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ABSTRACT

We evaluate the algorithm proposed in [1], which estimates the
residual bandwidth on each hop of a path using a parametric Kelly
network model. The evaluation is driven by simulation based on
real network traces over a short path. Correction factors are pro-
posed and evaluated to correct for deviations from model assump-
tions.

1. INTRODUCTION

In [1] we describe how the techniques known as active Internet
probing and network tomography can be viewed as inverse prob-
lems in queuing theory. Among the examples given was a FIFO
Kelly network model of an Internet path, using a maximum likeli-
hood estimator to infer available bandwidth on each hop along the
path from the probe delay distribution, as exposed in section 2.

Whilst the Kelly network model is parametric and tractable, it
makes the following strong assumptions that may not hold in real
networks: 1 Routers are considered as FIFO queues; 2 Service
times are independent across hops; 3 Packets sizes are exponen-
tially distributed; 4 Cross traffic packets and probes have the same
size distribution; 5 Cross traffic is Poisson. This article aims at
verifying that in practice, the assumptions listed are either (nearly)
verified, or can be dealt with. Section 3 provides numerical results
and useful corrections to the base estimator, inspired by simulation
based on real traces. The results of assumption 4 are similar to
those of assumption 3, and are omitted.

We are grateful to Sprint ATL and Sridhar Machiraju for the ac-
cess to the full router experiments, scripts and ancillary data.

2. THE MODEL AND EM ALGORITHM

We consider a 2 hop path in a Kelly network. All packets have
exponential service time with mean 1, cross-traffic packets on server
4 (resp. probes) are sent according to a Poisson process of intensity
i (resp. x) and the service rate of server ¢ is ;.

In such a network, the end-to-end delay d for a probe is the
sum of two independent exponential random variables of param-
etery{ = p1 — A1 — x and v5 = g2 — A2 — x, which has density

G172 (d) = % e — ei’yid>, d>0.

The likelihood function for n independent probe delays d =
(di,...,dn) 18 fyy,42(d) = [T/ @v1,v2(ds). One way to com-
pute the maximum likelihood estimator, which is the value (31, 72)
of (71, 2) that maximizes the likelihood function f-, ~,(d), is to
use the Expectation - Maximization (E-M) algorithm, which pro-
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vides a sequence of estimates converging to the maximum likeli-
hood estimator. In our setting the algorithm reads:

E-M Algorithm: For arbitrary initial (’yg (0)) do the follow-

ing for each positive integer k: compute % +1) and éKH) s0
1 Z (" =i 1
ry{k+1) +x (k) (k) 1 ,y(k) ﬂk)
1 _ 1 - l i #
’y£k+1) +x 'Y;k) N ’}ék) n — e(’ng)f'Yik))d’l _1 .

The same approach extends easily to any number of stations. The
proof, details about the model and the algorithm, and the conver-
gence, bias and variance of estimators, can be found in [1].

3. VALIDATION

3.1 Traces and Methodology

We use a subset of the traces described in [3] and [2]. All packets
traversing a Sprint gateway IP router which leave it via a particu-
lar OC-3 interface were monitored, for 9 different 5 minute time
intervals.

The traces are used to feed a simulator modeling a single stage
FIFO queue of desired capacity. To determine which assumptions
are most crucial, we used the “semi-experimental method”, where
all theoretical assumptions are enforced, except the ones we specif-
ically want to study.

3.2 Challenge: Routers as FIFO queues
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Figure 1: Comparison of true and model delays



[ Input Traces

PI-BBI + PI-BB2
QI-BBI + QI-BB2

[ Output [ v [ 7 |7 corrected |
0OC-3 42,5 | 34.6 42.0
0OC-3 89.5 | 55.0 77.7

Table 1: Impact of two-stage correction (1200 probes).

In [3] two models are proposed for router behavior: (i) the clas-
sical FIFO model; (ii) a 2 stage model where packets have first to
wait a time A(S) = a + bS depending on their size S, before
joining a FIFO queue (which models the output buffer).

Figure 1 shows the true versus surrogate delays for packets from
the input interface ‘BB1-in’. The one stage model histogram has a
very similar shape to the true one, but is visibly offset from it by
50us. The two stage model is nearly perfect.

Response : Estimation correction for two stage model
In this case the experiment corresponds to a M/M/1 queue, except
that the router is replaced by a two stage model which represents a
simplified but accurate ground truth. As seen in Table 1, the errors
in a Kelly based E-M estimate are large, however a simple correc-
tion based on replacing ¥ = E[S]/E[D] by ¥ = E[S]/(E[D] —
E[A(S)]) largely succeeds in correcting it.

3.3 Challenge: Size Independence

Contrary to a Kelly network, where service times at different sta-
tions are independent, packets have a constant packet size and so
correlated service times on different hops of a real network. As
ground truth we set probe sizes to be independent at each hop, and
compare against the real network case. Three scenarios are consid-
ered: 1: input traces (Q1) and (P1) on stations 1 and 2 respectively,
2 : input traces (Q1, P2-BB2) and (P1, P3-BB1), 3 : input traces
(Q4) and (P4). Table 2 shows that the impact can be quite large.

Response: Random Probe Split

We emulate a probe which is of exponential size and different at
each hop by sending a back-to-back probe pair, the first of which
will drop out after hop 1. The correction is quite effective.

3.4 Challenge: Exponential Sizes

We now investigate the impact of service times which are not ex-
ponentially distributed, by using an experiment where all aspects of
the traffic are replaced by model surrogates except for the original
(non-exponential) cross traffic packet sizes.

Two examples of real traffic are given in Table 3. The errors are
small, however the coefficient of variation of packet sizes is close 1.
To create a more challenging test, we modify (at constant mean) the
packet size distribution in 2 other experiments : (i) constant packet
sizes, (ii) bimodal distribution on (40, 3000) bytes with probability
(0.785,0.215). The E-M estimates are now significantly different.

[ [ load (v,72) [ (1,7%2) [ (31,72) corr |
1| (0.42,0.70) (45.5,87.5) | (33.9,166,4) | (42.7,88.2)
2 | (0.77,0.96) (54,337 (5.5,34.7) (6.4,35.8)
3| (0.36,0.38) (92.7 ,96) (50.6,748.0) | (94.4,94.4)

Table 2: Impact of Size Independence (120 000 probes).

| Input Traces | &« [ 7 [ 7 [7corrected ]
P1-BB1, P1-BB2 1 425 | 42.1 38.7
QI1-BB1, Q1-BB2 1 89.5 | 85.7 86.5
P1 - Constant size —0.5 || 42.5 | 70.3 44.9
P1 - Bimodal distrib | 0.215 || 42.5 | 25.5 459

Table 3: Impact of Exponential Size assumption (1200 probes).

[ InputTraces [ Output [ v [ 5 [7 corrected |

P1-BB1, P1-BB2 OC-3 || 425 | 33.8 44.6
Q1-BB1,QI-BB2 | OC-3 || 89.5 | 87.8 100.1
Q4-BB1 +Q4-BB2 | OC-3 || 95.0 | 92.3 98.4

Table 4: Impact of Poisson assumption (1200 probes).

| Scenario H (Y1,72) [ (F1,72) [ (1, 72) corrected ‘
QIPI | (45.5,87.5) | (27.8,147.9) | (43.6,97.3)
Q4—P4 || (92.7,96) | (95.0,95.0) | (10L.5,101.5)

Table 5: Poisson assumption: 2 hops (120 000 probes).

Response: Variance correction factor

We can relax the exponential packet size assumption in our M/M/1
model by considering the M/G/1 queue, where the service times
are i.i.d. with general distribution. Careful derivation using the
Pollaczek—Khinchin formula leads to a correction factor Fs =
1+ rp, where r is defined by E [S*] = 2(1 + k)E [S]%.

3.5 Challenge: Poisson Arrivals

In this section, the only non-ideal components left are the origi-
nal non-Poisson arrival processes of the cross traffic packet streams.

Response: Poisson batch correction
The correction in this case is based on the idea that packets arrive
at the input in batches of back to back packets, due to the queuing
at the upstream hop. If we know the intensity (3 of batches and
the random number N of packets that arrives in the same time in a
batch, then the workload of such a process is the same as that in a
M/G/1 queue with arrival rate 8 and service times S = ,fV: 10,
and the correction factor is as explained in section 3.4.

The key point is that from the first and second moments Ctm and

Ct@) (resp. E(7) and E(7?)) of the workload arriving in an interval
of length ¢ (resp. the packet inter-arrival time 7), one can estimate
B and E(S?), and hence compute the correction factor 1 + sip.
As seen in Table 4, the correction succeeds in reducing the biggest
error, but increased others. The traffic here is close to Poisson so
the correction factors are small.

Using the ladder epoch representation, it is also possible to “cor-
rect” end-to-end delays for a several hops path, such that they fit
the delays from a corresponding Kelly path. We cannot describe
this here, but some results are presented in Table 5.

4. CONCLUSION

This paper shows that it is possible to apply successfully correc-
tion techniques to cover unverified assumptions, and finally esti-
mates the real available bandwidth on each link of the 2 hops path.
These results still needs to be extended to longer paths, and we also
need to explain whether the needed statistics are stable over time.
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