Comportement asymptotique de

 grandes structures discrètes aléatoires

Igor Kortchemski
(avec Valentin Féray)
CNRS \& École polytechnique

Questions: minimal factorizations

\wedge Question:
\diamond Question:

Questions: minimal factorizations

Let $(1,2, \ldots, n)$ be the n-cycle.
$\stackrel{\wedge}{ } \rightarrow$ Question:
\diamond Question:

Questions: minimal factorizations

Let $(1,2, \ldots, n)$ be the n-cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n-cycle into $n-1$ transpositions).
\diamond Question:
\diamond Question:

Questions: minimal factorizations

Let $(1,2, \ldots, n)$ be the n-cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n -cycle into $\mathrm{n}-1$ transpositions).
$\diamond \rightarrow$ Question: \#M그N $=$?
\diamond Question:

Questions: minimal factorizations

Let $(1,2, \ldots, n)$ be the n-cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n-cycle into $n-1$ transpositions).
\diamond Question: \#M $\mathcal{M}_{n}=$?
For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3),
$$

\diamond Question:

Questions: minimal factorizations

Let $(1,2, \ldots, n)$ be the n-cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n-cycle into $n-1$ transpositions).
\diamond Question: $\# \mathfrak{M}_{n}=$?
For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3),
$$

$\# \mathfrak{M}_{3}=3$.
\diamond Question:

Questions: minimal factorizations

Let $(1,2, \ldots, n)$ be the n-cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n-cycle into $n-1$ transpositions).
\diamond Question: $\# \mathfrak{M}_{n}=$?
For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3),
$$

$\# \mathfrak{M}_{3}=3$.
\uparrow Question: for n large, what does a typical minimal factorization look like?

General framework

Let X_{n} be a set of combinatorial objects of "size" n

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

General framerwork

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).
Goal: study X_{n}.

General framerwork

Let \mathcal{X}_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).
Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}.

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).
Goal: study X_{n}.
$\xrightarrow{\wedge}$ Find the cardinality of X_{n}. (bijective methods, generating functions)

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).
Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}. (bijective methods, generating functions)
\diamond Understand the typical properties of X_{n}.

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}. (bijective methods, generating functions)
\leadsto Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random.

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinality of X_{n}. (bijective methods, generating functions)
\leadsto Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random. What can be said of X_{n} ?

General framework

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_{n}.
$\wedge \rightarrow$ Find the cardinality of X_{n}. (bijective methods, generating functions)
\wedge Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random. What can be said of X_{n} ?

To answer this question, a possibility is to find a continuous object X such that $X_{n} \rightarrow X$ as $n \rightarrow \infty$.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several uses:
\wedge From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_{n} and passes through the limit, X satisfies \mathcal{P}.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several uses:
\checkmark From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_{n} and passes through the limit, X satisfies \mathcal{P}.
\checkmark From the continuous to the discrete: if a certain property \mathcal{P} is satisfied by X and passes through the limit, X_{n} "roughly" satisfies \mathcal{P} for n large.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discret" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several uses:
\checkmark From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_{n} and passes through the limit, X satisfies \mathcal{P}.
\checkmark From the continuous to the discrete: if a certain property \mathcal{P} is satisfied by X and passes through the limit, X_{n} "roughly" satisfies \mathcal{P} for n large.
\leftrightarrow Universality: if $\left(Y_{n}\right)_{n \geqslant 1}$ is another sequence of objects converging to X, then X_{n} and Y_{n} "roughly" have the same properties for n large.

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\diamond In what space do the objects live?

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\leadsto In what space do the objects live? Here, a metric space (Z, d) (complete separable).

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\uparrow In what space do the objects live? Here, a metric space (Z, d) (complete separable).
\checkmark What is the sense of this convergence when these objects are random?

What is it about?

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of "discrete" objects converging to a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\nrightarrow In what space do the objects live? Here, a metric space (Z, d) (complete separable).
\checkmark What is the sense of this convergence when these objects are random? Here, convergence in distribution:

$$
\mathbb{E}\left[F\left(X_{n}\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[F(X)]
$$

for every continuous bounded function $F: Z \rightarrow \mathbb{R}$.

Outline

I. Trees

I. Trees

II. Triangulations

I. Trees

II. Triangulations

III. Minimal factorizations

I. Trees

II. Triangulations

III. Minimal factorizations

Random trees

Motivations:

\nrightarrow Computer science: data structures, analysis of algorithms, networks, etc.

Random trees

Motivations:
\nrightarrow Computer science: data structures, analysis of algorithms, networks, etc.
\rightarrow Biology: genealogical and phylogenetical trees, etc.

Random trees

Motivations:
\nrightarrow Computer science: data structures, analysis of algorithms, networks, etc.
\checkmark Biology: genealogical and phylogenetical trees, etc.
\wedge Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections, etc.

Random trees

Motivations:
\Downarrow^{\rightarrow} Computer science: data structures, analysis of algorithms, networks, etc.
$\widehat{\wedge}$ Biology: genealogical and phylogenetical trees, etc.
$\Downarrow \rightarrow$ Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections, etc.
$\Downarrow \rightarrow$ Probability: trees are elementary pieces of various models of random graphs, having rich probabilistic properties.

Plane trees

\diamond Question:
\diamond Question:

Plane trees

Figure: Two different plane trees
\diamond Question:
\diamond Question:

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Figure: Two different plane trees
\diamond Question:
\diamond Question:

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Figure: Two different plane trees
\diamond Question: $\# X_{n}=$?
\diamond Question:

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Figure: Two different plane trees
\leadsto Question: $\# X_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$.
\diamond Question:

Plane trees

Let X_{n} be the set of all plane trees with n vertices.

Figure: Two different plane trees
$\Downarrow \rightarrow$ Question: $\# X_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$.
\diamond Question: What does a large typical plane tree look like?

Bienaymé-Galton-Watson trees

Let μ be a probability on $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ with $\sum_{i} \mathfrak{i} \mu(i) \leqslant 1$ and $\mu(1)<1$.

Bienaymé-Galton-Watson trees

Let μ be a probability on $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ with $\sum_{i} \mathfrak{i} \mu(i) \leqslant 1$ and $\mu(1)<1$. A Bienaymé-Galton-Watson tree with offspring distribution μ is a random plane tree such that:

Bienaymé-Galton-Watson trees

Let μ be a probability on $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ with $\sum_{i} \mathfrak{i} \mu(\mathfrak{i}) \leqslant 1$ and $\mu(1)<1$. A Bienaymé-Galton-Watson tree with offspring distribution μ is a random plane tree such that:

1. the root has a random number of children distributed according to μ;

Bienaymé-Galton-Watson trees

Let μ be a probability on $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ with $\sum_{i} \mathfrak{i} \mu(\mathfrak{i}) \leqslant 1$ and $\mu(1)<1$. A Bienaymé-Galton-Watson tree with offspring distribution μ is a random plane tree such that:

1. the root has a random number of children distributed according to μ;
2. then, these children each have an independent random number of children distributed as μ, and so on.

Bienaymé-Galton-Watson trees

Let μ be a probability on $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ with $\sum_{i} \mathfrak{i} \mu(\mathfrak{i}) \leqslant 1$ and $\mu(1)<1$. A Bienaymé-Galton-Watson tree with offspring distribution μ is a random plane tree such that:

1. the root has a random number of children distributed according to μ;
2. then, these children each have an independent random number of children distributed as μ, and so on.

This happens with probability $\mu(0)^{3} \mu(2)^{2}$.

Bienaymé-Galton-Watson trees

Let μ be a probability on $\mathbb{Z}_{+}=\{0,1,2, \ldots\}$ with $\sum_{i} i \mu(i) \leqslant 1$ and $\mu(1)<1$. A Bienaymé-Galton-Watson tree with offspring distribution μ is a random plane tree such that:

1. the root has a random number of children distributed according to μ;
2. then, these children each have an independent random number of children distributed as μ, and so on.

This happens with probability $\mu(0)^{3} \mu(2)^{2}$.
\checkmark If $\mu(\mathfrak{i})=\frac{1}{2^{i+1}}$ for $\mathfrak{i} \geqslant 0$, a BGW tree conditioned on having n vertices follows the uniform distribution on the set of all plane trees with n vertices!

Coding a tree by its contour function

Code a tree τ by its contour function $\mathrm{C}(\tau)$:

Coding a tree by its contour function

Knowing the contour function, it is easy to reconstruct the tree:

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} i \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let t_{n} be a random BGW tree conditioned on having n vertices.

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} \mathfrak{i} \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let \mathfrak{t}_{n} be a random BGW tree conditioned on having n vertices. Theorem (Aldous '93)
We have:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(t_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where \mathbb{e} is the normalized Brownian excursion.

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} \mathfrak{i} \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let t_{n} be a random BGW tree conditioned on having n vertices. Theorem (Aldous '93)
We have:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(t_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where \mathbb{e} is the normalized Brownian excursion.

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} i \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let \mathfrak{t}_{n} be a random BGW tree conditioned on having n vertices. Theorem (Aldous '93)
We have:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(t_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where \mathbb{e} is the normalized Brownian excursion.

Remarks

\wedge The function e codes a "continuous" tree $\mathcal{T}_{\mathbb{e}}$, called the Brownian continuum random tree.

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} i \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let t_{n} be a random BGW tree conditioned on having n vertices. Theorem (Aldous '93)
We have:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(t_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where \mathbb{e} is the normalized Brownian excursion.

Remarks

\diamond The function \mathbb{e} codes a "continuous" tree $\mathcal{T}_{\mathbb{e}}$, called the Brownian continuum random tree.
\diamond Ideas: code t_{n} by another function (Lukasiewicz path), which is a (conditioned) random walk, use (a conditioned) Donsker's invariance principle, go back to the contour function (Duquesne \& Le Gall, Marckert \& Mokkadem).

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} i \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let \mathfrak{t}_{n} be a random BGW tree conditioned on having n vertices. Theorem (Aldous '93)
We have:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(t_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where \mathbb{e} is the normalized Brownian excursion.
\diamond Consequence 1: for every $a>0$,

$$
\mathbb{P}\left[\frac{\sigma}{2} \cdot \operatorname{Height}\left(\mathfrak{t}_{n}\right)>a \cdot \sqrt{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \sum_{k=1}^{\infty}\left(4 k^{2} a^{2}-1\right) e^{-2 k^{2} a^{2}} .
$$

Scaling limits (finite variance)

Let μ be a critical ($\sum_{i \geqslant 0} i \mu(i)=1$) offspring distribution having finite positive variance σ^{2}. Let t_{n} be a random BGW tree conditioned on having n vertices. Theorem (Aldous '93)
We have:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(t_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where \mathbb{e} is the normalized Brownian excursion.
\checkmark Consequence 2: for every $\varepsilon>0$,
$\mathbb{P}\left(\right.$ there exists a vertex of \mathfrak{t}_{n} with 3 grafted subtrees of sizes $\left.\geqslant \varepsilon \mathfrak{n}\right) \rightarrow 0$.

Universality

The Brownian continuum random tree is the scaling limit of:

Universality

The Brownian continuum random tree is the scaling limit of:

- different families of trees: non-plane trees (Marckert \& Miermont, Panagiotou \& Stufler, Stufler), Markov-branching trees (Haas \& Miermont), cut-trees (Bertoin \& Miermont).

Universality

The Brownian continuum random tree is the scaling limit of:

- different families of trees: non-plane trees (Marckert \& Miermont, Panagiotou \& Stufler, Stufler), Markov-branching trees (Haas \& Miermont), cut-trees (Bertoin \& Miermont).
- different families of tree-like structures: stack triangulations (Albenque \& Marckert), graphs from subcritical classes (Panagiotou, Stufler \& Weller), dissections (Curien, Haas \& K), various maps (Janson \& Stefánsson, Bettinelli, Caraceni, K \& Richier).

I. Trees

II. Triangulations

III. Minimal factorizations

Triangulations

\uparrow Question:
\diamond Question:

Triangulations

Figure: A triangulation of X_{10}.
\diamond Question:
\diamond Question:

Triangulations

Let X_{n} be the set of all triangulations of the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Figure: A triangulation of X_{10}.
\uparrow Question:
\diamond Question:

Triangulations

Let X_{n} be the set of all triangulations of the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Figure: A triangulation of X_{10}.
\diamond Question: $\# X_{n}=$?
\leadsto Question:

Triangulations

Let X_{n} be the set of all triangulations of the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Figure: A triangulation of X_{10}.
\leadsto Question: $\# X_{n}=\frac{1}{n-2}\binom{2 n-4}{n-3}$.
\leftrightarrow Question:

Triangulations

Let X_{n} be the set of all triangulations of the polygon whose vertices are $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Figure: A triangulation of X_{10}.
$\Downarrow \rightarrow$ Question: $\# X_{n}=\frac{1}{n-2}\binom{2 n-4}{n-3}$.
$\xrightarrow{\wedge}$ Question: What does a large typical triangulation look like?

Typical triangulations

What space for triangulations?

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z, d).

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z, d). If

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

are the r-neighborhoods of X and Y

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z, d). If

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

are the r-neighborhoods of X and Y, we set

$$
d_{H}(X, Y)=\inf \left\{r>0 ; X \subset Y_{r} \text { and } Y \subset X_{r}\right\} .
$$

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z, d). If

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

are the r-neighborhoods of X and Y, we set

$$
d_{H}(X, Y)=\inf \left\{r>0 ; X \subset Y_{r} \text { and } Y \subset X_{r}\right\} .
$$

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation with n vertices.

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{E})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{E}),
$$

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{E}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).
\leadsto Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of $L(\mathbb{e})$.

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).
\leadsto Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of $\mathrm{L}(\mathbb{e})$.

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).
\leadsto Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of $\mathrm{L}(\mathbb{e})$.

$$
\text { chord length }=\frac{1}{4}
$$

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).
\downarrow Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of $L(\mathbb{e})$.

It is the probability measure with density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} \mathbf{1}_{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}} \mathrm{~d} x .
$$

Theorem (Aldous '94)
For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation with n vertices. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{E}),
$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.
$\mathrm{L}(\mathbb{e})$ is called the Brownian triangulation (coded by the Brownian excursion).
\leadsto Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of $\mathrm{L}(\mathbb{e})$.

It is the probability measure with density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} \mathbf{1}_{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}} \mathrm{dx} .
$$

\leadsto Application (Curien \& K.): study of the length of the longest chord of a uniform dissection (faces of any degree allowed).

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $\mathrm{d}_{\mathrm{t}}=\inf \left\{\mathrm{s}>\mathrm{t} ; \mathbb{e}_{\mathrm{s}}=\mathbb{e}_{\mathrm{t}}\right\}$.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ et $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi d_{t}}\right]$.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ et $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi d_{t}}\right]$.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ et $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi d_{t}}\right]$.
Do this for all the times of local minimum.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ et $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi d_{t}}\right]$.
Do this for all the times of local minimum.

Constructing the Brownian triangulation

Start with the Brownian excursion e:

Let t be a time of local minimum. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ and $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ et $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi d_{t}}\right]$.
Do this for all the times of local minimum.
The closure of this union, $L(\mathbb{e})$, is called the Brownian triangulation.

I. Trees

II. Triangulations

III. Minimal factorizations

\qquad

Minimal factorizations

\diamond Question:

\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
\diamond Question:
\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n -cycle into transpositions).
\diamond Question:
\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n -cycle into transpositions).
\diamond Question: \#Mㅢn $=$?
\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
Consider the set

$$
\mathfrak{M}_{\mathfrak{n}}=\left\{\left(\tau_{1}, \ldots, \tau_{\mathfrak{n}-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{\mathfrak{n}-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n-cycle into transpositions).
$\diamond \rightarrow$ Question: \#M1n $=$?
For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3),
$$

\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n -cycle into transpositions).
\diamond Question: $\# \mathfrak{M}_{n}=$?
For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3)
$$

$\# \mathfrak{M}_{3}=3$.
\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n -cycle into transpositions).
\diamond Question: $\# \mathfrak{M}_{n}=\mathfrak{n}^{\mathfrak{n}-2}$ (Dénes, 1959)
For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3)
$$

$\# \mathfrak{M}_{3}=3$.
\diamond Question:

Minimal factorizations

Let $(1,2, \ldots, n)$ be the n cycle.
Consider the set

$$
\mathfrak{M}_{n}=\left\{\left(\tau_{1}, \ldots, \tau_{n-1}\right) \text { transpositions : } \tau_{1} \tau_{2} \cdots \tau_{n-1}=(1,2, \ldots, n)\right\}
$$

of minimal factorizations (of the n -cycle into transpositions).

$$
\diamond \text { Question: } \# \mathcal{M}_{n}=\mathfrak{n}^{\mathrm{n}-2} \text { (Dénes, 1959) }
$$

For example (multiply from left to right):

$$
(1,2,3)=(1,3)(2,3)=(2,3)(1,2)=(1,2)(1,3)
$$

$\# \mathfrak{M}_{3}=3$.
\leadsto Question: for n large, what does a typical minimal factorization look like?

What space for minimal factorizations ?

What space for minimal factorizations ?

\checkmark Idea: compact subsets of the unit disk.

If $\left(\tau_{1}, \ldots, \tau_{n-1}\right)$ is a minimal factorization of length \mathfrak{n} and $1 \leqslant k \leqslant \mathfrak{n}$:

- \mathcal{F}_{k} is the compact subset obtained by drawing the chords $\tau_{i}, 1 \leqslant \mathfrak{i} \leqslant k$.
- \mathcal{P}_{k} is the compact subset associated to the blocks of $\tau_{1} \tau_{2} \cdots \tau_{k}$.

If $\left(\tau_{1}, \ldots, \tau_{n-1}\right)$ is a minimal factorization of length \mathfrak{n} and $1 \leqslant k \leqslant n$:

- \mathcal{F}_{k} is the compact subset obtained by drawing the chords $\tau_{i}, 1 \leqslant i \leqslant k$.
- \mathcal{P}_{k} is the compact subset associated to the blocks of $\tau_{1} \tau_{2} \cdots \tau_{k}$.
$\Downarrow \rightarrow$ Example for $n=12$ and $k=6$:
$(\underbrace{(1,3),(6,12),(1,5),(7,12),(9,10),(11,12)},(2,3),(4,5),(1,6),(8,11),(9,11))$

If $\left(\tau_{1}, \ldots, \tau_{n-1}\right)$ is a minimal factorization of length n and $1 \leqslant k \leqslant n$:

- \mathcal{F}_{k} is the compact subset obtained by drawing the chords $\tau_{i}, 1 \leqslant i \leqslant k$.
- \mathcal{P}_{k} is the compact subset associated to the blocks of $\tau_{1} \tau_{2} \cdots \tau_{k}$.
$\forall \rightarrow$ Example for $n=12$ and $k=6$:

$$
(\underbrace{(1,3),(6,12),(1,5),(7,12),(9,10),(11,12)},(2,3),(4,5),(1,6),(8,11),(9,11))
$$

If $\left(\tau_{1}, \ldots, \tau_{n-1}\right)$ is a minimal factorization of length n and $1 \leqslant k \leqslant n$:

- \mathcal{F}_{k} is the compact subset obtained by drawing the chords $\tau_{i}, 1 \leqslant i \leqslant k$.
- \mathcal{P}_{k} is the compact subset associated to the blocks of $\tau_{1} \tau_{2} \cdots \tau_{k}$.
$\Downarrow \rightarrow$ Example for $n=12$ and $k=6$:

$$
(\underbrace{(1,3),(6,12),(1,5),(7,12),(9,10),(11,12)},(2,3),(4,5),(1,6),(8,11),(9,11))
$$

If $\left(\tau_{1}, \ldots, \tau_{n-1}\right)$ is a minimal factorization of length n and $1 \leqslant k \leqslant n$:

- \mathcal{F}_{k} is the compact subset obtained by drawing the chords $\tau_{i}, 1 \leqslant i \leqslant k$.
- \mathcal{P}_{k} is the compact subset associated to the blocks of $\tau_{1} \tau_{2} \cdots \tau_{k}$.
$\forall \rightarrow$ Example for $n=12$ and $k=6$:

$$
(\underbrace{(1,3),(6,12),(1,5),(7,12),(9,10),(11,12)}_{\text {product }=(1,3,5)(6,7,11,12),(9,10)},(2,3),(4,5),(1,6),(8,11),(9,11))
$$

If $\left(\tau_{1}, \ldots, \tau_{n-1}\right)$ is a minimal factorization of length n and $1 \leqslant k \leqslant n$:

- \mathcal{F}_{k} is the compact subset obtained by drawing the chords $\tau_{i}, 1 \leqslant i \leqslant k$.
- \mathcal{P}_{k} is the compact subset associated to the blocks of $\tau_{1} \tau_{2} \cdots \tau_{k}$.
$\forall \rightarrow$ Example for $n=12$ and $k=6$:

$$
(\underbrace{(1,3),(6,12),(1,5),(7,12),(9,10),(11,12)}_{\text {product }=(1,3,5)(6,7,11,12),(9,10)},(2,3),(4,5),(1,6),(8,11),(9,11))
$$

A simulation for $n=2000$

I

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i)
(ii)
(iii)
(iv)

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n})$:
(ii)
(iii)
(iv)

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n})$:
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$:
(iii)
(iv)

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n})$:
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$:
(iii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow \infty$ and $\frac{n-K_{n}}{\sqrt{n}} \rightarrow \infty$:
(iv)

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n})$:
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$:
(iii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow \infty$ and $\frac{n-K_{n}}{\sqrt{n}} \rightarrow \infty$:
(iv) If $\frac{n-K_{n}}{\sqrt{n}} \rightarrow c \in[0, \infty)$:

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n}):\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}(\mathbb{S}, \mathbb{S})$.
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$:
(iii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow \infty$ and $\frac{n-K_{n}}{\sqrt{n}} \rightarrow \infty$:
(iv) If $\frac{n-K_{n}}{\sqrt{n}} \rightarrow c \in[0, \infty)$:

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n}):\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{(d)}(\mathbb{S}, \mathbb{S})$.
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$: there exists a random compact subset L_{c} such that

$$
\left(\mathcal{F}_{\mathrm{K}_{n}}, \mathcal{P}_{\mathrm{K}_{n}}\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbf{L}_{\mathrm{c}}, \mathbf{L}_{\mathrm{c}}\right) .
$$

(iii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow \infty$ and $\frac{n-K_{n}}{\sqrt{n}} \rightarrow \infty$:
(iv) If $\frac{n-K_{n}}{\sqrt{n}} \rightarrow c \in[0, \infty)$:

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n}):\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}(\mathbb{S}, \mathbb{S})$.
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$: there exists a random compact subset L_{c} such that

$$
\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\mathbf{L}_{\mathrm{c}}, \mathbf{L}_{\mathrm{c}}\right) .
$$

(iii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow \infty$ and $\frac{n-K_{n}}{\sqrt{n}} \rightarrow \infty$:

$$
\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}(\mathrm{L}(\mathbb{e}), \mathrm{L}(\mathbb{e})) .
$$

(iv) If $\frac{n-K_{n}}{\sqrt{n}} \rightarrow c \in[0, \infty)$:

Theorem (Féray, K.).

Let $\left(t_{1}^{(n)}, \ldots, t_{n-1}^{(n)}\right)$ be a uniform minimal factorization of length n and $1 \leqslant K_{n} \leqslant n-1$ with $K_{n} \rightarrow \infty$.
(i) If $K_{n}=o(\sqrt{n}):\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}(\mathbb{S}, \mathbb{S})$.
(ii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow c \in(0, \infty)$: there exists a random compact subset L_{c} such that

$$
\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{\mathrm{K}_{n}}\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\mathbf{L}_{\mathrm{c}}, \mathbf{L}_{\mathrm{c}}\right) .
$$

(iii) If $\frac{K_{n}}{\sqrt{n}} \rightarrow \infty$ and $\frac{n-K_{n}}{\sqrt{n}} \rightarrow \infty$:

$$
\left(\mathcal{F}_{K_{n}}, \mathcal{P}_{K_{n}}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}(\mathrm{L}(\mathbb{e}), \mathrm{L}(\mathbb{e})) .
$$

(iv) If $\frac{n-K_{n}}{\sqrt{n}} \rightarrow c \in[0, \infty)$:

$$
\left.\mathcal{F}_{K_{n}} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \mathrm{L}(\mathbb{e}), \quad \mathcal{P}_{\mathrm{K}_{n}} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}_{\mathrm{c}} \quad \text { (with } \mathbf{L}_{0}=\mathbb{S}\right) .
$$

Figure: A simulation of L_{5}.

Key fact

Proposition.

Fix $1 \leqslant k \leqslant n-1$ and let P be a non-crossing partition with n vertices and $n-k$ blocks. Then
$\mathbb{P}\left(\mathcal{P}\left(t_{1}^{(n)} t_{2}^{(n)} \cdots t_{k}^{(n)}\right)=P\right)$

Rey fact

Proposition.

Fix $1 \leqslant k \leqslant n-1$ and let P be a non-crossing partition with n vertices and $n-k$ blocks. Then $\mathbb{P}\left(\mathcal{P}\left(t_{1}^{(n)} t_{2}^{(n)} \cdots t_{k}^{(n)}\right)=P\right)$

$$
=\frac{k!(n-k-1)!}{n^{n-2}} \cdot\left(\prod_{B \in P} \frac{|B|^{|B|-2}}{(|\mathrm{~B}|-1)!}\right) \cdot\left(\prod_{B \in \mathcal{K}(P)} \frac{|B|^{|\mathrm{B}|-2}}{(|\mathrm{~B}|-1)!}\right) .
$$

Rey fact

Proposition.

Fix $1 \leqslant k \leqslant n-1$ and let P be a non-crossing partition with n vertices and $n-k$ blocks. Then

$$
\begin{aligned}
\mathbb{P}\left(\mathcal { P } \left(t_{1}^{(n)} t_{2}^{(n)}\right.\right. & \left.\left.\cdots t_{k}^{(n)}\right)=P\right) \\
& =\frac{k!(n-k-1)!}{n^{n-2}} \cdot\left(\prod_{B \in P} \frac{|B|^{|B|-2}}{(|B|-1)!}\right) \cdot\left(\prod_{B \in \mathcal{K}(P)} \frac{|B|^{|B|-2}}{(|B|-1)!}\right) .
\end{aligned}
$$

$\stackrel{\wedge}{ }$ Consequence 1:

$$
\mathbb{P}\left(t_{1}^{(n)}=(a, a+i)\right)=\frac{(n-2)!}{n^{n-2}} \cdot \frac{i^{i-2}}{(i-1)!} \cdot \frac{(n-i)^{(n-i-2)}}{(n-i-1)!}
$$

Rey fact

Proposition.

Fix $1 \leqslant k \leqslant n-1$ and let P be a non-crossing partition with n vertices and $n-k$ blocks. Then

$$
\begin{aligned}
\mathbb{P}\left(\mathcal { P } \left(t_{1}^{(n)} t_{2}^{(n)}\right.\right. & \left.\left.\cdots t_{k}^{(n)}\right)=P\right) \\
& =\frac{\mathrm{k}!(n-k-1)!}{n^{n-2}} \cdot\left(\prod_{B \in \mathrm{P}} \frac{|\mathrm{~B}|^{|\mathrm{B}|-2}}{(|\mathrm{~B}|-1)!}\right) \cdot\left(\prod_{\mathrm{B} \in \mathcal{K}(\mathrm{P})} \frac{|\mathrm{B}|^{|\mathrm{B}|-2}}{(|\mathrm{~B}|-1)!}\right) .
\end{aligned}
$$

$\xrightarrow{\wedge}$ Consequence 1:

$$
\mathbb{P}\left(t_{1}^{(n)}=(a, a+\mathfrak{i})\right)=\frac{(n-2)!}{n^{n-2}} \cdot \frac{\mathfrak{i}^{\mathfrak{i}-2}}{(\mathfrak{i}-1)!} \cdot \frac{(n-\mathfrak{i})^{(n-i-2)}}{(n-\mathfrak{i}-1)!} \sim \frac{C}{\mathfrak{i}^{3 / 2}}
$$

for n and i large, which explains the \sqrt{n} transition.
$\diamond \rightarrow$ Consequence 2:

$\diamond \rightarrow$ Consequence 2:

$\diamond \rightarrow$ Consequence 2:

It follows that $\mathcal{P}\left(t_{1}^{(n)} t_{2}^{(n)} \cdots t_{k}^{(n)}\right)$ is coded by a bitype biconditioned BGW tree!
$\diamond \rightarrow$ Consequence 2:

It follows that $\mathcal{P}\left(t_{1}^{(n)} t_{2}^{(n)} \cdots t_{k}^{(n)}\right)$ is coded by a bitype biconditioned BGW tree!
(different conditioning than those considered for multitype BGW trees by Marckert, Miermont, Berzunza)

A proof of the half of (i), regime $K_{n}=o(\sqrt{n})$.

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{\mathrm{K}_{n}} \rightarrow \mathbb{S} .
$$

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{\mathrm{K}_{n}} \rightarrow \mathbb{S} .
$$

$\xrightarrow{\wedge}$ The convergence $\mathscr{F}_{K_{n}} \rightarrow \mathbb{S}$ means that for n large, $\mathcal{F}_{K_{n}}$ is made of a dense collection of "small" chords.

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{\mathrm{K}_{n}} \rightarrow \mathbb{S} .
$$

\checkmark The convergence $\mathscr{F}_{K_{n}} \rightarrow \mathbb{S}$ means that for n large, $\mathcal{F}_{\mathrm{K}_{n}}$ is made of a dense collection of "small" chords.
\wedge To show that $\mathcal{P}_{K_{n}} \rightarrow \mathbb{S}$, one has to rule out the possibility that a succession of "small" chords of $\mathcal{F}_{K_{n}}$ builds a "large" connected component (because the blocks of $\mathcal{P}_{\mathrm{K}_{n}}$ are the connected components of $\mathcal{F}_{\mathrm{K}_{n}}$).

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{\mathrm{K}_{n}} \rightarrow \mathbb{S} .
$$

\checkmark The convergence $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$ means that for n large, $\mathscr{F}_{K_{n}}$ is made of a dense collection of "small" chords.
$\xrightarrow{\wedge}$ To show that $\mathcal{P}_{K_{n}} \rightarrow \mathbb{S}$, one has to rule out the possibility that a succession of "small" chords of $\mathcal{F}_{K_{n}}$ builds a "large" connected component (because the blocks of $\mathcal{P}_{\mathrm{K}_{n}}$ are the connected components of $\mathcal{F}_{\mathrm{K}_{n}}$).

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{K_{n}} \rightarrow \mathbb{S} .
$$

\diamond The convergence $\mathcal{F}_{\mathrm{K}_{n}} \rightarrow \mathbb{S}$ means that for n large, $\mathcal{F}_{K_{n}}$ is made of a dense collection of "small" chords.
$\xrightarrow{\wedge}$ To show that $\mathcal{P}_{K_{n}} \rightarrow \mathbb{S}$, one has to rule out the possibility that a succession of "small" chords of $\mathcal{F}_{K_{n}}$ builds a "large" connected component (because the blocks of $\mathcal{P}_{\mathrm{K}_{n}}$ are the connected components of $\mathcal{F}_{\mathrm{K}_{n}}$).
\leadsto Idea: Use the fact that $\mathcal{F}_{n-1} \rightarrow \mathrm{~L}(\mathbb{e})(!)$.

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{\mathrm{K}_{n}} \rightarrow \mathbb{S} .
$$

\checkmark The convergence $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$ means that for n large, $\mathcal{F}_{K_{n}}$ is made of a dense collection of "small" chords.
\checkmark To show that $\mathcal{P}_{K_{n}} \rightarrow \mathbb{S}$, one has to rule out the possibility that a succession of "small" chords of $\mathcal{F}_{K_{n}}$ builds a "large" connected component (because the blocks of $\mathcal{P}_{\mathrm{K}_{n}}$ are the connected components of $\mathcal{F}_{\mathrm{K}_{n}}$).
\leadsto Idea: Use the fact that $\mathcal{F}_{n-1} \rightarrow \mathrm{~L}(\mathbb{e})(!)$.

If this happens, there will be no macroscopic chord with endpoints in the red region in $\mathcal{F}_{\mathfrak{n}-1}$.

Assume that $K_{n}=o(\sqrt{n})$ and that $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$. We show that

$$
\mathcal{P}_{\mathrm{K}_{n}} \rightarrow \mathbb{S} .
$$

\wedge The convergence $\mathcal{F}_{K_{n}} \rightarrow \mathbb{S}$ means that for n large, $\mathcal{F}_{K_{n}}$ is made of a dense collection of "small" chords.
\checkmark To show that $\mathcal{P}_{K_{n}} \rightarrow \mathbb{S}$, one has to rule out the possibility that a succession of "small" chords of $\mathcal{F}_{K_{n}}$ builds a "large" connected component (because the blocks of $\mathcal{P}_{\mathrm{K}_{n}}$ are the connected components of $\mathcal{F}_{\mathrm{K}_{n}}$).
\leadsto Idea: Use the fact that $\mathcal{F}_{n-1} \rightarrow \mathrm{~L}(\mathbb{e})(!)$.

If this happens, there will be no macroscopic chord with endpoints in the red region in \mathcal{F}_{n-1}. This cannot happen in the Brownian triangulation.

