 for each ji ∈
[Ji], with τi, τ

′
k,i ̸= 0 for all i. Then B∗ defines the event E that the guess is correct on

(y(1,j̃i)
i ,y(0,j̃i)

i ,x(1,ji)
i ,x(0,ji)

i)ji∈[Ji],j̃i∈[J̃i]
i∈[H] and for any ji ∈ [Ji]

τ̃i − τi = 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)
i ,x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i ,x(0,ji)

i ⟩
)

τ̃ ′k,i − τ ′k,i = 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)
i ,x(rep)

i ⟩ − ⟨y
(0,j̃i)
i ,x(rep)

i ⟩
)
.

139

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

When B∗ guesses successfully and E happens, then the simulation of A’s view in Gt is perfect.
Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E happens with some
fixed probability γ and is independent from the view of A, we have6:

Adv∗u(B∗) =
∣∣∣∣Pr[G∗u(B∗) = 1]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[E] · Pr[G∗u(B∗) = 1 | E] + Pr[¬E]

2 − 1
2

∣∣∣∣
=
∣∣∣∣γ · Pr[G∗u(B∗) = 1 | E] + 1− γ − 1

2

∣∣∣∣
(∗)= γ ·

∣∣∣∣Pr[Gu(A) = 1]− 1
2

∣∣∣∣ = γ · Advu(A) (7.19)

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gu for A, therefore
Pr[Gu(A) = 1 | E] = Pr[G∗u(B∗) = 1 | E], then we apply the independence between E and
Gu(A) = 1. Together with relation (7.10), this concludes that Pr[Gt = 1] = Pr[Gt+1 = 1] for any
fixed t ∈ {3, 4, 5}, in particular Pr[G6 = 1] = Pr[G3 = 1].

Game G7: Similar to the transition G2 to G3, we use a computational swap between [N + 1, 2N]
and [2N · j̃ +N + 4, 2N · j̃ + 2N + 3] in d(̃j)

i using (2N + 3)-randomness. We need n · J̃ ·N
DSDH instances (

r
a(̃j)
i,z

z

1
,
r
b(̃j)
i,z

z

1
,
r
c(̃j)
i,z

z

1
) in G1 where δ(̃j)

i,z := c(̃j)
i,z − a

(̃j)
i,zb

(̃j)
i,z is either 0 or

x(̃j)
i [z], for z ∈ [N], j̃ ∈ [J̃], i ∈ [n]. The security loss is 2 · n · J̃ ·N · AdvSXDH

G1,G2 (1λ).

Game G8: We redo the transitions from G1 to G2 to clean the vectors.

After arriving at G8, the vectors are computed following the interaction

A
Õu,O1

u
Õv,Ov

(
1λ, N,H,K,L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
,

the transitions are indistinguishable under SXDH, and the proof is finished.

7.4.2 Basic Construction

This section presents our basic adaptively secure FH-DMCFE construction E = (Setup,DKeyGen,
Enc,Dec) for the function class F ip, where each client encrypts a vector of length N ∈ N. As
a reminder, we refer to the beginning of Sections 7.3 as well as Chapter 3 for the notations,
inlcuding those of implicit represention for group elements and the bilinear group setting. The
notations of DPVS and the writing of their vectors with respect to the dual bases are recalled in
Section 3.3. Our adaptively secure scheme’s details are given in Figure 7.3.

Correctness. The correctness property is demonstrated as follows:

JoutKt =
n∑
i=1

ci × di =
n∑
i=1

q
⟨xi,yi⟩+ µω · t̃i

y
t =

t
n∑
i=1
⟨xi,yi⟩+ µω ·

n∑
i=1

t̃i

|

t

=
t

n∑
i=1
⟨xi,yi⟩

|

t

,

and we are using the fact that
∑n
i=1 t̃i = 0.

6This calculation (6.9) to relate Adv∗
u(B∗) to Advu(A) is the core of our complexity levaraging argument, being

built upon the previous information-theoretic game transtions and the probability of event E.

140

CHAPTER 7. FH-DMCFE 7.4. A FH-DMCFE FOR INNER PRODUCTS

Setup(1λ, 1n): Sample matrices (Bi, B
∗
i) ← DPVSGen(G, 12N ·(J̃+1)+4), for i ∈ [n], of dimensions

2N · (J̃ + 1) + 4 that specify dual orthogonal bases (Bi,B∗
i)a. Sample (t̃i)i

$← Zn
q conditioned

on
∑n

i=1 t̃i = 0. Output the public parameters pp := G, secret keys ski and the encryption
keys eki for all i ∈ [n] as follows:

ski := (b∗
i,1, . . . ,b∗

i,N , B
∗
i,N+1, b∗

i,N+2), eki :=
(
t̃i, (bi,1, . . . ,bi,N , Bi,N+1, bi,N+3)

)
DKeyGen(ski, tag-f,yi): Parse ski = (b∗

i,1, . . . ,b∗
i,N , B

∗
i,N+1, b∗

i,N+2), compute H2(tag-f)→ JµK2 and
sample πi

$← Zq. Then outputb

di =
N∑

k=1
yi[k]b∗

i,k + JµK2 ·B
∗
i,N+1 + πib∗

i,N+2 = (yi, µ, πi, 0, 0N+2N ·J̃+1)B∗
i
.

Enc(eki, tag,xi): Parse eki = (t̃i, (bi,1, . . . ,bi,N , Bi,N+1, bi,N+3)), compute H1(tag)→ JωK1 and
sample a random scalar ρi

$← Zq. Then outputc

ci =
N∑

k=1
xi[k]bi,1 + t̃i JωK1 ·Bi,N+1 + ρibi,N+3 = (xi, t̃iω, 0, ρi, 0N+2N ·J̃+1)Bi

.

Dec(d, c): Parse d := (di)i∈[n] and c := (ci)i. Compute JoutKt =
∑n

i=1 ci × di, then find and output
the discrete log out.

aFor each i ∈ [n], we denote j-th row of Bi (resp. B∗
i) by bi,j (resp. b∗

i,j). Similarly, Bi,k (respectively
B∗

i,k) denotes the k-th row of the basis changing matrix Bi (respectively B∗
i).

bThroughout the computation of di, only the hash value JµK2 ∈ G2 is used, never µ in the clear.
cThroughout the computation of ci, only the hash value JωK1 ∈ G1 is used, never ω in the clear.

Figure 7.3: FH-DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) for inner products. We work in the prime-order bilinear
group setting G = (G1,G2,Gt, g1, g2, gt, e, q) and use two full-domain hash functions H1 : Tag→ G1 and H2 : Tag→ G2. Let
J̃ = poly(λ).

Security. Theorem 7.8 states that the scheme given in Fig. 7.3 is function-hiding, one-challenge
secure against complete queries under static corruption. An unbounded number of ciphertext
repetitions is allowed, while the number of key repetitions is fixed as a parameter of the scheme.
In Section 7.4.3, we argue that most restrictions on the security model can be removed by
applying a sequence of generic lemmas.

Theorem 7.8. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) in Fig. 7.3 for the function
class F ip is one-challenge, function-hiding secure against complete queries under static corruption
in the ROM, if the SXDH assumption holds for (G1,G2).

More specifically, we let qe and qk denote the maximum number of distinct tags queried to Enc
and KeyGen, respectively. Furthermore, for i ∈ [n] and tag, tag-f ∈ Tag, we define J̃i,tag-f to be
the numbers of queries of the form KeyGen(i, tag-f, ⋆, ⋆). We require that maxi∈[n],tag-f∈Tag J̃i,tag-f ≤
J̃ , where J̃ is specified by the DMCFE scheme at Setup time. Then, for any ppt adversary A
against E, we have the following bound:

Adv1chal-pos-statfh
E,F ip,A (1λ) ≤

(
(qk + 1) · (4nJ̃N + 4) + 4N + qe + 1

)
· AdvSXDH

G1,G2 (1λ)

The proof of Theorem 7.8 follows closely the proof sketch of the selective scheme in Section 7.2.
As explained in the paragraph Problems for Adaptive Security, the main difficulty towards
adaptive security lies in enabling the steps (7.3) to (7.5) in a sequence of hybrids without
knowing ∆(b)

i and ∆(b)
ℓ,i in advance. In the DPVS setting, the transition from one hybrid to

the next corresponds exactly to an application of Lemma 7.7. Even though J̃ is fixed, it can

141

7.4. A FH-DMCFE FOR INNER PRODUCTS CHAPTER 7. FH-DMCFE

be polynomially large leading to an exponentially number of combinations of key repetitions,
this is also handled by Lemma 7.7. We refer to the high level in section 7.4.1. The full proof
of theorem 7.8 can be found in [NPS24c, Appendix A.3].

7.4.3 Upgrading Security

Given Lemmas 7.4, 7.5, and 7.6, we now generically transform our FH-DMCFE from Section 7.4.2 to
upgrade its security. Specifically, we first apply Lemma 7.4 and follow the generic IBE-based AoNE
from [CDSG+20, Section 4]. We use any adaptively secure pairing-based IBE [CLL+13, JR17]
under SXDH7 to obtain generically a DMCFE for AoNE, in order to allow incomplete queries. We
then use Lemma 7.5 to allow multiple challenges, while downgrading from function-hiding to
weak function-hiding. Finally, we apply Lemma 7.6 to re-establish full-fledged function-hiding.
The final scheme is summarized in the below corollary, with newly accomplished properties being
emphasized.

Corollary 7.9. There exists an FH-DMCFE scheme for the function class F ip that is adaptively
function-hiding secure against static corruption, while allowing unbounded repetitions for ciphertext
queries and a fixed polynomially large number of repetitions for key-generation queries, under
the SXDH assumption in the ROM.

7The seminal adaptively secure group-based (H)IBE is [Wat09] but it relies on both DDH and D-Lin.

142

Part IV

Conclusion and Future Works

143

Chapter

8
Conclusion

A Recap. As the thesis draws its conclusion, we recall here the research questions that emerge
during the preparation of this thesis:

1. Following the introduction of (D)MCFE in the seminal paper [CDG+18a], all follow-
up studies on (D)MCFE, for instance [CDG+18b, ABKW19, ABG19, LT19, CDSG+20,
AGT21b], administered an admissibility condition and restricted particularly adversaries
to asking the challenge components x(0)

i = x(1)
i in case of a corrupted i. Can we relax

this constraint, which will lead to a stronger security model for (D)MCFE, as hinted
in [CDG+18a]?

2. All cited DDFE schemes [CDSG+20, AGT21b, ATY23a, Ngu24] attain only selective
security under static corruption. How far can we push for adaptive security of DDFE?

3. Regarding the attribute-based access control over functional keys, existing works can go as
far as MIFE, for inner products in [ACGU20] and for attribute-weighted sums in [ATY23a].
How further can we integrate access control into the multi-user setting, e.g. starting from
MCFE and potentially to DDFE?

4. All cited DDFE schemes [CDSG+20, AGT21b, ATY23a, Ngu24] rely on group-based
assumptions and do not provide post-quantum security. The only multi-user FE scheme in
the post-quantum regime comes from the DMCFE of [LT19] for inner products and relies
on the Learning with Error (LWE) assumption. How far can we push for post-quantum
security for DDFE?

5. The security against repetitions on key tags is either excluded in the FH-IP-DDFE
from [AGT21b, Ngu24], or not explicitly considered in [CDSG+20] for IP-DDFE and
in [ATY23a, Ngu24] for AWS-DDFE. How can we achieve security against repetitions for
both encryption and key-generation queries in the FH-DDFE and/or DDFE with access
control setting?

The main first two chapters of this thesis include Chapter 4 that resolves partially question 3 at
the level of MCFE, meanwhile Chapter 5 resolves question 1 at the level of (D)MCFE. Combiningly,
Chapter 6 improves the resolution of question 3, while integrating the resolution of question 1 in
the access control context, at the level of MCFE. These current results fall short of giving full
answers for question 5 at the level of MCFE, with strong admissibility and access control.

The later chapter of the thesis includes Chapter 7 that resolves question 2 of adaptive security
for FH-secure at the level of DMCFE, and partially question 5 of repetitions for FH-security at
the level of DMCFE. In a submission that is not presented in this thesis [NPS24a], our results
provide an affirmative answer to questions 2, 4 and 5 in the case of IP-DDFE. Moving on to
FH-IP-DDFE, the work of [NPS24a] also provides an affirmative answer to question 2 and
partially resolves question 5. Finally, regarding DDFE for AB-AWS, the foregoing work thereby
resolves question 3 and partially question 2.

Independently, other research directions of FE in the multi-user setting are explored in ongoing
works, including CCA security for MCFE [NPP24a] or traceability in MCFE [DMN+24].

CHAPTER 8. CONCLUSION

Future Works. The almost obvious remaining work to continue concerns the above questions,
those that are partially resolved, those that are only up to (D)MCFE and not yet DDFE, those
that are not yet FH, or those that are only to compute inner products and not yet AWS. Needless
to say, more unexpected questions may arise, which do not relate to any of the above. At the
time of writing this thesis, there are a few examples of such unexpected questions:

1. (From MIFE to MCFE) The cornerstone of this thesis is MCFE and its generalization. It is
known that under a strong security guarantee, i.e. semantic security holds even when an
adversary can obtain different ciphertexts on the same (i, tag), one can obtain a MIFE for
the same function class from a MCFE. About the other direction, it is worth recalling that
the work [ACGU20] hints at going to MCFE from MIFE with access control: tags can be
used as specific attributes, and tags can be embedded in policies to automatically obtain
multi-client settings. As we have elaborated in Chapter 4, this argument seems formally
valid when considering the general form of MIFE and MCFE. However, when considering
concrete classes of functions, it is unlikely to be efficiently feasible.

For instance, considering the class to compute inner products, an attempt to go all the
way from a single client IPFE to MIFE for inner products resembles the below:

IPFE (1)→ secret-key IPFE (2)→ IP-MIFE (3)→ IP-MIFE w/ Tag→ ??→ IP-MCFE

where step (1) privatizes the public key of IPFE into some msk for encryption, assuming
the keys can be decomposed for encrypting slots i independently1 step (2) consists of
decomposing the msk into multiple encryption keys eki, step (3) allows treating tags as
simple as relying on the ROM during encryption (for deriving the encryption randomness,
for example). Unfortunately, we find ourselves stuck at ?? where the crux is to handle
corruption, which is an important aspect of MCFE. After step (2), towards MCFE each eki
will be assigned to a client i. However, the decomposing step (2) seems unlikely to make
all these eki independent, as they are still linked implicitly as msk and intially share some
secret randomness as part of the starting IPFE. Corrupting eki leaks the shared secret
randomness that connects them all, and breaks the security. There might be a totally
different approach to solve the matter, but it stays elusive at the end of this thesis.

2. (Basing MCFE on Assumptions other than DDH and LWE) The main chapters of this thesis
do not detail our LWE-based DMCFE/DDFE for inner products from [NPS24a]. We recall
that our final LWE-based DDFE for inner products is the first IP-DDFE that relies on an
assumption other than DDH. One main advantage of LWE is its widely-believed post-
quantum security, and preferably one will look also into other widely-believed post-quatum
assumptions for the sake of varieties and avoiding “putting all eggs in one basket”. In
the following, we pay attention to the particular family of code-based assumptions, which
includes the Learning Parity with Noise (LPN) that recently receives lots of attention. At the
time of writing this thesis other candidates are not yet discovered. We speculate one reason
may lie in the technique that is used for almost all existing LWE-based (D)MCFE/DDFE,
which is introduced in the celebrated work by Libert and Titiu [LT19]. More specifically,
it is linked to the way tags are handled in these LWE-based (D)MCFE schemes. In a
simplified manner, the public parameters in the MCFE of [LT19] contains Gentry-Sahai-
Waters ciphertexts [GSW13] of 0 and 1 that are (A0,i,A1,i)i. Using a secret encryption
key si, the encryption of input xi under some tag tag results in

cti := G0 · xi + Atag · si + error

1This holds for many IPFE schemes, e.g. the famous DDH-based IPFE from [ALS16] has this property.

146

CHAPTER 8. CONCLUSION

where G0 is some gadget matrix that allows decrypting with a trapdoor, and Atag is the
homomorphic product of GSW ciphertexts Atag[i],i that are indexed by the bits tag[i]2.
Decryption by a key

∑
i si · yi with respect to a function of parameters (yi)i proceeds by

computing back Atag from tag, then getting

∑
i

cti · yi −Atag ·
(∑

i

si · yi

)
= G0 · (

∑
i

xi · yi) + ẽrror

and the trapdoor of G0 allows decrypting to
∑
i xi · yi. Since to our knowledge we do

not know analogues of homomorphic techniques for code-based cryptography, the above
blueprint from [LT19] does not seem to generalize immediately to the code-based setting.
It might be worth mentionning that in the code-based cryptography setting, coming up
with new techniques for handling tags is not only beneficial to the domain of (D)MCFE but
also to other domains whose primitives may need to deal with tags, e.g. some advanced
tag-based version of lossy trapdoor functions3 for which the recent groundbreaking work on
code-based lossy cryptography [DJ24] also leaves as future works.

2More precisely, the tag is processed by an admissible hash function before being used for the homomorphic
GSW evaluation.

3These tag-based versions can be found in [LSSS17, BL17, LNP22] and they also rely on GSW-style homomorphic
evaluation, or if not on techniques from preimage sampling [GPV08, MP12] that is also not known in code-based
cryptography.

147

CHAPTER 8. CONCLUSION

148

Bibliography

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David
Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
214–234. Springer, Heidelberg, December 2013. 25

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple functional encryption schemes for inner products. In Jonathan Katz,
editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg,
March / April 2015. 4, 10

[ABDP16] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better
security for functional encryption for inner product evaluations. Cryptology ePrint
Archive, Report 2016/011, 2016. https://eprint.iacr.org/2016/011. 40

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to
multi-client inner-product functional encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–582.
Springer, Heidelberg, December 2019. 4, 10, 12, 13, 14, 18, 19, 62, 64, 65, 88, 116,
122, 145

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner.
Decentralizing inner-product functional encryption. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–157. Springer,
Heidelberg, April 2019. 4, 10, 12, 13, 14, 19, 62, 64, 65, 88, 116, 122, 145

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 480–497. Springer,
Heidelberg, February 2010. 70

[ABP+17] Shweta Agrawal, Sanjay Bhattacherjee, Duong Hieu Phan, Damien Stehlé, and
Shota Yamada. Efficient public trace and revoke from standard assumptions:
Extended abstract. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2277–2293. ACM Press,
October / November 2017. 18, 68

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu.
Multi-input functional encryption for inner products: Function-hiding realizations
and constructions without pairings. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627. Springer,
Heidelberg, August 2018. 12, 22, 94, 96, 97, 126

[ACGU20] Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product
functional encryption with fine-grained access control. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS,

https://eprint.iacr.org/2016/011

BIBLIOGRAPHY BIBLIOGRAPHY

pages 467–497. Springer, Heidelberg, December 2020. 6, 12, 14, 15, 16, 34, 40, 41,
47, 52, 53, 97, 100, 145, 146

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input
inner-product functional encryption from pairings. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,
pages 601–626. Springer, Heidelberg, April / May 2017. 64, 94, 96, 97

[AGT21a] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption from pairings. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 208–238, Virtual Event,
August 2021. Springer, Heidelberg. 6, 12, 62, 94, 96, 97, 117

[AGT21b] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional
encryption. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume
13043 of LNCS, pages 224–255. Springer, Heidelberg, November 2021. 4, 10, 13,
14, 15, 17, 19, 21, 22, 23, 62, 65, 88, 122, 124, 145

[AGT21c] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional
encryption. In Theory of Cryptography. Springer International Publishing, 2021. 93

[AGT22] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic
functional encryption: Stronger security, broader functionality. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS,
pages 711–740. Springer, Heidelberg, November 2022. 6, 12, 34, 62, 88, 94, 96, 97,
117

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from
compact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer,
Heidelberg, August 2015. 4, 10, 94, 96, 97

[AKM+22] Shweta Agrawal, Fuyuki Kitagawa, Anuja Modi, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa. Bounded functional encryption for turing machines:
Adaptive security from general assumptions. Cryptology ePrint Archive, Report
2022/316, 2022. https://ia.cr/2022/316. 16

[ALdP11] Nuttapong Attrapadung, Benôit Libert, and Elie de Panafieu. Expressive key-policy
attribute-based encryption with constant-size ciphertexts. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of
LNCS, pages 90–108. Springer, Heidelberg, March 2011. 4, 10

[ALS16] Shweta Agrawal, Benôit Libert, and Damien Stehlé. Fully secure functional
encryption for inner products, from standard assumptions. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Heidelberg, August 2016. 4, 10, 40, 43, 66, 146

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada.
Functional encryption for Turing machines with dynamic bounded collusion from
LWE. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume
12828 of LNCS, pages 239–269, Virtual Event, August 2021. Springer, Heidelberg.
16

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption
and indistinguishability obfuscation from degree-5 multilinear maps. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,

150

https://ia.cr/2022/316

BIBLIOGRAPHY BIBLIOGRAPHY

volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May 2017. 4,
10, 40

[ATY23a] Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-input
FE (and more) for attribute-weighted sums. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages
464–497. Springer, Heidelberg, August 2023. 6, 12, 13, 14, 15, 20, 21, 47, 59, 88,
90, 91, 92, 97, 114, 116, 145

[ATY23b] Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-input
fe (and more) for attribute-weighted sums. In Advances in Cryptology - IACR
CRYPTO 2023. Springer-Verlag, 2023. https://eprint.iacr.org/2023/1191.
94

[BBL17] Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure inner-
product functional encryption from projective hash functions. In Serge Fehr, editor,
PKC 2017, Part II, volume 10175 of LNCS, pages 36–66. Springer, Heidelberg,
March 2017. 4, 10, 24, 40

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain
Gay. Practical functional encryption for quadratic functions with applications
to predicate encryption. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer, Heidelberg,
August 2017. 4, 10, 40

[Bei96] Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD
thesis, Technion - Israel Institute of Technology, Haifa, Israel, June 1996. https:
//www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf. 31

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer, Heidelberg, August 2001. 4, 10, 62

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based
encryption without pairings. In 48th FOCS, pages 647–657. IEEE Computer Society
Press, October 2007. 4, 10, 62

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product
encryption. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 470–491. Springer, Heidelberg, November / December
2015. 22

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
27–35. Springer, Heidelberg, August 1990. 32

[BL17] Xavier Boyen and Qinyi Li. All-but-many lossy trapdoor functions from lattices
and applications. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part III, volume 10403 of LNCS, pages 298–331. Springer, Heidelberg, August 2017.
147

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984. 4, 10

151

https://eprint.iacr.org/2023/1191
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf
https://www.cs.bgu.ac.il/~beimel/Papers/thesis.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[BO13] Mihir Bellare and Adam O’Neill. Semantically-secure functional encryption:
Possibility results, impossibility results and the quest for a general definition.
In Michel Abdalla, Cristina Nita-Rotaru, and Ricardo Dahab, editors, CANS 13,
volume 8257 of LNCS, pages 218–234. Springer, Heidelberg, November 2013. 70

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006. 122

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
253–273. Springer, Heidelberg, March 2011. 4, 10, 12, 19, 21, 62, 88, 89, 93, 97

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190.
IEEE Computer Society Press, October 2015. 4, 10

[CDG+18a] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 703–732. Springer, Heidelberg, December 2018. 12, 13, 14,
16, 17, 18, 19, 21, 24, 40, 52, 53, 62, 64, 65, 66, 67, 69, 70, 88, 89, 90, 93, 94, 95,
99, 116, 122, 145

[CDG+18b] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Multi-client functional encryption with repetition for inner product.
Cryptology ePrint Archive, Report 2018/1021, 2018. https://eprint.iacr.org/
2018/1021. 4, 10, 12, 14, 59, 62, 64, 65, 88, 94, 145

[CDSG+20] Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Dynamic decentralized functional encryption. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 747–775. Springer, Heidelberg, August 2020. 4, 10, 12, 13, 14, 15, 18, 19, 23,
53, 62, 64, 65, 67, 69, 70, 81, 83, 88, 94, 122, 124, 125, 142, 145

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter
IBE and signatures via asymmetric pairings. In Michel Abdalla and Tanja Lange,
editors, PAIRING 2012, volume 7708 of LNCS, pages 122–140. Springer, Heidelberg,
May 2013. 142

[CLT18] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure
unrestricted inner product functional encryption modulo p. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 733–764. Springer, Heidelberg, December 2018. 4, 10, 40

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Bahram Honary, editor, 8th IMA International Conference on Cryptography
and Coding, volume 2260 of LNCS, pages 360–363. Springer, Heidelberg, December
2001. 4, 10, 62

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption
for inner product with full function privacy. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of
LNCS, pages 164–195. Springer, Heidelberg, March 2016. 22

152

https://eprint.iacr.org/2018/1021
https://eprint.iacr.org/2018/1021

BIBLIOGRAPHY BIBLIOGRAPHY

[DDM17] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Strongly full-hiding inner
product encryption. Theoretical Computer Science, 2017. 22

[DJ24] Quang Dao and Aayush Jain. Lossy cryptography from code-based assumptions.
In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology – CRYPTO
2024, Cham, 2024. Springer Nature Switzerland. 147

[DMN+24] Thanh Do, Truong Mac, Ky Nguyen, Duong Hieu Phan, and Huy Vu. Traceable
multi-client functional encryption, 2024. Work in wrogress. 25, 145

[DOT18] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded)
multi-input inner product functional encryption from the k-Linear assumption. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of
LNCS, pages 245–277. Springer, Heidelberg, March 2018. 12, 22, 64, 94, 96, 97

[DP23] Pratish Datta and Tapas Pal. Decentralized multi-authority attribute-based inner-
product FE: Large universe and unbounded. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 587–621.
Springer, Heidelberg, May 2023. 88

[DPP20] Xuan Thanh Do, Duong Hieu Phan, and David Pointcheval. Traceable inner
product functional encryption. In Stanislaw Jarecki, editor, CT-RSA 2020, volume
12006 of LNCS, pages 564–585. Springer, Heidelberg, February 2020. 25

[dPP22] Paola de Perthuis and David Pointcheval. Two-client inner-product functional
encryption with an application to money-laundering detection. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
725–737. ACM Press, November 2022. 12

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147.
Springer, Heidelberg, August 2013. 27

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness
encryption: Registered ABE, flexible broadcast, and more. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS,
pages 498–531. Springer, Heidelberg, August 2023. 6, 11

[Gay20] Romain Gay. A new paradigm for public-key functional encryption for degree-2
polynomials. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 95–120. Springer,
Heidelberg, May 2020. 4, 6, 10, 12, 40, 117

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input
functional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg,
May 2014. 5, 11, 12, 13, 33, 62, 88, 89, 93, 94, 96, 97, 98

[GKL+13] S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou.
Multi-input functional encryption. Cryptology ePrint Archive, Report 2013/774,
2013. https://eprint.iacr.org/2013/774. 5, 11, 12, 13, 62

153

https://eprint.iacr.org/2013/774

BIBLIOGRAPHY BIBLIOGRAPHY

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor
tracing with embedded identities. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part II, volume 11892 of LNCS, pages 149–179. Springer, Heidelberg,
December 2019. 25

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984. 4, 10

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988. 4, 10

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design (extended
abstract). In 27th FOCS, pages 174–187. IEEE Computer Society Press, October
1986. 4, 10

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987. 4, 10

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages
89–98. ACM Press, October / November 2006. Available as Cryptology ePrint
Archive Report 2006/309. 4, 10

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008. 147

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92. Springer, Heidelberg, August 2013. 146

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015. 4, 10

[JR17] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear
subspaces. Journal of Cryptology, 30(4):1116–1156, October 2017. 142

[KKS19] Sungwook Kim, Jinsu Kim, and Jae Hong Seo. A new approach to practical function-
private inner product encryption. Theoretical Computer Science, 783:22–40, 2019.
22

[KLM+18] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J.
Wu. Function-hiding inner product encryption is practical. In Dario Catalano
and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 544–562.
Springer, Heidelberg, September 2018. 22

[KNR24] Julia Kastner, Ky Nguyen, and Michael Reichle. Pairing-Free Blind Signatures from
Standard Assumptions in the ROM. In Advances in Cryptology - IACR CRYPTO
2024, 2024. https://ia.cr/2023/1810. 26

154

https://ia.cr/2023/1810

BIBLIOGRAPHY BIBLIOGRAPHY

[LAKWH22] Fucai Luo, Saif Al-Kuwari, Haiyan Wang, and Weihong Han. Generic construction
of trace-and-revoke inner product functional encryption. In Vijayalakshmi Atluri,
Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors,
ESORICS 2022, Part I, volume 13554 of LNCS, pages 259–282. Springer, Heidelberg,
September 2022. 25

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.
4, 6, 10, 12, 22, 40, 116

[LLW21] Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. New lattice two-stage sampling
technique and its applications to functional encryption - stronger security and
smaller ciphertexts. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 498–527. Springer,
Heidelberg, October 2021. 16, 20

[LNP22] Benôit Libert, Ky Nguyen, and Alain Passelègue. Cumulatively All-Lossy-But-One
Trapdoor Functions from Standard Assumptions. In SCN 2022 - Proceedings of the
13th Conference on Security in Communication Networks, September 2022. 26, 147

[LSSS17] Benôit Libert, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. All-but-many lossy
trapdoor functions and selective opening chosen-ciphertext security from LWE. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume
10403 of LNCS, pages 332–364. Springer, Heidelberg, August 2017. 147

[LT19] Benôit Libert and Radu Titiu. Multi-client functional encryption for linear functions
in the standard model from LWE. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 520–551. Springer,
Heidelberg, December 2019. 4, 10, 12, 13, 14, 18, 19, 24, 52, 53, 62, 65, 88, 116,
122, 145, 146, 147

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016. 126

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012. 147

[Ngu24] Duy Nguyen. Dynamic decentralized functional encryptions from pairings in
the standard model. Cryptology ePrint Archive, Paper 2024/580, 2024. https:
//eprint.iacr.org/2024/580. 6, 12, 13, 14, 15, 23, 122, 145

[NPP22a] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional
encryption with fine-grained access control. In Shweta Agrawal and Dongdai Lin,
editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 95–125. Springer,
Heidelberg, December 2022. 6, 12, 15, 20, 21, 31, 41, 45, 48, 49, 50, 55, 57, 58, 88,
89, 90, 91, 92, 97, 100, 103

[NPP22b] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional
encryption with fine-grained access control. Cryptology ePrint Archive, Report
2022/215, 2022. https://eprint.iacr.org/2022/215. 41, 48, 50, 55, 57, 58

155

https://eprint.iacr.org/2024/580
https://eprint.iacr.org/2024/580
https://eprint.iacr.org/2022/215

BIBLIOGRAPHY BIBLIOGRAPHY

[NPP23a] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Optimal security notion for
decentralized multi-client functional encryption. In Mehdi Tibouchi and Xiaofeng
Wang, editors, ACNS 23, Part II, volume 13906 of LNCS, pages 336–365. Springer,
Heidelberg, June 2023. 4, 10, 13, 16, 17, 19, 20, 21, 63, 71, 73, 74, 88, 89, 90, 91,
94, 103, 122, 156

[NPP23b] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Optimal security notion for
decentralized multi-client functional encryption. Cryptology ePrint Archive, Paper
2023/435, 2023. https://eprint.iacr.org/2023/435. Full version of [NPP23a].
63, 66, 79, 81, 83

[NPP24a] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Chosen-ciphertext security
for multi-client functional encryption: Definitions and constructions, 2024. Work
in wrogress. 25, 145

[NPP24b] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional
encryption with public inputs and strong security. Cryptology ePrint Archive,
Paper 2024/740, 2024. https://eprint.iacr.org/2024/740. 6, 12, 13, 19, 31,
89, 106, 108

[NPS22] Ky Nguyen, David Pointcheval, and Robert Schädlich. Dynamic decentralized
functional encryption with strong security. Cryptology ePrint Archive, Paper
2022/1532, 2022. https://eprint.iacr.org/2022/1532. 113, 114

[NPS24a] Ky Nguyen, David Pointcheval, and Robert Schädlich. Dynamic decentralized
functional encryption:generic constructions with strong security, 2024. Work in
submission. 12, 24, 145, 146

[NPS24b] Ky Nguyen, David Pointcheval, and Robert Schädlich. Decentralized multi-client
functional encryption with strong security. IACR Communications in Cryptology,
1(2), 2024. 4, 6, 10, 12, 22, 117, 125

[NPS24c] Ky Nguyen, David Pointcheval, and Robert Schädlich. Decentralized multi-client
functional encryption with strong security. Cryptology ePrint Archive, Paper
2024/764, 2024. 13, 24, 117, 121, 125, 126, 142

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption
with non-monotonic access structures. In Peng Ning, Sabrina De Capitani di
Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages 195–203. ACM
Press, October 2007. 4, 10

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer, Heidelberg, August
2010. 15, 18, 22, 43, 45

[OT12a] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding
(hierarchical) inner product encryption. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608.
Springer, Heidelberg, April 2012. 18, 22, 43, 45

[OT12b] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-
product and attribute-based encryption. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 349–366. Springer, Heidelberg,
December 2012. 4, 10, 15, 18, 22, 43, 45, 50, 57

156

https://eprint.iacr.org/2023/435
https://eprint.iacr.org/2024/740
https://eprint.iacr.org/2022/1532

BIBLIOGRAPHY BIBLIOGRAPHY

[PD21] Tapas Pal and Ratna Dutta. Attribute-based access control for inner product
functional encryption from LWE. In Patrick Longa and Carla Ràfols, editors,
LATINCRYPT 2021, volume 12912 of LNCS, pages 127–148. Springer, Heidelberg,
October 2021. 16, 20

[QLH+24] Xinyuan Qian, Hongwei Li, Meng Hao, Guowen Xu, Haoyong Wang, and Yuguang
Fang. Decentralized multi-client functional encryption for inner product with
applications to federated learning. IEEE Transactions on Dependable and Secure
Computing, 2024. 13

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979. 32

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53.
Springer, Heidelberg, August 1984. 4, 10, 62

[SV23] Elaine Shi and Nikhil Vanjani. Multi-client inner product encryption: Function-
hiding instantiations without random oracles. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 622–651.
Springer, Heidelberg, May 2023. 4, 6, 10, 12, 22, 23, 125

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer,
Heidelberg, May 2005. 4, 10, 12, 19, 62

[TAO16] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional
encryption for inner-product values with full-hiding security. In Matt Bishop and
Anderson C. A. Nascimento, editors, ISC 2016, volume 9866 of LNCS, pages
408–425. Springer, Heidelberg, September 2016. 22

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input
and function-hiding constructions. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 459–488. Springer,
Heidelberg, December 2019. 22, 94, 96, 97

[Tom20] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input
and function-hiding constructions. Theoretical Computer Science, 833:56–86, 2020.
22

[Üna20] Akin Ünal. Impossibility results for lattice-based functional encryption schemes.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 169–199. Springer, Heidelberg, May 2020. 23

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, August 2009. 142

[Wee21] Hoeteck Wee. Broadcast encryption with size N1/3 and more from k-lin. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 155–178, Virtual Event, August 2021. Springer, Heidelberg. 6, 11, 40

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive
lattice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer,
Heidelberg, May / June 2022. 6, 11

157

BIBLIOGRAPHY BIBLIOGRAPHY

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November
1982. 4, 10

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986. 4, 10

158

MOTS CLÉS

cryptologie ⋆ vie privée ⋆ cybersecurité

RÉSUMÉ

Avec la généralisation de TLS sur le web, la confidentialité des échanges s’est renforcée. Mais cela a du même
coup ouvert de nouvelles voies aux acteurs malveillants pour attaquer directement les machines individuelles via leur
navigateurs, en contournant tous les dispositifs d’analyse de flux, puisque tout transite dans un tunnel chiffré. Ainsi, pour
détecter ou empêcher les attaques, nombre de systèmes opèrent une rupture de flux chiffré pour continuer à analyser
les paquets en clair, mettant ainsi à mal la confidentialité. Cette thèse va étudier les mécanismes cryptographiques
permettant de garantir la confidentialité des données, tout en permettant des analyses pour garantir la sécurité des
usagers et des systèmes. Il s’agira pour cela d’adapter le chiffrement fonctionnel ou le chiffrement à base d’attributs,
pour permettre aux sondes d’extraire les seules informations utiles à des fins de cybersécurité.
Cette thèse se focalise sur le chiffrement fonctionnel avec plusieurs utilisateurs, en particulier où des clients
peuvent individuellement chiffrer leurs données partielles, ou des senders peuvent engendrer individuellement leur clé
fonctionnelle partielle. Ces chiffrés partiels ou clés partielles peuvent être combinés plus tard, si et seulement s’ils
partagent un tag commun, e.g. un horodatage. Nous obtenons des résultats par rapport à la notion de sécurité du
chiffrement fonctionnel dans ce cadre, avec à la fois de nouvelles définitions et de nouvelles constructions. D’une part,
nous proposons un cadre pour définir le chiffrement fonctionnel multi-client avec un contrôle d’accès fin sur les clés de
déchiffrement, qui est généralisé au cas d’une classe de fonctions ayant des informations publiques lors du chiffrement.
D’autre part, nous examinons à nouveau le modèle de sécurité du chiffrement fonctionnel multi-client décentralisé et
raffinons ses contraintes existantes. Finalement, nour construisons des schémas concrets à l’égard de la classe de
fonctions pour calculer les produits scalaires, en exploitant les espaces vectoriels duaux avec couplages dans les groupes
bilinéaires.

ABSTRACT

With the generalisation of TLS over the Web, the confidentiality of communications has been reinforced. However, this
also led to new attack vectors for adversarial agents to attack directly the individual machines via their browsers, while
bypassing all the tools for data-flow analysis, because everything is transmitted through an encrypted channel. Therefore,
in order to detect or prevent the attacks, many systems operate by stopping the encrypted channel and continuing to
analyse the data packets in the clear, which thus affects badly the confidentiality. This thesis is going to study the
cryptographic mechanisms that allow guaranteeing the confidentiality of data, at the same time permitting the analysis to
ensure the security of the users and systems. This will require adapting the techniques of functional encryption (FE) or
attribute-based encryption (ABE), which enable the monitors to extract only the useful information for the cybersecurity
purposes.
The main setting of our studies is FE with multiple users, in particular where we allow multiple clients to independently
encrypt their partial data, or multiple senders to independently generate their partial functional decryption keys. These
partial ciphertexts or partial keys can be later jointly combined, only if they are associated to some identical tag, e.g.
a timestamp. We obtain various results with respect to the security notions of FE in this setting, both definitionally
and constructively. On one hand, we give a definitional framework for multi-client FE with fine-grained access control
over keys, which is furthermore generalized to function classes that authorize some auxiliary public inputs at the time
of encryption. On the other hand, we revisit the widely used security model of decentralized multi-client FE and refine
existing unnatural constraints of the model. Last but not least, we provide concrete constructions in regards of the
particular function class for computing inner products, by leveraging the power of dual pairing vector spaces in the bilinear
group setting.

KEYWORDS

cryptography ⋆ privacy ⋆ cybersecurity

	Résumé
	Abstract
	Acknowledgments
	I Introduction and Preliminaries
	Introduction en Français
	Motivations
	Mode d'Emploi

	Introduction
	Context and Motivations
	Research Questions
	Contributions
	MCFE with Access Control
	Strong Admissibility
	MCFE: Upgrades
	FH-DMCFE
	Other Contributions

	Preliminaries
	Notations
	Hardness Assumptions
	DPVS
	LSSS
	Cryptographic Primitives
	Key-policy Attribute-Based Encryption (KP-ABE)
	Functional Encryption (FE)
	Multi-Input Functional Encryption (MIFE)

	II Security Models of Multi-Client Functional Encryption: Access Control and Stronger Admissibility
	MCFE with Access Control
	Introduction
	Technical Overview
	Formalizing Access Control in Functional Encryption
	Adaptively Secure Single-Client Construction
	The ``Duplicate-and-Compress'' Technique

	IPFE for LSSS
	IP-MCFE for LSSS
	Definitions
	Construction
	Adaptive Security
	Revisiting MIFE in the Standard Model

	DMCFE Security
	Introduction
	Technical Overview
	Motivations for a Refinement on Admissibility
	Towards a New Admissibility Condition under Separated Corruption of Keys
	Optimality of the New Admissibility: A Conceptual Challenge
	DMCFE for Inner Products with Refined Security Model

	Strong Admissibility
	Optimality of Admissibility as per Definition 5.4

	IP-DMCFE with Stronger Security
	Basic Construction
	Adaptive Security against Incomplete Queries and Static Corruptions of Secret Keys
	Constructions with Stronger Security against Incomplete Queries

	III Further MCFE Security Extension
	MCFE: Upgrades
	Introduction and Motivation
	Technical Overview
	MCFE with Public Inputs
	Definitions
	Implications between Notions: MCFE, MIFE, and more

	AB-IP MCFE
	Definitions
	Extension to Sub-vectors
	Upgrading Security

	FH-DMCFE
	Introduction
	Overview: Selective Case
	More Preliminaries
	A FH-DMCFE for Inner Products
	Swapping Lemma
	Basic Construction
	Upgrading Security

	IV Conclusion and Future Works
	Conclusion

