
Four Months in DailyMotion:
Dissecting User Video Requests

Yannick Carlinet&, The Dang Huynh†∗, Bruno Kauffmann&,
Fabien Mathieu‡∗, Ludovic Noirie†∗, Sébastien Tixeuil§∗

&Orange Labs †Alcatel-Lucent Bell Labs France ‡Inria §UPMC Sorbonne Universités, IUF ∗LINCS
Contact: fabien.mathieu@inria.fr

Abstract—The growth of User-Generated Content (UGC) traf-
fic makes the understanding of its nature a priority for network
operators, content providers and equipment suppliers. In this
paper, we study a four-month dataset that logs all video requests
to DailyMotion made by a fixed subset of users. We were able
to infer user sessions from raw data, to propose a Markovian
model of these sessions, and to study video popularity and its
evolution over time. The presented results are a first step for
synthesizing an artificial (but realistic) traffic that could be used
in simulations or experimental testbeds.

Index Terms—UGC, Dataset analysis, modeling
I. INTRODUCTION

Internet traffic has tremendously grown in volume in the
recent years. A large part of the increase comes from User-
Generated Content (UGC) systems, like YouTube or Daily-
motion, which are estimated to account for 20 to 35% of
current Internet traffic [1]. In this context, understanding the
properties of UGC traffic is important for network operators
(dimensioning networks), content providers (ensuring quality
of experience) and equipment suppliers (designing adapted
solutions). In order to reach these objectives, we analyze a
dataset from a real UGC system, and we propose a model
that is a first step for synthesizing an artificial (but realistic)
traffic, which could be used in simulations or experimental
testbeds.

In more details, the analysis we propose is based on a four-
month dataset that monitors more than 15,000 users, tracking
the network requests for DailyMotion videos. Thanks to this
dataset, we are able to partition the requests into user sessions,
for which we model the arrival process. We can distinguish
jumps within a video from requests of another video, and
we provide a simple Markovian model that reproduce the
jump/zap/end process within a session. We also provide a
basic analysis of popularity, pointing out a few patterns that
summarize the observed evolution of popularity with time.
The possible interactions with the considered aspects (session
arrival, behavior within a session, video popularity) are briefly
investigated. Although the main presented results are based on
one specific dataset, the proposed methodology is sufficiently
versatile to be applied to other similar real datasets, and opens
the way to generating synthesized, yet realistic, datasets.

The paper is structured as follows: section II describes the
DailyMotion dataset and a preliminary classification. Section

The work presented in this paper has been carried out at Laboratory of
Information, Network and Communication Sciences (LINCS, www.lincs.fr).

III analyzes and proposes a model for the session arrival
process. The behavior of a user within a session is discussed in
section IV, and the popularity of videos is addressed in section
V. We review the related work in section VI. Finally, section
VII concludes the paper and discusses how the obtained results
could be exploited in a modular way in order to emulate a
traffic that looks like what we can observe in real networks.

II. PARSING THE TRACES

While our approach for modeling user behavior can be
applied to most existing traces, we illustrate and validate it
using some real data. This section presents the dataset we
used and how raw data was pre-processed for analysis.
A. Dataset description

Our dataset was gathered through 7 probes set in the edge
network of Orange, a tier-1 operator, either in the Asymmetric
Digital Subscriber Line (ADSL) for 6 probes or the Fiber To
The Home (FTTH) edge network for the seventh probe. Each
probes was connected to the port of a Broadband Remote
Access Server (BRAS) thanks to an optical splitter, which
means that the probes saw only duplicated traffic and did not
interfere with operational traffic in any way. The collected
traffic amounted to about one tenth of all traffic going through
the BRAS: however the traffic of a given customer was always
switched through the same port, hence all traffic of monitored
customers was collected. The ADSL probes collectively moni-
tored about 10,000 customers and the FTTH probe about 5,400
customers. The dataset we analyze in the sequel focuses on
the requests made on the DailyMotion website [2]. It spans
a four months period, from 02/02/2010 to 05/31/2010, during
which 4,948,593 events were recorded.

The probes are designed to monitor web streaming events
triggered by HTTP requests of a flash file (.swf extension). For
each streaming event, the following information was recorded:
• Client ID, based on the layer 2 protocol in use (ATM (resp.

Ethernet) for ADSL (resp. FTTH) probes);
• HTTP request, i.e. the identifier of the requested video;
• Timestamp of the request;
• Number of bytes downloaded through the request.
The fact that the client identification is based on layer 2
protocols means that it is insensitive to IP address changes
due to dynamic address allocation.

Finally, for privacy reasons, every piece of information
about clients and requested objects was masked in the trace,
before any further processing.

978-1-4577-1379-8/12/$26.00 c© 2012 IEEE

0 24 48 72 96 120 144 168 192 216 240 264 288
0

100

200

300

400

500

Hour

N
um

be
r

of
 a

rr
iv

al
s

Fig. 1. Number of session arrivals per hour over a few days

B. Event classification
Analyzing the datasets, we were able to distinguish three

main types of events:
• Launchers: before getting the actual video, the browser

first downloads a flash video player (the launcher), which
then makes video requests. The same launcher can perform
several requests. We observed 1,027,847 launcher events
(i.e. about 20% of the events).

• Request for a new video (or change event): this is a request
for a real video (not a launcher) that differs from the
previous one (if any) of the user. We monitored 2,015,985
such events (i.e. about 40% of the events).

• Jumps: frequently, a given user can make several consecu-
tive requests for the same file. We interpret these requests
as jump event: the user jumps to a part of the video that
has not been buffered yet. We observed 1,904,761 of these
events (i.e. about 40% of the events).

C. Extracting user sessions
For a finer grained analysis, we first separate the events

originating from a given user into logical sessions. Being able
to split the requests into sessions is fundamental, as we expect
the process of session arrivals to be quite different from the
behavior within a given session. A natural idea would be to
use launchers events as sessions separators. However, launcher
events do not accurately correspond to user sessions:
• a user may leave its computer for some time and start a new

viewing sequence later, so we may have multiple human
sessions following one launcher request;

• conversely, one user may reload its current page or nav-
igate through multiple browser windows/tabs, resulting in
multiple launcher requests for one human session.
Therefore, we prefer to infer sessions from users idle

periods: if a user does not make any new video request for
some time, we assume that its session has ended. The main
problem remains to define idle periods. Empirically, we found
out that using a fixed idle period of one hour gave good and
reliable results. Using that threshold, we were able to extract
567,510 sessions from the traces, which is to compare to the
1,027,847 launcher events.

III. SESSION ARRIVAL PROCESS

We first begin to study the session arrival process, which is
determined by the first event of each session.
A. Poisson modeling

There is no a priori reason to assume any kind of de-
pendency between arrivals, so Poisson is a natural modeling

choice [3]. However, we cannot use a simple homogeneous
hypothesis, as the intensity of the process is deeply affected
by the time of the day, with a 24-hours pattern and orders of
magnitude between the intensity of late night and prime time
hours (Figure 1).

A good modeling candidate is therefore a heterogeneous
Poisson process. We assume that the arrival intensity is given
by some function λ(t) (expressed in number of expected
arrivals per second). We remind that in a heterogeneous
Poisson process, the probability of having k arrivals between
t1 and t2 > t1 is given by:

P (k, t1, t2) = P(k, λt2t1), with

{
λt2t1 =

∫ t2
t1
λ(t)dt,

P(k, λ) = λk

k! e
−λ.

(1)

So if the function λ(t) is known, is is easy to produce
artificial traces that will look just as the real ones. However,
in practice, the actual λ(t) is hidden and difficult to estimate.
B. Low intensity variation

As a workaround, we split the timeline into intervals, and
we assume the intensity variation is sufficiently low to be
considered constant in each interval. In more details, we
consider a time partition I. For any I ∈ I, if |I| denotes
the duration of I and r(I) the number of arrivals observed
during I , we assume that for t ∈ I ,

λ(t) ≈ λI :=
r(I)

|I|
. (2)

The choice of a good partition remains tricky: if the duration
of an interval is too small, the estimate will be too noisy to be
useful. On the other hand, the constant assumption is likely not
to hold for large intervals. Based on our traces, we found that
partitioning the timeline into plain hours was a good trade-off.

A few remarks here:
• Our framework allows to choose intervals of heterogeneous

durations. Indeed, using a partition with heterogeneous
interval duration depending on the time of the day gives
better results, but for the sake of simplicity, we only present
the homogeneous interval case.

• Assuming that arrival intensity is roughly constant in a given
interval is reasonable for on-demand content (as it is the
case here). It would probably not be valid for monitoring
live streaming channels, where scheduled events can induce
highly localized bursts of arrivals.

C. Noisy pattern modeling
The main drawback of using plain Equation (2) is that it

produces a lot of parameters (2880 for the 120 days trace used
in this paper). Of course, this allows to produce an artificial
trace that looks exactly like the original one, but it makes it
difficult to generate a realistic trace with other characteristics.

In order to reduce the set of parameters, we propose to use
a noisy daily pattern: we consider the set Ih of a given plain
hour [h, h+ 1] through days. For I ∈ Ih, we use

λI =
G(µh, σh)

|I|
, (3)

where G(µh, σh) is a random truncated normal variable with
the same mean µh and standard deviation σh.

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of requests per interval

P
ro

ba
bi

lit
y

From traces

Distribution based on λI = r(I)
|I |

Distribution based on λI = G(µh,σh)
|I |

Fig. 2. Number of request per five minutes interval (dataset and models)

Using (3), one can simulate arrivals for any arbitrary period,
or change the daily pattern as needed. However, this simplifi-
cation erases any correlation between hours. A more elaborate
modeling would consist in measuring these correlations and
reproducing them by combining multiple random variable
(e.g. daily and hourly intensities values). Nevertheless, we
found out that the gain in accuracy is not worth the increased
complexity of the model, and that keeping a sparse model
with a “low” number of parameters is justified by the fact that
correlation between adjacent hours seems to be small.

In order to validate our approach, we study the number of
arrivals observed over a five minutes interval (which can be
valuable for dimensioning purposes). Figure 2 displays the
distribution: observed for the real trace; obtained using (2);
obtained using (3).

The distribution based on (2) fits the observed data pretty
well. Equation (3) also manages to stay quite close to the
real trace, providing a good trade-off between accuracy and
sparsity.

D. Temporal dependency

For completeness, we also study the relationships between
sessions of a given user. For that purpose, we extract what
we call intersession duration, which is the time between the
last video request of one session and the first video request
of the next session from the same user. Figure 3 shows the
distribution of the intersession durations. While there is a lot
of short intersessions (the heavy users, which frequently watch
UGC, tend to have short intersession durations), local peaks
appear at regular intervals, which roughly correspond to one
day (1 day = 1440 minutes). This indicates that some users
have the habit of viewing UGC content at a roughly fixed time
of the day (e.g. after lunch or work). This temporal correlation
may seem contradictory with the Poisson approximation we
made, but it is known that the superposition of independent
users tends towards a Poisson process when the number of
users is large enough, even if each user generates events that
are loosely time-correlated [4], [5].

IV. SESSION MODELING

We now study user behavior within a session.

60 1440 2880 4320 5760 7200 8000
0

0.5

1

1.5

2

2.5

3
x 10

−3

Intersession duration (minutes)

P
ro

ba
bi

lit
y

Fig. 3. Intersession duration

A. Session duration
We first focus on the session duration, which is an unknown

quantity in the traces that we need to infer. Simply using the
difference between the time of the first event and the time
of the next event would not be very precise, as a lot of idle
time can occur between two sessions (cf Figure 3). Hence, we
prefer to estimate the session duration using the average time
between two events in the session, assuming here that events
are roughly regularly spaced in average. For a session S with
n events (n > 1), this gives a session duration

DS =
(TSn − TS1)× n

n− 1
, (4)

where TSi denotes the timestamp of the ith event in S.
Note that if S′ is the session that follows S (for one given

user), DS is always smaller than TS′
1
− TS1

, so the duration
estimate ensures that one session will not overlap with the next
one. This is a direct consequence of using a fixed threshold
for delimiting sessions.

Unfortunately, we cannot use (4) for single-event sessions,
which represents 34% of the sessions. We tried to infer a
duration based on the number of downloaded bytes, but the
results were not reliable enough.

Figure 4 displays the complementary cumulative distribu-
tion function of the session duration obtained from (4). One
observes the following properties:
• many sessions are short and last only a few minutes; the

median duration is about 7 minutes;
• a large minority of the sessions are of intermediate length

(25% of the sessions last more than half an hour, and 13%
more than one hour);

• there is a non negligible proportion of lengthy sessions
(3.3% last more than two hours, 1% more than 3.5 hours).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Session duration (minutes)

C
C

D
F

Fig. 4. Session duration derived from 60-minutes intersession threshold

B. A Markovian model for user behavior
For modeling the sequence of events that occur within a ses-

sion, we propose to use a Markovian approach: to each session
S of length n, we associate the sequence (E(Si))1≤i≤n, where
E(Si) ∈ {C, J} denotes the type (change or jump) of the ith

event in S. Then, for any sequence (Ej)1≤j≤k ∈ {C, J}k
of (arbitrary) length k, that is a prefix of at least one session
sequence, we compute over all sessions that include that prefix
the probability of the next event in this session: change, jump,
or none (which indicates the end of the session).

The corresponding Markov chain describes as precisely
as possible the observed sequences of events, and could be
used to generate artificial sequences. The main issue with this
naive approach is its size, which can be up to 2nmax−1 states
(nmax standing for the maximal sequence size). However, we
found that the Markov chain was highly susceptible to state
reduction, with a reasonable impact with respect to accuracy.
After reduction, we propose the Markov chain described in
Figure 5, which has only five-states (plus one implicit end-
of-session state), and differs from the original one from less
than 1% (difference between sequence distributions). In more
details, the Markov modeling gives us the following insight:
• after the first event, the three possible outcomes (change,

jump, or end session) are roughly equiprobable.
• The states called C1 and C2+ correspond to a C event. C1

can loosely be seen as this is the first change event after
the first event, while C2+ roughly corresponds to at least
one change event has been made before, in addition of the
(likely) first event. However, the matching between states
and proposed interpretation is not exact, as the Markov
chain allows to reach C2+ without passing by C1, and
C1 from C2+. That being said, one can observe that while
the transition from start to C1 is 32%, it increases to 51%
from C1 to C2+, and then 65% from C2+ to itself. The
interpretation is that you are more likely to change the
video you are watching if you already did it before (but
after more than two consecutive changes, that increase is
not noticeable).

• The states called J1 and J2+ corresponds to a J event. J1
is (exactly) the first jump observed on a given video, while
J2+ gathers the subsequent jumps. Like for the change
states, one can observe that the probability of jumping
increases if you already have jumped before: the probability
of the first jump within a given video is between 20% and
34% (depending on the departure state), but it increase to
51% for the second jump and 78% afterwards.

V. VIDEO POPULARITY

Until now, we have not considered the popularity of the
requested videos. Hence, this section examines the popularity
distribution, from both a global and temporal point of view.

Based on the information available in our dataset, we may
think of several ways for computing the popularity of one
given video, like for instance:
• event-based popularity: all events regarding one video are

used (change, but also jump events);

First requeststart

J1

C1

C2+ J2+

0.32

0.3
4

0.5
1

0.
2

0.65
0.25

0.12

0.3

0.51

0.06

0.12

0.78

Fig. 5. Markov chain describing user behavior within a session

• session-based popularity: one uses the number of sessions
where one video was requested. This prevents from counting
jumps, but also multiple requests within the same session
even if the user requested another video in-between;

• user-based popularity: for each video, we consider the set
of users that have requested that video at least once in the
dataset. This allows to even fan users that may request one
video over multiple sessions.
Note that if ne(v), ns(v) and nu(v) denote the number of

events, sessions and users recorded for video v, one have
ne(v) ≥ ns(v) ≥ nu(v). (5)

In the following, we focus mainly on the session-based
popularity.

A. Global popularity

The dataset contains about 440,000 distinct requested
videos. Figure 6 displays a log-log view of the number
of sessions and users recorded for each video, sorted by
decreasing number of sessions. One can observe a heavy tail:
while the average number of sessions per video is 1.29, the
most popular video is involved in 2,381 sessions, and 338
videos belong to more than 100 sessions. On the other hand,
a large majority of the videos (about 300,000) are requested
only in a single session. User-based popularity looks pretty
much like the session-based one up to some scaling factor.
That factor remains reasonably steady with the rank.

It is interesting that the observed video distribution looks
fully heavy tailed: while power-law like distributions are
frequent in UGC, the tail is often reduced with an exponential
cutoff (see for instance [6]; the same kind of result for large-
scale VoD system was also observed in [7]).

This difference could come from the way the dataset was
obtained (crawling the website in [6], or probing HTTP
requests here). The website may make videos that are not
popular hard to crawl. Alternatively, it is possible that we
failed to identify the same video under different names in our
dataset. The distinct distributions could also be derived from
distinct user habits in both experiments (in [6] and reference
within, an explanation based on behavior was proposed for the
exponential tail).

B. Temporal patterns

The global video distribution does not detail how requests
are distributed through the dataset. A video cannot be re-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Video rank

N
um

be
r

of
 u

se
rs

 o
r

se
ss

io
ns

Session−based
User−based

Fig. 6. Videos ranking over video session frequency

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

Video Rank

N
um

be
r

of
 d

ay
s

w
ith

 a
t l

ea
st

 o
ne

 s
es

si
on

Long span pattern
Other patterns

Fig. 7. Number of active days (with at least one session)

quested until it has been uploaded, and it is expected that
even popular video will not be requested forever.

We propose to investigate how the popularity of videos
evolves with time. As the popularity evolution of very rarely
requested videos is trivial, we limit ourselves to the first 10,000
most popular videos.

Figure 7 shows this number for each video, the number of
active days where at least one session contained that video,
as a function of the video rank. First, an upper limit function
appears: this limit is indeed driven by the number of sessions,
which is an upper bound for the number of active days. Then,
we can use this figure to split videos into two categories:
• Some videos are of the same order of magnitude than

the upper limit, which means that the average number of
sessions per day is low but covers a lot of days. We say
these videos admits a long span pattern. We classify as long
span the videos with a number of days greater than half
the upper limit (the constant can be adjusted), and observe
7106 of them among the 10000 most popular. For instance,
Figure 8a displays a typical popular long span pattern: the
number of sessions per day is noisy, but relatively steady.

• The other videos exhibit some temporal concentration:
– some can be highly, but shortly popular (like a video

promoted for a shot duration on the front page of a
popular site). We call that a bursty pattern. Figure 8b
displays a typical bursty video;

– others may have been uploaded and/or removed during
the dataset, resulting in a shorter range than expected. We
call that type average span pattern. Figure 8c displays a
typical average span video.

We made the distinction between bursty and average span

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

Video rank

C
um

ul
at

ed
 p

op
ul

at
io

n

Long span, steady popularity
Bursty popularity
Average span, steady popularity

Fig. 9. Cumulated population for each pattern

patterns by monitoring the ratio of the active days where the
activity was greater than 10% of the maximal activity. This
allows to clearly separate the two kinds of patterns, into 1468
bursty patterns and 1426 average span patterns.

Still, it is possible that long span and average span patterns
belong to the same family, separated by the finite duration
of the dataset. A longer dataset is needed for answering that
question, which we leave for future work. We assume the two
patterns are distinct, but are aware that the distinction may be
artificial.

At last, we should note that there is a correlation between
ranking and patterns. Figure 9 shows the cumulated population
for each pattern. In particular, one should note that the bursty
pattern is typically found among the most popular videos: it
represents roughly one half of the 2000 most popular videos,
while less popular videos are mostly long or average span
ones. This correlation between pattern and popularity should
be taken into account if one plans to design a request generator
that aims at mimicking real-life requests.
C. Correlations with previous modeling aspects

If one wants to jointly use the models presented in this
paper, it is important to consider all possible correlations that
may exist. For instance, is the Markov chain, or the popularity
pattern, impacted by the time of the day? Is the Markov
chain impacted by the popularity pattern? We investigated the
question, and found some small correlations here and there,
but in the end, most correlation can be neglected in a first
approximation (except for the pattern/ranking correlation we
just saw).

VI. RELATED WORK

The vast majority of the literature investigating UGC sys-
tems is dedicated to YouTube due to its popularity and lifes-
pan. To our knowledge, this paper reports the first extensive
study that is relative to DailyMotion.

Our approach to finding session durations is similar to that
of Gill et al. [8] but we end up in choosing a 60 min threshold
rather than a 40 min (for 2008 traces of YouTube). Also, [8]
used a simple ON/OFF model for users within a session, while
we crafted a more detailed Markov model. Another approach

0 20 40 60 80 100 120
0

5

10

15

Days

of

 s
es

si
on

s

(a) Long span pattern

0 20 40 60 80 100 120
0

20

40

60

Days

of

 s
es

si
on

s

(b) Bursty pattern

0 20 40 60 80 100 120
0

10

20

Days

of

 s
es

si
on

s

(c) Average span pattern

Fig. 8. Video popularity patterns

was proposed by Abhari and Soraya: they investigated the
possibility of generating UGC workload that corresponds to
statistical user behavior [9] inferred from website crawling.
Then, the simulated user simply randomly chooses video files
to view based on their popularity, until the expected session
time has passed. By contrast, our approach is based on actual
user behavior, captured by passive network measurements, and
is able to capture fine-grained metrics such as jump actions and
early video file change. This kind of low level user behavior
was also investigated for the case of YouTube with a short
timed 35h [10], but only the expected number of jumps per
video or the expected time before viewing abort were reported.
Video popularity was mostly studied by actively crawling
a UGC site for an extended period of time (e.g. [9], [11]
for Youtube). Our findings are roughly similar to what other
observed for YouTube, although we use passive monitoring to
gather data.

VII. CONCLUSION

In this paper, we presented an analysis of a four months
DailyMotion dataset based on monitoring video requests from
15,000 distinct users. The analysis showed that the requests
can be understood as the combination of three elementary
models: session arrivals that obey a heterogeneous Poisson
process; session behaviors that follow a Markov chain; video
popularity that follows a heavy-tailed distribution, with strong
temporal correlations, especially for popular videos (bursty
patterns).

The existence of these models open the way for a versatile
modular request generator that can be used for anticipating
and testing new solutions, and in particular for benchmark-
ing prospective scenarios (growth prevision, anticipation of
change in user behaviors,. . .). Such a request generator can
be decomposed into the following modules:
• user arrival generator, which tells when new sessions start,
• session builder, which describes the events within a session

(number of videos, jumps) with duration aspects,
• video selector, which decides which videos are selected,

taking into account the popularity in time.
Each module can use either data from real traces to replay

them, or produce emulated data by using the models defined
in our paper. Combining real datasets and artificial ones is thus
possible. Our dataset indicates that there is no strong corre-
lation between the three aspects involved. This independence,
which we hence assume for the moment, should simplify a lot
the implementation of the full trace emulator, and facilitate the
interleaving of real and artificial inputs.

For the user arrival generator, (2) or (3) allows to scale the
intensities in order to artificially increase the number of users.

Note that it is easy to use other daily patterns or intensities
distribution for generating sessions in order to get regional
profile (our pattern might be biased by the profile of monitored
users), or to take into account seasonal variations or previsions
of long term evolution.

The session builder can use real input by replaying one ses-
sion from the dataset, or use the Markov chain approach. For
the later, we did not present here the inter-event distribution,
but such a distribution must of course be embedded in the
builder (cf e.g. [6]). Changes in the user behavior, due e.g. to
automatic advertisement videos or high speed network leading
to a higher buffering rate and lower jump probabilities) can be
embedded in the Markov chain. We also expect that Markov
chains can be build to describe the user behaviour in other
type of systems, such as Netflix.

The video selector can be designed to handle dynamic
popularity, by planning the introduction of new videos in the
system. For each new video, the selector should “predict” its
total popularity and its pattern (which may be correlated to its
popularity). Using these popularities modulated by their pat-
tern, the selector should be able to reproduce both the global
popularity and the temporal patterns. Arbitrary popularities
and pattern distributions can obviously be used.

REFERENCES

[1] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“Youtube everywhere: impact of device and infrastructure synergies on
user experience,” in IMC ’11, 2011, pp. 345–360.

[2] Dailymotion, http://www.dailymotion.com.
[3] C. Park, H. Shen, J. S. Marron, F. Hernandez-Campos, and D. Veitch,

“Capturing the elusive poissonity in web traffic,” in 14th IEEE MAS-
COTS Conference, 2006, pp. 189–196.

[4] B. Grigelionis, “On the convergence of sums of random step processes
to a poisson process,” Theory of Probability and its Applications, vol. 8,
no. 2, pp. 177–182, 1963.

[5] O. Kallenberg, Foundations of modern probability, ser. Probability and
its applications. Springer, 2002.

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing
the video popularity characteristics of large-scale user generated content
systems,” IEEE/ACM Trans. Netw., vol. 17, pp. 1357–1370, 2009.

[7] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding user
behavior in large-scale video-on-demand systems,” SIGOPS Oper. Syst.
Rev., vol. 40, pp. 333–344, April 2006.

[8] P. Gill, M. F. Arlitt, Z. Li, and A. Mahanti, “Characterizing user
sessions on youtube,” in Proceedings of the SPIE/ACM Conference on
Multimedia Computing and Networking (MMCN), Santa Clara, USA,
2008.

[9] A. Abhari and M. Soraya, “Workload generation for youtube,” Multi-
media Tools Appl., vol. 46, no. 1, pp. 91–118, 2010.

[10] L. Plissonneau, T. En-Najjary, and G. Urvoy-Keller, “Revisiting web
traffic from a dsl provider perspective: the case of youtube,” in Proc. of
the 19th ITC Specialist Seminar, 2008.

[11] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube
network traffic at a campus network - measurements, models, and
implications,” Computer Networks, vol. 53, no. 4, pp. 501–514, 2009.

[12] Builtwith.com, “Dailymotion video website categories,” http://trends.
builtwith.com/media/DailyMotion-Video.

http://www.dailymotion.com
http://trends.builtwith.com/media/DailyMotion-Video
http://trends.builtwith.com/media/DailyMotion-Video

	Introduction
	Parsing the traces
	Dataset description
	Event classification
	Extracting user sessions

	Session arrival process
	Poisson modeling
	Low intensity variation
	Noisy pattern modeling
	Temporal dependency

	Session modeling
	Session duration
	A Markovian model for user behavior

	Video popularity
	Global popularity
	Temporal patterns
	Correlations with previous modeling aspects

	Related work
	Conclusion
	References

