
Queueing Syst (2010) 66: 369–412
DOI 10.1007/s11134-010-9195-9

Statistical estimation of delays in a multicast tree using
accelerated EM

Furcy Pin · Darryl Veitch · Bruno Kauffmann

Received: 11 December 2009 / Revised: 8 September 2010 / Published online: 28 October 2010
© Springer Science+Business Media, LLC 2010

Abstract Tomography is one of the most promising techniques today to provide spa-
tially localized information about internal network performance in a robust and scal-
able way. The key idea is to measure performance at the edge of the network, and to
correlate these measurements to infer the internal network performance.

This paper focuses on a specific delay tomographic problem on a multicast diffu-
sion tree, where end-to-end delays are observed at every leaf of the tree, and mean
sojourn times are estimated for every node in the tree. The estimation is performed
using the Maximum Likelihood Estimator (MLE) and the Expectation-Maximization
(EM) algorithm.

Using queuing theory results, we carefully justify the model we use in the case
of rare probing. We then give an explicit EM implementation in the case of i.i.d. ex-
ponential delays for a general tree. As we work with non-discretized delays and a
full MLE, EM is known to be slow. We hence present a very simple but, in our case,
very effective speed-up technique using Principal Component Analysis (PCA). MLE
estimations are provided for a few different trees to evaluate our technique.

F. Pin · B. Kauffmann
Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex, France

F. Pin
e-mail: furcy.pin@ens.fr

B. Kauffmann
e-mail: bruno.kauffmann@gmail.com

D. Veitch (�)
Centre for Ultra-Broadband Information Networks (CUBIN), Department of Electrical and
Electronic Engineering, The University of Melbourne, Parkville, Australia
e-mail: dveitch@unimelb.edu.au

B. Kauffmann
INRIA, 23 Avenue d’Italie, 75013 Paris, France

mailto:furcy.pin@ens.fr
mailto:bruno.kauffmann@gmail.com
mailto:dveitch@unimelb.edu.au

370 Queueing Syst (2010) 66: 369–412

Keywords Network tomography · Multicast trees · Expectation-maximization (EM)
algorithm · Acceleration · Principal Component Analysis (PCA)

Mathematics Subject Classification (2000) 60K25 · 62F30 · 94A99 · 90B22

1 Introduction

The need for comprehensive measurement of the Internet has generated considerable
interest in certain classes of statistical inverse problems. A particularly interesting and
practically relevant measurement paradigm is afforded by end-to-end probing, where
test packets called probes are sent across the network between participating sources
and receivers. In this paradigm the network transports the probes just like any other
packet, and does not cooperate with measurement in any way. The analysis of the
probe data aims to estimate network characteristics such as link capacities and server
loads, to provide path bottleneck localization and characterization, and to remotely
measure traffic characteristics.

The network model underlying end-to-end measurement analysis is typically
queueing network inspired. For example, in network delay tomography, the mea-
sured end-to-end transit times or delays of probes are used to infer the delays in-
curred at nodes internal to the network, which are attributed to queueing in network
elements. However, with the exception of the special case of a single source and re-
ceiver, the statistical models adopted for network elements in the literature are not
actually queueing systems, but are postulated a priori.

The goal of this paper is to study a network inference problem with a firm founda-
tion in queueing networks, thereby contributing simultaneously to network tomogra-
phy, and to the nascent area of inverse problems in queueing. We study a problem in
delay tomography over trees: probes are sent from a single source to multiple destina-
tions over a feedforward network of nodes. We consider multicast trees, where each
node of the tree copies its departing probes over all of its child links. Hence each
probe sent from the root node effectively broadcasts over the entire tree until copies
arrive at each leaf. Timestamps at the root and leaves can be compared, so that each
multicast probe gives rise to a vector of delay values. Multicasting is supported by
today’s Internet protocols and represents an economical way to reach many receivers,
and most works on delay tomography exploit it.

A typical delay model used in tomography over multicast trees is given as follows.
To each node there is a random process controlling the delays imparted to packets.
The node processes1 are mutually independent (spatial independence) and are each
individually i.i.d. (temporal independence). Thus the end-to-end delay of each probe
at a given leaf is the sum of independent random variables, with (in general) different
distributions, corresponding to its ancestor nodes in the tree, as shown in the example
of Fig. 1. The normal or cross-traffic packets in the network are taken to be respon-
sible for the build up of node queues and hence the delays which are experienced by
probes, however they do not enter explicitly in the description. Cross traffic is not

1Note that usually the processes are associated to links, not nodes, but as these are in 1–1 correspondence
this is not essential.

Queueing Syst (2010) 66: 369–412 371

Fig. 1 Example of a delay tomography problem over a tree: to estimate the means of the six internal
random variables l0, l1, l2, l3, l4 and l5, just by observing samples of the three end-to-end delay variables
d1, d2 and d3, where d1 = l0 + l1 + l3, d2 = l0 + l1 + l4, and d3 = l0 + l2 + l5

assumed to be multicast, indeed the multicast tree is a construct of the probing exper-
iment, whereas cross traffic traverses the full network and simply intersects the tree.
Finally, it is assumed that probes are rare enough so as not to significantly perturb the
normal traffic over the tree.

In this paper we study the tomography problem as above in the case where the
node delay variables are each exponentially distributed. We formulate a Maximum
Likelihood Estimation (MLE) problem for their parameters, implemented using the
Expectation Maximization (EM) algorithm. Our contributions are as follows. First
we show how the tomography model described above corresponds to the delays ex-
perienced by probes in an appropriately defined queueing network also carrying cross
traffic, thereby justifying the assumptions of a delay tomography problem over a tree
in terms of queueing networks for the first time. Secondly, as a delay tomography
problem, it is novel in that (see below for details) we do not focus on non-parametric
estimation or alternatively with general but discretized delay, but instead work with
the full MLE of a continuous density. In particular this involves dealing, both theoret-
ically and practically, with the non-trivial combinatorics inherent in the conditional
expectations over a general tree topology. We derive explicit solutions for the com-
bined E and M steps. Finally, we provide a technique for convergence acceleration of
the EM algorithm, which is notoriously slow, allowing much larger trees to be con-
sidered than would otherwise be the case. The technique has some novel features and
may be of broader interest.

Our work is the first to propose a delay tomography model based on exponential
delays (see however [13]). Given the accepted queueing origins of network delays, it
is surprising that such a canonical choice has escaped attention until now. The chief
reason for this omission, as argued for example in [16], is that there is no generally
accepted model for the delays in Internet routers, so that flexibility is essential to
match reality. While this point is well taken, our view is that realism also requires that
node models be consistent with their purported queueing underpinnings, something
which has never been shown previously, even in models which introduce, a priori,
atomic components in an attempt to reproduce queue-like features [13, 18]. Although
the exponential distribution is not considered to be a close fit to packet delays in
the Internet today, is it a natural first choice when making a rigorous connection to
queueing networks.

To give an example of applications, our techniques could be used by service
providers in order to monitor the quality of real-time services. In the case of ADSL

372 Queueing Syst (2010) 66: 369–412

‘triple-play boxes’ providing IP TV services today, service providers own the end-
user equipment, and so can run measurement software as well as operate the back-
bone and access networks. They therefore have the incentive and the ability to use
multicast protocols.

The paper is structured as follows. We begin by discussing prior work in Sect. 2.
Section 3 describes the queueing inverse problem and how it maps to the delay to-
mography problem. Section 4 provides necessary background to the MLE and the
EM algorithm, and Sect. 5 shows how these apply in the present case. Section 6 is a
technical one showing how expressions for the conditional expectations over the tree
which arise can be calculated explicitly. Section 7 exploits these solutions to provide
the MLE for a number of example trees, using our EM acceleration technique, which
itself is described (and further illustrated) in Sect. 8. We conclude and comment on
future work in Sect. 9.

2 Related work

We describe three areas of related work: delay tomography, inverse queueing, and
EM acceleration.

The first delay tomography paper [7] exploited probe multicasting. It used non-
parametric estimators, but only recovered the delay variance at each node rather than
the full delay distribution. The related work [16] extended the approach to the entire
distribution by discretizing delay, effectively introducing a multinomial model for
each node delay, and therefore a large number of parameters. The non-parametric esti-
mators described were based on recursive conditional independence of child subtrees
and deconvolution, and have no direct link to the MLE. In [14] a similar multinomial
delay model was taken, but a pseudo MLE approach was employed. A full MLE was
avoided in order to reduce complexity.

Since multicasting is not always practically feasible, a number of works, including
[4, 18, 19] examined unicast alternatives based on a packet-pair scheme where probes
are sent in as closely spaced pairs so that they will experience similar delays until a
branch point is reached, after which they follow different paths. Here the likelihood is
simpler as probes approximately ‘multicast’ over two paths only, but the packet-pair
assumption introduces additional noise and a much higher probing overhead. In [12],
hybrid ‘flexicast’ combinations of unicast and multicast probing are explored in order
to tradeoff estimation accuracy against computational and probing costs.

The use of discretized node delay models make tradeoffs between computational
cost and accuracy difficult. A small number of papers address this, as we do, by
using parametric approaches involving continuous distributions. Using unicast prob-
ing, [18] proposes a mixture model for node delays including Gaussian densities
and an atom representing the minimum propagation delay. A penalized likelihood
was adopted to control the number of Gaussians in the mixture which is maximized
using an associated EM algorithm. More recently, using multicast probing [2] also
employs a mixture model including a single atom, this time combined with multiple
uniform and exponential densities. The analysis is performed in the transform do-
main with sampled characteristic functions and performs an L2 based optimization
using quadratic programming, which scales better than EM to large trees. In [13] a

Queueing Syst (2010) 66: 369–412 373

mixture model, consisting of an atom combined with a continuous density satisfying
certain conditions, is considered for flexicast probing. Based on examples on simple
trees, MLE based approaches are considered but then discarded as intractable in fa-
vor of moment based methods using least squares. The study is preliminary but the
observations on identifiability important.

In terms of model our work is most closely related to [13] as it treats as a special
case the exponential multicast problem as we do, though only over the simplest (two
receiver) tree. Otherwise, our work is related to [2] since exponential delays are al-
lowed, and multicasting is used. Our work is less general (and realistic) in insisting
on exponential delays alone, but is more realistic in that it is consistent with an ac-
tual queueing network model. In terms of solution approach our work is again most
closely related to [13] in that an explicit EM solution to the MLE is obtained, but
again only for the simplest tree. Over general trees, our work is perhaps closest to
[19] in that an EM algorithm is used to find the MLE of a parametric problem in-
volving densities, although the MLE is quite different. Another key difference is that
our work does not use distributed methods to evaluate the EM, instead the simplic-
ity of the node model allows closed form solutions for EM to be obtained. We also
accelerate the EM in a new way as described below.

The literature on inverse queueing is small, and we know of no work which deals
with inference of queue parameters based on observations made across a queueing
network which is not a tandem network. In particular we know of no work based on
discrete observations of system time over a tree network. The most closely related
work is [1], which treats a number of inversion problems, including that posed here
in the special case of a tandem queue network. The simpler context allows some more
explicit results to be given. On the other hand here we treat arbitrary trees and provide
an acceleration method for EM which is also of (great) benefit in the tandem case.

It is well known that the convergence of the EM algorithm can be slow, and there is
a considerable literature devoted to speed-up techniques. An element of our technique
involves over-relaxation, that is inflating the jump size recommended by EM. This
idea is not new, for example it figures in [3, 9, 17], and was explored by Lange and
others in the context of EM Gradient Algorithms (see Sect. 4.13, [15]). However,
our jump size update rule, which does not bound the allowed increase at any step,
is extremely aggressive, and qualitatively different to those we have seen elsewhere,
although it shares with [8] the principle that if a candidate step proves too aggressive,
in particular if it leads to a decrease in likelihood, then a safer ‘fallback’ position can
be taken (see also ‘step decrementing’ Sect. 4.14.1, [15]). The other core element
of our technique involves using Principal Component Analysis (PCA) to efficiently
exploit the information contained in prior evaluations of the likelihood, and to help
counter the instability inherent in aggressive updates. This approach was inspired by
recent work in robotics [6] in the quite different context of automated path finding.
We know of no work which uses similar ideas to accelerate EM or related algorithms.

3 A delay tomographic queueing inverse problem

We begin with the model for cross traffic only, and then consider how probes can be
introduced.

374 Queueing Syst (2010) 66: 369–412

Consider an open Kelly [11] network of single server FCFS queueing stations
connected in a tree topology. Routes corresponding to a given customer class can only
move away from the root station (and are not multicast), but are otherwise general,
entering the tree at any station and exiting either that same station, or any other further
down the tree. The arrival process to route (or class) r is Poisson of intensity λr . All
packets have exponential size with mean 1, and the service rate of station j is μj . We
consider only parameter values consistent with a stationary regime.

We first consider the special case of a tandem network of K stations, as it serves
as a building block for what follows. Assume that route r = 0 traverses the network
from root to leaf, so that for each customer in class 0 we can associate an end-to-
end system time, or delay d . We will call such a route a path. Using the well known
product form results for such a system in equilibrium, it is straightforward to show
that the marginal distribution for the number N

j

0 of customers of class 0 in station j ,
1 ≤ j ≤ K , at a given time instant is

P
(
N

j

0 = n
j

0, j = 1, . . . ,K
) =

K∏

j=1

(
λ0

γj

)n
j
0
(

1 − λ0

γj

)
,

where γj = μj −∑
r �=0,j∈r λr is the residual service capacity of station j available to

class 0. By examining the number of customers of class 0 in the system at departure
times and conditioning on d , it can then be shown [1] that d is the sum of K inde-
pendent exponential variables, one per station, where the mean parameter for station
j is just the reciprocal of the residual service capacity γj − λ0. Furthermore, it is
known ([11], Corollary 3.3, p. 62) that the departure processes of the classes exiting
the system at station K are Poisson and mutually independent, and that departures
from any of these prior to some time t are independent of the system state at time t .

Now consider a tree network. The above result for a tandem applies directly to any
path, that is the end-to-end delay of each customer of a path is given by the sum of
independent exponentials. Note however that this does not imply that the delays seen
over different paths are independent. Now the set of stations in any two paths can be
partitioned into three tandem subnetworks: a shared portion S from the root down
to some last shared station A, and two unshared portions U1 and U2 beginning from
children of A, each terminating at a leaf.

The independence properties given above for the tandem network apply to cus-
tomers exiting A. They imply that the arrival processes to each of U1 and U2 are
independent not only of each other, but also of the states of U1 and U2, since the
latter are functions only of the prior departures from S, which as noted above are
independent of the state of S at the departure instant of each probe. Since the service
times of the stations in U1 and U2 are also mutually independent, it follows that the
delays incurred over U1 and U2 are likewise independent both of each other, and of
the delays incurred (by the customers of either path) over S. In summary, delays over
the tandem subnetworks S, U1, and U2 are mutually independent, and inside each of
these, delays experienced by customers of a given class (i.e. path) are given by a sum
of independent exponentials. This argument extends naturally to the entire tree.

We now introduce multicast probe customers into the system, which behave as
follows. The probes arrive as a Poisson process of intensity Λ to the root station.

Queueing Syst (2010) 66: 369–412 375

Once a probe has arrived at a station it is treated exactly like a normal customer, but
upon exiting, copies are instantaneously made which arrive simultaneously at each of
its child stations. Hence each multicast probe traverses all paths (end-to-end routes)
but no other routes.

Clearly the system consisting of cross-traffic classes plus the multicast probe class
over the tree is not a Kelly network. However, as before, the tandem analysis above
applies, showing not only that probe delays over each path are distributed as a sum of
independent exponentials, but also that the probe delays on a given path can be ana-
lyzed as if the cross traffic were absent, provided the appropriate reduced capacities
are used. Furthermore, the above arguments concerning the decoupling of the delays
experienced over the shared portion of paths from those below it continue to hold.
However, the relationship between delays seen by customers of different paths within
the shared or the un-shared portions is now substantially different.

To examine this question we revisit our two path example, but now consider the
customers on each path to belong to the same multicast probe class.

Shared part: there is now only a single probe customer process rather than two. This
can be interpreted as perfect station-by-station dependence of the delay components
from each path, in contrast to the situation for cross traffic where the service times
of customers, for example, were independent.

Unshared part: the arrival processes from A to U1 due to path 1, and A to U2 due to
path 2, remain Poisson, but are now identical rather than independent, resulting in
dependence between the delays of probes (and cross traffic) seen over U1 and U2.

To see why the delays of probes are now dependent on the unshared part, consider
the following simple example without cross traffic, where U1 and U2 each consist
of a single node of capacity μ. In other words, U1 and U2 are M/M/1 queues with
independent service times, fed by the same Poisson Process of intensity Λ. Each
queue has a marginal probability (1 − ρ) := (1 − Λ

μ
) of being empty. Now U1 (resp.

U2) is empty at the arrival time tN of the N th probe packet if and only if the previous
probe had a delay D1 (resp. D2) which is less than the inter-arrival time tN − tN−1.
Assume in contradiction that spatial independence holds between D1 and D2; this
leads to:

P[both queues empty] =
∫ ∞

0
P[D1 ≤ τ,D2 ≤ τ]P[tN − tN−1 = τ]dτ

= 1 − 2ρ + ρ2

2ρ − ρ2
,

which is not equal to (1 − ρ)2 (unless ρ = 1), the result one would obtain if the wait-
ing times were independent. But this is a contradiction, because the assumptions of
independence between D1 and D2, and on the service times, clearly implies indepen-
dence of waiting times. It follows that the delays must in fact be dependent.

Although multicast probes break the strict spatial independence property of path
delays, we expect this dependence to be weak in most cases, since the arrival
processes at U1 and U2 remain independent of the states of U1 and U2 (at arrival
instants), the service times in U1 and U2 remain independent, and furthermore the

376 Queueing Syst (2010) 66: 369–412

cross-traffic arrivals (from paths or other routes) are independent as before. In par-
ticular, if we assume that Λ is small, so that with high probability there is no more
than a single probe in any given station, then the states of U1 and U2 are only slightly
perturbed by probes and are thus approximately independent, and so the delays over
U1 are U2 are likewise close to independent.

It is a general principle of network probing that Λ be kept small, in order to avoid
consuming network bandwidth, perturbing the system to be measured, and to prevent
probes being confused with network attacks. Since Λ is under the control of the
prober, it is quite reasonable to assume it is small. This same rare probing assumption
justifies the assumption of temporal independence in the time series of probe delays
associated to each path, used in the MLE formulation below.

In conclusion, the delays of rare multicast probes sent over a Kelly tree network
of cross traffic closely hew to the assumptions of a spatially and temporally indepen-
dent delay tomography problem over a tree with exponential delays. Namely, per-
station delays experienced by probes obey a simple structure: perfect dependence
over stations on the shared part of the path, and independence between the unshared
parts. Cross traffic appears only through the values of the residual capacity parame-
ters {γj − Λ} to be estimated. Since Λ is known, the residual capacities {γj } relating
to cross traffic only can subsequently be recovered. The actual intensities {λr} and the
server rates {μj } are not identifiable, however they can be recovered in principle by
other means, for example using a prior measurement phase with fixed packet sizes,
as discussed in the tandem case in [1].2

4 The EM algorithm

In this section we provide the necessary background to maximum likelihood estima-
tion.

4.1 The maximum likelihood estimator

We observe a set X = (x(1), . . . , x(N)) of random vectors which are assumed
i.i.d. with a multivariate probability density function (p.d.f.) pα , where α =
(α1, . . . , αK) is some unknown parameter vector we want to estimate.

For a given set of observed data X = (x(1), . . . , x(N)), the function LX(θ) =∏N
i=1 pθ(x(i)) of the parameter vector θ is called the likelihood function. The maxi-

mum likelihood estimator (MLE) is then defined to be

α̂ = argmax
θ

LX(θ) = argmax
θ

logLX(θ) (1)

and can be found by solving the likelihood equation:

∂LX(θ)

∂θ
= 0, or equivalently

∂ logLX(θ)

∂θ
= 0, (2)

logL(θ) being called the log-likelihood of θ .

2An interesting discussion, in the context of a priori node models, of how the addition of atoms can assist
in identifiability is given in [18].

Queueing Syst (2010) 66: 369–412 377

The MLE is a very popular estimator, which has been shown to be biased but
consistent and asymptotically efficient when N tends towards infinity, and is known
to exist under suitable regularity conditions [5]. In some cases where the data is in-
complete it can be quite hard to calculate, and for this reason the EM algorithm was
introduced.

4.2 The EM algorithm

Sometimes the observed data is not the complete data itself, but only some sub-
set, or a manifestation of this data. That is, instead of observing a set of data
X = (x(1), . . . , x(N)), we just observe their images under some measurable func-
tion f , i.e. we observe Y = (y(1), . . . , y(N)) with y(i) = f (x(i)) for i ∈ {1, . . . ,N},
which we write with a slight abuse of notation Y = f (X). The likelihood function for
this data is then: LY (θ) = ∏N

i=1 qθ (y(i)), where qθ is the p.d.f. of the random variable
f (x) with x having the p.d.f. pθ , and can be expressed as qθ (y) = ∫

f −1(y)
pθ (x) dx.

This likelihood can be tricky to compute, and it can be even trickier to solve the as-
sociated likelihood equation. In such a case, an alternative is to use the EM algorithm,
which is based on the following iterative formula:

α̂(k+1) = argmax
θ

Q
(
θ, α̂(k)

)
(3)

where Q(θ, α̂(k)) := Eα̂(k) (logLX(θ)|Y) is the conditional expectation of the log-
likelihood of the parameter vector θ with respect to the unknown data X, under the
assumption that x follows the p.d.f. pα̂(k) and knowing that f (X) = Y .

Using the independence of observations and the linearity of expectation, this can
be rewritten:

α̂(k+1) = argmax
θ

N∑

i=1

Eα̂(k)

(
logpθ(x)|f (x) = y(i)

)
. (4)

Usually, this iteration is computed in two steps, the E-step where the conditional
expectation is computed, and the M-step where it is maximized over θ . Starting from
an initial value α̂(0), the EM algorithm is then the following algorithm:

Algorithm 1 EM algorithm

1: procedure EM(α̂(0), Y)
2: k ← 0;
3: loop
4: compute Q(θ, α̂(k)) := Eα̂(k) (logLX(θ)|f (X) = Y) for all θ ; � E-step
5: compute α̂(k+1) := argmaxθ Q(θ, α̂(k)); � M-step
6: if α̂(k+1) = α̂(k) then return α̂(k); else k ← k + 1;
7: end loop
8: end procedure

378 Queueing Syst (2010) 66: 369–412

In other words, we compute the recursive sequence (α̂(k))k∈N, defined by α̂(0) and
(4) for all k in N. The starting point α̂(0) is an arbitrary point in the parameter space,
or may be chosen using some simple ‘first guess’ estimator. Of course, in practice the
stopping criterion “α̂(k+1) = α̂(k)” will typically never be reached and is replaced by
a more practical one.

The EM algorithm has the following interesting properties:

Property 4.1 For all α̂((k)), LY (α̂(k+1)) ≥ LY (α̂(k)), which is a direct consequence
of the following lemma:

Lemma 4.1 For all θ1 and θ2, logLY (θ2) − logLY (θ1) ≥ Q(θ2, θ1) − Q(θ1, θ1).

Property 4.2 Any fixed point of the algorithm in the interior of Θ is a solution of the
likelihood equation.

Property 4.1 states that the likelihood of α̂(k) increases with each iteration of the
algorithm. When the likelihood has an upper bound, which is almost always the case
in practice, the property also shows that the sequence (LY (α̂(k)))k∈N converges. Prop-
erty 4.2 shows that if the sequence (α̂(k)) converges, it converges towards a solution
of the likelihood equation.

Unfortunately, even if the sequence (LY (α̂(k))) converges, it might be possible in
some cases that the sequence (α̂(k)) does not converge. We refer to Wu [20] and
McLachlan and Krishnan [15] for sufficient conditions of convergence of (α̂(k)),
proofs of the properties and more details about EM.

5 EM for exponential tomography

In this section we apply the EM algorithm to our delay tomographic problem.
Consider a tree T , and call T the set of its nodes and V ⊂ T the set of its leaves.

We introduce the fixed parameter vector α = (αj)j∈T and the variable parameter

vectors α̂(k) = (α̂
(k)
j)j∈T . The complete data random vector x of the previous section

will correspond to the vector l ∈ R
T of the delays of each node, which are supposed

independent and exponentially distributed with expected value α, and the observed
data vector y will correspond to d ∈ R

V , the vector of all end-to-end delays from
the root to each leaf. We will have d = f (l) for some linear function f depending
on the topology of the tree. We recall that the probability density function of an
exponentially distributed variable of mean value αj is pαj

(z) = 1
αj

e−z/αj .
The fixed vector α will be referred as the ground truth, and the variables vectors

α̂(k) as the current estimates (of EM). We wish to estimate α via α̂(k), hoping that this
last sequence will converge ‘close to’ α. In networks context, αj corresponds to the
mean sojourn time of probes in server j .

The results given in this section actually hold more generally for any set T and V

with any random exponential vector l ∈ R
T (with independent coordinates) and any

linear function f : R
T → R

V . In particular they hold for delay tomography problems
where the network topology is not tree-like.

Queueing Syst (2010) 66: 369–412 379

5.1 Specialization of the iterative formula

Usually, each iteration of EM can be computed in two steps: the E-step, where we
compute the conditional expectation of the log-likelihood, and the M-step where we
maximize it. But when the hidden data belongs to the regular exponential family, as
is the case here, it is well known [15] that the E- and M-steps can be solved directly
in one step. In other words, the iteration can be made more explicit. Indeed, we have
from (4):

α̂(k+1) := argmax
θ

1

N

N∑

i=1

Eα̂(k)

(
logpθ(l)|f (l) = d(i)

)

= argmax
θ

N∑

i=1

∫
{l|f (l)=d(i)} log(pθ (l))pα̂(k) (l) dl

qα̂(k) (d)
, (5)

where in our case pθ(l) = ∏
j∈T

1
θj

e
− lj

θj , and logpθ(l) = ∑
j∈T (log 1

θj
− lj

θj
) for

every θ .
We notice that logpθ(l) is easily differentiable according to θ , giving:

∂ logpθ(l)

∂θj

= − 1

θj

+ lj

θ2
j

= − 1

θ2
j

(θj − lj),

and therefore Eα̂(k) (logpθ(l)|f (l) = d(i)) is also differentiable, with:

∂Eα̂(k) (logpθ(l)|f (l) = d(i))

∂θj

= − 1

θ2
j

∫
{l|f (l)=d(i)}(θj − lj)pα̂(k) (l) dl

qα̂(k) (d(i))

= − 1

θ2
j

Eα̂(k)

(
θj − lj |d(i)

)

= − 1

θ2
j

(
θj − Eα̂(k)

(
lj |d(i)

))
.

We then have:

∂
∑N

i=1 Eα̂(k) (logpθ(l)|f (l) = d(i))

N∂θj

= − 1

θ2
j

(

θj − 1

N

N∑

i=1

Eα̂(k)

(
lj |d(i)

)
)

.

Thus, setting this derivative to zero leads to θ = 1
N

∑N
i=1 Eα̂(k) (l|d(i)), and so

α̂(k+1) = 1

N

N∑

i=1

Eα̂(k)

(
l|d(i)

)
. (6)

Remark 5.1 Here we have generalized the conditional expectation to the mul-
tivariate case. That is, in Eα̂(k) (l|d(i)), l is a vector, where we have defined

380 Queueing Syst (2010) 66: 369–412

Eα̂(k) (l|d(i)) := (Eα̂(k) (lj |d(i)))j∈T , and the sum
∑N

i=1 Eα̂(k) (l|d(i)) is to be under-
stood as a component-wise addition.

We just reduced the E- and M-steps to one, a significant simplification which in
many contexts would almost constitute a ‘solution’ to the problem. However, com-
puting the conditional expectation Eα̂(k) (l|d) remains a challenge as it involves deal-
ing with combinatorics over the tree, and is in fact a main part of our work. In the
next section, we explain how it can be computed efficiently. First, we point out an
interesting property which will be useful later.

Property 5.1 For any linear function f , we have for all k:

f (α̂(k+1)) = d̄ = 1

N

N∑

i=1

d(i) (7)

where again d̄ is a vector defined by averaging component-wise.

Proof Thanks to the linearity of the conditional expectation and the linearity of f ,
we have in our case that Eα̂(k) (f (l)|d) = f (Eα̂(k) (l|d)). Therefore,

f
(
α̂(k+1)

) = 1

N

N∑

i=1

Eα̂(k)

(
f (l)|d(i)

) = 1

N

N∑

i=1

Eα̂(k)

(
d|d(i)

) = 1

N

N∑

i=1

d(i).
�

Because of this relation, we know that each term of the EM sequence (α̂(k)) except
the first will satisfies f (α̂(k)) = d̄ . Therefore, the sequence stays in f −1(d̄) which,
since f is linear, is a linear subspace of R

T .

6 Explicit formula for E(l|d)

In this section we compute the conditional expectation Eα̂(k) (l|d), which is the key to
the evaluation of the step function (6). Since

Eα̂(k) (l|d) =
∫
f −1(d)

lpα̂(k) (l) dl
∫
f −1(d)

pα̂(k) (l) dl
:= ξα̂(k) (l|d)

qα̂(k) (d)
, (8)

the calculation can be divided in the computation of the two terms qα̂(k) (d) and
ξα̂(k) (l|d).

By their nature these calculations are detailed. This section is self-contained and
could be skipped on a first reading.

6.1 Notations

In this section we are interested in a single iteration of the EM algorithm. In order
to simplify notations, we will here (and only here) write α instead of α̂(k). Similarly,

Queueing Syst (2010) 66: 369–412 381

in order to have another point of view and nicer notations, we will also introduce the
rate γj := 1

αj
and use the notation pαj

(z) = γj e
−gj z instead.

We recall that T , T , V ⊂ T , l = (lj)j∈T ∈ R
T and d = (dj)j∈V ∈ R

V denote
respectively the tree we consider, the set of its node, the set of its leaves, the vector
of delays on each nodes and the vector of end-to-end delays in the tree. The variable
vectors α = (αj)j∈T and γ = (γj)j∈T is the current estimate of EM.

As in Sect. 5, the observed data are the end-to-end delay vectors d(1), . . . , d(N),
and are the images under some linear function fT of the unknown complete data
l(1), . . . , l(N), where fT captures the details of the tree topology.

We provide T with the order ≺ defined by: for all i, j in T , i ≺ j if i is an ancestor
of j . With these notations, the function fT : R

T → R
V such that fT (l) = d is given

by ∀k ∈ V , (fT (l))k = dk = ∑
j∈T
jk

lj , and the two terms of the fraction (8) can be

written:

qα(T , d) =
∫

f −1
T (d)

∏

j∈T

γj e
−γj lj dl and ξα(T , l|d) =

∫

f −1
T (d)

l
∏

j∈T

γj e
−γj lj dl.

(9)

6.2 Some simple examples

(a) 2 nodes tree

In this simple case, since l0 and l1 are linked to d by l0 + l1 = d , there is only one
unknown. Therefore qα can be expressed as an integral over l0 only.

qα(T , d) = γ0γ1

∫ d

l0=0
e−γ0l0e−γ1(d−l0) dl0 = γ0γ1

(
e−γ0d

γ1 − γ0
+ e−γ1d

γ0 − γ1

)
,

and similarly:

ξα(T , l0|d) = γ0γ1

(
e−γ0d

γ1 − γ0

(
d − 1

γ1 − γ0

)
+ e−γ1d

(γ0 − γ1)2

)
.

Although the figure does not suggest it, the problem is actually symmetric in the
nodes 0 and 1. Indeed, what we observe being the sum of two delays, the tree 0 → 1
is equivalent to the tree 1 → 0. Therefore, we have by symmetry:

ξα(T , l1|d) = γ0γ1

(
e−γ0d

(γ1 − γ0)2
+ e−γ1d

γ0 − γ1

(
d − 1

γ0 − γ1

))
.

(b) Root with 2 leaves

382 Queueing Syst (2010) 66: 369–412

In this case, since l0 + l1 = d1 and l0 + l2 = d2, we can consider as before only one
unknown l0, and express qα as an integral over l0 between 0 and d0 := min {d1, d2}.
Since l0, l1 and l2 are nonnegative, l0 has to be smaller than d1 and d2. We have:

qα(T , d) = γ0γ1γ2

∫ d0

l0=0
e−γ0l0e−γ1(d1−l0)e−γ2(d2−l0) dl0

= γ0γ1γ2

(
e−γ0d0

e−γ1(d1−d0)e−γ2(d2−d0)

γ1 + γ2 − γ0
+ e−γ1d1e−γ2d2

γ0 − γ1 − γ2

)
,

and similarly:

ξα(T , l0|d) = γ0γ1γ2

(
e−γ0d0

e−γ1(d1−d0)e−γ2(d2−d0)

γ1 + γ2 − γ0

(
d0 − 1

γ1 + γ2 − γ0

)

+ e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)2

)
,

ξα(T , l1|d) = γ0γ1γ2

(
e−γ0d0

e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)

(
d1 − d0 − 1

γ0 − γ1 − γ2

)

+ e−γ1d1e−γ2d2

γ0 − γ1 − γ2

(
d1 − 1

γ0 − γ1 − γ2

))
,

and ξα(T , l2|d) can be deduced from ξα(T , l1|d) by symmetry between nodes 1
and 2.

6.3 Inductive expression

The last example above can readily be extended to more than two leaves. More gen-
erally, it suggests that it be possible to express qα (resp. ξα) for any tree as an integral
over the delay in the root node from 0 to the minimum of the end-to-end delays, of
some term using qα (resp. ξα and qα) inductively applied to the child subtrees of the
root. We now show how this can be done.

Let 0 denote the root of the tree, and p the number of its children. In the case
where the tree is a single node, i.e. p = 0, we have obviously qα(d) = γ0e

−γ0d0 .
When p ≥ 1 we denote by T (1), T (2), . . . , T (p) the associated child subtrees. Subtree
T (i) has nodes T (i) and leaves V (i) ⊂ T (i).

We notice that (V (1), V (2), . . . , V (p)) forms a partition of V , and therefore any
vector d in R

V can be identified with a vector d = (d(1), d(2), . . . , d(p)) in R
V (1) ×

R
V (2) × · · · × R

V (p)
. Similarly, any vector l in R

T can be identified with a vector
l = (l0, l

(1), . . . , l(p)) in R × R
T (1) × · · · × R

T (p)
.

Queueing Syst (2010) 66: 369–412 383

Theorem 6.1 Define d0 := min{dj | j ∈ V }. The following inductive relation holds:

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0

[
p∏

i=1

qα

(
T (i), d(i) − (l0)

)
]

dl0, (10)

where the slight abuse of notation d(i) − (l0) denotes the vector (d
(i)
j − l0)j∈V (i) ∈

R
V (i)

.

Proof For a more convenient notation, we introduce for each i ∈ {1, . . . , p} the func-
tion f (i) := fT (i) which is to the tree T (i) what the function fT is to the tree T .

We notice that the following relation holds: for all l in R
T , let d = f (l); then for

all k ∈ V , there exist one unique i ∈ {1, . . . , p} such that k ∈ V (i), and:

d
(i)
k = dk =

∑

j∈T
jk

lj = l0 +
∑

j∈T (i)

jk

l
(i)
j = l0 + (

f (i)
(
l(i)

))
k
.

This gives, for all i ∈ {1, . . . , p}, d(i) = (l0) + f (i)(l(i)), and therefore:

l(i) ∈ (
f (i)

)−1(
d(i) − (l0)

)
.

Therefore, the integral in (9) over l ∈ f
(−1)

T (d) can be sliced as an external integral
over l0 ∈ [0, d0] where d0 = min{dk | k ∈ V }, and a product of internal integrals over
l(i) ∈ (f (i))−1(d(i) − (l0)) for each i, which gives

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0

[
p∏

i=1

∫

(f (i))−1(d(i)−(l0))

∏

j∈Ti

γj e
−γj (l

(i)
j)

dl(i)

]

dl0.

As we can see, the inner integral looks very similar to the initial integral in (9),
and indeed, we can finally write:

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0

[
p∏

i=1

qα

(
T (i), d(i) − (l0)

)
]

dl0.
�

The function ξα(T , l|d) also satisfies an inductive relation, but its expression is
slightly more complicated. From (9), similar reasoning shows that the following in-
ductive formula holds. For the root:

ξα(T , l0|d) =
∫ d0

l0=0
γ0l0e

−γ0l0

[
p∏

i=1

qα

(
T (i), d(i) − (l0)

)
]

dl0, (11)

and for any node j ∈ T \ {0}, let i ∈ {1, . . . , p} be the unique child of the root such
that j ∈ T (i), we have:

ξα(T , lj |d) =
∫ d0

l0=0
γ0e

−γ0l0

[
ξα

(
T (i), l

(i)
j |d(i) − l0

)∏

k �=i

qα

(
T (k), d(k) − (l0)

)]
dl0.

(12)

384 Queueing Syst (2010) 66: 369–412

Using this inductive formula, it is possible to deduce a recursive algorithm com-
puting the expanded symbolic expression for the terms qα and ξα . However, we prefer
to derive an alternative expression which, as we will see presently, is simpler.

6.4 More examples

The following examples can be derived using the inductive expressions above. The
first generalizes the case of a unary tree to any number of nodes, and the second is a
simple tree for which the expanded expressions of qα and ξα are already quite com-
plicated. Here and below we recommend that the reader first focus on the expressions
for qα .

(c) Unary tree with K nodes

We have:

qα(T , d) =
(

K∏

j=1

γj

)
K∑

j=1

e−γj d

∏
k �=j (γk − γj)

, and

ξα(T , li |d) =
(

K∏

j=1

γj

)(
e−γid

∏
k �=i (γk − γi)

(
d −

∑

k �=i

1

γk − γi

)

+
∑

j �=i

e−γj d

(γi − γj)2
∏

k �=i
k �=j

(γk − γj)

)

.

(d) One root with two 2-server leaves

As we did in Example (b), we introduce d0 := min {d1, d2}. We have:

qα(T , d)

= γ0γ1γ2γ3γ4

(
e−γ0d0

(
e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)(γ3 − γ1)(γ4 − γ2)

+ e−γ1(d1−d0)e−γ4(d2−d0)

(γ1 + γ4 − γ0)(γ3 − γ1)(γ2 − γ4)

+ e−γ3(d1−d0)e−γ2(d2−d0)

(γ3 + γ2 − γ0)(γ1 − γ3)(γ4 − γ2)
+ e−γ3(d1−d0)e−γ4(d2−d0)

(γ3 + γ4 − γ0)(γ1 − γ3)(γ2 − γ4)

)

Queueing Syst (2010) 66: 369–412 385

+ e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)(γ3 − γ1)(γ4 − γ2)
+ e−γ1d1e−γ4d2

(γ0 − γ1 − γ4)(γ3 − γ1)(γ2 − γ4)

+ e−γ3d1e−γ2d2

(γ0 − γ3 − γ2)(γ1 − γ3)(γ4 − γ2)

+ e−γ3d1e−γ4d2

(γ0 − γ3 − γ4)(γ1 − γ3)(γ2 − γ4)

)
, and

ξα(l0|d)

= γ0γ1γ2γ3γ4

(
e−γ0d0

(
e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)(γ3 − γ1)(γ4 − γ2)

(
d0 − 1

(γ1 + γ2 − γ0)

)

+ e−γ1(d1−d0)e−γ4(d2−d0)

(γ1 + γ4 − γ0)(γ3 − γ1)(γ2 − γ4)

(
d0 − 1

(γ1 + γ4 − γ0)

)

+ e−γ3(d1−d0)e−γ2(d2−d0)

(γ3 + γ2 − γ0)(γ1 − γ3)(γ4 − γ2)

(
d0 − 1

(γ3 + γ2 − γ0)

)

+ e−γ3(d1−d0)e−γ4(d2−d0)

(γ3 + γ4 − γ0)(γ1 − γ3)(γ2 − γ4)

(
d0 − 1

(γ3 + γ4 − γ0)

))

+ e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)2(γ3 − γ1)(γ4 − γ2)
+ e−γ1d1e−γ4d2

(γ0 − γ1 − γ4)2(γ3 − γ1)(γ2 − γ4)

+ e−γ3d1e−γ2d2

(γ0 − γ3 − γ2)2(γ1 − γ3)(γ4 − γ2)

+ e−γ3d1e−γ4d2

(γ0 − γ3 − γ4)2(γ1 − γ3)(γ2 − γ4)

)
, and

ξα(l1|d)

= γ0γ1γ2γ3γ4

(
e−γ0d0

(
e−γ1(d1−d0)e−γ2(d2−d0)

(γ1 + γ2 − γ0)(γ3 − γ1)(γ4 − γ2)

×
(

d1 − d0 − 1

(γ0 − γ1 − γ2)
− 1

(γ3 − γ1)

)

+ e−γ1(d1−d0)e−γ4(d2−d0)

(γ1 + γ4 − γ0)(γ3 − γ1)(γ2 − γ4)

(
d1 − d0 − 1

(γ0 − γ1 − γ4)
− 1

(γ3 − γ1)

)

+ e−γ3(d1−d0)e−γ2(d2−d0)

(γ3 + γ2 − γ0)(γ1 − γ3)2(γ4 − γ2)
+ e−γ3(d1−d0)e−γ4(d2−d0)

(γ3 + γ4 − γ0)(γ1 − γ3)2(γ2 − γ4)

)

+ e−γ1d1e−γ2d2

(γ0 − γ1 − γ2)(γ3 − γ1)(γ4 − γ2)

(
d1 − 1

(γ0 − γ1 − γ2)
− 1

(γ3 − γ1)

)

386 Queueing Syst (2010) 66: 369–412

+ e−γ1d1e−γ4d2

(γ0 − γ1 − γ4)(γ3 − γ1)(γ2 − γ4)

(
d1 − 1

(γ0 − γ1 − γ4)
− 1

(γ3 − γ1)

)

+ e−γ3d1e−γ2d2

(γ0 − γ3 − γ2)(γ1 − γ3)2(γ4 − γ2)
+ e−γ3d1e−γ4d2

(γ0 − γ3 − γ4)(γ1 − γ3)2(γ2 − γ4)

)
.

ξα(l2|d),ξα(l3|d) and ξα(l4|d) can be deduced by symmetry.

6.5 Explicit expression

One could use the previous inductive formulae with algebraic computation to gener-
ate the expressions for qα and ξα . However such a method is not efficient, since terms
have to be merged for optimization. For instance, the inductive formula of qα applied
to Example (c) would lead before simplification to a sum of 2K terms, while the sim-
plified expression has only K summands. We therefore give here explicit, already
simplified formulae.

6.5.1 Vocabulary for tree combinatorics

Example (d) shows that the formulae for qα and ξα can be expressed as a sum of terms
with a distinct structure. These in fact correspond to particular ‘slices’ or ‘cuts’ of the
tree. In this section we define cuts and related nomenclature (illustrated in Fig. 2)
which will be subsequently used to provide simplified symbolic expressions for qα

and ξα .
The following definitions are given in the context of a tree, but they extend natu-

rally to a forest, that is a set of trees.

Definition 6.1 A cut of a tree is a maximal unordered set of nodes for the order ≺
defined above. In other words, C is a cut of a tree T if it satisfies:

(1) ∀i, j ∈ C, i ⊀ j and j ⊀ i.
(2) ∀i ∈ T \ C, ∃j ∈ C, i ≺ j or j ≺ i.

Example 6.1 In Example (d) above, the tree has five possible cuts which are: {0},
{1;2}, {1;4}, {3;2} and {3;4}.

Definition 6.2 We call branch every maximal sequence of nodes (i1, . . . , in) such
that for all k ∈ {1, . . . , n − 1}, the node ik+1 is the unique child of ik .

Every tree can then be visualized as a tree of branches, each having at least two
children. However, a cut as defined above will still be a set of nodes, not branches.
See Fig. 2 for an example.

Finally, as shown in the figure, we will talk about the “past”, the “present” and
the “future” of a cut as follows: The “present” of a cut is the set of all nodes in the
branches intersected by the cut. The “past” is the set of their ancestors in different
branches, and the “future” the set of their descendants in different branches. More
formally, we will adopt the following notations:

Queueing Syst (2010) 66: 369–412 387

Fig. 2 A tree with its branches and one of its cuts, with the corresponding past, present, and future of the
cut

Definition 6.3 For each pair of nodes (i, j) in T , we write:

(a) i ∼ j if i and j belongs to the same branch and we say that j belongs to the
present of i and i belongs to the present of j .

(b) i � j if i ≺ j and i � j , and we say that i belongs to the past of j and j belongs
to the future of i.

The past, (resp. present, future) of a node will be the set of all nodes belonging to
the past (resp. present, future) of this node, and by extension, the past (resp. present,
future) of a cut will be the set of all the nodes belonging to the past (resp. present,
future) of at least one of the nodes of the cut. We will denote these by past(i),
present(i), future(i) for a node i and Past(C), Present(C), Future(C) for a cut C.
It is important not to confuse nodes and branches.

Remark 6.1 The past, present and future of a cut forms a partition of T .

Finally, we extend the vector d = (dj)j∈V ∈ R
V to d = (dj)j∈T ∈ R

T by intro-
ducing for each j in T \ V , dj := min {dk | k ∈ V and j ≺ k}.

6.5.2 The explicit form of qα

In this section we use the cut vocabulary to define an expression for qα which is not
only closer to closed form, but is also more compact and more efficient to evaluate
than that produced by the inductive formula. The validity of this formula is proved in
the appendix.

For any fixed tree T and delay d , we have qα(T , d) = ΓT

∑
C cut of T hα(T , d,C),

where ΓT := ∏
j∈T γj and where each term hα(T , d,C) can be expressed as a prod-

388 Queueing Syst (2010) 66: 369–412

uct of three factors:

hα(T , d,C) := r(C)s(C)t (C),

where r(C) depends only on the cut C and its past, s(C) depends only on C and its
present, and t (C) depends only on C and its future.

(i) Past and present The factors r(C) and s(c) are given by

r(C) :=
∏

k∈Past(C)

1

γk − ∑
j∈C
k�j

γj

and s(C) :=
∏

j∈C

e−γj dj

∏
k∼j
k �=j

(γk − γj)
.

(ii) Future The factor t (C) = t (T , d,C) is more complicated as it involves a recur-
sion. To describe it, we regard hα(T , d,C) as functions of all its arguments to allow
it to apply to subtrees with modified delays, and also extend its definition from a tree
T to a forest F . The set of nodes of a forest F is denoted by F .

If the future of each cut C of T is empty, i.e. if the tree T is reduced to a single
branch, we have t (T , d,C) = 1. Recursively, we can then define:

t (T , d,C) :=
∏

j∈C

tj (T , d,C),

where

tj (T , d,C) :=
∑

Cj cut of Fj

hα(Fj , d − (dj),Cj)

(
∑

k∈Cj
γk) − γj

,

where Fj is the sub-forest of T containing all the nodes belonging to the future of j,
and therefore Fj := {k ∈ T |j � k}, where d − (dj) is the vector (dk − dj)k∈Fj

.
We can interpret d − (dj) as the best information we have about the delay between

j and the leaves, since we know only that the delay between the root and j has to be
smaller than any delay between the root and the leaves in the future of j .

The formula qα(T , d) is now entirely defined. One can verify that it gives the
correct expressions for the examples in the paper.

6.5.3 The explicit form of ξα(l|d)

As we can see in the previous examples, the term ξα(li |d) has globally the same
structure as qα(d) with additional factors. Therefore it is relatively easy to modify
any algorithm computing qα(d) to compute ξα(li |d).

For any non-fixed tree T and any node i in T , we have:

ξα(li |d) = ΓT

∑

C cut of T
hi

α(T , d,C,0),

where for any real number x:

hi
α(T , d,C,x) := ri(C)si(C)t i(T , d,C,x),

where ri(C) (resp. si(C)) depends only from the cut C and its past (resp. present),
and where t i (T , d,C,x) involves a recursion.

Queueing Syst (2010) 66: 369–412 389

(a) Past and present

ri(C) :=
∏

k∈Past(C)

1

(γk − ∑
j∈C
k�j

γj)
1+δi

k

and si(C) :=
∏

j∈C

e−γj dj

∏
k∼j
k �=j

(γk − γj)
1+δi

k

,

where

δi
k =

{
1 if k = i

0 else

is the Kronecker delta.

(b) Future As for t (T , d,C), the definition of t i (T , d,C,x) induce a recursion with
the whole formula. First we introduce

ρi(C) :=
∑

k∈past(i)

1

γk − ∑
j∈C
k�j

γj

and σi(C) :=
∑

k∼i
k �=i

1

γk − γi

.

These are terms corresponding respectively to the past and the present of node i. Now
t i (T , d,C,x) := ∏

j∈C tij (T , d,C,x), where:

t ij (T , d,C,x)

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(di − σi(C) − ρi(C) − x) if future(j) = ∅ and j = i

1 if future(j) = ∅ and j �= i

∑
Cj cut of Fj

hi
α(Fj ,d−(dj),Cj ,0)

(
∑

k∈Cj
γk)−γj

ui(T , d,C,Cj , x)

if future(j) �= ∅ and j = i

∑
Cj cut of Fj

hi
α(Fj ,d−(dj),Cj ,τj (Cj))

(
∑

k∈Cj
γk)−γj

if future(j) �= ∅ and j �= i,

where ui(T , d,C,Cj , x) := (di − σi(C) − ρi(C) − x + τi(Cj)), and where for any
node j and cut C, τj (C) := 1

γj −∑
k∈C γk

.

Remark 6.2 It is important to remember in which tree each term is computed. When
it is not specified, it is implicitly the tree called T on the current level of recursion.

We notice that the term x is used only in the cases where j = i. Therefore, the
term τj (Cj) in hi

α(Fj , d − (dj),Cj , τj (Cj)) above is used only when i ∈ Cj .

In order to understand the different cases in the definition of t ij (T , d,C,x), we can

have a look at the Example (d). In this example, the term (d0 − 1
γ1+γ2−γ0

) in ξα(l0|d)

comes from (di + τi(Cj)) in ui(C,Cj , x), while the term (d1 − d0 − 1
γ0−γ1−γ2

−
1

γ3−γ1
) in ξα(l1|d) comes from (di − x −σi(C)) with x = τj (Cj) and C = Cj (recur-

sive call), and the term (d1 − 1
γ0−γ1−γ2

− 1
γ3−γ1

) comes from (di − ρi(C) − σi(C)).

390 Queueing Syst (2010) 66: 369–412

6.5.4 Alternative informal description

A less formal way to describe ξα(li |d) is to consider each term in the expanded ex-

pression of qα(d), and each time a e−γi d

coef appears, multiply it by (d − coef′), where
coef′ is the sum of each multiplicative factor appearing in coef and containing γi in
its expression, and each factor being multiplied by (−1) when γi appears in it with
a positive sign. Further, when a term in the expanded expression of qα(d) is of the

form e
−γj1

d ···e−γjn
d

coef , replace coef with coef′′, being equal to coef where all the factors
containing γi are squared.

6.6 Implementation

We can finally compute Eα(li |d) = ξα(li |d)
qα(d)

. Our implementation is in the program-
ming language Objective Caml. Only the standard packages of the language were
used.

We need to compute ϕ(α) = 1
N

∑N
i=1 Eα(l|d(i)) at each step of the EM algorithm.

Therefore, the formula Eα(l|d) has to be efficiently calculated for a fixed tree T
and fixed α, but for N distinct values of d , N being the number of probes used in
the experiment which may not be fixed in advance. It follows that the best way to
compute this formula efficiently is to generate the symbolic expression of Eα(l|d)

with α known and d unknown parameters, to simplify it as most as possible and then
to compute it for each of the N values d(i).

Efficiency is further improved if d = (dj) is precomputed for all j ∈ T , and also
if the differences di − dj are precomputed and kept easy to access, since they appear
frequently and keep the same value at each different step.

Our program generated the symbolic expression of Eα(l|d) as a symbolic tree.
The factors depending only on α were evaluated and simplified during the generation
of the tree. The tree was then reduced as much as possible and was finally evaluated
for each d(i) using the precomputed matrix M(i).

A first sanity check for program correctness, which is easy to perform, is to exploit
the relation dk = Eα(dk|d) = ∑

jk Eα(lj |d) for all k in V . If the program is correct,
this has to be verified for any value of d and any trees T .

6.7 Size of the expression and complexity of the EM step

We will only consider the size of the explicit expression of qα in the particular cases
of a unary tree and of a binary tree. In the former case, the size is clearly linear, while
in the latter it is exponential in the number of nodes, and thus doubly exponential
in the height of the tree. Here, we measure the size of the expression in the number
of exponentials appearing in it after reduction, since all the other factors, especially
those involving γ , can be precomputed.

For a unary tree with K nodes, the number of exponentials is exactly K , and the
size is then linear. For a binary tree of height h+ 1, the size S is given by S(h+ 1) =
2 ∗ S(h)2, since the terms of the two subtrees of height h are multiplied (giving
S(h)2) and are integrated, giving twice as many terms. Since S(1) = 1, we deduce

Queueing Syst (2010) 66: 369–412 391

that S(h) = 22h−1−1. Since the number of node in a binary tree of height h is 2h+1 −1,
the size is then exponential in the number of nodes.

We get the complexity of one step of EM by multiplication of this size by the num-
ber of nodes in the tree and the length of data, since we need to compute Eα(lj |d(i))

for all j in T and all i in {1, . . . ,N}. It is, however, possible to factorize the computa-
tion of the exponentials shared by the expressions, but the number of multiplications
will still be the same.

Finally, the number of steps to convergence is likely to grow with the number of
nodes as well, which increase further the global complexity of the EM algorithm.
This motivates the speed-up technique presented in Sect. 8.

7 Results

We conducted a series of experiments on different kinds of trees. The data were gen-
erated by simulating random delays in a tree using the known ground truth. Except
in Sect. 7.3, each experiment was conducted on a data set of N = 104 samples and
repeated 200 times.

7.1 Unary tree case

This case was first studied in [1] and [10], where two and three nodes cases were
tested.

(a) Two node case In the simple case of a tree with two nodes, we have some
additional results on the convergence of the EM sequence. Property 5.1 becomes
α̂

(k+1)
1 + α̂

(k+1)
2 = d̄ . This relation implies that there is only one unknown value, and

thanks to this, it is possible to prove the following result by using the intermediate
value theorem.

Theorem 7.1 In the two node case, the sequence (α̂
(k)
1 , α̂

(k)
2) converges to a finite

limit which is a solution of the likelihood equation (2).

The general EM properties (usually) ensure that the sequence (Ld(α̂(k)))k∈N con-
verges to a finite limit. This theorem goes further and ensures that the sequence
(α̂

(k)
1 , α̂

(k)
2) converges too, which is not a classical result for EM.

The detailed proof can be found in [1] and [10], and uses the fact that, since (for all
k ≥ 1) α̂

(k)
1 + α̂

(k)
2 = d̄ , the likelihood Ld(α̂(k)) can be expressed as a function of α̂

(k)
1

alone. Therefore, the proof cannot be generalized to more than two nodes. Table 1
gives some results obtained in this case.

(b) Nine nodes case (U9) Table 2 shows the results for the following unary tree
with 9 nodes.

The main difficulty for estimating such unary trees comes from the fact that we
get the same information for all the nodes. In particular, the estimation can only give
the values of the mean delays modulo an unknown permutation. We will also see in
Sect. 8 that the convergence of EM for this tree is very slow.

392 Queueing Syst (2010) 66: 369–412

Table 1 Experimental results of the EM estimator (α̂1, α̂2) for various ground truths in the 2-node case

Gr. truth Mean 10% percentile 90% percentile Variance1/2/Mean

(1.1,1) (1.114,0.987) (1.044,0.881) (1.220,1.057) (0.0644,0.0725)

(2,1) (1.999,1.003) (1.933,0.946) (2.063,1.063) (0.0244,0.0446)

(10,1) (10.003,1.003) (9.866,0.942) (10.148,1.070) (0.0115,0.0501)

(100,1) (100.044,1.015) (98.782,0.827) (101.368,1.214) (0.0104,0.1514)

Table 2 Experimental results obtained for a unary tree with 9-nodes

Gr. truth 500 200 100 50 20 10 5 2 1

Mean 498.42 194.98 99.59 49.88 26.10 10.55 5.38 4.25 3.79

10%-tile 481.47 150.08 48.31 13.93 5.78 1.54 0.099 0.087 0.077

90%-tile 512.30 236.78 155.35 79.58 56.20 24.94 12.19 10.86 9.99

σ /Mean 0.025 0.175 0.428 0.486 0.769 0.990 0.897 0.904 0.974

7.2 General case

We present here some results obtained for other different trees.

(a) Binary tree of height 3 (B1H3) In the case of a binary tree, the estimation are
accurate too, with again a slight bias on the smallest values, as shown in Table 3. The
estimations are in a sense easier for this tree than for the unary ones because we get
more information and also because each node can be discriminated from the others,
while in the unary trees all the nodes are equivalent.

(b) Binary tree of height 4 (B1H4) Table 4 shows the results for this tree: the
estimation are still very good. The difficulty for bigger binary trees arise from the
complexity of the EM step computation rather than the accuracy of the estimation.
We made some simulation on a tree of height 5 and obtained good estimations too,
but they were very long to compute.

(c) Tree with branches (B3H2) The results for this tree are given in Table 5. Trees
such as the last one, with several parallel branches, are the hardest to estimate because
they combine both difficulties seen in unary and binary trees: a difficult estimation in
each branch where we have the same information for all nodes, and a high complexity
of the EM step because of the multiple parallel subtrees.

7.3 Speed of convergence

All previous results were conducted with sample size N = 104. Figure 3 studies the
speed of convergence of the maximum likelihood estimator with respect to N . In
order to save space, we present results only for the tree B1H3, but results are similar

Queueing Syst (2010) 66: 369–412 393

Table 3 Experimental results obtained for a binary tree of height 3

Ground truth 100 4 30 1 25 15 75

Mean 100.03 4.01 29.99 0.9999 25.007 14.996 74.995

10% percentile 99.62 3.95 29.86 0.98 24.85 14.88 74.70

90% percentile 100.42 4.04 30.12 1.02 25.14 15.11 75.35

Var1/2/Mean 0.0032 0.0092 0.0031 0.012 0.0045 0.0060 0.0034

Table 4 Experimental results obtained for a binary tree of height 4

Ground truth 10 7 14 20 150 8 1 0.1

Mean 10.01 6.99 13.99 20.03 149.95 7.999 1.0004 0.0999

10% percentile 9.67 6.66 13.52 19.50 147.77 7.80 0.99 0.096

90% percentile 10.35 8.14 15.32 20.98 152.17 8.29 1.71 0.28

Variance1/2/Mean 0.03 0.04 0.03 0.02 0.01 0.02 0.01 0.01

Ground truth 100 11 60 20 30 8 12

Mean 100.09 11.30 60.13 20.01 30.03 8.002 12.01

10% percentile 99.83 10.56 59.8 19.59 29.58 7.86 11.85

90% percentile 102.16 13.13 61.47 21.31 31.65 10.27 14.19

Variance1/2/Mean 0.01 0.03 0.01 0.01 0.01 0.01 0.01

394 Queueing Syst (2010) 66: 369–412

Table 5 Experimental results with the tree “B1H3” below

Ground truth 20 2 1 6 5 4 80 60 3

Mean 19.86 2.63 1.79 6.30 4.79 2.63 78.80 61.34 1.63

10% percentile 19.40 1.50 0.68 5.18 3.09 0.62 70.31 54.70 0.0052

90% percentile 20.35 3.92 2.98 7.58 6.03 4.86 84.89 70.28 3.74

Var1/2/Mean 0.021 0.36 0.48 0.15 0.24 0.59 0.088 0.012 0.096

Fig. 3 Left plot: the cumulative distribution function of the maximum likelihood estimator of node 30
for different sample sizes. The right-side shows the relative standard error for all nodes on the same tree
B1H3, depending on the sample size

for the other nodes and trees. One might notice that smaller sample size can lead to
good results: with as few as 1000 probes, 90% of the experiments estimate node 30
with less than 10% error. On the right plot, the relative standard error (i.e. the square
root of the variance, divided by the mean) are parallel lines of slope − 1

2 , which means
that the standard error decreases as 1√

N
and the variance as 1

N
.

7.4 Comparison to the least squares method

In [13], Lawrence et al. discard MLE based approaches due to their computation time
in favor of moment based methods using least squares. Table 6 presents the results
obtained by their method for 200 independent experiments with the same sample
size N = 104, for the tree B1H3. This shall be compared with the results of MLE in
Table 3. Other trees lead to similar results, and were omitted for space reasons. As ex-
pected, the MLE approach yields better results, especially for nodes that have a small

Queueing Syst (2010) 66: 369–412 395

Table 6 Experimental results obtained for B1H3, using the least squares method from [13]

Ground truth 100 4 30 1 25 15 75

Mean 99.98 4.04 29.93 0.93 24.77 15.18 75.07

10% percentile 98.22 2.42 28.73 −0.19 22.58 13.92 73.54

90% percentile 101.91 5.46 31.20 2.21 26.77 16.31 76.65

Var1/2/Mean 0.014 0.32 0.033 1.009 0.060 0.062 0.017

Table 7 Experimental results obtained for the tree B1H3, with imperfect measurements

Ground truth 100 4 30 1 25 15 75

Mean 98.1 3.6 32.3 3.3 25.8 16.1 76.1

10% percentile 96.7 3.4 31.9 3.2 25.4 15.8 75.2

90% percentile 99.3 3.9 32.8 3.5 26.2 16.5 77.1

Var1/2/Mean 0.01 0.05 0.01 0.04 0.01 0.02 0.01

delay. However, the main advantage of moment based methods is their speed. The
simulation of the 200 experiments took only about one minute for the least squares
approach, whereas our algorithm needed 45 minutes. This difference increases for
larger trees.

The complexity of an estimation technique can be expressed in two ways: the
number of independent probes needed to reach a given precision, and the time needed
to compute the estimator based on those probes. The relative interest of each method
will depend on which of these two steps is the most crucial for the specific application
considered.

7.5 Resilience to measurement noise and imperfect models

They are many ways to introduce model or measurement errors: a full paper could be
written on this topic. We will present only one case, which we hope is representative.
Table 7 presents the results of the accelerated EM algorithm, when each end-to-end
delay was sampled according to the model distribution, then multiplied by a i.i.d. uni-
form value between 0.95 and 1.05. The results are worse: the standard error is about
three times higher for most nodes. However, the errors stay in a reasonable level,
which might indicate that the algorithm is resilient to errors.

8 Steered jumping for EM

In a number of cases, especially when the tree has long branches, the number of steps
before converging to a fixed point can be very large, and since the complexity of each
step is proportional to the length of data, the EM algorithm becomes very slow when
N becomes large. The complexity of each step rises also very quickly with the size
of the tree, since the growth is quadratic in the number of nodes for an unary tree,

396 Queueing Syst (2010) 66: 369–412

Fig. 4 Plot of some trajectories
of the step function for the
ground truth α = (0.1,1,10)

and for a sample of N = 1000
data. The sequences of point are
sequences of iterations of the
algorithm. The small arrows
represents the directions of
α̂(k+1) − α̂(k)

but can be exponential for a binary tree (see Sect. 6.7). It is therefore important for
this problem to significantly improve the convergence speed of the EM algorithm.
We present a novel such method below.

8.1 Analysis of the iteration

We first illustrate some characteristics of the iteration through two examples.

Example one Consider a unary tree with ground truth α = (0.1,1,10). From Prop-
erty 5.1, α̂(k) = (α̂

(k)
1 , α̂

(k)
2 , α̂

(k)
3) obeys α̂

(k)
1 + α̂

(k)
2 + α̂

(k)
3 = d̄ , so that the system has

only two independent variables. We therefore plot the trajectories of the EM algo-
rithm in a (α̂

(k)
2 , α̂

(k)
3) plot.

Figure 4 shows some sequences of iterations of the algorithm from different ini-
tial conditions. We see that the trajectories all converge toward the same point,
α̂ = (0.83,0.83,8.07). During this experiment, the mean delay was d̄ = 9.73, and
Property 5.1 was respected. We also observe that the trajectories seems to converge
quickly towards a straight line of equation x = 1.7 − y, and once on this line, the
steps becomes very small and the convergence is much slower.

Example two In this case α = (1,1/3,0.1,0.01).
Figure 5 shows the trajectory of the two smallest coordinates of the sequence α̂(k)

for a sample of N = 10000 data, with initial condition the ground truth itself. The
algorithm stopped after 39113 steps. The red points show the trajectory after 0 steps
(starting point), 1000 steps, 10000 steps and 39113 steps when the algorithm finally
stopped.

As we can see, the trajectory again mostly falls on a straight line, and not unex-
pectedly, the size of each step drops while the trajectory approaches the final point.
Table 8 shows the evolution of the log-likelihood—it increases extremely slowly.

The extremely small rate of increase in likelihood as a function of α̂(k) along the
trajectories means that the usual termination criteria, consisting in stopping when

Queueing Syst (2010) 66: 369–412 397

Fig. 5 Plot of the values of the
two smallest coordinate of each
α̂(k) for the ground truth
α = (1,1/3,0.1,0.01)

Table 8 Evolution of the
log-likelihood corresponding to
the trajectory on the left side; it
increases extremely slowly
with k

Number of steps Log-likelihood

0 −1.240947

1 −1.240910

10 −1.240870

100 −1.240831

1000 −1.240803

10000 −1.240787

20000 −1.240783

39113 −1.240782

‖α̂(k+1) − α̂(k)‖ < ε, or Ld(α̂(k+1)) − Ld(α̂(k)) < ε for some small ε, or after a fixed
number of iterations, can result in significant errors. The criterion we used to avoid
these traps was to stop when Ld(α̂(k+1)) ≤ Ld(α̂(k)), which in theory never happens
but occurs in practice because of numerical errors very close to the fixed point.

These two examples illustrate two key characteristics of the EM algorithm (for this
problem). First, the trajectory reaches an area relatively close to the final point rela-
tively quickly, where it enters a ‘glide path’ which is relatively linear, corresponding
in a sense to a valley of the function − logLd(θ), or ‘reversed valley’ of logLd(θ)

(for the sake of simplicity, we will abusively refer to it as a ‘valley’). Secondly, once
in the ‘valley’, the speed of the trajectory becomes particularly slow. These two ob-
servations inspire the following strategy to accelerate EM: (i) reach a good first ap-
proximation as quickly as possible, (ii) once near the ‘valley’, increase the size of the
steps to go faster.

8.2 The sampling method

This section addresses point (i) above. Our objective is to reach the ‘valley’ leading to
the fixed point extremely quickly, using the intuition that even a rough method should
be able to achieve this objective.

398 Queueing Syst (2010) 66: 369–412

Fig. 6 Comparison of the first
100 steps of a normal trajectory
(“normal”, every fifth step is
shown) with 100 steps of the
sampling method (“sampling”),
followed by 10 normal steps
(“normal after sampling”), from
a random starting point. The
ground truth
α = (1,1/3,0.1,0.01) and data
length N = 10000 is as in Fig. 5,
but the data set is different

The method consists in cutting the data (of length N) into N/k subsets of equal
length k (for simplicity we assume that k divides N). We then compute some iter-
ations of the EM algorithm using only one of the subsets as data, the subset being
chosen randomly at each iteration.

More precisely, at each step, instead of computing the usual iteration α̂(k+1) =
1
N

∑N
i=1 Eα̂(k) (l|d(i)) we compute one of the following iterations:

α̂(k+1) = 1

k

(j+1)k∑

i=jk+1

Eα̂(k)

(
l|d(i)

)
,

where at each step, j is uniformly at random chosen among {0, . . . ,N/k − 1}.
The advantage of this method is that N/k steps based on subsets will cost only

as much as 1 step using the full data, and yet gives a fair first approximation of the
fixed point. This is a way to sacrifice precision for speed, but since we only want
a first approximation here, low precision is acceptable. In particular, during these
cheap steps, the likelihood of the parameters does not necessarily increase, but the
parameters does get closer from the final point.

Several choices of k are possible: in this paper, we used k = √
N (N = 10000

and k = 100), which worked well in practice. Any other choice (as long as k is “large
enough to be representative, but not too large to gain computation time”) makes sense.

As a non-rigorous intuition that these cheap steps will still go in the right direction,
note that since the integer j is randomly chosen, the expectation of each random step
is:

Ej

(
α̂(k+1)

) = k

N

N/k−1∑

j=0

1

k

(j+1)k∑

i=jk+1

Eα̂(k)

(
l|d(i)

) = 1

N

N∑

i=1

Eα̂(k)

(
l|d(i)

)
.

So, on average, each cheap step goes in the same direction as a normal step.
Figure 6 shows an example of this method. As we can see the first iterations move

in the same direction as the normal EM steps, and 100 iterations of the sampling

Queueing Syst (2010) 66: 369–412 399

method leads to a point close to the one obtained after 100 normal steps, but costing
only as much as one normal step to get there.

8.3 The steered jumping method

This section addresses point (ii) above. Namely, once we get a first approximation of
the fixed point which is close to or within the ‘valley’, the steps usually become very
small but the trajectory is linear. Our strategy is to exploit this linearity to increase
step size dramatically. We will present the method in a more general context, since
we believe it could be applied to other cases where the same kind of convergence
issues are encountered.

8.3.1 General context

We are given a function F and we want to find a local maximum by using an iterative
algorithm (e.g. the EM algorithm, gradient ascent) which can be expressed as follows:
Starting from some point α̂(0), construct the sequence (α̂(0), α̂(1), . . .) defined by the
recursive formula

α̂(k+1) = α̂(k) + Δk, (13)

where the parameter Δk is chosen such that F(α̂(k)) ≤ F(α̂(k+1)), with equality if
and only if α̂(k) is a stationary point of F . The algorithm stops when the equality is
reached.

The way to compute the parameter Δk depends on the chosen algorithm. In the
case of the EM algorithm, we have Δk = 1

N

∑N
i=1 Eα̂(k) (l|d(i)) − α̂(k). In the case of

a gradient ascent, we have Δk = δk∇F(α̂(k)), where ∇F is the gradient of F , and
where δk is some well chosen positive scalar number.

8.3.2 Jumping method

In a case where the behavior of such an algorithm is as in Fig. 5, namely linear and
very slow, we would like to take much larger steps. More precisely, we would like to
replace the last equation (13) by

α̂(k+1) = α̂(k) + βkΔk, (14)

with βk ≥ 1 and hopefully much bigger than 1, such that the relation F(α̂(k)) ≤
F(α̂(k+1)) still holds at each iteration. In some sense, if βk = n ∈ N we can inter-
pret this as assuming that Δk � Δk+1 � · · · � Δk+n and approximating all of them
by Δk , and then computing n steps in one. We then say that we “jump” with a factor
βk . Figure 7 shows an example of this method applied to the example of Fig. 5.

This idea is not new as such, and it has been applied to the EM algorithm in [9]
as a generalized conjugate gradient algorithm, and in [17] as an overrelaxed bound
optimization.

The method as described above has two main flaws. First, we do not know how
to choose the values of βk efficiently at each step. Secondly, and most importantly, it
sometimes results in a behavior similar to the one visible on Fig. 7. If we try to jump

400 Queueing Syst (2010) 66: 369–412

Fig. 7 Trajectory using the
jumping method, projected onto
the two smallest coordinates of
α̂(k), for the ground truth
α = (1,1/3,0.1,0.01) using the
same data as in Fig. 5. In this
case we tried to jump every 100
steps, i.e. we had βk = 1 except
when k = 0 (mod 100) where
we set βk = 1000 if
F(α̂(k)) ≤ F(α̂(k) + βkΔk), or
βk = 1 otherwise. The visible
gaps between points reveal
where jumps actually occurred.
The total number of iterations
before reaching the minimum
was 14684, compared to 39112
for the normal EM

too far from one side of the ‘valley’, we end up on the other side rather than reaching
and tracking the ‘valley’ floor, resulting in an inefficient zigzag trajectory. In other
words, increasing step size can cause instability. To counter this, we next modify not
only the size of the steps but also their direction.

8.3.3 Steered jumping method

We modify slightly the formula (14) of the jumping method to read:

α̂(k+1) = α̂(k) + βkCkΔk, (15)

where Ck will be a well chosen matrix such that F(α̂(k)) ≤ F(α̂(k+1)) still holds. The
choice of Ck can depend on many parameters, like the current state of the algorithm
but also its past iterations. It is important to notice that it is always possible to try
different choices of Ck and βk and chose the one which gives the highest value of
F(α̂(k) + βkCkΔk).

In our case, we would like the jumps to be in the same direction as the ‘valley’.
For this, we use at each step the information given by the previous iterations of the
algorithm about the global shape of the ‘valley’ to compute the matrix Ck , via Prin-
cipal Component Analysis (PCA). This was inspired by a method recently developed
in robotics to accelerate the growth of Rapidly-exploring Random Trees (RRT) for
path finding [6].

8.3.4 A short introduction to PCA

Principal Component Analysis is a method used to find the main axes of concentration
of a set of points in a high dimensional space.

Consider a set of points X = (x1, . . . , xn), each xi being a point of R
d . We con-

struct the d × d matrix C called the covariance matrix of the set of points X, whose
element (i, j) is (xi − x̄)(xj − x̄), where x̄ := 1

N

∑N
i=1 xi is the mean point of the

Queueing Syst (2010) 66: 369–412 401

set. The matrix is symmetric positive semi-definite, and has the property that it cap-
tures very well the repartition of the points xi in the space, since it is diagonaliz-
able by the Cayley–Hamilton theorem. The eigenvectors (e1, . . . , ek) associated to its
biggest eigenvalues (λ1, . . . , λk) (k ≤ d) are the axes where the points are the most
dispersed.

PCA usually consist in the computation of the (e1, . . . , ek), in order to restrict the
space R

d to the subspace Vect{e1, . . . , ek} with k much smaller than d . To avoid the
cost of computing these eigenvectors, we instead multiply directly by the covariance
matrix, which naturally flattens vectors along the main eigenvector axis.

8.3.5 The PCA-jumping method

We now define the specific method we used based on the principles outlined above.
Other variants are clearly possible, and we discuss some of these later.

The matrix Ck is constructed as the covariance matrix of the set of the last
pk iterations of the algorithm: (α̂(k−1), . . . , α̂(k−pk)) for some well chosen pk . For
each iteration, we try three possible values for Ck : C1

k = Id the identity matrix,
C2

k = Cov(α̂(k−1), . . . , α̂(k−10)) the covariance matrix of the 10 last points, and C3
k

the matrix of the 100 last points. We will say that C1
k corresponds to using no mem-

ory, C2
k to a short memory, and C3

k to a long memory. When there are insufficient
points to fill the memory, we take as many as are available, for example when k ≤ 100
we use C3

k = Cov(α̂(k−1), . . . , α̂(1)).
So that the matrices control the direction but not the size of jumps, at each step k

we renormalize to form the steered direction vectors di
k = Ci

kΔk

‖Ci
kΔk‖‖Δk‖, i = 1, 2, 3.

We use the following aggressive algorithm to select the step size βi
k for each i:

(0) Initialize with βi
k = 1;

(1) If F(α̂(k) + βi
kd

i
k) < F(α̂(k) + 2βi

kd
i
k) then βi

k ← 2βi
k and repeat (1)

else return βi
k .

In other words, as long as doubling the jump size improves F , we double again.
Finally, we combine the step size and direction into three candidates: α̂i = α̂(k) +

βi
kd

i
k for i = 1, 2, 3, and set α̂(k+1) to the one giving the highest value of F .

It is important to note that despite the opportunistic character of this algorithm,
the crucial inequality F(α̂(k)) < F(α̂(k+1)) when a maximum is not yet reached is
guaranteed, since F(α̂(k)) < F(α̂(k) + Δk) is guaranteed by the definition of Δk , and
because F(α̂(k) + Δk) = F(α̂(k) + 1 × C1

kΔk) ≤ F(α̂(k+1)).

8.3.6 The cost of PCA-jumping

Figure 8 gives an example of the EM algorithm with no speed-up, with the jumping
method alone, and with PCA-jumping. Figure 9 shows the corresponding evolution
of the log-likelihood for these trajectories.

The effect of the multiplication by the covariance matrix is that the direction of
the basic EM step Δk is steered towards the axis where the previous iterations are

402 Queueing Syst (2010) 66: 369–412

Fig. 8 Trajectories of the two
smallest coordinates of α̂(k),
starting from the ground truth
α = (1,1/3,0.1,0.01) but with
a different data set than that of
Fig. 5, using different methods.
The “normal” trajectory (1 point
per 1000 shown) is the EM
algorithm without any speed-up,
“jump” trajectory is the jumping
method without PCA (choosing
always i = 1), and “jump+PCA”
uses the complete method. The
“normal” trajectory has 47073
steps, “jump” has 1215, and
“jump+PCA” only 59

Fig. 9 Evolution of the log-likelihood as a function of the number of iterations, corresponding to the
trajectories of Fig. 8. The right-side shows a zoom of the left-side

concentrated. Thanks to this, the unwanted oscillation effect of Fig. 7 is avoided, and
the size of the jumps (i.e. the values of βk) can become much larger.

We used three levels of memory to capture the shape of the trajectory on different
‘spatial’ scales. We noticed that usually all three alternatives are employed by the
algorithm, and that on average the biggest jumps were made with the short memory.

Each level of memory involves computing F , however the cost of this is not larger
than that of computing the initial Δk . In our problem, computing one normal EM step
costs more than computing the log-likelihood |T | times, since we need to compute
1
N

∑N
i=1 Eα̂(k) (lj |d(i)) for each j ∈ T , each Eα̂(k) (lj |d(i)) being more complicated to

compute than the likelihood. Therefore a single step of the PCA-jumping algorithm
usually costs no more than 2 or 3 times a normal EM step, while the total number of
steps is greatly reduced. The computation of the covariance matrices is, again for this
problem, very cheap compared to the time needed to compute F or Δk .

Queueing Syst (2010) 66: 369–412 403

Clearly, the above strategy has parameters which could be optimized. In particular
the number of memory levels, and their durations, could be altered. It would also
be possible to use the power Cn of a covariance matrix instead of C to increase the
steering effect, or even to use alternative matrices. In [6], PCA (even the eigenvectors)
was computed by using a recursive method allowing points to be added successively
until the number of principal dimensions ceased dropping. Such a method could be
employed here too.

More elaborate methods will always come at increased cost. The advantage of our
particular strategy within the PCA-jumping class is its simplicity, since by selecting
from only three possible steps, we capture the essence of traditional EM, as well
as knowledge of the local and global trajectory shape, and by multiplying by the
covariance matrix, we employ PCA without the usual costs of eigenvector evaluation.
As for the choice of βk , our strategy has the advantage of being both simple and very
aggressive, allowing large values of βk to be found quickly and in a single iteration,
with no arbitrary upper limit imposed. (We investigated the possibility of selecting
βk based on maximizing F(α̂(k) + βkCkΔk), through a binary search, however, the
overhead of the search was not compensated by the gain in jump size.)

8.3.7 PCA-jumping with sampling initialization: results

Our final method consists of using a number of steps of the sampling method to get
a rough approximation, which is then used to initialize the PCA-jumping method.
To control the resources used by the sampling method phase, we set the number of
sampling steps to be equivalent computationally to a single step of normal EM. This
method was used for most of the experiments presented in Sect. 7.

Figure 10 shows a comparison against the normal EM, using the same ground
truth and data as Figs. 6 and 8, starting from a random point. The speed-up due to the
method is very significant in this case. Table 9 shows a speed comparison against nor-
mal EM for one experiment for each of the 4 main examples of Sect. 7, starting from
the ground truth. All simulations were made on the same Intel Core2 Duo 2.40 GHz
laptop, but using only one CPU. Under the iterations column, “100 + x” means 100
sampling method steps followed by x steps of PCA-jumping. In all cases these 100
steps cost as much as one normal step. The cost of the sampling steps was omitted
when computing the average step time for PCA-jumping (last column).

We see that the acceleration method was particularly effective for the trees U9
and B3H2, where the convergence of the normal algorithm is extremely slow, but
still produces a substantial gain for the binary trees B1H3 and B1H4 where the
convergence of the normal EM was however already fairly good. The reason for
such a difference is, we believe, the fact that U9 and B3H2 each contain long
branches. The reason might be that we get exactly the same information for all the
nodes in one same branch, and it becomes thus much harder to discriminate between
them, resulting in slow convergence. This tendency has been also observed on other
trees.

We used the ground truth as the initial condition here as we noticed that, in some
cases, the normal EM converged towards a local maximum with a likelihood much
lower than the one found by the accelerated method. When starting both methods

404 Queueing Syst (2010) 66: 369–412

Fig. 10 Trajectories of the two smallest coordinates of α̂(k), for the ground truth α = (1,1/3,0.1,0.01),
starting from a random point. The “normal” trajectory (1 point per 5 shown) is the EM algorithm with-
out any speed-up. The “sampling” trajectory correspond to 100 iterations of the sampling method, (with
cost equal to 1 step of the normal EM), and the “jump+PCA” trajectory was obtained by initializing the
PCA-jumping method from the final point of the “sampling” trajectory. The “normal” trajectory has 58034
steps, while the “jump+PCA” has only 78. The computing time for the “sampling” and “jump+PCA” tra-
jectories together was 195 times less than for “normal”

Table 9 Comparison between the normal EM and the sampling + PCA-jumping method for one estima-
tion on the 4 trees in Sect. 7, starting from the ground truth

Tree Method Final Log-L # Iterations CPU time Av. step

U9
Normal EM −7.517 341845 1373 m 24 s 0.24 s

PCA-jump −7.517 100 + 699 6 m 46 s 0.58 s

B1H3
Normal EM −20.107 153 1 m 21 s 0.53 s

PCA-jump −20.107 100 + 14 20 s 1.42 s

B1H4
Normal EM −35.614 207 62 m 20 s 18.07 s

PCA-jump −35.614 100 + 28 14 m 12 s 30.4 s

B3H2
Normal EM −10.155 122941 2853 m 16 s 1.4 s

PCA-jump −10.155 100 + 429 21 m 40 s 3.0 s

from the ground truth they converged to the same fixed point, facilitating a direct
speed comparison. Table 10 shows the comparison when starting from a random
point. For the trees U9 and H3B2 the normal EM converged quite quickly to the
final point (thought still less quickly than the accelerated EM), but more importantly,
this point was not the MLE as its likelihood was smaller than the fixed point found
by the accelerated EM. In all the experiments we performed starting from the same
initial conditions, our method converged quicker than the normal EM, and always
gave a likelihood as good as the normal method, if not better.

Queueing Syst (2010) 66: 369–412 405

Table 10 Comparison between the normal EM and the PCA-jumping method for one estimation on the 4
trees in Sect. 7, starting from a random point

Tree Method Final Log-L # Iterations CPU time Av. step

U9
Normal −7.570 3933 19 m 26 s 0.29 s

PCA-jump −7.517 100 + 755 6 m 53 s 0.55 s

B1H3
Normal EM −20.107 216 1 m 57 s 0.54 s

PCA-jump −20.107 100 + 14 20 s 1.42 s

B1H4
Normal EM −35.614 315 89 m 25 s 17.03 s

PCA-jump −35.614 100 + 26 12 m 44 s 29.38 s

B3H2
Normal EM −10.255 2043 62 m 10 s 1.8 s

PCA-jump −10.155 100 + 676 41 m 41 s 3.7 s

9 Conclusions and future work

We have considered a network tomography problem based on a finite number of end-
to-end delay measurements made of multicast probes sent over a tree, where each
node of the tree imparts an exponentially distributed delay to each passing probe.
We showed how its assumptions of spatial independence, and sum-of-exponentials
delay marginals, follow naturally from the properties of Kelly networks in the case
of rare probing, thereby firmly establishing for the first time a connection between
a delay tomography problem and an inverse queueing problem over a network with
non-trivial topology.

The problem was formulated as the search for a maximum likelihood estimator
for the parameter, being the vector of mean delays for each node in the tree, which
due to its complexity was solved using the EM algorithm. We showed how the E- and
M-steps could be solved explicitly and combined, reducing the problem to the eval-
uation of a set of conditional probabilities of internal node states, given the observed
delays. We provided two solution methods for these with formal proofs, one based
on a recursion beginning from the root node, the other an explicit expression (though
with some recursive components). The latter has far fewer terms and is amenable to
efficient implementation, and it was used to provide solutions for a number of exam-
ples.

The EM algorithm is notoriously slow to converge, and moreover since the com-
binatorics of the tree make each step very expensive, only trivial trees can be solved
in practice without acceleration techniques. We developed a new technique, PCA-
jumping with Sampling Initialization, which provided a speed-up of between one and
three orders of magnitude for our problem. Its novel features include the use of Princi-
pal Component Analysis (yet without the need to calculate eigenvectors) to efficiently
mine local and global information about the EM trajectory in order to control jump
direction, and an efficient and aggressive geometric rule for the size of jumps which
allows large steps to be made when profitable, as is the case for our problem. Ini-
tialization is performed using a ‘Sampling’ method which has very low and bounded
cost, yet is capable of finding a starting point from which PCA-jumping can be effec-
tive. The speed of the method is compared to standard EM in a variety of examples,
and was also shown to provide better estimates in some cases.

406 Queueing Syst (2010) 66: 369–412

The main directions for future work lie in a more formal analysis of the acceler-
ation technique, its optimization with respect to a number of parameters, generaliza-
tions, and comparison against alternatives. Of particular interest is to understand to
what extent the ‘valley’ phenomenon which inspired the technique holds for other
problems, in particular non-linear ones where fixed points have small basins of at-
traction.

Acknowledgements This work was performed during the internship of F. Pin at CUBIN in Melbourne.
This research was supported under Australian Research Council’s Discovery Projects funding scheme
(project number DP0985673). The authors wish also to thank J.P. Laumond and S. Dalibard for their very
fast answers, and Earl Lawrence and George Michailidis for their kind answers and the access to their code
for least squares estimation.

Appendix

We recall here that we use the notation simplification from Sect. 6. In particular, we
use α in place of α̂(k) (as a single iteration is considered), and we set γ = (γj)j∈T =
(1/αj)j∈T .

A.1 Proof of the density formula

We will now prove that the description we gave for the expanded expression of
qα(T , d) is correct. For this, we will show that the following equality holds:

qα(T , d) = ΓT

∑

C cut of T
hα(T , d,C), (16)

for qα(T , d) defined by its integral expression (9) and for the right-side terms as
defined previously in Sect. 6.5.2. For this we will have an inductive reasoning over
the tree T , and we will use the inductive relation of Theorem 6.1.

Initialization of the induction

It is obvious that the formula holds for a single-node tree. In this case, we have
qα(d) = γ1e

−γ1d , and it is easy to verify that it correspond to the formula given
previously, since there is only one cut C = {1} with no past nor future. Therefore, we
have: qα(d) = γ1r(C)s(C)t (C) with r(C) = 1, t (C) = 1, and s(C) = e−γ1d1 , which
proves the initial step of the induction.

Induction step We consider a general tree, assume by induction that the formula is
true for each subtree of the root, and then prove that the formula is also true for the
whole tree.

For this we will have to make a distinction between two cases: if the root has
only one child and if it has at least two children. This distinction will explain why
we introduced the notion of branch, since in the one-child case, some terms from the
same branch can be combined.

Queueing Syst (2010) 66: 369–412 407

(a) Root with only one child

We have T (1) = T \ {0}, V (1) = V , and d(1) = d and the inductive formula (10)
becomes:

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0qα

(
T (1), d − (l0)

)
dl0.

By induction, we suppose the formula true for the subtree T (1), therefore:

qα

(
T (1), d − (l0)

) = ΓT (1)

∑

C cut of T (1)

hα

(
T (1), d − (l0),C

)
,

and since ΓT = γ0ΓT (1) :

qα(T , d) = ΓT

∑

C cut of T (1)

∫ d0

l0=0
e−γ0l0hα

(
T (1), d − (l0),C

)
dl0. (17)

Let us consider a cut C of T (1). We have:

hα

(
T (1), d − (l0),C

) = r
(

T (1), d − (l0),C
)
s
(

T (1), d − (l0),C
)
t
(

T (1), d − (l0),C
)
.

Remark A.1 For more convenient notations, we will denote h
(1)
α (C) := hα(T (1), d −

(l0),C) and for r, s, t as well, such that the last relation becomes h
(1)
α (C) =

r(1)(C)s(1)(C)t(1)(C).

We now want to compute this integral:
∫ d0
l0=0 e−γ0l0r(1)(C)s(1)(C)t(1)(C)dl0. As

we can see in their definition, the variable l0 does not appear in the terms r(1)(C)

and t (1)(C). This fact is obvious for r , but the recursive nature of t make it a little
more difficult to see. But looking back at the definition, we notice that the recursion
is made with “d − (dj) := (dk −dj)k∈Fj

”. Since here our whole formula is applied to
d ′ = d − (l0), we see that the term l0 is annihilated in the expression of d ′ − (d ′

j) =
((dk − l0) − (dj − l0))k∈Fj

. And therefore, l0 does not appear in t (1)(C).
Thanks to this, we have r(1)(C) = r(T (1), d,C) and t (1)(C) = t (T (1), d,C) and

we can take r(1)(C) and t (1)(C) out of the integral, leaving us with this integral to
expand:

∫ d0

l0=0
e−γ0l0s(1)(C)dl0

=
∫ d0

l0=0
e−γ0l0

∏

j∈C

e−γj (dj −l0)

∏
k∼j
k �=j

(γk − γj)
dl0

408 Queueing Syst (2010) 66: 369–412

=
[

1

(
∑

j∈C γj) − γ0

∏

j∈C

e−γ0l0
e−γj (dj −l0)

∏
k∼j
k �=j

(γk − γj)

]d0

l0=0

= 1

(
∑

j∈C γj) − γ0

∏

j∈C

e−γ0d0
e−γj (dj −d0)

∏
k∼j
k �=j

(γk − γj)

+ 1

γ0 − ∑
j∈C γj

∏

j∈C

e−γj dj

∏
k∼j
k �=j

(γk − γj)

= e−γ0d0
s(T (1), d − (d0),C)

(
∑

j∈C γj) − γ0
+ s(T (1), d,C)

γ0 − ∑
j∈C γj

= e−γ0d0K(C) + s(T (1), d,C)

γ0 − ∑
j∈C γj

.

As we will see, the exact value of K(C) is in fact not really important for the
proof. Once here, the hardest part remains: we have to put all these terms together to
prove that the formula is true for the whole tree T .

Putting the last equation back in (17), we get

qα(T , d) = ΓT

[
e−γ0d0K ′ +

∑

C cut of T (1)

r(1)(C)s(T (1), d,C)

γ0 − ∑
j∈C γj

t(1)(C)

]
, (18)

where K ′ = ∑
C cut of T (1) r(1)(C)t(1)(C)K(C).

As we noticed already, we have r(1)(C) = r(T (1), d,C) and t (1)(C) =
t (T (1), d,C). But, since the term t (T (1), d,C) is a term depending only from the
cut C and its future in the tree T (i), which are the same in the tree T , we have
t (T (1), d,C) = t (T , d,C).

We will now prove that:

r(T (1), d,C)s(T (1), d,C)

γ0 − ∑
j∈C γj

= r(T , d,C)s(T , d,C).

It is relatively easy to see by looking at the definitions of r and s, but two cases
must be distinguished: when C is a singleton, like C = {1} here, or when C contains
2 nodes or more. Indeed, if C is a singleton, say C = {i}, then i belongs to the

present of 0 and 1 (note that here 0 ∼ 1), and we have s(T , d,C) = s(T (1),d,C)
γ0−γi

and

r(T , d,C) = r(T (1), d,C) = 1 since the past of C is empty in this case. In the other
case where C has 2 nodes or more, then we see that 0 and 1 belong to the past of C

and we have s(T , d,C) = s(T (1), d,C) and r(T , d,C) = r(T (1),d,C)
γ0−∑

j∈C γj
. In both cases,

the identity is then proved.

Queueing Syst (2010) 66: 369–412 409

This results in:

qα(T , d) = ΓT

[
e−γ0d0K ′ +

∑

C cut of T
C �={0}

hα(T , d,C)

]
, (19)

since we notice that all the cuts of T (1) plus the cut {0} forms exactly all the cuts
of T .

Finally, in order to show that the formula is true for the tree T , all we have to do
left is to show that the term e−γ0d0K ′ is equal to hα(T , d, {0}). If we look back at
the expression of K ′ = ∑

C cut of T (1) r(1)(C)t(1)(C)K(C), it seems difficult to show
directly that this sum of terms combine into just one and is equal to hα(T , d, {0}).
Luckily, we will not have to do this, since a simple argument of symmetry will suffice.
All we have to do is to notice that the function qα(T , d) stays the same if we exchange
the nodes 0 and 1, i.e. if we exchange the values of γ0 and γ1. This becomes obvious
if we take a look at the two station case, since l1 + l2 = l2 + l1, the two following
trees are equivalent:

More generally, no permutation inside a branch of T will change qα(T , d). Thanks
to this, we see that by exchanging the nodes 0 and 1, we get from (19):

qα(T , d) = ΓT

[
e−γ1d1K ′′ +

∑

C cut of T
C �={1}

hα(T , d,C)

]
, (20)

and by combining (19) and (20), we get e−γ0d0K ′ + hα(T , d, {1}) = e−γ1d1K ′′ +
hα(T , d, {0}), and we can finally identify the two terms e−γ0d0K ′ and hα(T , d, {0})
since the term hα(T , d, {0}) contains an exponential function of the form e−γ0d0 and
hα(T , d, {1}) does not.

Finally, we proved that in this first case the formula (16) is also true for the tree T .

(b) Root with two children or more

The idea here is roughly the same as in the previous case, but the symmetry argu-
ment is no longer required, since here the new terms in e−γ0d0 will not combine as
they did earlier.

410 Queueing Syst (2010) 66: 369–412

By induction, we suppose the formula true for all the subtrees T (1), . . . , T (p). We
therefore have for all i ∈ {1, . . . , p}:

qα

(
T (i), d − (l0)

) = ΓT (i)

∑

C cut of T (i)

hα

(
T (i), d(i) − (l0),C

)
.

In this case, the inductive formula (10) gives

qα(T , d) =
∫ d0

l0=0
γ0e

−γ0l0

[
p∏

i=1

qα

(
T (i), d(i) − (l0)

)
]

dl0.

We already have that γ0
∏p

i=1 ΓT (i) = ΓT . Therefore we get:

qα(T , d) = ΓT

∫ d0

l0=0
e−γ0l0

[
p∏

i=1

∑

C cut of T (i)

hα

(
T (i), d(i) − (l0),C

)
]

dl0.

The product of sums can be easily expanded by noticing that each p-tuple
(C1, . . . ,Cp) of cuts of the trees T (1), . . . , T (p) forms exactly a partition of the cut
C = ⋃p

i=1 Ci of the forest F0 = (T (1), . . . , T (p)). We therefore have a bijection be-
tween the cuts C of F0 and the p-tuple of cuts (C1, . . . ,Cp) of T (1), . . . , T (p). We
can then write that:

qα(T , d) = ΓT

∫ d0

l0=0
e−γ0l0

[
∑

C cut of F0

p∏

i=1

hα

(
T (i), d(i) − (l0),Ci

)
]

dl0

= ΓT

∑

C cut of F0

∫ d0

l0=0
e−γ0l0

p∏

i=1

hα

(
T (i), d(i) − (l0),Ci

)
dl0.

Let us then consider a cut C of F0. As we did in the first case, we introduce the
lighter notation h

(i)
α (Ci) = hα(T (i), d(i) − (l0),Ci) and for r, s and t as well, such

that h
(i)
α (Ci) = r(i)(Ci)s

(i)(Ci)t
(i)(Ci). Here again, we notice that the variable l0

does not appear in r(i)(Ci) nor t (i)(Ci). We can then take these two terms out of the
integral:

∫ d0

l0=0
e−γ0l0

p∏

i=1

h(i)
α (Ci) dl0 =

p∏

i=1

r(i)(Ci)t
(i)(Ci)

∫ d0

l0=0
e−γ0l0

p∏

i=1

s(i)(Ci) dl0.

By looking back at the definition of t , and since l0 does not appear in t (i)(Ci), we
have t (i)(Ci) = t (T (i), d(i) − (l0),Ci) = t (T (i), d(i),Ci), and therefore:

p∏

i=1

t (i)(Ci) =
p∏

i=1

∏

j∈Ci

tj
(

T (i), d(i),Ci

) =
p∏

i=1

∏

j∈Ci

tj (F0, d,C) =
∏

j∈C

tj (F0, d,C)

= t (F0, d,C).

Queueing Syst (2010) 66: 369–412 411

The fact that tj (T (i), d(i),Ci) = tj (F0, d,C) comes from the fact that tj (F0, d,C)

depends only on the node j and its future.
By looking at the definition of r , we also deduce that:

p∏

i=1

r(i)(Ci) =
p∏

i=1

∏

j∈Past(T (i),Ci)

1

γj − ∑
k∈Ci
j�k

γk

=
∏

j∈Past(F0,C)

1

γj − ∑
k∈C
j�k

γk

= r(F0, d,C),

where we recall that Past(T (i),Ci) is the past of the cut Ci in the tree T (i), and
Past(F0,C) is the past of the cut C in the sub-forest F0. We especially pay attention
to the fact that indeed {k ∈ Ci | j � k} = {k ∈ C | j � k}.

We then focus on the integral:

∫ d0

l0=0
e−γ0l0

p∏

i=1

s(i)(Ci) dl0 =
∫ d0

l0=0
e−γ0l0

p∏

i=1

∏

j∈Ci

e−γj (dj −l0)

∏
k∼j
k �=j

(γk − γj)
dl0

=
∫ d0

l0=0
e−γ0l0

∏

j∈C

e−γj (dj −l0)

∏
k∼j
k �=j

(γk − γj)
dl0

= e−γ0d0
s(F0, d − (d0),C)

(
∑

j∈C γj) − γ0
+ s(F0, d,C)

γ0 − ∑
j∈C γj

,

the last equality having been already seen in the first case. Putting all back together
we get

qα(T , d) = ΓT

∑

C cut of T
C �={0}

[
e−γ0d0

hα(F0, d − (d0),C)

(
∑

j∈C γj) − γ0

+ r(F0, d,C)s(F0, d,C)t (F0, d,C)

γ0 − ∑
j∈C γj

]

since the cuts of T are the cuts of F0 plus the cut {0}, and because we already noticed
in the first case that r(F0, d,C) = r(F0, d − (d0),C) and t (F0, d,C) = t (F0, d −
(d0),C). We then notice that for any cut C �= {0}, we have r(F0,d,C)

γ0−∑
j∈C γj

= r(T , d,C),

s(F0, d,C) = s(T , d,C), and t (F0, d,C) = t (T , d,C). Therefore:

qα(T , d) = ΓT

[
e−γ0d0

∑

C cut of F0

hα(F0, d − (d0),C)

(
∑

j∈C γj) − γ0
+

∑

C cut of T
C �={0}

hα(T , d,C)

]
.

Finally, since s(T , d, {0}) = e−γ0d0 and r(T , d, {0}) = 1, we see that:

e−γ0d0
∑

C cut of F0

hα(F0, d − (d0),C)

(
∑

j∈C γj) − γ0
= e−γ0d0 t (T , d, {0}) = hα(T , d, {0}),

412 Queueing Syst (2010) 66: 369–412

and we finally prove that the formula (16) holds also for the tree T .
To conclude, the induction being now proved in both cases, we conclude that our

formula is true for any tree T . The proof of the expression of ξα(l|d) follows a similar
but slightly more complicated reasoning and is omitted for space reasons.

References

1. Baccelli, F., Kauffmann, B., Veitch, D.: Inverse problems in queueing theory and internet probing.
Queueing Syst. 63(1–4), 59–107 (2009)

2. Chen, A., Cao, J., Bu, T.: Network tomography: identifiability and Fourier domain estimation. In:
IEEE INFOCOM, pp. 1875–1883 (2007)

3. Chrétien, S., Hero, A.O.: Kullback proximal algorithms for maximum likelihood estimation. Inria
report 3756 (2009)

4. Coates, M., Nowak, R.: Network tomography for internal delay estimation. In: Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah (2001)

5. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
6. Dalibard, S., Laumond, J.P.: Control of probabilistic diffusion in motion planning. In: 8th International

Workshop on the Algorithmic Foundations of Robotics (WAFR 2008) (2008)
7. Duffield, N., Presti, F.L.: Multicast inference of packet delay variance at interior network links. In:

IEEE INFOCOM, Tel Aviv, Israel, pp. 1351–1360 (2000)
8. Huang, H.S., Yang, B.H., Hsu, C.N.: Triple jump acceleration for the EM algorithm. In: IEEE Inter-

national Conference on Data Mining (ICDM’05) (2005)
9. Jamshidian, M., Jennrich, R.I.: Conjugate gradient acceleration of the EM algorithm. J. Am. Stat.

Assoc. (1993)
10. Kauffmann, B., Baccelli, F., Veitch, D.: Towards multihop available bandwidth estimation—inverse

problems in queueing networks. In: Proc. ACM Sigmetrics/Performance’09, Seattle, WA, USA
(2009)

11. Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979)
12. Lawrence, E., Michailidis, G., Nair, V.N.: Network delay tomography using flexicast experiments.

J. R. Stat. Soc., Ser. B 68, 785–813 (2006)
13. Lawrence, E., Michailidis, G., Nair, V.N.: Statistical inverse problems in active network tomography.

In: Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. IMS Lecture Notes-
Monograph Series, vol. 54, pp. 24–44. IMS, Beachwood (2007). doi:10.1214/074921707000000049

14. Liang, G., Yu, B.: Maximum pseudo likelihood estimation in network tomography. IEEE Trans. Signal
Process. 51(8), 2043–2053 (2003) (Special Issue on Data Networks)

15. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley Series in Proba-
bility and Statistics. Wiley, New York (2008)

16. Presti, F.L., Duffield, N.G., Horowitz, J., Towsley, D.: Multicast-based inference of network-internal
delay distributions. IEEE/ACM Trans. Netw. 10(6), 761–775 (2002)

17. Salakhutdinov, R., Roweis, S.: Adaptive overrelaxed bound optimization methods. In: International
Conference on Machine Learning (ICML-2003) (2003)

18. Shih, M.F., Hero, A.O.: Unicast-based inference of network link delay distributions with finite mixture
models. IEEE Trans. Signal Process. 51(8), 2219–2228 (2003) (Special Issue on Data Networks)

19. Tsang, Y., Coates, M., Nowak, R.: Network delay tomography. IEEE Trans. Signal Process. 51(8),
2125–2136 (2003) (Special Issue on Data Networks)

20. Wu, C.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11(1), 95–103 (1983)

http://dx.doi.org/10.1214/074921707000000049

	Statistical estimation of delays in a multicast tree using accelerated EM
	Abstract
	Introduction
	Related work
	A delay tomographic queueing inverse problem
	The EM algorithm
	The maximum likelihood estimator
	The EM algorithm

	EM for exponential tomography
	Specialization of the iterative formula

	Explicit formula for E(l|d)
	Notations
	Some simple examples
	(a) 2 nodes tree
	(b) Root with 2 leaves

	Inductive expression
	More examples
	(c) Unary tree with K nodes
	(d) One root with two 2-server leaves

	Explicit expression
	Vocabulary for tree combinatorics
	The explicit form of qalpha
	(i) Past and present
	(ii) Future

	The explicit form of xialpha(l|d)
	(a) Past and present
	(b) Future

	Alternative informal description

	Implementation
	Size of the expression and complexity of the EM step

	Results
	Unary tree case
	(a) Two node case
	(b) Nine nodes case (U9)

	General case
	(a) Binary tree of height 3 (B1H3)
	(b) Binary tree of height 4 (B1H4)
	(c) Tree with branches (B3H2)

	Speed of convergence
	Comparison to the least squares method
	Resilience to measurement noise and imperfect models

	Steered jumping for EM
	Analysis of the iteration
	Example one
	Example two

	The sampling method
	The steered jumping method
	General context
	Jumping method
	Steered jumping method
	A short introduction to PCA
	The PCA-jumping method
	The cost of PCA-jumping
	PCA-jumping with sampling initialization: results

	Conclusions and future work
	Acknowledgements
	Appendix
	Proof of the density formula
	Initialization of the induction
	Induction step
	(a) Root with only one child
	(b) Root with two children or more

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

