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The last display in the proof of Lemma 4.12 is incorrect; the authors are grateful to Victor Dubach for pointing
out this mistake. As a consequence, Propositions 4.8, Lemmas 4.12, Lemma 4.13, Corollary 4.14 and Proposition
4.15 are incorrect as stated in the article due to a missing constant. We explain here how to correct them.

Most importantly, we emphasize that the corrections do not affect the proof of Theorem 1.3 (iii).

The correct statements are the following.
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The last display in the proof of Lemma 4.12 should read(
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where W1, X1 are independent standard Gaussian random variables. Accordingly, one needs to modify the defini-
tion of B̂(n) in the following way (the factor D•n was forgotten in the article):
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The statements of Lemma 4.12 and Lemma 4.13 are then correct with this modified definition of B̂(n). However,
the statement of Corollary 4.14 should be modified as follows.
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Proof. We have
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When γ > 0, we have
D•n(n−Kn)

D◦n(Kn + 1)
∼ 1− γ

γ3/2
σn•
σn◦
.

In the regime γ > 0, the quantities σn• and σn◦ have positive limits as n tends to +∞, so that D
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Using the fact that Xbr + αγ ·W br has the same distribution as
√

1 + α2
γ ·Xbr, Proposition 4.15 is modified

as follows.
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The multiplicative constant
√
1 + α2

γ does not affect the proof of Theorem 1.3 (ii).
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