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Trees Triangulations Minimal factorizations

Questions: minimal factorizations

Let (1, 2, . . . ,n) be the n-cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into n- 1 transpositions).

y Question:

#Mn =?

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?
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Trees Triangulations Minimal factorizations

General framework

Let Xn be a set of combinatorial objects of “size” n

(permutations, partitions,
graphs, functions, paths, matrices, etc.).

Goal: study Xn.

y Find the cardinality of Xn.

(bijective methods, generating functions)

y Understand the typical properties of Xn. Let Xn be an element of Xn

chosen uniformly at random. What can be said of Xn?

To answer this question, a possibility is to find a continuous object X
such that Xn ! X as n ! 1.
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Trees Triangulations Minimal factorizations

What is it about?

Let (Xn)n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

Xn �!
n!1

X.

Several uses:y From the discrete to the continuous: if a certain property P is satisfied by
all the Xn and passes through the limit, X satisfies P.

y From the continuous to the discrete: if a certain property P is satisfied by
X and passes through the limit, Xn “roughly” satisfies P for n large.

y Universality: if (Yn)n>1 is another sequence of objects converging to X,
then Xn and Yn “roughly” have the same properties for n large.
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Trees Triangulations Minimal factorizations

What is it about?

Let (Xn)n>1 be a sequence of “discrete” objects converging to a “continuous”
object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (Z,d) (complete
separable).y What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E [
F(Xn)] �!

n!1
E [

F(X)]

for every continuous bounded function F : Z ! R.
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Trees Triangulations Minimal factorizations

Outline

I. Trees

II. Triangulations

III. Minimal factorizations
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Trees Triangulations Minimal factorizations

Random trees

Motivations:

y Computer science: data structures, analysis of algorithms, networks, etc.

y Biology: genealogical and phylogenetical trees, etc.

y Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections,
etc.

y Probability: trees are elementary pieces of various models of random
graphs, having rich probabilistic properties.

Igor Kortchemski Large discrete random structures 7 / -i
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Trees Triangulations Minimal factorizations

Plane trees

Let Xn be the set of all plane trees with n vertices.

Figure: Two different plane trees

y Question:

#Xn = 1
n

�2n-2
n-1

�
.

y Question:

What does a large typical plane tree look like?

Igor Kortchemski Large discrete random structures 8 / -i
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Trees Triangulations Minimal factorizations
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Trees Triangulations Minimal factorizations

Bienaymé–Galton–Watson trees

Let µ be a probability on Z+ = {0, 1, 2, . . .} with
P

i iµ(i) 6 1 and µ(1) < 1.

A
Bienaymé–Galton–Watson tree with offspring distribution µ is a random plane
tree such that:

1. the root has a random number of children distributed according to µ;
2. then, these children each have an independent random number of children

distributed as µ, and so on.

This happens with probability µ(0)3µ(2)2.

y If µ(i) = 1
2i+1 for i > 0, a BGW tree conditioned on having n vertices

follows the uniform distribution on the set of all plane trees with n vertices!

Igor Kortchemski Large discrete random structures 10 / -i
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Trees Triangulations Minimal factorizations

Coding a tree by its contour function
Code a tree ⌧ by its contour function C(⌧):
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Trees Triangulations Minimal factorizations

Coding a tree by its contour function

Knowing the contour function, it is easy to reconstruct the tree:
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Trees Triangulations Minimal factorizations

Scaling limits (finite variance)
Let µ be a critical (

P
i>0 iµ(i) = 1) offspring distribution having finite positive

variance �

2. Let tn be a random BGW tree conditioned on having n vertices.

Theorem (Aldous ’93)

We have: ✓
1p
n

C2nt(tn)

◆

06t61

(d)�!
n!1

✓
2

�

· (t)

◆

06t61

,

where is the normalized Brownian excursion.

y Consequence 2: for every " > 0,

P (
there exists a vertex of tn with 3 grafted subtrees of sizes > "n

) ! 0.
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Let µ be a critical (

P
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2. Let tn be a random BGW tree conditioned on having n vertices.

Theorem (Aldous ’93)
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Remarks

y The function codes a “continuous” tree T , called the Brownian
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Trees Triangulations Minimal factorizations

Universality

The Brownian continuum random tree is the scaling limit of:

I different families of trees: non-plane trees (Marckert & Miermont,
Panagiotou & Stufler, Stufler), Markov-branching trees (Haas &
Miermont), cut-trees (Bertoin & Miermont).

I different families of tree-like structures: stack triangulations (Albenque &
Marckert), graphs from subcritical classes (Panagiotou, Stufler & Weller),
dissections (Curien, Haas & K), various maps (Janson & Stefánsson,
Bettinelli, Caraceni, K & Richier).
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I. Trees

II. Triangulations

III. Minimal factorizations
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Trees Triangulations Minimal factorizations

Triangulations

Let Xn be the set of all triangulations of the polygon whose vertices are
e

2i⇡j
n (j = 0, 1, . . . ,n- 1).

Figure: A triangulation of X10.

y Question:

#Xn = 1
n-2

�2n-4
n-3

�
.

y Question:

What does a large typical triangulation look like?
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Trees Triangulations Minimal factorizations

Typical triangulations
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Trees Triangulations Minimal factorizations

What space for triangulations?
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Trees Triangulations Minimal factorizations

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d).

If

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

are the r-neighborhoods of X and Y, we set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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Trees Triangulations Minimal factorizations

Theorem (Aldous ’94)

For n > 3, let Tn be a uniform triangulation with n vertices.

Then there exists
a random compact subset L( ) of the unit disk such that

Tn
(d)���!

n!1
L( ),

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L( ) is called the Brownian triangulation (coded by the Brownian excursion).

y Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L( ).

It is the probability measure with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.
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Theorem (Aldous ’94)
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y Application (Curien & K.): study of the length of the longest chord of a
uniform dissection (faces of any degree allowed).
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Trees Triangulations Minimal factorizations

Constructing the Brownian triangulation
Start with the Brownian excursion :
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Constructing the Brownian triangulation
Start with the Brownian excursion :

0.2 0.4 0.6 0.8 10. t

Let t be a time of local minimum. Set gt = sup{s < t; s = t} and
dt = inf{s > t; s = t}.
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Constructing the Brownian triangulation
Start with the Brownian excursion :

0.2 0.4 0.6 0.8 10.gt dtt
Let t be a time of local minimum. Set gt = sup{s < t; s = t} and
dt = inf{s > t; s = t}. Draw the chords

⇥
e

-2i⇡gt , e-2i⇡t⇤,
⇥
e

-2i⇡t, e-2i⇡dt
⇤

et
⇥
e

-2i⇡gt , e-2i⇡dt
⇤
.
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Constructing the Brownian triangulation
Start with the Brownian excursion :

0.2 0.4 0.6 0.8 10.

Let t be a time of local minimum. Set gt = sup{s < t; s = t} and
dt = inf{s > t; s = t}. Draw the chords

⇥
e

-2i⇡gt , e-2i⇡t⇤,
⇥
e

-2i⇡t, e-2i⇡dt
⇤

et
⇥
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Do this for all the times of local minimum.

The closure of this union, L( ), is called the Brownian triangulation.
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Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).

y Question:

#Mn =

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).

y Question:

#Mn =

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).y Question:

#Mn =

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).y Question: #Mn =?

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).y Question: #Mn =?

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).y Question: #Mn =?

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).y Question: #Mn =n

n-2 (Dénes, 1959)

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.y Question:

for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).y Question: #Mn =n

n-2 (Dénes, 1959)

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.y Question: for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures 24 / @0



Trees Triangulations Minimal factorizations

What space for minimal factorizations ?

y Idea: compact subsets of the unit disk.
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Trees Triangulations Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the blocks of ⌧1⌧2 · · · ⌧k.

y Example for n = 12 and k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12),(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 26 / @0



Trees Triangulations Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the blocks of ⌧1⌧2 · · · ⌧k.

y Example for n = 12 and k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12),(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 26 / @0



Trees Triangulations Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the blocks of ⌧1⌧2 · · · ⌧k.

y Example for n = 12 and k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12),(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 26 / @0



Trees Triangulations Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the blocks of ⌧1⌧2 · · · ⌧k.

y Example for n = 12 and k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12),(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 26 / @0



Trees Triangulations Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the blocks of ⌧1⌧2 · · · ⌧k.

y Example for n = 12 and k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12),(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 26 / @0



Trees Triangulations Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the blocks of ⌧1⌧2 · · · ⌧k.

y Example for n = 12 and k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12),(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 26 / @0



Trees Triangulations Minimal factorizations

A simulation for n = 2000
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Trees Triangulations Minimal factorizations

Let (t(n)
1 , . . . , t(n)

n-1) be a uniform minimal factorization of length n and
1 6 Kn 6 n- 1 with Kn ! 1.

(i)

If Kn = o(
p
n):

�
FKn ,PKn

� (d)�!
n!1

(S, S).

(ii)

If Knp
n
! c 2 (0,1): there exists a random compact subset Lc such

that �
FKn ,PKn

� (d)�!
n!1

(Lc,Lc).

(iii)

If Knp
n
! 1 and n-Knp

n
! 1:

�
FKn ,PKn

� (d)�!
n!1

(L( ),L( )).

(iv)

If n-Knp
n

! c 2 [0,1):

FKn

(d)�!
n!1

L( ), PKn

(d)�!
n!1

Lc (with L0 = S).

Theorem (Féray, K.).
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Trees Triangulations Minimal factorizations

Figure: A simulation of L5.
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Trees Triangulations Minimal factorizations

Key fact

Fix 1 6 k 6 n - 1 and let P be a non-crossing partition with n vertices
and n- k blocks. Then

P
⇣
P(t(n)

1 t
(n)
2 · · · t(n)

k ) = P

⌘

=

k!(n- k- 1)!

n

n-2
·
 
Y

B2P

|B||B|-2

(|B|- 1)!

!

·

0

@
Y

B2K(P)

|B||B|-2

(|B|- 1)!

1

A .

Proposition.

y Consequence 1:

P
⇣
t
(n)
1 = (a,a+ i)

⌘
=

(n- 2)!

n

n-2
· i

i-2

(i- 1)!
· (n- i)(n-i-2)

(n- i- 1)!

⇠
C

i

3/2

for n and i large, which explains the
p
n transition.
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Trees Triangulations Minimal factorizationsy Consequence 2:

It follows that P(t(n)
1 t

(n)
2 · · · t(n)

k ) is coded by a bitype biconditioned BGW
tree!

(different conditioning than those considered for multitype BGW trees by
Marckert, Miermont, Berzunza)
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Trees Triangulations Minimal factorizations

A proof of the half of (i), regime Kn = o(
p
n).
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Trees Triangulations Minimal factorizations

Assume that Kn = o(
p
n) and that FKn ! S. We show that

PKn ! S.

y The convergence FKn ! S means that for n large, FKn is made of a
dense collection of “small” chords.y To show that PKn ! S, one has to rule out the possibility that a
succession of “small” chords of FKn builds a “large” connected component
(because the blocks of PKn are the connected components of FKn).y Idea: Use the fact that Fn-1 ! L( ) (!).

If this happens, there will be no macroscopic chord with endpoints in the red
region in Fn-1. This cannot happen in the Brownian triangulation.
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