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We first establish new local limit estimates for the probability that a non-
decreasing integer-valued random walk lies at time n at an arbitrary value,
encompassing in particular large deviation regimes on the boundary of the
Cramér zone. This enables us to derive scaling limits of such random walks
conditioned by their terminal value at time n in various regimes. We believe
both to be of independent interest. We then apply these results to obtain in-
variance principles for the Łukasiewicz path of Bienaymé–Galton–Watson
trees conditioned on having a fixed number of leaves and of vertices at the
same time, which constitutes a first step towards understanding their large
scale geometry. We finally deduce from this scaling limit theorems for ran-
dom bipartite planar maps under a new conditioning by fixing their number
of vertices, edges, and faces at the same time. In the particular case of the
uniform distribution, our results confirm a prediction of Fusy and Guitter on
the growth of the typical distances and show furthermore that in all regimes,
the scaling limit is the celebrated Brownian sphere.

1. Introduction. The main motivation of this paper is to study continuum limits of large
random planar maps under a new conditioning by fixing their total number of vertices, edges,
and faces at the same time. This originated in a conjecture by Fusy and Guitter [27], which we
confirm and make more precise (see Theorem 1.2). The underlying philosophy is to probe the
universality of the canonical “Brownian” or “stable” scaling limits; see also Section 1.3 for
additional motivations. The main tool is to obtain new large deviation local limit asymptotics
for random walks on the boundary of the Cramér zone. Indeed, by relying on known bijec-
tions, invariance principles for our model of random maps will be derived from the study
of large random Bienaymé–Galton–Watson trees conditioned on having a fixed number of
leaves and of vertices at the same time. This will use limit theorems for random walks un-
der a “bridge-type” conditioning in large deviation regimes, obtained as a corollary of our
local estimates. Let us first present our results concerning random walks before mentioning
applications to random trees and random maps.

1.1. Local limit theorems and bridge-type conditioning for random walks. Consider a
random walk, say Sn = ξ1 + · · · + ξn for every n ≥ 1, where (ξi)i≥1 is a sequence of
i.i.d. copies of a random variable ξ . The question of estimating quantities of the form
P(Sn ∈ (x, x + T ]) for T ∈ (0,∞] is fundamental in the study of random walks with numer-
ous applications (e.g., in statistics, risk theory, statistical mechanics, queueing theory, etc.),
and has received considerable interest, in particular in large deviation regimes. When the tail
of the jump distribution vanishes exponentially fast (which is roughly speaking the so-called
Cramér condition), seminal results go back to Cramér [20] with extensions by Bahadur and
Ranga Rao [7] and Petrov [58]; see also Höglund [29]. The class of subexponential random
walks (for which the Cramér condition does not hold), which bears close connections with
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the so-called “one-big jump prinicple”, has also received considerable interest, see the impor-
tant paper by Denisov, Dieker and Schneer [23] and references therein. Jain and Pruitt [32]
have obtained estimates for P(Sn ≤ xn) for a given sequence xn → ∞, and since then quite
some effort has also been devoted to the much more delicate estimation of “local” probabil-
ities (corresponding to T < ∞), and whole books have been devoted to the subject; see in
particular Borovkov and Borovkov [13] as well as Borovkov [12] for exhaustive accounts.

In this work, given a sequence xn → ∞, we are interested in the asymptotic behaviour of
the probability P(Sn = xn + k) uniformly in k, see (1.2) below. Note that this is more precise
than just studying the asymptotics of P(Sn = xn). This is motivated by our first application in
Section 3, which is to establish scaling limit theorems for the associated bridges, namely the
trajectory (S0, S1, . . . , Sn) under the so-called “bridge” conditioning P(· | Sn = xn). In partic-
ular, we extend a result of Liggett [47], who roughly speaking focused on bridge conditioned
random walks in the domain of attraction of a stable law where the value of the endpoint
is of the same order as the fluctuations of the random walk. In turn, this will be useful for
applications to random trees and maps in Section 4 and 5. Let us mention that scaling lim-
its of random walk bridges conditioned to stay positive (see [19]) appear in connection with
statistical physics and in particular with polymer models.

In view of our applications, we shall restrict ourselves to the case where ξ is supported by
Z≥0, and, in order to avoid periodicity issues, that its support is not included in a sublattice
of Z, that is, the largest h > 0 such that there exists a ∈ R such that {k ≥ 0 : P(ξ = k) >

0} ⊂ a + hZ is h = 1. Before presenting the different regimes, let us say some words on the
main method. It is a classical change of probability (sometimes called the Cramér or Esscher
transform) which modifies the distribution of the increments in order to tune the drift of the
random walk. Precisely, let

G(z) = ∑
z≥0

zk
P(ξ = k)

denote the generating function of ξ , and let ρ ≥ 1 denote its radius of convergence. For
every b ∈ (0, ρ), let ξ (b) have the law with generating function G(bz)/G(b) and observe that
E[ξ (b)] = bG′(b)/G(b). It is a simple matter to check that this mean increases with b, and
further, when b → 0, it converges to iξ := inf{k ≥ 0 : P(ξ = k) > 0}, whereas when b → ρ the
limit is finite if and only if G′(ρ) < ∞. In particular, when iξ < xn/n < ρG′(ρ)/G(ρ), one

may define bn such that bnG
′(bn)/G(bn) = xn/n. Let S

(bn)
n denote the sum of n independent

copies of ξ (bn), then

(1.1) P(Sn = xn + k) = G(bn)
n

b
xn+k
n

· P(S(bn)
n = xn + k

)
.

Thus estimating P(Sn = xn + k) boils down to estimating P(S
(bn)
n = xn + k). The advantage

is that the event {S(bn)
n = xn} is more “typical”, however the drawback to working with S(bn)

is that the step distribution then varies with n.
In the “Brownian regime”, we shall obtain estimates of the following form:

(1.2) sup
k≥−xn

∣∣∣∣vn · b
xn+k
n

G(bn)n
· P(Sn = xn + k) − 1√

2π
exp

(
− k2

2v2
n

)∣∣∣∣ −→
n→∞ 0,

for some appropriate scaling factor vn.
A simple case which falls in this regime is when xn/n converges to some limit belonging

to the interval (iξ , ρG′(ρ)/G(ρ)), sometimes called the Cramér zone, since the generating
function of ξ (bn) is then analytic at 1. In this case, bn converges to a limit b ∈ (0, ρ), and
the generating function G is very regular at this point, so one can readily adapt classical
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proofs of the local limit theorem in the Gaussian regime to the walk S
(bn)
n and use (1.1). This

case is indeed known, see for example, Borovkov and Borovkov [13], Theorem 6.1.5, and is
included in the next theorem just for completeness. However, to the best of our knowledge the
two other cases are new. Note that no regularity assumptions are made on G in the first two
cases. Denote by D(ρ) the closed disk of radius ρ around the origin in the complex plane.

THEOREM 1.1. Let bn be defined by bnG
′(bn)/G(bn) = xn/n. The estimate (1.2) holds

in each of the following three regimes:

(i) The bulk regime: xn/n converges to some limit belonging to (iξ , ρG′(ρ)/G(ρ)), and
v2
n/n equals the variance of ξ (bn), explicitly given by

v2
n

n
= b2

nG
(2)(bn) + bnG

′(bn)

G(bn)
−
(

bnG
′(bn)

G(bn)

)2
.

(ii) The small endpoint regime: xn → ∞, xn/n → 0 and P(ξ = 0) > 0, P(ξ = 1) > 0,
and finally v2

n = xn.
(iii) The large endpoint regime: xn/n → ∞, G is bounded on any compact subset of

D(ρ) \ {ρ} and there exist c,α > 0 such that G(ρ − z) ∼ cz−α as z → 0 with |ρ − z| < ρ;
finally v2

n = x2
n/(αn).

In the second case xn/n → 0, it is clear that the assumption P(ξ = 0) > 0 is necessary as
otherwise Sn is larger than or equal to n. On the other hand, it seems that when P(ξ = 1) = 0,
the model is close to be i-aperiodic in the limit, where i = min{j ≥ 1 : P(ξ = j) �= 0}, so one
should restrict to values of k ∈ iN in order to have a local limit theorem.

In the third regime, roughly speaking, the first condition can be thought of as a “strong”
aperiodicity condition, while the second one is related to the asymptotics of the tail distri-
bution of ξ , see Remark 2.1 for more detailed comments. This regime naturally appears in
the context of random planar maps: we will indeed see that the model of uniform bicondi-
tioned bipartite Boltzmann planar maps discussed below is closely related to the distribu-
tion given by P(ξ = k) = 2(3/16)k+1(2k+1

k

)
for every k ≥ 0, which has generating function

G(s) = s−1((1 − 3s/4)−1/2 − 1) for s ∈ (0,4/3); this satisfies the assumptions of Theo-
rem 1.1(iii) with α = 1/2. This is also related to the so-called superlarge deviations for expo-
nentially fast decaying regular distributions considered by Borovkov and Mogulskii [16], see
Remark 2.3 for more details.

As a first application, in Section 3 we will use these estimates to get a functional conver-
gence, namely that in the regimes of Theorem 1.1, the rescaled paths(

1

vn

(S�nt − xnt);0 ≤ t ≤ 1
)

n≥1

under P(· | Sn = xn) converge in distribution towards a standard Brownian bridge.
To keep this introduction as short as possible, we have not mentioned here the case when

xn/n → ρG′(ρ)/G(ρ), with the latter being finite. In this case, when ξ also belongs to
the domain of attraction of a stable law with index α ∈ (1,2], several different behaviours
appear depending on the deviation of xn from nρG′(ρ)/G(ρ). We defer the precise state-
ment to Section 2.3; we establish in particular in Theorem 2.4 the estimate (1.2) when
xn − nρG′(ρ)/G(ρ) divided by the usual scaling factor of the random walk, of order n1/α ,
tends to −∞.
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1.2. Applications to biconditioned random trees. Recall the model of Bienaymé–
Galton–Watson plane trees, representing the genealogy of a family in which the individuals
reproduce independently of each other according to a given offspring distribution. A lot of
effort in the last decades has been put on understanding the scaling limits of such trees con-
ditioned to be large. A classical conditioning involves the total number of vertices, for which
the most famous results are certainly due to Aldous [3] and Duquesne [24]. Often motivated
by applications to random combinatorial models, many other types of conditionings have
also been considered, involving for instance the height [43] or the total number of leaves and
more generally the total number of vertices with fixed outdegrees [37, 60].

One of our applications concerns random plane trees conditioned by both their total num-
ber of vertices and leaves, say n and Kn respectively. This conditioning has been first con-
sidered by Labarbe and Marckert [40] in the case of the uniform distribution (which amounts
to taking a geometrical offspring distribution), by relying on explicit counting formulas, in
part motivated by applications to parallelogram polyominoes. In this work, we are interested
in general biconditioned Bienaymé–Galton–Watson trees. To the best of our knowledge, this
is considered for the first time. Using new techniques, we establish scaling limits of their
Łukasiewicz path. This is the first step towards the understanding of the geometry of such
trees as this is often the first ingredient before tackling scaling limits of their height or con-
tour functions, which are more delicate to study; see the open question at the end of this
introduction.

Indeed, this path has the same law as a random walk with increments in {−1,0,1,2, . . . },
conditioned to first hit −1 at time n and to make Kn negative steps in total. By applying
the cycle lemma (also known as Vervaat transform) one can remove the positivity constraint
and end up studying a random walk conditioned to lie at position −1 at time n and to have
made Kn negative steps. We then split the negative and nonnegative contributions; for the
reverse operation one roughly speaking “shuffles” these contributions. Indeed, the positions
of the negative steps are just uniformly chosen among all the possibilities, which is tractable
and is a well-studied framework, while the path obtained by removing these jumps is now
a nondecreasing random walk, only conditioned to lie at the value Kn − 1 at time n − Kn.
This is essentially the new key idea that allows to study general offspring distributions and
to transfer results from a “conditioned” setting to a “biconditioned” setting, see Lemma 4.2
for a precise statement. We are then in position to apply our preceding results on bridge-
conditioned random walks, see Section 4.4 for precise statements.

1.3. Scaling limits of biconditioned random planar maps. A (planar) map is the em-
bedding of a finite, connected multigraph in the two-dimensional sphere, viewed up to
orientation-preserving homeomorphisms; we shall always root these graphs by distinguish-
ing one oriented edge. The embedding allows to define the faces of the map which are the
connected components of the complement of the graph on the sphere, and the degree of a
face is the number of edges incident to it, counted with multiplicity: an edge incident on both
sides to the same face contributes twice to its degree. See Figure 3 right for an example of a
map with six faces.

Le Gall [44] and Miermont [57] simultaneously closed a series of works by proving that
if one samples a quadrangulation (i.e., all faces have degree 4) with n faces uniformly at
random, say mn, then its set of vertices V (mn) equipped with the graph distance dgr rescaled
by a factor n−1/4 converges in distribution in the Gromov–Hausdorff topology to a random
compact metric space called the Brownian sphere. The latter is a random metric space, al-
most surely homeomorphic to the 2-sphere [46, 55] and with Hausdorff dimension 4 [42].
In this paper we shall also consider the uniform probability measure punif and the Gromov–
Hausdorff–Prokhorov topology (see e.g. [56], Section 6, for details on this topology). Fol-
lowing this result, many other discrete models of “large” random maps have been shown to
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converge towards the Brownian sphere. Most of them focus on the technically simpler case
of bipartite maps, in which all faces have even degree, with two notable exceptions [2, 9]. We
will as well restrict to the bipartite case. In another direction Le Gall and Miermont [45] have
considered other models of discrete maps which exhibit a very different large scale behaviour
and converge, after extraction of a subsequence, to other universality classes, known as stable
maps.

In Section 5, we are interested in random planar maps with random face degrees, condi-
tioned to have a large fixed number of vertices, edges, and faces at the same time; by Euler’s
formula, there are actually only two degrees of freedom, hence the name biconditioned planar
maps. More precisely, let (Kn)n≥1 be a sequence of integers and, in order to discard degen-
erate cases, we shall always assume that both Kn and n − Kn tend to infinity. Let us denote
by Mn,Kn the set of all rooted bipartite planar maps with n − 1 edges and Kn + 1 vertices;
by Euler’s formula, all maps in Mn,Kn have n − Kn faces. The model of uniformly chosen
biconditioned planar maps is mentioned in a work by Fusy and Guitter [27] who predicted
the rate of growth of the distances in such maps, which we confirm just below.

More conceptually, it is natural to probe the universality of the large-scale behaviour of
random maps (in particular of the canonical “Brownian” or “stable” scaling limits) by study-
ing the influence of both the set of maps under consideration (prescribed by parameters such
as the genus, the number of edges, faces and/or vertices) and the probability measure (the uni-
form measure, Boltzmann measures, etc.). Here in this paper, in the planar case, this amounts
to asking if other limits than those occurring for maps conditioned by their number of edges
can appear if we force it to have much more or much less vertices/faces than usual. We
shall see that for the uniform probability measure, these constraints still lead to the Brownian
sphere. However, for Boltzmann probability distributions (in particular in the so-called “sta-
ble” regime), we shall see that, forcing the map to have much less vertices than usual leads
to the Brownian sphere (analogously to Theorem 1.1(ii)), but, indeed, new behaviours can
appear otherwise. In the same philosophy, let us mention that uniform unicellular maps with
moderate high genus appear as a toy model for hyperbolic geometry (see [21] and references
therein).

Let us defer our general statements to Section 5.3 and focus here on the particular case
of the uniform distribution. This framework is already new and exhibits an intriguing fea-
ture: Once appropriately scaled, such random maps always converge to the Brownian sphere.
Specifically, for 0 < x < 1, set

S(x) = (1 − x)(3 + x + √
(1 − x)(9 − x))

12x
.

Note that S is continuous, decreasing, and S(x) ∼ 1/(2x) and S(1 − x) ∼ x/3 as x → 0.

THEOREM 1.2. Let (Kn)n≥1 be integers such that Kn → ∞ and n − Kn → ∞ and let
Mn,Kn be a bipartite map with n−1 edges and Kn +1 vertices sampled uniformly at random.
Then the convergence(

V (Mn,Kn),

(
S

(
Kn

n

)
9

4n

)1/4
dgr,punif

)
(d)−→

n→∞ (M,dM,pM)

holds in distribution for the Gromov–Hausdorff–Prokhorov topology, where (M,dM,pM) is
the standard Brownian sphere.

REMARK 1.3.

(i) Theorem 1.2 confirms a prediction of Fusy and Guitter [27], Section 6, that typical
distances in uniform random maps with n edges and nb faces are of order n(2−b)/4, whereas
distances in uniform random maps with n edges and nc vertices are of order nc/4; furthermore
our result shows that in both cases the limit is the Brownian sphere.
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(ii) Abraham [1] proved that bipartite maps with n edges sampled uniformly at random
converge in distribution to the Brownian sphere once rescaled by (2n)−1/4. Since a map
with n edges typically has about 2n/3 vertices (see e.g., [1], Section 6), and S(2/3) = 2/9,
then this is consistent with our result. Note that for general, possibly nonbipartite, uniformly
random maps with n edges, the scaling constant is different, see [9].

It is interesting to notice in Theorem 1.2 that, while the scaling factor depends on Kn and
n, the limit is always the Brownian sphere. This is in spirit similar to a result of Labarbe
and Marckert [40] on trees. More precisely, the combination of the papers [17] and [34] re-
late our maps to decorated (“labelled”) trees with n vertices and Kn leaves and allows to
study random maps related to biconditioned Bienaymé–Galton–Watson trees. For the uni-
form distribution on such trees, under the same nondegeneracy assumption Kn → ∞ and
n − Kn → ∞, Labarbe and Marckert [40] proved that, once normalised by (ns(Kn/n))−1/2,
where s(x) = 2(1 − x)/x, they always converge to Aldous’s Brownian CRT coded by the
standard Brownian excursion [3]. The trees which appear in our work have two main dif-
ferences with [40]: first, we do not restrict to the uniform distribution; as a matter of fact,
even for uniform maps, nonuniform plane trees appear because of bias due to the labels. Sec-
ond, we only focus here on the Łukasiewicz path of trees and not on their contour function,
so we do not get any Gromov–Hausdorff convergence for trees, but this is sufficient for the
applications to maps.

When the trees have an offspring distribution in the domain of attraction of a stable law,
we shall see that the corresponding biconditioned maps, under a fine tuning of the number of
vertices, converge after extraction of a subsequence. These new metric spaces, which we call
(α,λ)-skewed-stable maps, are formed by a two-parameter family with α ∈ (1,2) and λ ∈ R

and will be the main subject of investigation of a companion paper. They are close in spirit to
the stable maps of [45] (which would be obtained for λ = 0), and are constructed as there with
the difference that there is an additional (positive or negative) drift to the (decorated) stable
Lévy process with no negative jump. We shall actually consider the much broader class of
spectrally positive Lévy processes and we identify the Hausdorff, packing, and Minkowski
dimensions of the associated metric spaces. In the particular case of the skewed-stable maps
that appear here, as in [45], their dimensions are all equal to 2α almost surely, for every value
of λ. Finally, we believe that for each α fixed, this family interpolates between the Brownian
sphere and the Brownian tree in the sense that, suitably rescaled, the skewed-stable maps
converge in distribution towards the former as λ → −∞ and to the latter as λ → ∞. This can
indeed be seen at the level of the Lévy excursions and is consistent with a formal exchange
of limits in Theorem 5.4 below.

1.4. Open questions. This work leaves open several questions that we plan to investigate,
let us briefly present two of them. First, from the point of view of scaling limits, several
regimes are yet not covered, especially the stable regime with index in (0,1]. When the index
equals 1, that is, in the Cauchy regime, trees [39] and maps [52] conditioned only by their
number of edges fall into a condensation regime but we believe that, as here, if one forces
them to have less leaves and vertices respectively than usual, one can get different limits.
Our techniques still apply and one only needs appropriate local limit estimates as those in
Section 2.

Another direction of research focuses on Gromov–Hausdorff convergence of large
Bienaymé–Galton–Watson trees. Invariance principles were first established for such trees
solely conditioned by their total number vertices [3, 24]. Often motivated by applications
to random combinatorial models, other types of conditionings have also been considered,
involving for instance the height [43] or the total number of leaves and more generally the
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total number of vertices with fixed outdegrees [37, 60]. It is then natural to ask for analogous
results on bicionditioned trees and only the uniform distribution has been considered so far as
we recalled [40]. This requires to study their so-called height or contour processes which are
much more involved for general, nonuniform trees, than the Łukasiewicz path that we study
here. Nonetheless the study of the height process usually relies on that of the Łukasiewicz
path, especially in the Brownian regime where one typically shows that the two paths are
close to each other, as for example, in [18, 49], so our results (Theorems 4.3 and 4.4) consti-
tute a first step in understanding the large scale geometry of such trees. For example, in the
bulk regime, where the generating function of the modified distribution is very regular, one
can adapt these works in a straightforward way. We plan to study more these trees in the near
future.

1.5. Plan of the paper. This paper is organised as follows. First, in Section 2 we focus
on the local limit estimates: we prove Theorem 1.1 and state and prove similar estimates in
the stable regimes. Then in Section 3 we apply these results to obtain invariance principles
for nondecreasing random walk bridges. In Section 4 we discuss application to biconditioned
random trees and invariance principles for their Łukasiewicz paths in Section 4.4 by relating
them with nondecreasing bridges as discussed above. Then in Section 5 we first present the
general model of Boltzmann planar maps, and then precisely state our results pertaining to
biconditioned maps in Section 5.3, whose proof readily follows from the results on trees.
Finally we defer to the Appendix some technical proofs on random bridges needed for the
random maps.

2. Local limit theorems. In this section, we first prove Theorem 1.1(ii) and (iii) (recall
that (i) is already known, see [13], Theorem 6.1.5) and then state and prove an analogous re-
sult for walks attracted to a stable law as alluded to in the Introduction. Recall the framework
of Section 1.1: ξ is a random variable supported by Z≥0, and, in order to avoid periodicity
issues, we assume throughout that its support is not included in a sublattice of Z. We consider
a random walk, say Sn = ξ1 + · · · + ξn for every n ≥ 1, where (ξi)i≥1 is a sequence of i.i.d.
copies of ξ . Recall that we denote by G(s) = ∑

k≥0 sk
P(ξ = k) the generating function of

ξ , and we let ρ ≥ 1 denote its radius of convergence. For every b ∈ (0, ρ), let ξ (b) have the
law with generating function G(b)(s) = G(bs)/G(b), so E[ξ (b)] = bG′(b)/G(b) and let S(b)

denote the associated random walk.
Recall that we aim at estimating probabilities of the form P(Sn = xn + k) for a given

sequence xn → ∞; by (1.1) we may replace Sn by S(bn) with bn such that E[ξ (bn)] =
bnG

′(bn)/G(bn) = xn/n (provided it exists) so that the event of taking value xn at time n

is more “typical”. The following expressions of the moments of ξ (bn) will be useful in this
section and in the next ones:

E
[
ξ (bn)] = bnG

′(bn)

G(bn)
= xn

n
, E

[(
ξ (bn))2] = b2

nG
(2)(bn) + bnG

′(bn)

G(bn)
,

E
[(

ξ (bn))3] = b3
nG

(3)(bn) + 3b2
nG

(2)(bn) − 2bnG
′(bn)

G(bn)
,

E
[(

ξ (bn))4] = b4
nG

(4)(bn) + 6b3
nG

(3)(bn) − 11b2
nG

(2)(bn) + 6bnG
′(bn)

G(bn)
.

(2.1)

2.1. The small endpoint regime. In this subsection we consider the case xn/n → 0
and we prove Theorem 1.1(ii): as soon as P(ξ = 0) > 0, P(ξ = 1) > 0, if bn is such that
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bnG
′(bn)/G(bn) = xn/n then we have

sup
k≥−xn

∣∣∣∣√xn · b
xn+k
n

G(bn)n
· P(Sn = xn + k) − 1√

2π
exp

(
− k2

2xn

)∣∣∣∣ −→
n→∞ 0.

PROOF OF THEOREM 1.1(ii). Using (1.1), let us rewrite the claim as

(2.2) sup
k∈Z

∣∣∣∣√xn · P(S(bn)
n = xn + k

)− 1√
2π

exp
(
− k2

2xn

)∣∣∣∣ −→
n→∞ 0.

One could mimic the proof of the standard local limit theorem, but we prefer a shorter and
less technical approach based on [22], Theorem 1.2. We first need to check that a central limit
theorem holds. Recall (see e.g., [25], Lemma 3.3.7) that if Y is a random variable with a finite
third moment, then ∣∣∣∣E[eiY ]−

(
1 + iE[Y ] − 1

2
E
[
Y 2])∣∣∣∣ ≤ 1

6
E
[|Y |3].

To estimate the moments of S
(bn)
n , set p(0) = P(ξ = 0) and p(1) = P(ξ = 1) and observe that

since we assume p(1) > 0, then, for every i ≥ 2, as x → 0,

(2.3) xG′(x) ∼ p(1)x and xiG(i)(x) = O
(
xi).

Then by definition of bn,

bn ∼
n→∞

p(0)

p(1)

xn

n
,

and it follows from (2.1) that

E
[(

ξ (bn))2] = b2
nG

(2)(bn) + bnG
′(bn)

G(bn)
= xn

n

(
b2
nG

(2)(bn)

bnG′(bn)
+ 1

)
∼

n→∞
xn

n
,

and

E
[(

ξ (bn))3] = O

(
xn

n

)
.

Hence, for any u ∈ R,

E
[
eiuξ(bn)] = 1 + i

xnu

n
− xnu

2

2n
+ o

(
xn

n

)
,

which implies that

E

[
exp

(
iu

S
(bn)
n − xn√

xn

)]
−→
n→∞ exp

(
−u2

2

)
.

Next, in the notation from [22], for every n ≥ 1, we have

Qn = n
∑
k∈Z

min{P(ξ (bn) = k),P(ξ (bn) = k + 1)}

≥ nmin{P(ξ (bn) = 0),P(ξ (bn) = 1)}.
Observe that

P
(
ξ (bn) = 0

) = p(0)

G(bn)
−→
n→∞ 1,

and

P
(
ξ (bn) = 1

) = bnp(1)

G(bn)
∼

n→∞
p(1)

p(0)
bn ∼

n→∞
xn

n
.

Therefore lim supn xn/Qn < ∞ and Theorem 1.2 in [22] implies (2.2). This completes the
proof. �
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2.2. The large endpoint regime. Let us recall the setting of Theorem 1.1(iii): we hence-
forth assume that G is bounded on any compact set of D(ρ) \ {ρ}, the closed disk punctured
at ρ, and there exist c,α > 0 such that G(ρ − z) ∼ cz−α as z → 0 with |ρ − z| < ρ. We let xn

be such that xn/n → ∞ and let bn be such that bnG
′(bn)/G(bn) = xn/n and we show that

sup
k≥−xn

∣∣∣∣ xn√
αn

· b
xn+k
n

G(bn)n
P(Sn = xn + k) − 1√

2π
exp

(
−αn

x2
n

k2
)∣∣∣∣ −→

n→∞ 0.

REMARK 2.1. Let us comment on the significance of the underlying two assumptions.
For the second one, when s ∈ R, by Hardy–Littlewood–Karamata’s Tauberian theorem [10],
Corollary 1.7.3, the asymptotic on the real line G(ρ − s) ∼ cs−α as s ↓ 0 is equivalent to∑n

k=0 P(ξ = k)ρk ∼ c′nα as n → ∞ for a related constant c′ > 0, which is also equivalent to
assuming P(ξ ≥ n) ∼ αc′′ρ−nnα−1 where c′′ = c(1 − ρ−1); see just below (2.4) for calcula-
tions in this vein. It is a simple matter to check that this is implied by the stronger assumption
P(ξ = n) ∼ αc′ρ−nnα−1 (which e.g., forbids P(ξ = n) to vanish for all n sufficiently large).
Local limit theorems for such laws have been studied in [16], where they are called exponen-
tially fast decaying regular distributions (when c′′ is replaced by a slowly regularly function),
see also Remark 2.3 below.

However, it is possible to construct an example where P(ξ = n) ∼ αc′ρ−nnα−1 holds but
G(ρ −z)� cz−α as z → 0 with |z−ρ| < ρ: indeed, in general, the estimate G(ρ −s) ∼ cs−α

as s ↓ 0 does not extend to the complex plane (see Remark 2.3 below). Such an extension is
required in the proof of Lemma 2.2(ii) below (in eq. (2.9)).

The first assertion may be thought of as a ‘’strong” aperiodicity condition. Indeed, as in
the preceding section, even when ξ is aperiodic, it could be that once exponentially tilted, the
mass concentrates more and more on a strict subgroup of Z. The condition that G is bounded
on any compact set of D(ρ) \ {ρ} prevents this from happening.

For all these reasons, the conditions in Theorem 1.1 involve properties of the generating
function G rather than properties of its coefficients.

We now turn to the proof of Theorem 1.1(iii). Our approach is to adapt the classical proof
of the local limit estimate: we first establish a central limit theorem and then use the inverse
Fourier transform, cut the integrals and bound each piece appropriately.

Let us start with some estimates. First, we check that for every k ≥ 1, if G(k) denotes the
kth derivative of G, then

(2.4) G(k)(ρ − s) ∼
s↓0

α(α + 1) · · · (α + k − 1)
c

sα+k
.

We rely on Hardy–Littlewood–Karamata’s Tauberian theorem for power series [10], Corol-
lary 1.7.3. Indeed, recall that we assume that G satisfies this asymptotic behaviour for k = 0,
then setting Sn = ∑n

k=0 ρk
P(ξ = k), this theorem entails that this is equivalent to Sn ∼ c′nα

as n → ∞ with c′ = c/(ρα�(1 + α)). Then write

n∑
k=1

kρk
P(ξ = k) =

n∑
k=1

k(Sk − Sk−1) = nSn −
n−1∑
k=0

Sk ∼
n→∞

αc

ρα�(2 + α)
nα+1.

This is equivalent to G′(ρ−s) ∼ αcs−(α+1) as s ↓ 0, again by Hardy–Littlewood–Karamata’s
Tauberian theorem. The general case readily follows by induction.

Writing bn = ρ(1 − εn), by definition of bn we have

(2.5) bn = xn

n

G(ρ(1 − εn))

G′(ρ(1 − εn))
∼ xn

n

c(ρεn)
−α

αc(ρεn)−(α+1)
= xn

n

ρεn

α
.
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Since bn → ρ, we conclude that εn ∼ αn/xn.
Set σ 2

n = Var(ξ (bn)). Recalling from (2.1) the expression of the first moments of ξ (bn), we
infer that as n → ∞,

(2.6) E
[(

ξ (bn))2] ∼ α(α + 1)

ε2
n

∼ α + 1

α

x2
n

n2 so σ 2
n ∼ 1

α

x2
n

n2 ,

as well as

(2.7) E
[(

ξ (bn))3] ∼ α(α + 1)(α + 2)

ε3
n

∼ (α + 1)(α + 2)

α2

x3
n

n3 .

Observe that

(2.8)
E[(ξ (bn))2]

σ 2
n

−→
n→∞

α + 1

2
and

E[(ξ (bn))3]
σ 3

n

−→
n→∞

(α + 1)(α + 2)√
α

.

Finally, to simplify notation, let φn(t) = E[exp(itξ (bn))] denote the characteristic function
of ξ (bn).

LEMMA 2.2. Under our assumptions on G, the following assertions hold.

(i) For every η′ > 0, there exists C > 0 such that for every η′σn ≤ |s| ≤ πσn, for every n

sufficiently large, |φn(s/σn)| ≤ Cσ−α
n .

(ii) There exists η′ > 0 such that for every η > 0, there exists cη ∈ (0, ηα) such that for
every n sufficiently large, for every η ≤ |s| ≤ η′σn we have |φn(s/σn)| ≤ cη|s|−α .

(iii) There exist η, c1 > 0 such that for every 0 ≤ |s| ≤ η and n ≥ 1 we have |φn(s/σn)| ≤
exp(−c1s

2).

PROOF. Recall that for every t ∈ R, we have φn(t) = G(bn eit )/G(bn) with bn = ρ(1 −
εn), so by our assumption, G(bn) ∼ c(ρεn)

−α . Moreover, by combining (2.5) and (2.6), we
obtain εn ∼ √

α/σn, hence G(bn) ∼ c(ρ
√

α)−ασα
n . Also, since G is bounded on every com-

pact subset of D(ρ) \ {ρ}, for every η′ > 0, there exists c0 > 0 such that if |s|/σn ∈ [η′, π],
then for every n, it holds |G(bn eis/σn)| ≤ c0. The first claim follows.

Let us turn to the second claim. Fix δ > 0. There exists η′ > 0 such that for any z such
that |z| < 2η′ and Re(z) > 0, it holds that c(1 + δ)−1|z|−α ≤ |G(ρ − z)| ≤ c(1 + δ)|z|−α .
Therefore, for every |t | < η′, for every n large enough,

(2.9)
∣∣φn(t)

∣∣ = ∣∣∣∣G(bn eit )

G(bn)

∣∣∣∣ ≤ c(1 + δ)|ρ − bn eit |−α

c(1 + δ)−1(ρεn)−α
= (1 + δ)2

( |1 − (1 − εn) eit |
εn

)−α

.

Straightforward calculations show that if η′ is small enough, then for every t ∈ [−η′, η′],∣∣1 − (1 − εn) eit ∣∣2 = 1 − 2(1 − εn) cos t + (1 − εn)
2

= 2(1 − cos t)(1 − εn) + ε2
n ≥ t2

1 + δ
+ ε2

n.

Moreover, combining (2.5) and (2.6), we obtain ε2
n ∼ α/σ 2

n , therefore for |t | < η′, for every
n large enough,∣∣φn(t)

∣∣ ≤ (1 + δ)2
( |1 − (1 − εn) eit |2

ε2
n

)−α/2
≤ (1 + δ)2

(
(tσn)

2

(1 + δ)2α2 + 1
)−α/2

.

We infer that for every η ≤ |s| ≤ η′σn,∣∣φn(s/σn)
∣∣ ≤ (1 + δ)2

(
1

(1 + δ)2α2 + 1

η2

)−α/2
|s|−α.



LOCAL LIMIT THEOREMS AND BICONDITIONED PLANAR MAPS 3765

For δ = 0, the right-hand side is smaller than ηα|s|−α so by continuity, it remains true for
δ > 0 small enough and the first claim follows.

Let us finally turn to the third claim. As in the proof of Theorem 1.1(ii) (see e.g., [25],
Lemma 3.3.7), we start with writing

(2.10) φn(t) = 1 + iE
[
ξ (bn)]t −E

[(
ξ (bn))2] t2

2
+ Rn

1 (t) with
∣∣Rn

1 (t)
∣∣ ≤ |t |3

6
E
[∣∣ξ (bn)

∣∣3].
Consequently, by writing |φn(t)|2 = φn(t)φn(t), we infer that∣∣φn(t)

∣∣2 = 1 − Var
(
ξ (bn))t2 + ∣∣Rn

2 (t)
∣∣,

where
∣∣Rn

2 (t)
∣∣ = (

E
[(

ξ (bn))2] t2

2

)2
+ 2

(
1 −E

[(
ξ (bn))2] t2

2

)∣∣Rn
1 (t)

∣∣+ ∣∣Rn
1 (t)

∣∣2.(2.11)

Combining (2.11) with (2.10) and (2.8) we see that |Rn
2 (t/σn)| = O(|t |3) so there exist

η, c1 > 0 such that for every 0 ≤ |t | ≤ η and n ≥ 1, we have |Rn
2 (t/σn)| ≤ (1 − 2c)t2. Conse-

quently, appealing to (2.11) again, for every 0 ≤ |t | ≤ η and n ≥ 1,

ln
∣∣φn(t/σn)

∣∣ ≤ 1

2
ln
(
1 − t2 + ∣∣Rn

2 (t/σn)
∣∣) ≤ 1

2
ln
(
1 − 2c1t

2) ≤ −c1t
2,

and the third claim follows. �

We are now in position to establish Theorem 1.1(iii).

PROOF OF THEOREM 1.1(iii). By (1.1), our aim is to show that

sup
k∈Z

∣∣∣∣ xn√
αn

· P(S(bn)
n = xn + k

)− 1√
2π

exp
(
−αn

x2
n

k2
)∣∣∣∣ −→

n→∞ 0.

Recall the approximation (2.10), then by (2.6) and (2.7), there is a constant C > 0 such that
|Rn

1 (t/(σn

√
n))| ≤ C|t |3/n3/2 for every t ∈ R, n ≥ 1. Since nRn

1 (t/(σn

√
n)) → 0 uniformly

for t in compact subsets of R, it readily follows that

(2.12) E

[
exp

(
it

S
(bn)
n − xn

σn

√
n

)]
−→
n→∞ exp

(
− t2

2

)
,

uniformly for t in compact subsets of R.
We then follow the steps of the analytic proof of the standard local limit theorem for a

sequence of independent identically distributed random variables. The main difficulty is that
the distribution of ξ (bn) depends on n. As in the preceding subsection, to simplify notation,
set f (t) = e−t2/2 for t ∈ R, so by Fourier inversion, the Gaussian density reads

p(x) = 1

2π

∫ ∞
−∞

e−itx f (t)dt, x ∈ R.

Also, for k ∈ Z,

P
(
S(bn)

n = k
) = 1

2π

∫ π

−π
e−itk φn(t)

n dt.

In the following, we only consider values of x ∈ R such that xn + xσn

√
n is an integer. For

such x,

σn

√
n · P(S(bn)

n = xn + xσn

√
n
) = 1

2π

∫ πσn
√

n

−πσn
√

n
e−itx

(
φn

(
t

σn

√
n

)
e
−it xn

σnn3/2

)n

dt.



3766 I. KORTCHEMSKI AND C. MARZOUK

Therefore for every fixed A,η > 0, for n sufficiently large, the difference

|σn

√
nP

(
S(bn)

n = xn + xσn

√
n
)− f (x)|

is upper bounded by 1/(2π) times the modulus of the sum of the following five integrals:

I
(1)
A (x, n) =

∫ A

−A
e−itx

((
φn

(
t

σn

√
n

)
e
−it xn

σnn3/2

)n

− f (t)

)
dt,

I
(2)
A,η(x, n) =

∫
A<|t |<η

√
n

e
−itx−it xn

σn
√

n φn

(
t

σn

√
n

)n

dt,

I
(3)
η,η′(x, n) =

∫
η
√

n<|t |<η′σn
√

n
e
−itx−it xn

σn
√

n φn

(
t

σn

√
n

)n

dt,

I
(4)
η′ (x, n) =

∫
η′σn

√
n<|t |<πσn

√
n

e
−itx−it xn

σn
√

n φn

(
t

σn

√
n

)n

dt,

I
(5)
A (x) =

∫
|t |>A

e−itx f (t)dt.

We shall check that for every fixed ε > 0, there exist A,η > 0 such that for every n sufficiently
large, for every x ∈ R (with the above integrality condition), the modulus of each of the five
integrals is less than ε.

We choose η,η′, c1, cη > 0 such that the conclusions of Lemma 2.2 hold and then A > 0
such that

(2.13) 2
∫ ∞
A

e−t2/2 dt < ε and 2
∫ ∞
A

e−c1t
2

dt < ε.

Bounding |I (1)
A (x, n)|: Since the convergence (2.12) holds uniformly on compact subsets

of R, then for n sufficiently large and x ∈ R, the modulus of the integrand tends to 0 as
n → ∞ uniformly in x ∈R, so indeed |I (1)

A (x, n)| ≤ ε for n large enough.

Bounding |I (2)
A,η(x, n)|: By Lemma 2.2(iii), we have for n sufficiently large and any x ∈ R,

∣∣I (2)
A,η(x, n)

∣∣ ≤ ∫
A<|t |<η

√
n

e
−c1n( t√

n
)2

dt ≤ 2
∫ ∞
A

e−c1t
2

dt,

and the last integral is less than ε by (2.13).
Bounding |I (3)

η,η′(x, n)|: By Lemma 2.2(ii), for n sufficiently large and x ∈R,

∣∣I (3)
η,η′(x, n)

∣∣ ≤ 2
√

n

∫ η′σn

η

∣∣φn(s/σn)
∣∣n ds ≤ 2

√
n

∫ ∞
η

cn
η

sαn
ds = 2

√
n

cn
η

(αn − 1)ηαn−1 ,

which tends to 0 since cη < ηα .

Bounding |I (4)
η′ (x, n)|: By Lemma 2.2(i), for n sufficiently large and x ∈R,

∣∣I (4)
η′ (x, n)

∣∣ ≤ 2
√

n

∫ πσn

η′σn

∣∣φn(s/σn)
∣∣n ds ≤ 2π

√
nσn

(
Cσ−α

n

)n −→
n→∞ 0,

since σn → ∞.
Bounding |I (5)

A (x)|: By the choice of A in (2.13), we directly conclude that |I (4)
A (x)| ≤ ε

for every x ∈ R. This completes the proof. �

To end this part devoted to the large endpoint regime, let us compare our results with those
of [16] on so-called “exponentially fast decaying regular distributions”.
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REMARK 2.3. When ξ is of the form P(ξ ≥ n) = L(n)ρ−nnα−1 with L slowly varying
and α > 0, Theorem 7.3(iii) in [16] gives a local limit estimate which in our framework reads
as follows:

(2.14) P(Sn = xn) = G(bn)
n

b
xn
n

1√
2πnVar(ξ (bn))

(
1 + εn

(
xn

n

))
,

where supu∈[1,∞] |εn(u)| → 0 as n → ∞. Note however that in Theorem 1.1(iii) we estimate
the probability P(Sn = xn + k) uniformly in k ∈ Z, which is required in view of applications,
which does not seem to easily follow from (2.14) which treats the case k = 0.

Also, there is an error in the proof of Theorem 7.3(iii) in [16]. Indeed, the proof relies on
Theorem 3.4(iii) in [15], which itself relies on Theorem 3.3 in [15], which itself relies on
Theorem 2 in [14], which finally relies on Lemma 4 in [14]. However in the proof of this
lemma, in a few lines below equation (33) there, the inequality |I1| ≤ ∫

ρ(z)≤π e−cndz is in-
correct for two reasons (here we use the notation in the latter reference). First, after bounding
the integrand by e−c, one should take into account the length of the interval involved in the
integral defining I1, which is of order

√
nB(n). Taking this into account, we would get (in the

case d = 1), |I1| ≤ 2π
√

nB(n)e
−cn, which does not necessarily tend to 0. Second, Condition

[Z] (defined on p. 472 in [14]) is not enough to write

sup
β≤ρ(zn−1/2),ρ(zn−1/2B−1

(n) )≤π

∣∣f(n)

(
zB−1

(n)n
−1/2)∣∣ ≤ e−c.

Indeed, the quantity zB−1
(n)n

−1/2 can take values arbitrarily close to 0 and to apply Condition
[Z] it should be bounded from below by some positive constant δ > 0.

In view of the previous discussion, let us shed some new light on our assumptions. The
fact that G is bounded on any compact subset of D(ρ) \ {ρ} can be viewed as a stronger [Z]
condition, namely it gives a quantitative decay of the generating function of ξ (bn) on the piece
of circle {eit : t ∈ [−π,π] \ [−η,η]}, see Lemma 2.2(i). Also, the fact G(ρ − z) ∼ cz−α as
z → 0 with |ρ − z| < ρ is crucial in bounding the norm of the generating function of ξ (bn) on
{eit : t ∈ [−η,η]}, see (2.9). Note that it is possible to find ξ such that P(ξ ≥ n) ∼ cρ−nnα−1

and G(ρ − z)� Cz−α as z → 0 with |ρ − z| < ρ; take, for example,

H(z) =
∞∑

n=1

(
zn + z3n − z2·3n

n(1 − z)

)
, and then G(z) = H(z/2)

H(1/2)
,

with ρ = 2 and α = 1.
This explains why in this regime our assumptions involve the behaviour of the generation

function G rather than the behaviour of its coefficients as in [16]. In particular, we believe
that additional conditions must be added for Theorem 7.3(iii) in [16] to be correct.

2.3. Stable regime. We finally consider the case where xn/n converges to the right-edge
ρG′(ρ)/G(ρ) when the latter is finite (recall that that case was excluded in Theorem 1.1(i)).
We assume throughout that ξ has finite mean m > 0, is aperiodic and belongs to the domain
of attraction of a stable law with index α ∈ (1,2], which means that there exists a function L,
slowly varying at infinity, such that for every s ∈ (0,1),

(2.15) G(s) = E
[
sξ ] = 1 − m + ms + (1 − s)αL

(
1

1 − s

)
.

Recall that L is slowly varying if for every c > 0, it holds L(cx)/L(x) → 1 as x → ∞.
Before stating limit theorems, we introduce scaling sequences. If Var(ξ) < ∞ (which im-

plies α = 2), we set rn = √
nVar(ξ)/2. In this case, L has a finite limit at ∞, and setting
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� = lim∞ L, we have Var(ξ) = 2� + m − m2. If Var(ξ) = ∞, we let (rn)n≥1 be a sequence
satisfying rα

n ∼ nL(rn) as n → ∞. In the latter case, it is sometimes useful to express L

in terms of the truncated variance of ξ (although we will not use it here): as in, for exam-
ple, [11], Lemma 4.7, (which covers the case m = 1, but the argument in the general case is
the same), if we set L2(n) = nα−2 Var(ξ1{ξ≤n}), then L2 is slowly varying and as n → ∞ we
have L(n) ∼ �(3−α)

α(α−1)
L2(n) (this is specific to the case Var(ξ) = ∞).

We now introduce some notation. Let Xα denote the α-stable process with no negative
jump, whose law is characterised by E[exp(−qXα

t )] = exp(tqα) for every t, q > 0; note that
X2 has the law of

√
2 times a standard Brownian motion. For every t > 0, let dα

t denote the
density of Xα

t . The classical local limit theorem (see e.g., [30], Theorem 4.2.1, combined
with [38], eq. (7) and (41), for the scaling constants) reads

(2.16) sup
k∈Z

∣∣∣∣rn · P(Sn = mn + k) − dα
1

(
k

rn

)∣∣∣∣ −→
n→∞ 0.

This gives precise first-order asymptotic estimates uniformly for k/rn belonging to a compact
subset of R. The last limit theorem of this section aims at giving a precise first-order asymp-
totic estimate for the quantity P(Sn = xn) in the large deviation regime when xn/n → m but
(xn − mn)/rn → −∞.

THEOREM 2.4. Assume that (2.15) holds. Let (λn) be a sequence such that λn/rn →
−∞ and λn/n → 0. Set xn = mn + λn. For every n sufficiently large, let bn be such that
bnG

′(bn)/G(bn) = xn/n. Let εn > 0 be such that bn = 1 − εn and define

vn =
√

(α − 1)|λn|
εn

.

Then

sup
k≥−xn

∣∣∣∣vn · b
xn+k
n

G(bn)n
· P(Sn = xn + k) − 1√

2π
exp

(
− k2

2v2
n

)∣∣∣∣ −→
n→∞ 0.

Roughly speaking, when Var(ξ) < ∞, this estimate, with
√

nVar(ξ (bn)) instead of vn, fol-
lows from [13], Theorem 6.1.5, and when Var(ξ) = ∞ this follows from [32], Theorem 3.1.
The identification of vn requires asymptotics estimates on the moments of ξ (bn), which is the
core of the proof of Theorem 2.4.

PROOF OF THEOREM 2.4. We start with some preliminary estimates. By standard argu-
ments (see e.g., [38], eq. 44), it follows from (2.15) that when u ↓ 0, we have

G′(1 − u) = m − αuα−1L(1/u)
(
1 + o(1)

)
.

By taking u = εn, we get

λn

n
= xn

n
− m = (1 − εn)G

′(1 − εn)

G(1 − εn)
− m

= (1 − εn)(m − αεα−1
n L(1/εn)(1 + o(1)))

1 − mεn + εα
nL(1/εn)

− m

= −εn

(
m − m2 + αεα−2

n L(1/εn)
)(

1 + o(1)
)
.

If Var(ξ) < ∞, if follows that

(2.17)
|λn|
nεn

−→
n→∞ Var(ξ).
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Now assume that ξ has infinite variance, which entails that lim∞ L = ∞ in the case α = 2.
Then

(2.18)
|λn|
εn

∼ αnεα−2
n L(1/εn), v2

n ∼ α(α − 1)nεα−2
n L(1/εn).

Next, we claim that rnεn → ∞. Indeed, from rα
n ∼ nL(rn), it follows that

|λn|/rn ∼ α(rnεn)
α−1 L(1/εn)

L(1/rn)
.

Our claim follows: if the sequence (rnεn) does not tend to infinity, it would have a subse-
quence with a finite limit, and then the right-hand side would have a finite limit along this
subsequence, which contradicts the fact that |λn|/rn → ∞. In particular, vn → ∞.

We now establish the theorem by checking that

(2.19) sup
k≥−xn

∣∣∣∣vn · P(S(bn)
n = xn + k

)− 1√
2π

exp
(
− k2

2v2
n

)∣∣∣∣ −→
n→∞ 0.

When ξ has finite variance, [13], Theorem 6.1.5, (see in particular the second paragraph

after its statement) gives (2.19) with
√

Var(ξ (bn)) instead of vn, and the estimate (2.17) yields

vn ∼
√

nVar(ξ (bn)).
Now assume that ξ has infinite variance. We check that we can apply [32], Theorem 3.1;

the first step is to check that a central limit theorem holds. We start with estimating the
moments of ξ (bn). For every k ≥ 1,

(2.20) G(k)(1 − u) = α(α − 1) · · · (α − k + 1)uα−kL(1/u)
(
1 + o(1)

)
.

Then we infer from (2.1) that

E
[(

ξ (bn))2] ∼
n→∞ α(α − 1)εα−2

n L(1/εn),

E
[(

ξ (bn))3] ∼
n→∞ α(α − 1)(α − 2)εα−3

n L(1/εn).
(2.21)

Thus, using (2.18),

n
E[(ξ (bn))2]

v2
n

−→
n→∞ 1,

and

n
E[(ξ (bn))3]

v3
n

∼
n→∞

1√
n

(α − 2)√
α(α − 1)εα

nL(1/εn)
∼

n→∞
(α − 2)√

α − 1

1√|λn|εn

.

In particular, nE[(ξ (bn))3]/v3
n → 0 since rnεn → ∞.

Now, as above, write

E
[
eitξ (bn)] = 1 + iE

[
ξ (bn)]t −E

[(
ξ (bn))2] t2

2
+ Rn

1 (t) with
∣∣Rn

1 (t)
∣∣ ≤ 1

6
|t |3E[(ξ (bn))3]

,

for every n ≥ 1 and t ∈R. The previous estimates yield the existence of a constant C > 0 such
that n|Rn

1 (t/vn)| ≤ C|t |3/√|λn|εn for every t ∈ R, n ≥ 1. Since nRn
1 (t/vn) → 0 uniformly

for t in compact subsets of R, it readily follows that

E

[
exp

(
it

S
(bn)
n − xn

vn

)]
−→
n→∞ e− t2

2 .
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Finally, we check that the other conditions of Theorem 3.1 in [32] are satisfied (using the
notation of [32]) with Fn being the distribution of ξ (bn). The random variable ξ (bn) converges
in distribution to ξ , which is stochastically compact (using the terminology of [32]) since it
belongs to the domain of attraction of a stable law. We may therefore apply [32], Theorem 3.1.
To identify the scaling constant, note that P(Sn ≤ xn) → 0, so Theorem 2.1 and Lemma 4.1(c)
in [32] give the desired result (the quantity V (λn) in their notation, with λn = bn here, is
precisely the variance of ξ (bn)). This establishes (2.19) and completes the proof. �

3. Scaling limits of nondecreasing random bridges. In this section we establish in-
variance principles, as n → ∞, for nondecreasing random walk bridges, which are random
paths which start at 0, whose increments are nonnegative integers, and which end at time
n at a fixed value xn. This can be viewed as extensions in different regimes of a result of
Liggett [47], who roughly speaking focused on bridge random walks in the domain of attrac-
tion of a stable law in the “bulk regime”, where the value of the endpoint is of the same order
as the flucutations of the random walk (this corresponds to Theorem 3.3(i) below).

3.1. Discrete and continuum bridges. Let us first precisely introduce the model and its
continuum limits, before stating our results in Section 3.2 and proving them in Section 3.3
and 3.4 by relying on the local estimates from Sectio 2.

3.1.1. Discrete bridges. For every n ≥ 1, let xn ∈ N and define Sn
xn

to be the set of paths
s = (sk;0 ≤ k ≤ n) such that

s0 = 0, sn = xn, and sk − sk−1 ∈ Z≥0 for every 1 ≤ k ≤ n.

Let p = (p(i))i≥0 be a sequence of nonnegative real numbers and define a measure wp on
Sn

xn
by setting for every s ∈ Sn

xn
,

wp(s) =
n∏

k=1

p(sk − sk−1).

We shall always implicitly assume that n and xn are compatible with the support of p, in
the sense that Sn

xn
has nonzero total wp-weight, and we also assume without further notice

that {k ≥ 0 : p(k) > 0} is not included in a sublattice of Z, that is, the largest h > 0 such that
there exists a ∈ R such that {k ≥ 0 : p(k) > 0} ⊂ a + hZ is h = 1. The results carry through
without such an aperiodicity condition after mild adaptations.

Let us denote by P
p,n
xn = wp(·)/wp(Sn

xn
) the associated probability distribution on Sn

xn
.

Note that if p is a probability measure, then P
p,n
xn is just the law of the bridge of a p-

random walk conditioned to end at xn at time n. We shall denote throughout this paper by
Sn = (Sn

k ;0 ≤ k ≤ n) a random path sampled according to P
p,n
xn (we write Sn with xn implicit

to lighten the notation). By analogy with random trees (see Section 4.2 below), we call such
random paths simply generated bridges. As shown in the next lemma, we could have equiv-
alently worked with random walk bridges, but in view of applications to Boltzmann planar
maps, the simply generated framework is more convenient.

We introduce some notation which was also used in Section 2. We emphasise that as op-
posed to there, the sequence p here is not necessarily a probability measure. Set

(3.1) G(z) =
∞∑

k=0

p(k)zk and �(z) = zG′(z)
G(z)

.

Denote by ρ the radius of convergence of G, which we will always assume to be positive.
Let ip = inf{i ≥ 0 : p(i) > 0} and observe that Sn

xn
= ∅ if xn < ipn. It is a simple matter to
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check that � is increasing on (0, ρ), we extend it by continuity with �(0) = ip and �(ρ) ∈
(0,∞]. Note that �(ρ) = ∞ if and only if G′(ρ) = ∞. When G′(b) < ∞, �(b) is simply the
expectation of a random variable with generating function z �→ G(bz)/G(b). In the context
of bridges, the exponential tilting, which was presented in the Introduction, leaves the law of
the path invariant, as is made explicit by the next result.

LEMMA 3.1. Let p be a nonnegative sequence and a, b > 0, and define another se-
quence ν by setting ν(k) = abkp(k) for every k ≥ 0.

(i) The laws Pp,n
xn and P

ν,n
xn

on Sn
xn

are equal.
(ii) Furthermore, for every choice of b ∈ (0, ρ] such that G′(b) < ∞, taking a = 1/G(b)

provides a probability measure with mean �(b).

PROOF. For the first assertion, for every path s ∈ Sn
xn

, it holds

wν(s) =
n∏

k=1

absk−sk−1p(sk − sk−1) = anbxnwp(s),

and since anbxn does not depend on s, then indeed, when rescaled by the total mass, the
laws Pp,n

xn and P
ν,n
xn

are equal. The second assertion is immediate and actually motivated our
definition of � . �

Therefore, whatever the original weight sequence p used to generate the random path Sn in
the first place is, as soon as its generating series has a nonzero radius of convergence, we can
always tilt the weights in order to view Sn as a random walk conditioned on its value at time
n. Moreover, the family of such probability measures is parameterised by their mean value,
which lies in (ip,�(ρ)], where the right-edge is included if and only if G′(ρ) < ∞. Note
that such a law has generating function G(b·)/G(b), and is the law of ξ (b) in the notation of
Section 2; let us also recall the first moments of this law, given in (2.1).

The main results of this section are convergence of these paths, suitably rescaled, towards
bridges of Lévy processes that we now introduce.

3.1.2. Continuum Lévy bridges. For any interval I ⊂ R+, we shall denote by D(I,R)

the space of real-valued càdlàg functions on I , equipped with the Skorokhod J1 topology
(see Chapter VI in [31] for background). For any α ∈ (1,2], we shall denote by Xα the
α-stable Lévy process with no negative jump, whose law is characterised by the Laplace
transform E[exp(−qXα

t )] = exp(tqα) for every q, t > 0; note that X2 has the law of
√

2
times a standard Brownian motion. Similar to the discrete setting, we can make sense of the
law of (Xα

t − ct;0 ≤ t ≤ 1) conditioned on the event {Xα
1 − c = 0} with c ∈ R. We refer to,

for example, [8], Chapter XIII, and especially Section 3 there for details (which focuses on
the case c = 0, but the arguments extend readily).

Indeed, recall that the law of Xα
t is absolutely continuous with respect to the Lebesgue

measure, and we shall denote by dα
t its density; we stress that this function is explicit

only in the case α = 2, in which case d2
t (x) = (4πt)−1/2 exp(−x2/(4t)). Then for ev-

ery c ∈ R, we can define a process (X
α,c,br
t ;0 ≤ t ≤ 1), which is informally, the process

(Xα
t − ct;0 ≤ t ≤ 1) conditioned to end at 0 at time 1, whose law is characterised by the

following absolute continuity relation: for every 0 < u < 1 and every bounded continuous
functional F : D([0, u]) →R,

(3.2) E
[
F
(
Xα,c,br

s ;0 ≤ s ≤ u
)] = E

[
F
(
Xα

s − cs;0 ≤ s ≤ u
)dα

1−u(c − Xα
u)

dα
1 (c)

]
.
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Finally, we shall denote by Bbr the process 2−1/2X2,0, which is the standard Brownian bridge
going from 0 to 0 in one unit of time. One can check, using Girsanov’s formula, that in fact
X2,c,br always has the law of

√
2 times this standard Brownian bridge, for any c ∈ R. This is

not the case when α ∈ (1,2).

3.2. Statements of the main results. We turn to our main scaling limit results concerning
the random simply generated bridges Sn under Pp,n

xn , for which Sn
n = xn. Up to extraction of a

subsequence, we may assume without loss of generality that xn/n → γ ∈ [0,∞] as n → ∞.
We shall canonically view our discrete path Sn as a càdlàg function on [0,1], equipped with
the Skorokhod J1 topology; recall that when the limit is a continuous path, convergence in
this topology is equivalent to the uniform convergence. For every k ∈ {1, . . . , n}, we shall
denote by Xn

k = Sn
k − Sn

k−1 the kth increment of Sn. In view of applications to random maps,
we also include in our statements a law of large numbers for the sum of the square of the
increments.

Recall the first moments of ξ (b) from (2.1), let us denote by mb = bG′(b)
G(b)

and σ 2
b =

b2G(2)(b)+bG′(b)
G(b)

− (bG′(b)
G(b)

)2 respectively the mean and variance of ξ (b). We deduce from The-
orem 1.1 the following limits.

THEOREM 3.2. Let (Sn
k ;0 ≤ k ≤ n) have the law P

p,n
xn for every n ≥ 1. The convergences(

1√
vn

(
Sn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Bbr and

1

vn

n∑
k=1

(
Xn

k

)2 P−→
n→∞ C,

hold in each of the following cases:

(i) There exists γ ∈ (ip,�(ρ)) such that xn/n → γ , and vn = nσ 2
b and C = mb/σ

2
b with

b = �−1(γ ).
(ii) xn/n → 0 and xn → ∞, p(0),p(1) > 0, vn = xn, and finally C = 1.

(iii) xn/n → ∞, G is bounded on any compact subset of D(ρ)\ {ρ} and there exist c,α >

0 such that G(ρ −z) ∼ cz−α as z → 0 with |z−ρ| < ρ, vn = x2
n/(αn), and finally C = α+1.

As already mentioned, the functional convergence in the first case is essentially contained
in [47], see also [12], Theorem 3.2.1. On the other hand, to the best of our knowledge, the two
other cases are new. Theorem 3.2(ii) is rather intuitive: if we force the path to end at a very
low value, then first p(0) has to be nonzero, and as alluded after Theorem 1.1 the assumption
p(1) > 0 prevents some periodicity in the large scale, and finally in the limit the path must
not make any large jump, hence a Brownian limit. On the other hand, in Theorem 3.2(iii),
we condition the path to end at a very high value, and still we obtain a Brownian limit;
this unusual behaviour comes from the assumptions on the weights (which, as noted in the
Introduction, naturally appear when looking at uniform random maps), and Theorem 3.3(iii)
below exhibits a very different behaviour.

In our last main result on these random paths, we study the boundary case xn/n → �(ρ)

when the latter is finite. To do so, we assume that the probability distribution with generating
function G(ρ·)/G(ρ) belongs to the domain of attraction of a stable law with index α ∈
(1,2], that is, that there exist α ∈ (1,2], ρ > 0, m > 0, and a slowly varying function L such
that for every 0 ≤ s < ρ,

G(s) = G(ρ)

(
1 − m + ms

ρ
+
(

1 − s

ρ

)α

L

(
1

1 − s/ρ

))
.
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In the case G(2)(ρ) < ∞, that is, when α = 2 and L admits a finite limit at infinity, say �, the
law with generating function G(ρ·)/G(ρ) has a finite variance, equal to

σ 2 = 2� + m − m2 = ρ2G(2)(ρ)

G(ρ)
+ ρG′(ρ)

G(ρ)
−
(

ρG′(ρ)

G(ρ)

)2
.

In this case we set rn =
√

nσ 2/2 for every n ≥ 1, otherwise, we let (rn)n≥1 be a sequence such
that rα

n ∼ nL(rn) as n → ∞. It is well known (see e.g., [26], Theorem XVII.5 and [35], The-
orem 16.14) that if (Sn)n≥1 is a random walk with i.i.d. increments with generating function
G(ρ·)/G(ρ), then the convergence(

1

rn
· (S�nt − mnt); t ≥ 0

)
(d)−→

n→∞ Xα,

holds in distribution in D([0,∞),R). See the remarks around (2.16) for the scaling.
Recall from Section 3.1 that for λ ∈ R, we denote by Xα,λ,br the process (Xα

t − λt)t

conditioned to end at 0 at time 1. Let us also denote by �X
α,λ,br
t = X

α,λ,br
t − X

α,λ,br
t− the

value of the “jump” of Xα,λ,br at time t ∈ [0,1], which is null except for a countable set of
times.

The functional convergence in distribution in item (iii) below is already known (see the
discussion just afterwards), but we include it here for completeness.

THEOREM 3.3. Under the preceding assumptions, if xn takes the form

xn = mn + λn,

where λn/rn converges to some λ ∈ [−∞,∞], then three cases occur.

(i) If λ ∈ R, then (
1

rn
· (Sn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Xα,λ,br.

In addition,

r−2
n

n∑
k=1

(
Xn

k

)2 (d)−→
n→∞

⎧⎪⎪⎨⎪⎪⎩
2 + 2m2

σ 2 1{G(2)(ρ)<∞} if α = 2,∑
t∈[0,1]

(
�X

α,λ,br
t

)2 if α < 2.

(ii) If λ = −∞ and if λn/n → 0, then with εn such that �(ρ(1 − εn)) = xn/n, we have(√
1

α − 1

εn

|λn| · (Sn�nt − xnt
);0 ≤ t ≤ 1

)
(d)−→

n→∞ Bbr.

In addition,

εn

|λn|
n∑

k=1

(
Xn

k

)2 P−→
n→∞ α − 1 + m2

σ 2 1{G(2)(ρ)<∞}.

(iii) If λ = ∞, we further assume that p(k)ρ−k is regularly varying at infinity with some
index −β < −2 with β �= 3. If G(2)(ρ) < ∞ (which implies β > 3), we furthermore assume
that there exists c > (β − 3)/σ 2 such that λn ≥ √

c ln(n). Then(
1

λn

· (Sn�nt − xnt
);0 ≤ t ≤ 1

)
(d)−→

n→∞ (1{U≤t} − t;0 ≤ t ≤ 1),

where U is uniformly distributed on [0,1]. In addition,

max{Xn
1 ,Xn

2 , . . . ,Xn
n}2∑n

k=1(X
n
k )2

P−→
n→∞ 1.
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Let us make some comments. In the first regime, we condition the path Sn to end at a
value which only differs from its average behaviour by some constant λ times rn, which
is the scaling of the natural fluctuations as we recalled before the statement, so the scaling
remains the same and the limit is simply the same Lévy process as in the unconditioned
case, but conditioned to end at λ. In the second regime however we condition the path to
end at a much lower value (we assume λn/n → 0 as otherwise we fall in the bulk regime of
Theorem 3.2(i)) and this completely changes the scaling, from 1/rn to

√
εn/|λn|, which, as

we shall later see, is of order 1/rn in the finite variance case, but larger otherwise; this wipes
away the natural behaviour of G and it yields in fact a Gaussian limit at this scaling, which
can be understood intuitively, as for Theorem 3.2(ii), by the fact that, in order to end at a low
value, the path must avoid any large jump.

Finally, in the last regime, a “one big jump principle” holds, which contrasts with The-
orem 3.2(iii). The functional convergence in this regime is already known (see e.g., [13],
Theorem 6.4.1). However we will need a more detailed analysis, which follows from a direct
application of the results from [6, 23]: In addition to a unique giant increment, of size asymp-
totically equivalent to λn (as the combination of the two convergences shows), occurring at
a random time asymptotically uniformly distributed, the n − 1 other increments are close (in
total variation) to just i.i.d. random variables, with generating function G(ρ·)/G(ρ), so the
path obtained by removing this giant increment stays in the scale rn. We refer to Section 3.4
below for details. Note that, as in [23], we exclude the case β = 3 in the last regime.

3.3. Functional convergence from a local limit estimate. Let us now prove how the Lévy
bridges appear as limits of our discrete paths, based on the local limit estimates from Sec-
tion 2. Since the same argument applies to prove most of them, we present a general result
that we then apply to our case. We denote by X a stable Lévy process with a linear drift,
with a density dt at time t , and we let Xbr denote a version of X conditioned on X1 = 0,
whose definition was given in Section 3.1. For the proof of Theorems 3.2(i), 3.2(ii), 3.2(iii),
and 3.3(ii) we shall take X to simply be a standard Brownian motion without drift.

PROPOSITION 3.4 (Subcritical conditioning). Suppose that xn/n < �(ρ) for every n

large enough and let bn = �−1(xn/n). Assume that there exists a sequence vn → ∞ such
that for every t > 0,

(3.3) sup
k≥0

∣∣∣∣vn · bk
n

G(bn)�nt · P(Sn�nt = k
)− dt

(
k − xnt

vn

)∣∣∣∣ −→
n→∞ 0.

Then the convergence (
1

vn

(
Sn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Xbr

holds in distribution in D([0,1],R).

PROOF. By construction of bn, we can define a random variable X̂n by setting for every
k ≥ 0,

P
(
X̂n = k

) = 1

G(bn)
bk
np(k), so E

[
X̂n] = �(bn) = xn

n
.

Furthermore, according to Lemma 3.1, the random walk Ŝn = (Ŝn
i ;0 ≤ i ≤ n) with step dis-

tribution X̂n, when conditioned on Ŝn
n = xn, has the same law as our original path Sn. Now

the local limit estimate (3.3) can be rewritten as

(3.4) sup
k≥0

∣∣∣∣vn · P(Ŝn�nt = k
)− dt

(
k − xnt

vn

)∣∣∣∣ −→
n→∞ 0.
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Then this implies the convergence in distribution of v−1
n (Ŝn�nt − xnt) to Xt , under the un-

conditional law, for any t > 0 fixed, which, by for example, [35], Theorem 16.14, actually
suffices to conclude to the convergence of the whole path, still under the unconditional law,
namely

(3.5)
(

1

vn

(
Ŝn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ (Xt ;0 ≤ t ≤ 1).

We deduce the convergence of bridges on any time interval [0, u] with u ∈ (0,1) by
absolute continuity. Indeed, let us set ϕn

i (k) = P(Ŝn
i = k) for every i and k and let F :

D([0, u],R) →R be a bounded continuous functional, then by (3.4) first and then (3.5),

E

[
F

(
1

vn

(
Ŝn�nt − xnt

);0 ≤ t ≤ u

) ∣∣∣∣ Ŝn
n = xn

]

= E

[
F

(
1

vn

(
Ŝn�nt − xnt

);0 ≤ t ≤ u

)ϕn
n−�nu(xn − Ŝn�nu)

ϕn
n(xn)

]

= E

[
F

(
1

vn

(
Ŝn�nt − xnt

);0 ≤ t ≤ u

)d1−u(−v−1
n (Ŝn�nu − xnu))

d1(0)

](
1 + o(1)

)
= E

[
F(Xt ;0 ≤ t ≤ u)

d1−u(−Xu)

d1(0)

](
1 + o(1)

)
.

Notice that (Ŝn
n − Ŝn

n−i)0≤i≤n has the same distribution as (Ŝn
i )0≤i≤n under P(· | Ŝn

n = xn), so
the convergence of bridges also holds on the time interval [u,1]. In particular, the portion of
the path on [u,1] is tight and we may extend the preceding convergence in distribution of the
bridges to the whole interval [0,1]. This shows our claim when Sn is replaced by the bridge
of Ŝn and we conclude the proof by recalling that these paths have the same law. �

With this result at hand and the local estimates from Section 2, we can easily prove some
of our main results.

PROOF OF THEOREMS 3.2 AND 3.3(ii). Let us first prove Theorem 3.2(i); under its
assumptions, we deduce from Theorem 1.1(i) and Proposition 3.4, the convergence(

1√
σ̂ 2

nn

(
Sn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Bbr,

where σ̂ 2
n is the variance of X̂n in the above notation, which is given by (2.1); by continuity

it converges to the same expression with b instead of bn, that is, σ 2
b in the notation of Theo-

rem 3.2(i). Similarly, Theorems 3.2(ii), 3.2(iii), and 3.3(ii) immediately follow by combining
Proposition 3.4 with Theorem 1.1(ii), Theorem 1.1(iii), and Theorem 2.4 respectively.

In each case, the proof of the convergence of the sum of the increments squared is deferred
to the Appendix, see Proposition A.1, Proposition A.2, Proposition A.3, and Proposition A.4
respectively. In each regime, the basic idea is to control the first four moments of X̂n, which
are expressed in (2.1). �

We next modify the preceding statement in order to control the case where xn/n is slightly
larger than �(ρ), which will enable us to treat Theorem 3.3(i). For c ∈R and X the preceding
Lévy process, recall that we define Xc,br as the process (Xt − ct;0 ≤ t ≤ 1) conditioned to
end at 0.
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PROPOSITION 3.5 (Critical conditioning). Assume that �(ρ) < ∞ and that there exists
a sequence vn → ∞ such that for every t > 0,

sup
k≥0

∣∣∣∣vn · ρk

G(ρ)�nt · P(Sn�nt = k
)− dt

(
k − �(ρ)nt

vn

)∣∣∣∣ −→
n→∞ 0.

If there exists c ∈ R such that v−1
n (xn − �(ρ)n) → c, then the convergence(

1

vn

(
Sn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Xc,br

holds in distribution in D([0,1]).

PROOF. Let us replace bn in the preceding proof by ρ, that is, define a random walk Ŝ

with step distribution X̂ given by

P(X̂ = k) = 1

G(ρ)
ρkpk for every k ≥ 0.

Note that its mean equals E[X̂] = �(ρ), then the argument that lead to (3.5) applies here and
we deduce, using also v−1

n (xn − �(ρ)n) → c, that(
1

vn

(Ŝ�nt − xnt);0 ≤ t ≤ 1
)

(d)−→
n→∞ (Xt − ct;0 ≤ t ≤ 1),

under the unconditional law. As previously, this then transfers to the bridge conditioning by
absolute continuity and time-reversal. �

The convergence of paths in Theorem 3.3(i) then immediately follows as the preceding
theorems.

PROOF OF THEOREM 3.3(i). As the preceding case, we deduce immediately from (2.16)
and Proposition 3.5 the convergence(

1

rn

(
Sn�nt − xnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Xα,λ,br.

Let us next prove the convergence of the sum of the squares of the increments in the case
α ∈ (1,2). The preceding convergence can be equivalently written as(

1

rn

(
Sn�nt − mnt

);0 ≤ t ≤ 1
)

(d)−→
n→∞

(
X

α,λ,br
t − λt;0 ≤ t ≤ 1

)
,

for the Skorokhod topology. Let us denote by Xα,λ the process on the right, which is infor-
mally the stable process Xα conditioned on Xα

1 = λ. Note that its jumps are the same as those
of Xα,λ,br.

This convergence implies that for every N fixed, the N largest values among {r−1
n (Xn

k −
m),1 ≤ k ≤ n} jointly converge towards the values of the N largest jumps of Xα,λ. Conse-
quently the sum of the squares of the former converge to that of the latter. Recall that we
assume α ∈ (1,2) so

∑n
k=1 Xn

k = xn ∼ mn = o(r2
n) and thus for every N ≥ 1 fixed, the sum

of the largest N largest values among {r−2
n (Xn

k )2,1 ≤ k ≤ n} converges towards the sum of
the N largest jumps squared of Xα,λ. We next argue that one can fix N large such that both
rests are small with high probability, which implies our claim.

Recall that Sn has the same law as the random walk Ŝ conditioned on Ŝn = xn so we
may replace the Xn

k ’s by the increments X̂k’s of the latter, under the conditional law. We first
notice that this holds true for the unconditioned processes. Indeed it is well known that setting
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(Sα
t )t∈[0,1] = (

∑
s≤t (�Xα

t )2)t∈[0,1] defines a stable subordinator with index α/2, which is a
pure jump process. Moreover, from the tail behaviour of X̂2, one can check (using e.g., [26],
Theorem XVII.5., and [35], Theorem 16.14) that the rescaled process (r−2

n

∑�nt
k=1(X̂k)

2)t∈[0,1]
converges in distribution towards (Sα

t )t∈[0,1]. Note that no centering is needed here since
α/2 < 1. Then almost surely, Sα

1/2 = ∑
s≤1/2 �Sα

s and one can fix N such that the sum on the
right, when the N largest terms are excluded, is arbitrarily small with high probability. Using
the preceding convergence, one gets that the same holds for the sequence (X̂k)k≤�n/2.

Next, these properties are transferred to the bridge conditioning by the absolute continuity
with the unconditioned process: There exists C > 0 such that, both for the discrete and the
continuum process, the probability of any event which only depends on the first half of the
bridge is bounded by C times the same probability for the unconditioned process. For Xα ,
this follows from the fact that the density dα

t is a bounded function for any t > 0, whereas for
Ŝ one also appeals to the local limit theorem (2.16). Using the invariance of the bridges under
space-time reversal, we deduce that for every ε, δ > 0, one can fix N such that for every n

large enough, for each half, the sum of the square of the increments excepted the N largest
ones are smaller than δ with probability at least 1 − ε and the proof is complete.

The convergence of the sum of the squares of the increments in the case α = 2 is deferred
to Proposition A.5. �

3.4. The condensation phase. Let us finally focus on Theorem 3.3(iii): Here we assume
that xn = mn + λn with λn/rn → ∞ and that p(k)ρ−k is regularly varying at infinity with
some index −β < −2 with β �= 3. If G(2)(ρ) < ∞ (which implies β > 3), we assume fur-
thermore that there exists c > (β − 3)/σ 2 such that λn ≥ √

c ln(n).
For every 1 ≤ i ≤ n, let us set Yn

i = Xn
i −m and then T n

i = Yn
1 +· · ·+Yn

i = Sn
i − im. The

first claim is equivalent to the convergence

(3.6)
(

1

λn

· T n�nt;0 ≤ t ≤ 1
)

(d)−→
n→∞ (1{U≤t};0 ≤ t ≤ 1),

where U is uniformly distributed on [0,1]. This is a straightforward consequence of a much
more precise result. Precisely, let

Vn := inf
{
1 ≤ j ≤ n : Yn

j = max
{
Yn

i : 1 ≤ i ≤ n
}}

be the first index of the maximal increment of (T n
1 , . . . , T n

n ). Let (Yi)i≥1 be a sequence of
i.i.d. random variables with distribution given by

P(Y1 = k − m) = 1

G(ρ)
ρkp(k) for every k ≥ 0.

The following result is a direct application of [6], Theorem 1, combined with [23], Theo-
rem 8.1, (in the case G(2)(ρ) < ∞) and [23], Theorem 9.1, (in the case G(2)(ρ) = ∞).

PROPOSITION 3.6. We have

dTV
((

Yn
1 , . . . , Y n

Vn−1, Y
n
Vn+1, . . . , Y

n
n

)
, (Y1, . . . , Yn−1)

) −→
n→∞ 0,

where dTV denotes the total variation distance on R
n−1 equipped with the product topology.

Theorem 3.3(iii) is now a simple consequence of this result.

PROOF OF THEOREM 3.3(iii). Let the Yi’s be as above; note that max(Y1, . . . , Yn−1)/rn
and (Y1 +· · ·+Yn−1)/rn both converge in distribution. Since we impose Yn

1 +· · ·+Yn
n = λn,

with λn/rn → ∞, then Proposition 3.6 implies that

Yn
Vn

λn

P−→
n→∞ 1 and

max{Yn
i : i �= Vn}
λn

P−→
n→∞ 0.
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Also, by exchangeability of the Yn
k ’s, we have Vn → U in distribution. This yields (3.6),

which is equivalent to the convergence of the processes in Theorem 3.3(iii).
Next, as in the proof of Theorem 3.3(i), the rescaled sum r−2

n

∑n−1
k=1(Xk)

2 converges in
distribution as n → ∞. The limit is

∑
t∈[0,1](�Xα

t )2 in the case α ∈ (1,2), and it is constant
when α = 2, precisely simply 2 in the case of infinite variance when G(2)(ρ) = ∞, and to
2E[X2

1]/Var(X1) otherwise. Consequently,

1

(λn)2

∑
k �=Vn

(
Xn

k

)2 P−→
n→∞ 0,

and the second convergence of Theorem 3.3(iii) follows since Xn
Vn

/λn → 1 in probability.
�

4. Biconditioned random trees. In this section, we focus on random trees with n ver-
tices and Kn leaves sampled proportionally to a sequence of weights. In the case of the
uniform distribution, Labarbe and Marckert [40] proved the convergence of the so-called
contour function. We shall here only consider the Łukasiewicz path, which will be sufficient
to our application to random maps in the next section. It also provides some combinatorial
information, such as the largest degree, for example.

In Section 4.1 we first recall the definition of the Łukasiewicz path of a plane tree, then in
Section 4.2 we precisely define the distribution we consider. In Section 4.3 we relate the ran-
dom Łukasiewicz paths to the nondecreasing paths studied in the preceding section. Finally
in Section 4.4 we state and prove our main results on scaling limits of these Łukasiewicz
paths.

4.1. Plane trees and coding path. Recall that a rooted plane tree is a connected graph
with no cycle, with a distinguished root-corner, and such that the neighbours of every vertex
are ordered. We shall interpret them as genealogical trees; the vertex at the root is the ances-
tor, the neighbour of a vertex closer to the root is its parent, whereas the other ones are its
offspring (ordered from left to right); more generally, the vertices lying between the root and
a given vertex are the ancestors of the latter. Finally an individual with no child is called a
leaf, the other ones are called internal vertices.

Let us recall the coding of a plane tree by a discrete path, see Figure 1 for an example.
Fix a tree T with n vertices; thanks to the planar ordering, we may list these vertices as
u0 < u1 < · · · < un−1 in depth-first search order, which corresponds to the lexicographical
order when trees are viewed as words. Then for each such vertex u, let us denote by ku ≥ 0

FIG. 1. A plane tree, with the depth-first search order indicated next to the nodes and its Łukasiewicz path.
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its offspring number. We define then the Łukasiewicz path W(T ) = (Wi(T );0 ≤ i ≤ n) of the
tree recursively by W0(T ) = 0 and

Wi+1(T ) = Wi(T ) + kui
− 1 0 ≤ i ≤ n − 1.

One easily checks that Wn(T ) = −1 whereas for every 0 ≤ i ≤ n − 1, we have Wi(T ) ≥ 0 as
well as Wi+1(T ) − Wi(T ) ≥ −1. There is a 1-to-1 correspondence between the set of such
paths and plane trees with n vertices, see, for example, [59], Chapter 6, or [41]. Furthermore
the leaves of the tree correspond to the negative increments of its Łukasiewicz path. For every
k ∈ {0, . . . , n − 1}, we shall denote by

�k(T ) =
k∑

i=0

1{Wi+1(T )−Wi(T )=−1}

the number of leaves among the first k + 1 vertices of T .

4.2. Random trees. We consider random trees sampled according to a sequence of
weights. For a tree T and a vertex u ∈ T , recall that ku ≥ 0 denotes its number of children.
Fix a sequence of nonnegative real numbers θ = (θ(i))i≥0 which, in order to avoid triviali-
ties, satisfies θ(0) > 0 and θ(i) > 0 for at least one i ≥ 2, and define a measure wθ on the set
of all finite trees by setting

wθ (T ) = ∏
u∈T

θ(ku),

for every finite tree T . For n ≥ Kn ≥ 1 let Tn,Kn denote the finite set of trees with n vertices
among which Kn are leaves. We shall always implicitly assume that n and Kn are compatible
with the support of θ , in the sense that Tn,Kn has nonzero wθ -weight. We then define a
probability P

θ
n,Kn

= wθ (·)/wθ (Tn,Kn) on this set.

Trees with solely n vertices sampled proportionally to their wθ -weight are known in the
literature as simply generated. When the sequence θ is a probability measure, they correspond
to Bienaymé–Galton–Watson trees with offspring distribution θ conditioned on having n

vertices; similarly, Pθ
n,Kn

is the law of such a random tree conditioned to have n vertices and
Kn leaves. A classical fact for trees conditioned only by their number of vertices is that an
exponential tilting of θ as in Lemma 3.1 leaves the distribution of the random trees unaffected,
see, for example, the survey of Janson [33], Section 4. Although we shall not need it, let us
mention that in the context of trees conditioned both by their number of vertices and leaves,
one can gain a degree of freedom by only making the exponential change to the weights
(θ(i))i≥1 and setting for 0 any arbitrary value.

We next consider the random Łukasiewicz path of such a tree. For every n ≥ 1, let Bn,Kn

denote the set of paths w = (wk;0 ≤ k ≤ n) such that

w0 = 0, wn = −1, wk − wk−1 ∈ Z≥−1 for every 1 ≤ k ≤ n,

and

#
{
k ∈ {1, . . . , n} : wk − wk−1 = −1

} = Kn.

Further, let Wn,Kn ⊂ Bn,Kn denote the set of such paths which in addition satisfy

wk ≥ 0 for every 1 ≤ k ≤ n − 1.

Let us define probability measures on the sets Bn,Kn and Wn,Kn , denoted respectively by
P

θ
n,Kn

and P
θ ,+
n,Kn

, as in Section 3.1, by normalising the measures which assign a weight

(4.1)
n∏

k=1

θ(wk − wk−1 + 1),
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to every path w in Bn,Kn and Wn,Kn respectively. Then the coding of a plane tree T by its
Łukasiewicz path W(T ) bijectively maps Tn,Kn onto Wn,Kn and the law P

θ ,+
n,Kn

on Wn,Kn is

the image measure of Pθ
n,Kn

on Tn,Kn .

4.3. The Vervaat transform. Our aim is to study the asymptotic behaviour of the pre-
ceding random Łukasiewicz paths. In order to relax the positivity constraint, and therefore
to study paths sampled from P

θ
n,Kn

instead of Pθ ,+
n,Kn

, we make use of the notion of Vervaat
transform, also known as cyclic shift, of a bivariate sequence (with respect to the first vari-
able). First, if x = (xk)1≤k≤m = (ak, bk)1≤k≤m is a sequence of integer-valued couples and
i ∈ Z/mZ, we define the cyclic shift x(i) by x

(i)
k = (ak+i mod m,bk+i mod m) for 1 ≤ k ≤ m

(where representatives modulo m are chosen in {1,2, . . . ,m}). We then define the (discrete)
Vervaat transform Vd(x) as follows (we introduce the superscript d to underline the fact that
this transformation acts on discrete sequences). Let i∗(x) be defined by

i∗(x) = min
{
j ∈ {1,2, . . . ,m};a1 + a2 + · · · + aj = min

1≤i≤m
(a1 + a2 + · · · + ai)

}
.

Then Vd(x) := x(i∗(x)).

LEMMA 4.1. Fix n and Kn and given Wn ∈ Bn,Kn , for all k ∈ {0, . . . , n}, let

(4.2) �n
k =

k∑
i=1

1{Wn
i −Wn

i−1=−1}

denote the number of negative increments up to time k. Then the following equality holds in
distribution:

Vd((Wn
k ,�n

k

)
0≤k≤n

)
under Pθ

n,Kn

(d)= (
Wn

k ,�n
k

)
0≤k≤n under Pθ ,+

n,Kn
.

PROOF. This follows from a simple extension of the so-called cyclic lemma (see
e.g., [59], Lemma 6.1). Indeed, if x = (ai, bi)1≤i≤m are integers such that a1 +a2 +· · ·+am =
−1, then there is a unique j ∈ Z/mZ such that the cyclic shift x(j) = (a

(j)
i , b

(j)
i )1≤i≤m fulfills

a
(j)
1 + · · · + a

(j)
i ≥ 0 for every 1 ≤ i < m. It is then standard to obtain the desired results by

an exchangeability argument; we leave details to the reader. �

In the continuum setting, following Miermont [54], Definition 1, we define the Vervaat
transform Vf of a function f ∈ D([0,1]) with f (0) = f (1−) = f (1) as follows: let tmin be
the location of the left-most minimum of f , that is, the smallest t such that f (t−) ∧ f (t) =
inff , then, for t ∈ [0,1) set

Vf (t) = f (t + tmin mod 1]) − inf[0,1]f,

and Vf (1) = limt↑1 Vf (t). Note that if f ∈ D([0,1]) with f (0) = f (1−) = f (1) reaches its
infimum at a unique time with no jump at that time, then V is continuous at f . This is the
case of the spectrally positive stable processees with drift from Section 3.1.

Finally, the following simple observation is really the key idea that will allow us to transfer
results from Section 3 to the present “biconditioned” setting. Recall from Section 3.1 the law
P

p,n
xn on nondecreasing paths which end at xn at time n, sampled from a weight sequence p.

LEMMA 4.2. Fix a weight sequence θ and define two sequences p and q by p(k) =
θ(k + 1) for every k ≥ 0, q(k) = 1 if k ∈ {0,1}, and q(k) = 0 for k ≥ 2. Fix 1 ≤ Kn ≤ n.
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Independently, sample (S
n−Kn

k ;0 ≤ k ≤ n − Kn) with distribution P
p,n−Kn

Kn−1 and (Ln
k ;0 ≤ k ≤

n) with distribution P
q,n
Kn

. For every k ∈ {0, . . . , n}, define

Wn
k = S

n−Kn

k−Ln
k

− Ln
k.

Then the path Wn has law P
θ
n,Kn

.

The proof is straightforward and left to the reader. Intuitively speaking, this just amounts
to saying that in a simply generated bridge of Bn,Kn , the position of the Kn negative steps are
uniformly distributed among the n different jumps and the path obtained by removing them
is then a simply generated nondecreasing path which ends at Kn − 1 at time n − Kn.

4.4. Scaling limits of random Łukasiewicz paths. We are now ready to state and prove
several invariance principles for the Łukasiewicz paths of θ -simply generated random trees
with n vertices and Kn leaves. Recall from the above discussion that these paths Wn have
the law P

θ ,+
n,Kn

. In other words, they are paths starting from 0, whose increments all belong to
{−1,0,1,2, . . . }, which reach at time n the value −1 for the first time by making their Knth
negative increments, and they are sampled at random proportionally to their weight (4.1). For
every k ∈ {1, . . . , n}, we shall denote by Xn

k = Wn
k − Wn

k−1 the kth increment of Wn.
We shall canonically view our discrete paths as càdlàg functions on [0,1], equipped with

the Skorokhod J1 topology; recall that when the limit is a continuous path, convergence in
this topology is equivalent to the uniform convergence. In the following statement, we denote
by Bexc a standard Brownian excursion, constructed, for example, from the Brownian bridge
presented in Section 3.1 via the Vervaat transform as above.

We need to introduce some notation. Set

(4.3) F(z) =
∞∑

k=0

θ(k)zk and A(z) = 1 − F(z) − F(0)

zF ′(z)
.

Denote by ρ the radius of convergence of F and set k0 = min{k ≥ 1 : qk �= 0}; then it is a
simple matter to check that A is increasing on (0, ρ) and we extend it by continuity with
A(0) = 1 − 1/k0 and A(ρ) < 1 if and only if F ′(ρ) < ∞.

The next result is analogous to (and indeed based on) Theorem 3.2.

THEOREM 4.3. Let (Wn
k ;0 ≤ k ≤ n) have the law P

θ ,+
n,Kn

for every n ≥ 1. Then the con-
vergences (

1√
vn

· Wn�nt;0 ≤ t ≤ 1
)

(d)−→
n→∞ Bexc and

1

vn

n∑
k=1

(
Xn

k

)2 P−→
n→∞ 1,

hold in each of the following cases:

(i) There exists τ ∈ (1 − 1/k0,A(ρ)) such that Kn/n → τ and vn = bF (2)(b)n/F ′(b)

with b = A−1(τ ).
(ii) Kn/n → 0 with Kn → ∞, θ(1), θ(2) > 0, and vn = 2Kn.

(iii) Kn/n → 1 and n − Kn → ∞, F is bounded on any compact subset of D(ρ) \ {ρ}
and there exist c,α > 0 such that F(ρ − z) ∼ cz−α as z → 0 with |z − ρ| < ρ; finally vn =
(1 + α)n2/(α(n − Kn)).

Our last main result on these random paths is analogous to (and again, based on) Theo-
rem 3.3 and studies specifically the case Kn/n → A(ρ) when the latter is finite. Here, we
assume that the probability distribution with generating function F(ρ·)/F (ρ) belongs to the
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domain of attraction of a stable law with index α ∈ (1,2], that is, that there exist α ∈ (1,2],
ρ > 0, m > 0, and a slowly varying function L such that for every 0 ≤ s < ρ,

F(s) = F(ρ)

(
1 − m + ms

ρ
+
(

1 − s

ρ

)α

L

(
1

1 − s/ρ

))
.

In the case F (2)(ρ) < ∞, that is, when α = 2 and L admits a finite limit at infinity, say �, the
law with generating function F(ρ·)/F (ρ) has a finite variance, equal to

(4.4) σ 2 = 2� + m − m2 = ρ2F (2)(ρ)

F (ρ)
+ ρF ′(ρ)

F (ρ)
−
(

ρF ′(ρ)

F (ρ)

)2
.

In this case we set rn =
√

nσ 2/2 for every n ≥ 1, otherwise, we let (rn)n≥1 be a sequence such
that rα

n ∼ nL(rn) as n → ∞. We have already mentioned and used the fact that if (Sn)n≥1 is
a random walk with i.i.d. increments with generating function F(ρ·)/F (ρ), then the conver-
gence (

1

rn
· (S�nt − mnt); t ≥ 0

)
(d)−→

n→∞ Xα,

holds in distribution in D([0,∞),R), where Xα is the α-stable Lévy process whose law is
characterised by E[exp(−qXα

t )] = exp(tqα) for every q, t > 0.
Recall finally from Section 3.1 that for λ ∈ R, we denote by Xα,λ,br the process (Xα

t −λt)t

conditioned to end at 0 at time 1. Let us also denote by �X
α,λ,br
t = X

α,λ,br
t −X

α,λ,br
t− the value

of the “jump” of Xα,λ,br at time t ∈ [0,1], which is null except for a countable set of times.
We let further Xα,λ,exc denote the associated excursion, for example, obtained after applying
the Vervaat transform to Xα,λ,br.

THEOREM 4.4. Under the preceding assumptions, if Kn takes the form

Kn = A(ρ)n + λn,

where λn/rn converges to some λ ∈ [−∞,∞], then three cases occur.

(i) If λ ∈ R, then with λ̂ = λm/(1 − A(ρ)),(
1

rn
· Wn�nt;0 ≤ t ≤ 1

)
(d)−→

n→∞

√
1 + m2 − m

σ 2 1{F (2)(ρ)<∞} · (Xα,̂λ,exc
t/m ;0 ≤ t ≤ 1

)
.

In addition,

1

r2
n

n∑
k=1

(
Xn

k

)2 (d)−→
n→∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2F(ρ)

ρF ′(ρ)

(
1 + m2 − m

σ 2 1{F (2)(ρ)<∞}
)

when α = 2,∑
t∈[0,1]

(
�X

α,̂λ,exc
t/m

)2 when α ∈ (1,2).

(ii) If λ = −∞ and if λn/n → 0, then with εn such that A(ρ(1 − εn)) = Kn/n, we have(√
εn

|λn| · Wn�nt;0 ≤ t ≤ 1
)

(d)−→
n→∞

√
C · Bexc and

εn

|λn|
n∑

k=1

(
Xn

k

)2 P−→
n→∞ C,

where

C = α − 1

1 − A(ρ)
1{F (2)(ρ)=∞} + 2�

2�(1 − A(ρ)) − mA(ρ)
1{F (2)(ρ)<∞}.
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(iii) If λ = ∞, we further assume that θ(k)ρ−k is regularly varying at infinity with some
index −β < −2 with β �= 3. If F (2)(ρ) < ∞ (then β > 3), we assume furthermore that there
exists c > (β − 3)/σ 2 such that λn ≥ √

c ln(n). Then(
1

λn

Wn
max{0,�nt};−1 ≤ t ≤ 1

)
(d)−→

n→∞
(
(1 − t)1{t>0};−1 ≤ t ≤ 1

)
.

In addition,

max{Xn
1 , . . . ,Xn

n}2∑n
k=1(X

n
k )2

P−→
n→∞ 1.

Let us note that in the last regime, we extend both sides by 0 on the interval [−1,0); this is
only because the function t �→ (1 − t)1{t>0} on [0,1] is not càdlàg. Also, by combining both
results, we deduce that max{Xn

1 , . . . ,Xn
n}/λn → 1 in probability.

REMARK 4.5. In the case F (2)(ρ) < ∞, one can check that in the two cases λ ∈ R, or
λ = −∞ and λn/n → 0, we have the following unified convergences:(

1√
n
Wn�nt;0 ≤ t ≤ 1

)
(d)−→

n→∞

√
ρF (2)(ρ)

F ′(ρ)
Bexc and

1

n

n∑
k=1

(
Xn

k

)2 P−→
n→∞

ρF (2)(ρ)

F ′(ρ)
.

In other words, Theorem 4.3(i) also holds for τ = A(ρ) in this finite variance regime.

In order to lighten the notation, in the proof of these theorems, we assume that all discrete-
time processes are extended to continuous time by assigning at any time t the same value as
at �t, so we write for example, Wnt instead of W�nt.

PROOF OF THEOREM 4.3. Recall that the Brownian excursion Bexc can be constructed
as the Vervaat transform VBbr of the Brownian bridge. Since Bbr attains its infimum al-
most surely at a unique time, by standard continuity properties of the Vervaat transform, it is
enough to show that the scaling limits of paths sampled according to P

θ
n,Kn

is Bbr.

GENERALITIES. We let henceforth Wn denote a random path sampled from P
θ
n,Kn

and we

let �n be as in (4.2). Finally, introduce (S
n−Kn

k ;0 ≤ k ≤ n − Kn) and (Ln
k ;0 ≤ k ≤ n) as in

Lemma 4.2, so that the path (Wn
nt ;0 ≤ t ≤ 1) has the same law as the process defined for

every t ∈ [0,1] by

S
n−Kn

nt−Ln
nt

− Ln
nt =

(
S

n−Kn

nt−Ln
nt

− Kn

nt − Ln
nt

n − Kn

)
− (

Ln
nt − Knt

)− Kn

(
t − nt − Ln

nt

n − Kn

)

=
(
S

n−Kn

nt−Ln
nt

− Kn

nt − Ln
nt

n − Kn

)
− n

n − Kn

(
Ln

nt − Knt
)
.

(4.5)

The process Ln fits in our framework, but it also has already been studied in the literature.
Indeed, it is a simple example of an urn process studied in [4], Section 20. By Theorem 20.7
in this reference, we have the convergence of the normalised process

(4.6)
(

Ln
nt − Knt√

Kn(n − Kn)/n
;0 ≤ t ≤ 1

)
(d)−→

n→∞ Bbr.

Note that
√

Kn(n − Kn)/n ≤ √
n − Kn = o(n − Kn) since we assume that n − Kn → ∞.

Consequently

(4.7)
(

nt − Ln
nt

n − Kn

;0 ≤ t ≤ 1
)

P−→
n→∞ (t;0 ≤ t ≤ 1).
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It remains to study Sn−Kn . To this end, recall the definition of F and A from (4.3) and let
p = (θ(k + 1))k≥0. If G and � are defined by (3.1), then for every s ∈ (0, ρ), we have

(4.8) F(s) = F(0) + sG(s) and A(s) = �(s)

1 + �(s)
.

REGIME I. If θ and Kn satisfy the assumptions of Theorem 4.3(i), then, according to
Theorem 3.2(i), it holds(

1√
(n − Kn)σ

2
b

(
S

n−Kn

(n−Kn)t − Knt
);0 ≤ t ≤ 1

)
(d)−→

n→∞ Bbr,

with �(b) = bG′(b)/G(b) = limn Kn/(n − Kn) = τ/(1 − τ) and σ 2
b = b2G(2)(b)

G(b)
+ �(b) −

�(b)2, where we recall that G is related to F by (4.8). Combined with (4.7) and standard
properties of the Skorokhod topology (see e.g., [31], Chapter VI. Theorem 1.14), we may re-
place (n − Kn)t by nt − Ln

nt , so this gives the asymptotic behaviour of the first term in (4.5).
Jointly with (4.6), and since Kn/n → τ , this implies that, with Bbr,1 and Bbr,2 two indepen-
dent Brownian bridges, we have, as processes,

1√
n

(
S

n−Kn

nt−Ln
nt

− Ln
nt

) = 1√
n

(
S

n−Kn

nt−Ln
nt

− Kn

nt − Ln
nt

n − Kn

)
−
√

n

(n − Kn)2

(
Ln

nt − Knt
)

(d)−→
n→∞

√
(1 − τ)σ 2

b · Bbr,1 −
√

τ

1 − τ
· Bbr,2

(d)=
√

(1 − τ)σ 2
b + τ

1 − τ
· Bbr.

Notice that τ = �(b)/(1 + �(b)), it is then a simple matter to check that

(1 − τ)σ 2
b + τ

1 − τ
= b2G(2)(b) + 2bG′(b)

G(b) + bG′(b)
= bF (2)(b)

F ′(b)
.

The first claim in Theorem 4.3(i) finally follows from Lemma 4.2 and the Vervaat transform.
Similarly, recall that the second claim is about the limit of n−1 ∑n

k=1(X
n
k )2 under Pθ ,+

n,Kn
; since

this quantity is invariant under cyclic shift, it has the same law under Pθ
n,Kn

. Notice that the
total contribution of the negative increments to the sum is Kn, then we infer from Lemma 4.2
and Theorem 3.2(i) that

n−1
n∑

k=1

(
Xn

k

)2 P−→
n→∞ (1 − τ)

b2G(2)(b) + bG′(b)

G(b)
+ τ = bF (2)(b)

F ′(b)
.

REGIME II. Theorem 4.3(ii) can be similarly obtained: we may now combine Theo-
rem 3.2(ii) with (4.7) and [31], Chapter VI. Theorem 1.14, to deduce the convergence in
distribution (

1√
Kn

(
S

n−Kn

nt−Knt − Knt
);0 ≤ t ≤ 1

)
(d)−→

n→∞ Bbr,

which, together with (4.5), (4.6), (4.7), and the fact that Kn/n → 0, yields(
1√
Kn

(
S

n−Kn

nt−Lnt
− Ln

nt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Bbr,1 − Bbr,2 (d)= √

2 · Bbr.

Furthermore, since the total contribution of the negative increments to
∑n

k=1(X
n
k )2 equals

Kn, then Theorem 3.2(ii) yields

1

Kn

n∑
k=1

(
Xn

k

)2 P−→
n→∞ 1 + 1 = 2.
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REGIME III. As for Theorem 4.3(iii), we combine Theorem 3.2(iii) with (4.7) and [31],
Chapter VI. Theorem 1.14, to obtain(√

n − Kn

K2
n

(
S

n−Kn

nt−Knt − Knt
);0 ≤ t ≤ 1

)
(d)−→

n→∞
1√
α

· Bbr,

which, together with (4.5), (4.6), (4.7), and the fact that Kn/n → 1, yields(√
n − Kn

K2
n

(
S

n−Kn

nt−Lnt
− Ln

nt

);0 ≤ t ≤ 1
)

(d)−→
n→∞

1√
α

· Bbr,1 − Bbr,2 (d)=
√

α + 1

α
· Bbr.

And finally, since the total contribution of the negative increments to
∑n

k=1(X
n
k )2 equals

Kn = o(K2
n/(n − Kn)), then by Theorem 3.2(iii),

n − Kn

K2
n

n∑
k=1

(
Xn

k

)2 P−→
n→∞

α + 1

α
.

In both cases, the conclusion follows from Lemma 4.2 and the Vervaat transform. �

The same argument applies also to prove Theorem 4.4. We shall use the same notation.

PROOF OF THEOREM 4.4. Recall from Section 3.1 the construction of a bridge Xbr of
X, a Lévy process with linear drift, we denote by Xexc = VXbr the associated excursion. The
Lévy bridges which appear here are those of stable processes with a drift, their infimum is al-
most surely attained at a unique time and with no jump at that time. This can be easily derived
from the absolute continuity relation (3.2). See also [36] for more general results. Therefore,
by standard continuity properties of the Vervaat transform, the scaled distributional conver-
gence of a random path under Pθ ,+

n,Kn
towards Xexc will follow from the scaled distributional

convergence of the path under Pθ
n,Kn

towards Xbr.
GENERALITIES. By the assumption on F , the function G defined by (4.8) is such that for

every s ∈ (0,1):

G(ρs)

G(ρ)
= 1 − L(1)

m − L(1)
(1 − s) + (1 − s)αL̂

(
1

1 − s

)
,

where

L̂(x) = L(x) − L(1)x−(2−α)

x−1
x

(m − L(1))
.

The function L̂ is slowly varying at infinity so G satisfies the assumption of Theorem 3.3.
Note that

A(ρ) = L(1)

m
and

L(1)

m − L(1)
= ρG′(ρ)

G(ρ)
= �(ρ) = A(ρ)

1 − A(ρ)
.

Also, if α = 2 and L tends to � < ∞, then lim∞ L̂ = (� − L(1))/(m − L(1)) =: �̂, otherwise

L̂(x) ∼ L(x)/(m − L(1)) as x → ∞. Recall that in the former case, we let rn =
√

nσ 2/2,

where σ 2 = 2� + m − m2, whereas in the second case, rn is such that rα
n ∼ nL(rn). Define

similarly r̂n =
√

nσ̂ 2/2 with σ̂ 2 = 2�̂ + �(ρ) − �(ρ)2 in the first case, and let r̂n be such

that r̂α
n ∼ nL̂(̂rn) in the second case. Since Kn/n → A(ρ) and �̂ + �(ρ) = �/(m − L(1)), if

α = 2 and L tends to � < ∞, then as n → ∞,

r̂n−Kn

rn
−→
n→∞

√
(1 − A(ρ))σ̂ 2

σ 2 =
√

1

σ 2

(
2�̂ + 2�(ρ)

1 + �(ρ)
− �(ρ)

)
=

√
1

σ 2

(
2�

m
− �(ρ)

)
,
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and otherwise

r̂n−Kn ∼
n→∞

1

m1/α
rn.

Finally, let

λ̂n−Kn = Kn − �(ρ)(n − Kn) = Kn − A(ρ)n

1 − A(ρ)
= λn

1 − A(ρ)
.

REGIME I. Assume that Kn = A(ρ)n + λn with λn/rn → λ ∈ R and define λ̂ =
limn λ̂n−Kn/̂rn−Kn , then Theorem 3.3(i) implies(

1

r̂n−Kn

(
S

n−Kn

nt−Knt − Knt
);0 ≤ t ≤ 1

)
(d)−→

n→∞ Xα,̂λ,br.

Suppose first that α = 2 and that the function L has a finite limit; in this case, the scaling

satisfies rn ∼
√

nσ 2/2 and the preceding convergence, combined with (4.5), (4.6), (4.7), and
the fact that Kn/n → A(ρ), yields(

1

rn

(
S

n−Kn

nt−Lnt
− Ln

nt

);0 ≤ t ≤ 1
)

(d)−→
n→∞

√
1

σ 2

(
2�

m
− �(ρ)

)
· X2,̂λ,br −

√
2�(ρ)

σ 2 · Bbr,

where X2,̂λ,br and Bbr are independent. Recall that X2,̂λ,br has the same law as
√

2 · Bbr, so
the right-hand side above has the same law as√

2�

σ 2 · X2,̂λ,br =
√

σ 2 − m + m2

σ 2 · X2,̂λ,br.

Let us next turn to the limit of r−2
n

∑n
k=1(X

n
k )2, still in the regime α = 2 and when L tends to

�. Note that

σ̂ 2 = 2�̂ + �(ρ) − �(ρ)2

= 2
(

�

m

(
�(ρ) + 1

)− �(ρ)

)
+ �(ρ) − �(ρ)2

=
(

2�

m
− �(ρ)

)(
�(ρ) + 1

)
.

Since the total contribution of the negative increments to the sum is Kn ∼ A(ρ)n, then we
infer from Lemma 4.2 and Theorem 3.3(i) that

1

r2
n

n∑
k=1

(
Xn

k

)2 P−→
n→∞

1

σ 2

(
2�

m
− �(ρ)

)(
2 + 2�(ρ)2

σ̂ 2

)
+ 2A(ρ)

σ 2 = 4�

mσ 2 = 2ρF (2)(ρ)

F ′(ρ)σ 2 .

The cases α = 2 and lim∞ L = ∞ as well as α ∈ (1,2) are similar, except that now
√

n =
o(rn), thus the contribution of Ln

nt − Knt in (4.5) is negligible and we simply obtain from
Theorem 3.3(i) (

1

rn

(
S

n−Kn

nt−Lnt
− Ln

nt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ m−1/αXα,̂λ,br.

Note that m−1/αλ̂ = λ/(1 − A(ρ)); we infer from the scaling property of Xα that the right-
hand side has the same law as the process (Xα

t/m − λm
1−A(ρ)

t
m

;0 ≤ t ≤ 1) conditioned to be at

0 at time 1. The convergence of r−2
n

∑n
k=1(X

n
k )2 again follows from Theorem 3.3(i): in the

case α = 2, we directly read

1

r2
n

n∑
k=1

(
Xn

k

)2 P−→
n→∞

2

m
= 2F(ρ)

ρF ′(ρ)
,
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whereas in the case α ∈ (1,2),

1

r2
n

n∑
k=1

(
Xn

k

)2 (d)−→
n→∞ m−2/α

∑
t∈[0,1]

(
�X

α,̂λ
t

)2 (d)= ∑
t∈[0,1]

(
�X

α,λ,m
t/m

)2
.

In any case we conclude the proof of Theorem 4.4(i) by applying Lemma 4.2 and the Vervaat
transform.

REGIME II. Next, in Theorem 4.4(ii), recall that we assume λn/rn → −∞ with λn/n → 0,
and we take εn such that A(ρ(1 − εn)) = Kn/n. Observe that εn satisfies �(ρ(1 − εn)) =
Kn/(n − Kn); we infer from Theorem 3.3(ii) that(√

εn

|̂λn−Kn |
· (Sn−Kn

nt − Knt
);0 ≤ t ≤ 1

)
(d)−→

n→∞
√

α − 1 · Bbr.

Observe that λ̂n−Kn ∼ λn/(1 −A(ρ)) and recall from (2.17) that, when both α = 2 and L has
a finite limit, then so does L̂ and so

|̂λn−Kn |
(n − Kn)εn

−→
n→∞ σ̂ 2.

Combined with (4.5), (4.6), (4.7), we infer in this case that, with Bbr,1 and Bbr,2 two inde-
pendent Brownian bridges,(√

(1 − A(ρ))εn

|λn|
(
S

n−Kn

nt−Lnt
− Ln

nt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ Bbr,1 −

√
�(ρ)

(1 − A(ρ))σ̂ 2 · Bbr,2

(d)=
√√√√1 + �(ρ)

2�
m

− �(ρ)
· Bbr

=
√

2�

2� − m�(ρ)
· Bbr.

As for r−2
n

∑n
k=1(X

n
k )2, still in the regime α = 2 and when L tends to �, since the total contri-

bution of the negative increments to the sum is Kn ∼ A(ρ)n, then we infer from Lemma 4.2
and Theorem 3.3(ii) and (2.17) that

(1 − A(ρ))εn

|λn|
n∑

k=1

(
Xn

k

)2 P−→
n→∞ 1 + �(ρ)2

σ̂ 2 + �(ρ)

σ̂ 2 = 2(�̂ + �(ρ))

σ̂ 2 = 2�

2� − m�(ρ)
.

Now when either α ∈ (1,2) or L → ∞, (so L̂ → ∞), recall from (2.18) that

|λn|
(1 − A(ρ)2nεn

∼
n→∞

|̂λn−Kn |
(n − Kn)εn

∼
n→∞ αεα−2

n L̂(1/εn),

which tends to infinity. Therefore the contribution of Ln
nt − Knt , which is of order

√
n, is

again negligible and we simply obtain(√
εn

|λn|
(
S

n−Kn

nt−Lnt
− Ln

nt

);0 ≤ t ≤ 1
)

(d)−→
n→∞

√
α − 1

1 − A(ρ)
· Bbr.

Further, we read from Theorem 3.3(ii) that

εn

|̂λn−Kn |
n∑

k=1

(
Xn

k

)2 P−→
n→∞ α − 1,
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and since now Kn is small compared to εn/(|λn|), then

εn

|λn|
n∑

k=1

(
Xn

k

)2 P−→
n→∞

α − 1

1 − A(ρ)
.

In any case we conclude the proof of Theorem 4.4(ii) by applying Lemma 4.2 and the Vervaat
transform.

REGIME III. For the last regime, recall that λ̂n−Kn ∼ λn/(1 − A(ρ)) is large compared to√
n, so the contribution of Ln in the decomposition of Wn is negligible, and we infer from

Theorem 3.3(iii) and Lemma 4.2 that, under Pθ
n,Kn

,(
1 − A(ρ)

λn

· (Wn
nt − Knt

);0 ≤ t ≤ 1
)

(d)−→
n→∞ (1{U≤t} − t;0 ≤ t ≤ 1).

Then the first claim in Theorem 4.4(iii) follows from the Vervaat transform. As for the second
claim, we also deduce from the proof of Theorem 3.3(iii) that if we let Un := inf{1 ≤ j ≤ n :
Xn

j = max{|Xn
i | : 1 ≤ i ≤ n}}, then

Xn
Un

λ̂n−Kn

P−→
n→∞ 1, and

1

(̂λn−Kn)
2

∑
k �=Un

(
Xn

k

)2 P−→
n→∞ 0,

and the second claim of Theorem 4.4(iii) follows. �

5. Random planar maps. This last section is devoted to the study of random bicondi-
tioned Boltzmann planar maps. Let us start in Section 5.1 by precisely defining the model.
We then present in Section 5.2 the bijection between maps and labelled trees and describe
the law of the random trees which code Boltzmann maps. Finally our main results are stated
and proved in Section 5.3 by relying on the results from the preceding section. Figure 2 sum-
marises our results in the different regimes. Let us emphasise that in the skew-stable case
λ ∈ R (Theorem 5.4(i)), only tightness is obtained.

FIG. 2. The big picture for scaling limits of biconditioned bipartite Boltzmann planar maps with weight se-
quence q , conditioned to have n − 1 edges and Kn + 1 vertices (and n − Kn faces). The generating function F ,
with radius of convergence ρ, as well as the function A are defined in (5.3). For α ∈ (1,2), the sequence rn is of
order n1/α .
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5.1. Biconditioned Boltzmann maps. A natural generalisation of the model of random
quadrangulations is that of Boltzmann random maps which allows the face degrees to be
random, introduced in [48]; it also naturally appears when considering random maps coupled
with statistical physics models, see, for example, [45], Section 8. Specifically, denote by M
the set of all finite rooted bipartite planar maps, in which all faces have even degree. Let us fix
a sequence of nonnegative real numbers q = (qi; i ≥ 1) which, in order to avoid trivialities,
satisfies qi > 0 for at least one i ≥ 2. We define a measure wq on M by setting

wq(M) = ∏
f face

qdeg(f )/2, M ∈ M,

where deg(f ) is the degree of the face f . When wq(M) = ∑
M∈M wq(M) < ∞ (one says

that q is admissible), one can sample a planar map Mq at random proportionally to its wq -
weight. The size of Mq is also random but one can condition Mq to have a given number n

either of vertices, or of edges, or of faces and study its asymptotic behaviour as n → ∞.
Le Gall [44], based on [48], proved that if, loosely speaking, the weight sequence q is

such that the degree of a typical face of Mq has finite exponential moments, then Mq , con-
ditioned to have n vertices, and rescaled by a factor of order n−1/4 converges in distribution
to the Brownian sphere. On the other hand, when the weight sequence q is such that, roughly
speaking, a typical face of Mq has degree 2k with probability of order ck−1−α when k → ∞,
with c > 0 and α ∈ (1,2), then Le Gall and Miermont [45] proved a tightness result: From
every sequence of integers, one can extract a subsequence along which the map Mq con-
ditioned to have n vertices, rescaled by a factor n−1/(2α), converges in distribution towards
a limit space which has almost surely Hausdorff dimension 2α. Both results were extended
in [50] to the full domain of attraction of a stable law with index in (1,2], and by conditioning
with respect to either the number vertices, or of edges, or of faces.

Recall from the Introduction that we are interested in maps conditioned on having a large
fixed number of vertices, edges, and faces at the same time. More precisely, we consider
a sequence (Kn)n≥1 of integers and, in order to discard degenerate cases, we shall always
assume that both Kn and n − Kn tend to infinity. Let us denote by Mn,Kn the set of all rooted
bipartite planar maps with n − 1 edges and Kn + 1 vertices; by Euler’s formula, all maps
in Mn,Kn have n − Kn faces (hence the name biconditioned). As before, a weight sequence
q = (qi; i ≥ 1) being given, we shall always implicitly assume that n and Kn are compatible
with the support of q , in the sense that wq(Mn,Kn) > 0; we also assume without further notice
that {i ≥ 1 : qi > 0} is not included in a sublattice of Z, that is, the largest h > 0 such that
there exists a ∈ R such that {i ≥ 1 : qi > 0} ⊂ a + hZ is h = 1. The results carry through
without such an aperiodicity condition after mild adaptations. We then define a probability

P
q
n,Kn

(M) = wq(M)

wq(Mn,Kn)
, M ∈ Mn,Kn,

so that Pq
n,k is the law of a q-Boltzmann planar map, biconditioned to have n − 1 edges and

Kn + 1 vertices (and n − Kn faces). Observe that Mn,Kn is finite, so wq(Mn,Kn) < ∞ and
we do not need to restrict to admissible weight sequences. Note that if qi = 1 for every i ≥ 1,
then P

q
n,Kn

is simply the uniform distribution on Mn,Kn ; more generally, if A is a subset of

integers and qi = 1{i∈A}, then P
q
n,Kn

is the uniform distribution on the subset of maps of
Mn,Kn having all face degrees in 2A.

In the same way stable processes are the only possible scaling limits of appropriately
rescaled random walks, it is natural to expect that the Brownian sphere and the stable maps
are the only possible scaling limits of appropriately rescaled size-conditioned Boltzmann
planar maps. However, as we saw in the preceding sections, the biconditioning in a sense
amounts to let the face degree distribution vary with the size, which allows more general
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scaling limits, in the same way Lévy processes are scaling limits of appropriately rescaled
random walks with varying jump distribution. In our case, the Lévy processes that appear are
just stable processes with a linear drift.

5.2. Bijection with labelled trees. A powerful tool to prove scaling limits of random
maps is a coding with labelled trees. Recall the formal definition of (rooted plane) tree from
Section 4. A labelling of such tree T is a function � : V (T ) → Z which equips each vertex
with an integer, which we can view as a spatial position of the corresponding individual. We
say that a labelled tree is a well-labelled tree if it satisfies the following two constraints:

(i) The root of the tree has label 0;
(ii) For every internal vertex, say u0, with k ≥ 1 offspring, say u1, . . . , uk from left to

right, it holds that �(ui) ≥ �(ui−1) − 1 for every i = 1, . . . , k, and �(uk) = �(u0).

Observe that since the root has label 0, the label of a vertex is the sum of the label
increments between every two successive ancestors so the quantities �u0 = (0, �(u1) −
�(u0), . . . , �(uk) − �(u0)) for each internal vertex u0 entirely describe the labelling �; fi-
nally, the second property states that for every such vertex u0, the vector �u0 belongs to the
following set of bridges:

(5.1) B≥−1
k = {

(bi)0≤i≤k : b0 = 0 = bk and bi − bi−1 ∈ Z≥−1 for 1 ≤ i ≤ k
}
.

By combining the works [17] and [34], there is a (constructive) 2-to-1 correspondence
between well-labelled trees and bipartite planar maps with a distinguished vertex (in addition
to the root-edge); the 2-to-1 comes from the fact that it looses the orientation of the root-edge.
See Figure 3 for an example and [50], Section 2.3, for details. This correspondence enjoys
the following properties:

(i) The edges of the tree correspond to those of the map.
(ii) The internal vertices of the tree correspond to the faces of the map and the offspring

number of an internal vertex is half the degree of the associated face.
(iii) The leaves of the tree correspond to the nondistinguished vertices of the map.
(iv) If one shifts all the labels so that the minimum is 1 (one then recovers the original

labels by shifting them so the root has label 0), then the label of a leaf equals the distance in
the map of the corresponding vertex to the distinguished one.

Observe that by the properties (i) and (iii) above, the labelled tree associated with a bipar-
tite planar map having n − 1 edges and k + 1 vertices with one distinguished vertex has n

FIG. 3. A pointed map (right) associated with a labelled tree (left): Labels on the map indicate, up a to a shift,
the graph distance to the distinguished vertex, which is the one carrying the smallest label (here −3). The figure
in the middle indicates the construction of the map from the tree, first by applying a Schaeffer-like rule, except
visiting vertices in depth-first search order, and then merging each internal vertex of the tree with its right-most
offspring (represented by dashed lines).
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vertices and k leaves. The last property shows that controlling the labels on the tree is equiva-
lent to controlling distances to the distinguished vertex in the map. It then remains to control
all the pairwise distances, which is particularly challenging and was done for quadrangula-
tions, by Le Gall [44] and Miermont [57]. Thanks to their work, going from the control of
labels on the tree to that of all distances in the map, in the case of the Brownian sphere, is
now rather simple. We will in fact not consider the labels here, but only the tree itself, and
simply rely on general results from [52].

Recall the law P
q
n,Kn

on maps with n−1 edges and Kn +1 vertices, induced by a sequence
of weights q = (qi; i ≥ 1). Property (ii) above allows us to determine the law of the associated
random labelled tree. In the context of the bijection from [17] only, this was first discussed by
Marckert and Miermont [48], Proposition 7, and it was then adapted using bijection from [34]
in [51], see the proof of Proposition 11 in the latter reference. Recall the set of bridges Bk

as defined in (5.1); its cardinality is the binomial factor
(2k−1

k−1

)
. Then define from q a weight

sequence θ = (θ(i); i ≥ 0) by

(5.2) θ(0) = 1 and θ(i) =
(

2i − 1
i − 1

)
qi for every i ≥ 1.

The preceding correspondence implies that the law of the labelled tree (T , �) associated with
a random map M sampled from P

q
n,Kn

, in which we distinguish a vertex chosen uniformly at
random among the Kn + 1 possibilities and independently of M , is as follows: First T is a
simply generated tree with n vertices and Kn leaves sampled from the weight sequence θ as
defined in Section 4.2, and then, conditionally given T , the labels are obtained by sampling
independently for every internal vertex u a uniform random bridge in Bku as defined in (5.1).

5.3. Scaling limits. Our aim is to determine the asymptotic behaviour of a q-Boltzmann
random planar map Mn,Kn conditioned to have n − 1 edges and Kn + 1 vertices, sampled
from P

q
n,Kn

, and more precisely of the metric measured space obtained by endowing the set of
vertices V (Mn,Kn) with the graph distance dgr, suitably rescaled, and the uniform probability
measure punif, in the Gromov–Hausdorff–Prokhorov topology (see e.g., [56], Section 6, for
details on this topology).

We need to introduce some notation. Set

(5.3) F(z) = 1 +
∞∑

k=1

(
2k − 1
k − 1

)
qkz

k and A(z) = 1 − F(z) − F(0)

zF ′(z)
.

Denote by ρ the radius of convergence of F and set k0 = min{k ≥ 1 : qk �= 0}; then it is a
simple matter to check that A is increasing on (0, ρ) and we extend it by continuity with
A(0) = 1 − 1/k0 and A(ρ) < 1 if and only if F ′(ρ) < ∞. These are the functions defined
in (4.3) with the sequence θ from (5.2).

EXAMPLE 5.1. It is instructive to keep in mind the example of uniform bipartite maps,
which corresponds to the weight sequence qi = 1 for every i ≥ 1. In this case, k0 = 1, ρ =
1/4, and

F(z) = 1

2
+ 1

2
√

1 − 4z
, and A(z) = 6z − 1 + (1 − 4z)3/2

2z
.

One can easily apply the next theorem to deduce Theorem 1.2 appearing the Introduction; for

example, the scaling function S in the latter is S(x) = F ′(A−1(x))

A−1(x)F (2)(A−1(x))
in Theorem 5.2(i)

below. The assumptions of Theorem 5.2(iii) are also satisfied, with α = 1/2.
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Extracting a subsequence if necessary, we may assume that Kn/n converges as n → ∞
to some limit τ ∈ [0,1]. Theorem 4.3 combined with [52] will readily entail the following
result.

THEOREM 5.2. Let Mn,Kn denote a q-Boltzmann random planar map conditioned to
have n− 1 edges and Kn + 1 vertices. If (M,dM,pM) denotes the Brownian sphere, then the
convergence in distribution(

V (Mn,Kn), v
−1/4
n dgr,punif

) (d)−→
n→∞ (M,dM,pM)

holds for the Gromov–Hausdorff–Prokhorov topology in each of the following cases:

(i) There exists τ ∈ (1 − 1/k0,A(ρ)) such that Kn/n → τ and vn = 4bF (2)(b)n
9F ′(b)

with b =
A−1(τ ).

(ii) Kn/n → 0 with Kn → ∞, q1, q2 > 0, and vn = 8Kn/9.
(iii) Kn/n → 1 and n − Kn → ∞, F is bounded on any compact subset of D(ρ) \ {ρ}

and there exist c,α > 0 such that F(ρ − z) ∼ cz−α as z → 0 with |z − ρ| < ρ, and finally

vn = 4(1+α)n2

9α(n−Kn)
.

As for random paths, in the first regime, since F (2)(b) < ∞, then essentially the degree
of a typical face in Mn,Kn has uniformly bounded variance and the Brownian sphere is natu-
rally expected in the limit. In the second regime, we force the number of vertices to be small
compared to the number of edges. Clearly, this requires k0 = 1, that is, q1 > 0: in order to
have much less vertices than edges, the map must have (many!) double edges, that is, faces
with degree 2. On the other hand we also need the extra assumption q2 > 0 to avoid period-
icity issues which would require a more technical analysis. However, there is no additional
regularity assumption on F .

Our final result concerning random maps focuses on the case Kn/n → A(ρ) when the
latter is finite. Here, we assume that the probability distribution with generating function
F(ρ·)/F (ρ) is aperiodic and belongs to the domain of attraction of a stable law with index
α ∈ (1,2], that is, that there exist α ∈ (1,2], ρ > 0, m > 0, and a slowly varying function L

such that for every 0 ≤ s < ρ,

F(s) = F(ρ)

(
1 − m + ms

ρ
+
(

1 − s

ρ

)α

L

(
1

1 − s/ρ

))
.

In the case F (2)(ρ) < ∞, that is, when α = 2 and L admits a finite limit at infinity, say �, the
law with generating function F(ρ·)/F (ρ) has a finite variance, equal to

σ 2 = 2� + m − m2 = ρ2F (2)(ρ)

F (ρ)
+ ρF ′(ρ)

F (ρ)
−
(

ρF ′(ρ)

F (ρ)

)2
.

In this case we set rn =
√

nσ 2/2 for every n ≥ 1, otherwise, we let (rn)n≥1 be a sequence
such that rα

n ∼ nL(rn) as n → ∞.

EXAMPLE 5.3. Let us give an explicit example taken from [5]. The weights

qk = −√
π

2�(1 − α)

(
1

4α

)k−1 �(−α + k)

�(1
2 + k)

for k ≥ 2

give rise to the generation function F satisfying F(αz)/F (α) = z+α−1(1−z)α . In this case,
ρ = α, m = 1, F(α) = α, F ′(ρ) = 1, F (2)(ρ) = 1/2 when α = 2, L is constant equal to 1,
and finally A(α) = 1/α. In particular, one can take rn = n1/α .
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The next statements are our last applications to random maps.

THEOREM 5.4. Under the previous assumptions, assume that Kn takes the form

Kn = A(ρ)n + λn, where
λn

rn
−→
n→∞ λ ∈ [−∞,∞].

The following convergences hold for the Gromov–Hausdorff–Prokhorov topology:

(i) If λ ∈ R and α = 2, and

vn = ρF (2)(ρ)

F ′(ρ)

4n

9
1{F (2)(ρ)<∞} + F(ρ)

ρF ′(ρ)

8r2
n

9
1{F (2)(ρ)=∞},

then (
V (Mn,Kn), v

−1/4
n dgr,punif

) (d)−→
n→∞ (M,dM,pM),

where (M,dM,pM) is the Brownian sphere.
(ii) If λ = −∞ and λn/n → 0, let εn → 0 be defined by A(ρ(1 − εn)) = Kn/n, then for

vn = ρF (2)(ρ)

F ′(ρ)

4n

9
1{F (2)(ρ)<∞} + 4

9

α − 1

1 − A(ρ)

|λn|
εn

1{F (2)(ρ)=∞},

we have (
V (Mn,Kn), v

−1/4
n dgr,punif

) (d)−→
n→∞ (M,dM,pM),

where (M,dM,pM) is the Brownian sphere.
(iii) If λ = ∞, we further assume that

(2k−1
k−1

)
qkρ

−k is regularly varying at infinity with

some index −β < −2 with β �= 3. If F (2)(ρ) < ∞ (which implies β > 3), we assume further-
more that there exists c > (β − 3)/σ 2 such that λn ≥ √

c ln(n). Then(
V (Mn,Kn), (2λn)

−1/2dgr,punif
) (d)−→

n→∞ (T , dT ,pT ),

where (T , dT ,pT ) is Aldous’ Brownian tree coded by the standard Brownian excursion.

We shall establish these convergences by combining Theorem 4.4 with [52]. Our last result
concerns the first regime, λ ∈ R, when α ∈ (1,2). In this case, we expect new limit spaces to
appear, and in this direction here we establish a tightness result as a first step.

THEOREM 5.5. In the same framework as the previous theorem, still assuming that Kn

takes the form

Kn = A(ρ)n + λn, where
λn

rn
−→
n→∞ λ ∈ R.

When α ∈ (1,2), the sequence(
V (Mn,Kn),

1√
rn

dgr,punif

)
n≥1

is tight for the Gromov–Hausdorff–Prokhorov topology and nondegenerate (in the sense that
it does not converge towards a deterministic limit).



3794 I. KORTCHEMSKI AND C. MARZOUK

In the case of maps solely conditioned by their number of vertices, Le Gall and Mier-
mont [45] proved such a tightness result by showing that the label process (which records
the label of the vertices of the tree in depth-first search order) converges in distribution. This
enabled them to show that all subsequential limits have the same Hausdorff dimension 2α

almost surely; furthermore some limit theorems then do not require the extraction of a subse-
quence, such as the convergence of the profile of distances to an independent uniform random
vertex.

Here, Theorem 5.5 follows by a direct application of [52] which only shows tightness of
the label process, which does not provide any extra information on the limit spaces other
than the scale of the typical distances. As mentioned in the Introduction, we now work to
extend Le Gall and Miermont’s results which involved the so-called “continuous distance
process” based on the excursion of stable Lévy process to more general Lévy processes with
no negative jump. Applied to the present setting of biconditioned maps, we shall obtain that
all subsequential limits in Theorem 5.5 have the same Hausdorff, packing, and Minkowski
dimensions, all equal to 2α almost surely, independently of λ ∈ R. Finally, in the case λ = 0,
the limit spaces are the same as in [45].

REMARK 5.6.

(i) It is interesting to note that in the case m < 1, under an additional regularity assump-
tion, the scaling limit of q-Boltzmann planar maps conditioned on having a large number of
edges is the Brownian CRT (see [34] and [52], Theorem 10(i)), but an appropriate bicondi-
tioning also allows to escape this universality class.

(ii) By using the recent work [53] instead of [52], completed after the first version of this
work, one can obtain more information about the subsequential limits in Theorem 5.5 and, for
example, derive the convergence without extraction of the profile of distances to a uniform
random vertex, which extends [45], Theorem 4.

PROOF OF THEOREMS 5.2, 5.4, AND 5.5. The paper [52] specifically studies a model
of uniform random maps “with prescribed degrees” in the sense that given, say, N positive
integers dN,1 ≥ · · · ≥ dN,N , a (rooted planar) map is sampled uniformly at random among
all those with N faces, with degrees 2dN,1, . . . ,2dN,N . Then one wants to understand the
behaviour of such a map MN as N → ∞ in terms of the triangular array (dN,i)N≥i≥1. It is
shown in [52], Theorem 1, that the sequence

(
V (MN),σ

−1/2
N dgr,punif

)
n≥1 where σ 2

N =
N∑

i=1

dN,i(dN,i − 1),

is always tight for the Gromov–Hausdorff–Prokhorov topology. Moreover, by Theorem 2 and
Theorem 3 respectively in [52], as N → ∞:

• if σ−1
N dN,1 → 0, then it converges in distribution towards

√
2/3 times the Brownian sphere

(M,dM,pM);
• if σ−1

N dN,1 → 1, then it converges in distribution towards
√

2 times the Brownian tree
(T , dT ,pT ).

Since two maps with same face degrees have the same wq -weight, a size-conditioned
Boltzmann map Mn,Kn sampled from P

q
n,Kn

can be seen as a mixture of this model
with N = n − Kn: One first samples the degrees dn−Kn,1 ≥ · · · ≥ dn−Kn,n−Kn randomly
with an appropriate distribution, and then conditionally given this sequence, the map
Mn,Kn has the uniform distribution on maps with n − Kn faces, with degrees respectively
2dn−Kn,1, . . . ,2dn−Kn,n−Kn . We then deduce that, once rescaled by a, now random, factor,
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the sequence of maps (σ
−1/2
n−Kn

Mn,Kn)n≥1 is tight, and it suffices to prove the convergence in
probability dn−Kn,1/σn−Kn → 0 as n → ∞ to deduce that they converge to

√
2/3 times the

Brownian sphere, or that dn−Kn,1/σn−Kn → 1 in probability to deduce that they converge to√
2 times the Brownian tree.
According to Section 5.2, the half face-degrees of Mn,Kn are given by the nonnegative

increments plus one of the Łukasiewicz path of the associated tree. Further, from Section 4.2,
the latter has the law P

θ ,+
n,Kn

, where θ is defined by (5.2). If we denote by Xn
k the increments

of this path, then the quantity σ 2
n−Kn

has therefore the same law as

n∑
k=1

Xn
k

(
Xn

k + 1
) = −1 +

n∑
k=1

(
Xn

k

)2
.

We infer from Theorems 4.3 and 4.4, with also Remark 4.5 in the finite variance regimes
that:

(i) The random factor σn−Kn can be replaced by the deterministic factor used in Theo-
rems 5.2, Theorem 5.4, and 5.5 respectively;

(ii) The ratio dn−Kn,1/σn−Kn converges in probability to 0 as n → ∞ in Theorem 5.2 as
well as in Theorem 5.4(i) and in Theorem 5.4(ii).

(iii) The ratio dn−Kn,1/σn−Kn converges in probability to 1 as n → ∞ in Theorem 5.4(iii).

Our claim then follows from [52]. �

APPENDIX: ON THE SUM OF THE INCREMENTS SQUARED

In this section, we provide the proof of the convergence of the sum of the squares of
the increments of the simply generated random path Sn conditioned to end at Sn

n = xn, as
stated in Theorems 3.2, 3.3(ii), and finally 3.3(i) in the case α = 2. These results were needed
when dealing with random maps just above. Throughout this section, we shall denote by
Xn

k = Sn
k − Sn

k−1 for every 1 ≤ k ≤ n the increments of the random bridge Sn.
Each regime requires a different argument and is studied in a separate subsection. Recall

the notation G and � from (3.1). In each regime studied from Section A.1 to Section A.4, we
have xn/n < �(ρ) for every n large enough so we can define as in the proof of Proposition 3.4
a random variable X̂n with generating function Ĝn = G(bn·)/G(bn), where bn is such that
E[X̂n] = �(bn) = xn/n. We will use the explicit expressions of the first moments of X̂n,
which are given by (2.1). We let further (Ŝn

i ; i ≥ 0) denote a random walk with such i.i.d.
steps. On the other hand, in Section A.5, we have xn/n ≥ �(ρ), so the latter is finite and we
now define X̂ similarly but with b = ρ instead of bn; then (Ŝi; i ≥ 0) shall denote a random
walk with such i.i.d. steps. In both cases, Lemma 3.1 shows that the paths (Ŝn

i ;0 ≤ i ≤ n)

under P(· | Ŝn
n = xn) and (Ŝi;0 ≤ i ≤ n) under P(· | Ŝn = xn) have the same law as our

original path Sn.

A.1. The bulk regime. In this first subsection, we focus on Theorem 3.2(i), that is, we
assume that xn/n converges to some limit γ ∈ (ip,�(ρ)). Let bn and X̂n as above, then
bn → b where b ∈ (0, ρ) is such that �(b) = γ ; we let similarly X̂b have the generating
function Ĝb(s) = G(bs)/G(b). The next result completes Theorem 3.2(i) and was used in
the proof of Theorem 5.2(i).

PROPOSITION A.1. The following convergence holds in probability:

1

n

n∑
k=1

(
Xn

k

)2 P−→
n→∞ E

[(
X̂b)2] = b2G(2)(b) + bG′(b)

G(b)
.
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PROOF. According to Lemma 3.1, the law of the path Sn and the random walk Ŝn under
P(· | Ŝn

n = xn) are the same so we may replace the increments of the former by those of the
latter. Let us therefore consider a sequence (X̂n

k )k≥1 of i.i.d. random variables with generating
function Ĝn = G(bn·)/G(bn), and recall their second moment from (2.1), namely

s2
n = E

[(
X̂n

1
)2] = b2

nG
(2)(bn) + bnG

′(bn)

G(bn)
.

Then s2
n → s2 = E[(X̂b)2].

Fix ε > 0; the proof by truncation of the weak law of large numbers provided, for example,
in [28], page 271, shows the following: let �n = ∑n

k=1((X̂
n
k )2 −s2

n) and �′
n = ∑n

k=1((X̂
n
k )2 −

s2
n)1{|(X̂n

k )2−s2
n|≤nε3}, then

P
(∣∣�n −E

[
�′

n

]∣∣ > nε
) ≤ εE

[∣∣(X̂n
1
)2 − s2

n

∣∣]+ nP
(∣∣(X̂n

1
)2 − s2

n

∣∣ > nε3)
≤ 2εs2

n + ε−3
E
[∣∣(X̂n

1
)2 − s2

n

∣∣1{|(X̂n
1 )2−s2

n|>nε3}
]
,

and

n−1∣∣E[�′
n

]∣∣ ≤ E
[∣∣(X̂n

1
)2 − s2

n

∣∣1{|(X̂n
1 )2−s2

n|>nε3}
]
.

Recall the fourth moment of X̂n
1 from (2.1); since bn → b ∈ (0, ρ), then E[(X̂n

1)4] converges
to the similar quantity with b in place of bn (which equals E[(X̂b)4]). Since s2

n → s2, we
deduce that ((X̂n

1)2 − s2
n)n is uniformly bounded in L2 and therefore the right-hand side in

the preceding display converges to 0. Hence,

lim
n→∞n−1

E
[
�′

n

] = 0 and lim sup
n→∞

P
(∣∣�n −E

[
�′

n

]∣∣ > nε
) ≤ 2εs2.

Since this holds for every ε > 0, we conclude that n−1�n converges to 0 in probability, so

1

n

n∑
k=1

(
X̂n

k

)2 P−→
n→∞ s2,

under the unconditional law. Then as in the proof of Proposition 3.4, by absolute continuity,
we can transfer this convergence to the first half of the bridge, that is, under P(· | Ŝn

n = xn);
by time-reversal the same holds also for the second half of the bridge. Since this bridge of Ŝn

has the same law as our path Sn, this shows our assertion. �

A.2. The small endpoint regime. We focus in this subsection on Theorem 3.2(ii): we
only assume that p(0),p(1) > 0 and we suppose that xn/n → 0 and xn → ∞. The next result
completes Theorem 3.2(ii) and was used in the proof of Theorem 5.2(ii).

PROPOSITION A.2. The following convergence in probability holds:

1

xn

n∑
k=1

(
Xn

k

)2 P−→
n→∞ 1.

PROOF. Exactly as in the proof of Proposition A.1, it is sufficient to work under the
unconditional law of the random walk Ŝn, and then conclude by absolute continuity and time-
reversal. We therefore replace the Xn

k ’s by a sequence (X̂n
k )k≥1 of i.i.d. random variables with

generating function Ĝn = G(bn·)/G(bn), where bn ∈ (0, ρ) is such that �(bn) = xn/n, so
bn → 0. We then derive from (2.1) the mean and variance of (X̂n

1)2, and further, by (2.3),

E
[(

X̂n
1
)2] = b2

nG
(2)(bn) + bnG

′(bn)

G(bn)
= xn

n

(
b2
nG

(2)(bn)

bnG′(bn)
+ 1

)
∼

n→∞
xn

n
,
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and similarly

E
[(

X̂n
1
)4] = xn

n

(
b4
nG

(4)(bn) + 6b3
nG

(3)(bn) − 11b2
nG

(2)(bn)

bnG′(bn)
+ 6

)
,

so

Var
((

X̂n
1
)2) ∼

n→∞ 6
xn

n
.

Since xn → ∞, we infer that 1
xn

∑n
k=1(X

n
k )2 converges to 1 in L2 under the unconditioned

probability, which suffices to conclude. �

A.3. The large endpoint regime. In this subsection, we focus on Theorem 3.2(iii): We
now assume that xn/n → ∞, that G is �-analytic, and that there exist c, ρ,α > 0 such that
G(ρ − z) ∼ cz−α as z → 0 with Re(z) > 0. The next result completes Theorem 3.2(iii) and
was used in the proof of Theorem 5.2(iii).

PROPOSITION A.3. The following convergence in probability holds:

n

x2
n

n∑
k=1

(
Xn

k

)2 P−→
n→∞

α + 1

α
.

PROOF. The proof is similar to that of Proposition A.2. First, it is sufficient to work under
the unconditional law of the random walk Ŝn, and then conclude by absolute continuity and
time-reversal that the same holds for the bridge, which has the same law as Sn. We therefore
replace the Xn

k ’s by a sequence (X̂n
k )k≥1 of i.i.d. random variables with generating function

Ĝn = G(bn·)/G(bn). Second, we rely on the moments of (X̂n
1)2 calculated in (2.1).

Indeed, we already noticed in (2.6) that, as n → ∞,

E
[(

X̂n
1
)2] ∼ α + 1

α

x2
n

n2 .

Similarly, combining the expression of the moments from (2.1) and the derivatives of G

from (2.4) we deduce that as n → ∞,

Var
((

X̂n
1
)2) = O

(
x4
n

n4

)
.

Therefore n
x2
n

∑n
k=1(X

n
k )2 converges to (α + 1)/α in L2 under the unconditioned probability,

which suffices to conclude. �

A.4. Stable regime with a large negative deviation. We treat in this subsection the
regime described in Theorem 3.3(ii), where the limit process is again a Brownian bridge.
Recall the assumptions of this theorem: we assume throughout that G′(ρ) < ∞ and that
there exist α ∈ (1,2] and a slowly varying function L such that for every 0 ≤ s < ρ,

G(s) = G(ρ)

(
1 − m + ms

ρ
+
(

1 − s

ρ

)α

L

(
1

1 − s/ρ

))
.

Recall that in the case G(2)(ρ) < ∞, that is, when α = 2 and L admits a finite limit at infinity,
say �, the law with generating function G(ρ·)/G(ρ) has a finite variance, equal to

σ 2 = 2� + m − m2.
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In this case we set rn =
√

nσ 2/2 for every n ≥ 1, otherwise, we let (rn)n≥1 be a sequence
such that rα

n ∼ nL(rn) as n → ∞. Finally, we let

xn = mn + λn, where λn/rn → −∞ and λn/n → 0,

and we write bn = ρ(1 − εn), which satisfies �(bn) = xn/n, so εn → 0.
Again, we prove a law of large number for the square of the increments; this completes

Theorem 3.3(ii) and was used in the proof of Theorem 5.4 in the case λ = −∞.

PROPOSITION A.4. The following convergence in probability holds:

εn

|λn|
n∑

k=1

(
Xn

k

)2 P−→
n→∞ α − 1 + m2

σ 2 1{G(2)(ρ)<∞}.

PROOF. Again, we proceed exactly as in the proof of Proposition A.2: First, it is suf-
ficient to work under the unconditional law of the random walk Ŝn, and then conclude by
absolute continuity and time-reversal that the same holds for the bridge, which has the same
law as Sn. We therefore replace the Xn

k ’s by a sequence (X̂n
k )k≥1 of i.i.d. copies of a random

variable X̂n with generating function Ĝn = G(bn·)/G(bn). Second, we rely on the moments
of (X̂n)2 calculated in (2.1). Note that the generating function Ĝn satisfies the same assump-
tion that G in Section 2.3 and X̂n has the law of ξ (bn) there.

Let us first treat the case where either α < 2 or L converges to ∞. In this case, combin-
ing (2.18) and (2.21) we obtain

nεn

|λn|E
[(

X̂n
1
)2] −→

n→∞ α − 1.

By the same argument, relying on the expression of the moments from (2.1) and the deriva-
tives of G from (2.20) we infer that as n → ∞,

nεn

|λn|E
[(

X̂n
1
)4] ∼ nεn

|λn|
b4
nG

(4)(bn)

G(bn)
∼ (α − 1)(α − 2)(α − 3)

ε2
n

.

Recall also that we deduced just below (2.18) that rnεn → ∞, in addition to |λn| → ∞, hence

n

(
εn

|λn|
)2

E
[(

X̂n
1
)4] −→

n→∞ 0.

We conclude in this case that εn|λn|
∑n

k=1(X̂
n
k )2 converges to α − 1 in L2 under the uncondi-

tioned probability, which suffices for our claim.
It remains to treat the case where α = 2 and L admits a finite and positive limit, say

�. Here we use (2.17) instead. Moreover in this case G(2)(ρ) < ∞; let X̂ have the law with
generating function G(ρ·)/G(ρ), so E[X̂] = m and let s2 = E[(X̂)2], which is given by (2.1),
and notice that since 2� = E[X̂(X̂ − 1)], then s2 = 2�+m. Similarly let s2

n = E[(X̂n
1)2], then

by continuity s2
n → s2. The claim can be proved very much as in the proof of Proposition A.1.

Recall from there that all we need to prove is that for any ε > 0,

E
[∣∣(X̂n

1
)2 − s2

n

∣∣1{|(X̂n
1 )2−s2

n|>nε3}
] −→

n→∞ 0.

However here we cannot rely on a uniform bound for the fourth moment, and we argue instead
by absolute continuity. Indeed, for every k ≥ 0, we have

P(X̂ = k) = ρkp(k)

G(ρ)
and P

(
X̂n

1 = k
) = bk

np(k)

G(bn)
.
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Consequently, since bn ≤ ρ for every n and G(bn) → G(ρ), then

E
[∣∣(X̂n

1
)2 − s2

n

∣∣1{|(X̂n
1 )2−s2

n|>nε3}
] = G(ρ)

G(bn)
E

[∣∣(X̂)2 − s2
n

∣∣1{|(X̂)2−s2
n|>nε3}

(
bn

ρ

)k]

≤ G(ρ)

G(bn)
E
[∣∣(X̂)2 − s2

n

∣∣1{|(X̂)2−s2
n|>nε3}

]
,

which tends to 0. We conclude as in the proof of Proposition A.1 that 1
n

∑n
k=1(X̂

n
k )2 converges

to s2 in probability. Our claim then follows from (2.17) together with the fact that the constant
there equals s2 − m2. �

Notice that when L has a finite limit at infinity, say �, then |λn|/εn ∼ (2� + m − m2)n =
(s2 − m2)n by (2.17) so n−1 ∑n

k=1(X
n
k )2 converges in probability to s2 = E[X̂2], which is

consistent with Proposition A.1.

A.5. Gaussian regime with a small deviation. We finally treat in this subsection the
regime described in Theorem 3.3(i), in the case α = 2, and one last time, we prove a law of
large number for the square of the increments; this was used in the proof of Theorem 5.4(i)
in the case α = 2. We work under the same assumptions on G as in the previous subsection
with α = 2, that is,

G(s) = G(ρ)

(
1 − m + ms

ρ
+
(

1 − s

ρ

)2
L

(
1

1 − s/ρ

))
,

with rn defined as in Section A.4. However here we assume that there exists λ ∈ R such that

xn = mn + λn, where λn/rn → λ.

As opposed to the preceding regimes, we shall use a fixed distribution for the equivalent
random walk. Precisely, we let X̂ have the law with generating function Ĝ = G(ρ·)/G(ρ),
so its moments are given by (2.1) with b = ρ. We let Ŝ denote a random walk with such i.i.d.
steps, so Lemma 3.1 shows that the path (Ŝi;0 ≤ i ≥ n) under P(· | Ŝn = xn) has the same
law as our original path Sn.

PROPOSITION A.5. When α = 2, the following convergence in probability holds:

r−2
n

n∑
k=1

(
Xn

k

)2 P−→
n→∞ 2 + 2m2

σ 2 1{G(2)(ρ)<∞}.

PROOF. As now usual, it is sufficient to work under the unconditional law of the random
walk Ŝ, and then conclude by absolute continuity and time-reversal that the same holds for the
bridge, which has the same law as Sn. We therefore replace the Xn

k ’s by a sequence (X̂k)k≥1
of i.i.d. random variables with generating function Ĝ. The latter belong to the domain of
attraction of a Gaussian distribution; in the case where L has a finite limit, we have Ĝ(2)(ρ) <

∞ so the (X̂k)
2’s have finite mean and the claim simply follows from the law of large numbers

combined with the fact that rn =
√

nσ 2/2:

n−1
n∑

k=1

(
Xn

k

)2 P−→
n→∞ E

[
X̂2] = σ 2 + m2.

In particular, the convergence of Proposition A.1 also holds for b = ρ when G(2)(ρ) < ∞.
This can be extended to the case Ĝ(2)(ρ) = ∞ by looking at the first two truncated mo-

ments, as in, for example, [52], Theorem 8(i). We reproduce the argument for the reader’s
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convenience. Let L1 be the slowly varying function defined by L1(x) = E[X̂2
11{|X̂1|≤x}]

for every x > 0. As in, for example, [11], Lemma 4.7, we have (L1(x) − m) ∼ 2L(x) as
x → ∞. Further, by [26], Chapter XVII, equation 5.16, the ratio x2

P(X̂1 ≥ x)/L1(x) con-
verges to (2 − α)/2 = 0 as x → ∞. Then for every ε > 0, since L1 is slowly varying, then
L1(εrn) ∼ L1(rn) and so

P

(
r−1
n max

1≤i≤n
X̂i ≥ ε

)
≤ nP(X1 ≥ εrn) = o

(
n(εrn)

−2L1(εrn)
) = o

(
nr−2

n L1(rn)
) = o(1),

where we used that nr−2
n ∼ L(rn)

−1 and that the ratio L1(rn)/L(rn) is bounded. Further,

E

[
r−2
n

∑
1≤i≤n

X̂2
i 1{|X̂i |≤εrn}

]
= nr−2

n E
[
X̂2

11{|X̂1|≤εrn}
] ∼ nr−2

n L1(rn) ∼ L1(rn)

L(rn)
,

and, similarly, the variance of this quantity equals

nr−4
n Var

(
X̂2

11{|X̂1|≤εrn}
) ≤ ε2nr−2

n E
[
X̂2

11{|X̂1|≤εrn}
] ∼ ε2 L1(rn)

L(rn)
.

Since we have previously shown that with high probability, |X̂i | ≤ εrn for every i ≤ n, then
we conclude that r−2

n

∑
1≤i≤n X̂2

i converges in probability to the limit of the ratio L1/L,
which is 2. The completes the proof. �
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