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Abstract—The Internet heavily relies on Content Distribution
Networks and transparent caches to cope with the ever-increasing
traffic demand of users. Content, however, is essentially versatile:
once published at a given time, its popularity vanishes over time.
All requests for a given document are then concentrated between
the publishing time and an effective perishing time.

In this paper, we propose a new model for the arrival of
content requests, which takes into account the dynamical nature
of the content catalog. Based on two large traffic traces collected
on the Orange network, we use the semi-experimental method
and determine invariants of the content request process. This
allows us to define a simple mathematical model for content
requests; by extending the so-called “Che approximation”, we
then compute the performance of a LRU cache fed with such
a request process, expressed by its hit ratio. We numerically
validate the good accuracy of our model by comparison to trace-
based simulation.

I. INTRODUCTION

Driven by video streaming, Internet data traffic is rapidly
growing, up to 41% at the busy hour in 2012 according to a
Cisco forecast. Content delivery networks (CDNs) are now a
key component of the Internet architecture and play a central
role in coping with such a demand. By means of caching and
duplicating content near the end-users, CDNs provide an In-
ternet experience with high performance and high availability.
Additionally, as the cost of memory decreases faster than that
of bandwidth, Internet Service Providers (ISPs) also locally
resort to transparent caching to decrease the load on specific
expensive links. This favorable bandwidth-memory trade-off
has been confirmed by recent research [3], [9], [12]. As most
practical replacement policies have a behaviour similar to that
of Least-Recently-Used (LRU), we here follow [9] in using
the LRU replacement policy as a representative one.

Video delivery is now the majority of traffic at the busy
hour, simultaneously driven by User-Generated Content (UGC)
traffic and by Video-on-Demand (VoD) services. YouTube, the
best known of UGC sites today, has indeed emerged as an
hyper-giant among the Content Providers, serving up to 25%
of the traffic at the busy hour in ISP networks. On the other
side, Video-on-Demand is growing rapidly, as examplified by
the development of NetFlix. Understanding the performance
of caches for video delivery becomes therefore crucial for
network provisioning and operation. It allows simultaneously
to decrease the network load, reduce dimensioning needs and
decrease peering costs.

The versatility of content, however, raises a new challenge.
As new content is continuously published, and (part of) the old
content becomes outdated and non-popular, the popularity of a

given document dynamically evolves with time. The dynamics
of the content catalog has significant implication for caching
performance. First, even with infinite memory, caches cannot
manage to serve every request: in fact, the first request for any
document will obviously not find the content present in the
cache. Secondly, the request traffic is not stationary and caches
never experience a steady state; indeed, the set of documents
which are currently stored in the caches slowly evolves with
time, as new content replaces the older one.

Moreover, as detailed in Section IV, the stationarity periods
of the content requests process prove to be short. Consequently,
due to the heavy tail of content popularity distributions,
estimating the popularity of content during such a short period
leads to significant variance. Additionally, the cache may not
reach its steady state over short periods, and its performance
will therefore depend on the recent past. Characterizing the
cache performance at the busy hour is therefore a difficult
task due to such inherent variance. This consequently leads
us to express the cache performance as the long term average
hit ratio, which estimates the average dimensioning gains and
fully characterizes the peering gains.

In this paper, we provide a first answer to that dynamicity
issue. Through basic manipulations, hereafter called semi-
experiments, on two large traces of YouTube and VoD traffic
collected from the Orange network, we determine the key
invariants of the video request process and propose a model
which captures them. This model is amenable to mathemati-
cal analysis: Using the so-called Che approximation [6], we
express the hit ratio of a LRU cache fed by such a request
process as a function of basic document statistics. We finally
show via simulation that this approximation accurately matches
the empirical hit ratio.

Our key findings are the following: (i) The document arrival
process can be well represented by a Poisson point process;
(ii) The document requests process can be well represented
by a Poisson-Poisson cluster process; (iii) The hit ratio can
be expressed in terms of the distribution of document request
intensities and document lifespans only.

The remainder of the paper is organized as follows. Sec-
tion II presents related work. Section III describes the dataset
and the statistics drawn from traces. In Section IV, we apply
the semi-experiment methodology and determine the structural
invariants which are relevant for caching. Based on these
observations, we then build a model (Section V) for the request
process and estimate the hit ratio for a LRU cache. That
estimate is applied to both YouTube and VoD traces and
successfully compared to the empirical hit ratio in Section VI.



II. RELATED WORK

We describe two areas of related work: content-level traffic
characterization and cache performance analysis.

The popularity distribution of documents has been exten-
sively discussed since the 90’s. It has been shown to exhibit
a light-tailed behavior (typically from a Weibull distribution)
when considering the total number of requests for documents
over a long period, and a heavy-tailed behavior (typically a
Zipf distribution) when analyzing the viewing rate of docu-
ments (see [4], [5], [13], [19] for recent references).

The temporal pattern of document requests has also been
studied. In [22], authors propose a Markov model with short
term memory for document requests, but the set of available
documents remains fixed. The lifespan of documents (defined
as the time elapsed between the first and the last requests)
has been studied in [7], [8]. Similarly, articles [19], [23]
show that only a small portion of the documents are active
at any moment, and that popular documents have a significant
turnover. Document arrivals into the catalog are identified in
[13] and their impact on the maximum achievable hit ratio is
discussed. The distribution of requests for the same document
over its lifetime is studied in [5], [8], but the results are
aggregated over all documents, and therefore do not lead to
a model for the request process. To the best of our knowledge,
[24] is the single prior work aiming at a full description of the
request process. Due to the short duration of the studied traces,
however, the inclusion of catalog dynamics is rather simplistic
in the proposed model. Finally, [12] proposes a simple model
for the dynamics of documents which are requested only once,
but the set of documents with several requests remains fixed.
In terms of traffic characterization, the closest related work
to ours is [14], although the latter focuses on packet-level
traffic characterization. In particular, the authors introduce the
so-called “semi-experimental methodology” that we use in
section IV.

As regards cache performance literature, we here only
report the recent literature focusing on the analytical char-
acterization of the performance of caches applying to LRU
policy. An asymptotic analysis of the LRU miss rate for
either Zipf or Weibull requests distribution, with simple closed-
form formulas, is provided in [15]. Che et al. [6] propose
another approximation, which is asymptotically exact for a
Zipf popularity [16] and also accurate for other types of
distributions [11].

We are aware of a few works which do not assume i.i.d.
request sequences. In particular, [17] studies the performance
of a LRU cache fed by correlated requests, where the instanta-
neous request distribution depends on a stationary modulating
Markov process; the asymptotic performance is identical to
that under IRM, showing that such a short-term correlation
does not fully capture the content dynamics. [21] also estimates
the performance of a LRU cache when the requests form
a Markov chain, but no closed-form formula is provided.
[10] and [18] provide a theoretical analysis of a network of
LRU cache, when requests for a given document form an
arbitrary renewal process; correlation among requests can thus
be incorporated, but the catalog of document remains static.

Reference [12] is the first published paper to address,
though in a limited way, the dynamics of content catalog. It

provides an asymptotic performance formula when requests
for popular documents follow a Zipf law under IRM, and
an exogenous stream of unique requests for an infinite set
of “noise” documents is added. Finally, recent developments
[1], [2], though not yet refereed, share the core intuitions
of our paper; they also model the document request arrivals
using a shot-noise (or Poisson cluster) process, where the
document popularity profile is parametrized by both its average
popularity and its lifespan. We differ, however, from these
papers by the semi-experiment methodology that we use in
section IV and which justifies our proposed model. We also
validate our results on two different traces, corresponding to
the traffic profiles of YouTube and Video-on-Demand traffic.
Finally, the long duration of our traces (respectively, 3 months
and 3.5 years) enables us to better emphasize the impact of
temporal locality on the request process.

III. DATASET

A. Data Collection

We have gathered two datasets from two services, which
have different traffic profiles. The first dataset, hereafter named
YT, captures YouTube traffic of Orange customers located in
Tunisia. We have access to the logs of a transparent caching
system set up in order to offload the country’s international
connection. This system is a commercial product from a large
company specialized in the design and management of CDNs.
In the observation period of January–March 2013, we collected
around 420 millions of chunk requests from about 40 000 IP
addresses to more than 120 million chunks. For each chunk
request in this trace, the logs contain the user (anonymous)
IP address, a video identifier, the timestamp of the end of
session, the number of transmitted bytes, the duration of the
HTTP connection and the beginning and ending position of the
specific chunk requested, the latter information being available
for 96% of the data.

The second dataset, hereafter called VoD, comes from the
Orange Video-on-Demand service in France. This service pro-
poses to Orange customers both free catch-up TV programs,
pay-per-view films and series episodes. Probes deployed at
the access of the service platforms recorded video requests
from June 2008 to November 2011. The data amounts to more
than 3 400 000 requests from 60 000 users to 120 000 videos.
The records in this trace consist of the request timestamp, an
internal client (anonymous) identifier and a video identifier.

B. Processing

For simplicity and mathematical tractability, we focus our
analysis at the document level rather than chunk level.

Since the YT trace consist of chunk requests, we consoli-
date them to identify the user video sessions. To this aim, we
first identify the requests from a single user to a single object.
Then, when the chunking information is available, we simply
concatenate the requests corresponding to a chunk chain. For
the requests without chunk identification, we aggregate all the
requests made by the same user for the video, and with inter-
arrival time smaller than 8 minutes. This threshold corresponds
to the 95% percentile of the length session distribution of
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Fig. 1: Number of requests as a function of their rank.

requests with chunk data.1 The result of this procedure is
our working YT dataset consisting of more than 46 000 000
requests to around 6 300 000 unique documents.

In the case of the VoD trace there was no need of the
above consolidation procedure. Nonetheless, the trace con-
tained requests to movie trailers or to full content but with
short duration. We consider these content “surfing” requests
not relevant in terms of caching performance and thus we
discarded them from the VoD dataset. The working VoD
dataset contains around 1 800 000 requests to more than 87 000
different objects.

C. Distribution of the Number of Requests

The logarithmic rank-frequency chart in Figure 1 shows
two different popularity behavior for the traces. As expected,
in the “short” YT trace, the 10 000 most popular documents
follow a Zipf distribution with exponent 0.61, while the tail
has an exponent of 1.03. As for the VoD trace, the popularity
does not follow a power law, but is best fitted by a Weibull
(also called Stretched-Exponential) distribution.

D. Distribution of Lifespan and Request Rate

We here provide a finer characterization that considers not
only the number of requests to a given document, but also the
period of time during which the document is active. For a given
document, let τ denote its lifespan, that is, the period where the
users can address requests to it; let then λ be the corresponding
average request rate to that document. We estimate these two
quantities that form the basis of our analysis.

Specifically, consider a given document with n ≥ 2
requests, and let ΘI < ΘF be the Initial and Final request
times of that document in the observation window. We then
estimate the catalog lifespan τ by the unbiased estimator

τ̂ = (ΘF −ΘI)×
n+ 1

n− 1
(1)

(in fact, assuming that the n request times Θ1, ..., Θn are
uniformly distributed on the interval with length τ , we easily
calculate E [ΘF −ΘI ] = n−1

n+1 × τ ).

1The reason to select a percentile instead of the maximum is that there are
185 chunk chains with extreme duration (in the order of days or even months).
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Fig. 2: Kernel density estimate for lifespan τ .

Regarding intensity λ, our sample is biased by the fact that
we collect only documents with at least one request. To take
this bias into account, we assume that n is a Poisson random
variable with mean λτ , given n ≥ 1. We thus estimate the
request rate λ by

λ̂ = n′/τ̂ (2)

where n′ verifies equation n′/(1 − e−n′) = n (the latter has
a unique positive solution n′, and verify n′ ≈ n for n greater
than 10). Both estimators τ̂ and λ̂ are valid only for documents
for which we have at least two requests. Consequently, in the
remaining of this section, we will make the analysis over the
set of documents that verify the latter condition.

Figure 2 shows a kernel density approximation of τ̂ for
each dataset. Note that the formula of τ̂ allows a positive
density for values larger thant the observation window, espe-
cially for documents with a small number of requests. Also,
in the YT data, we observe a probability mass accumulation
effect near the mark of three months, which is precisely the
size of the observation window. This is a truncation effect
and it is a sign that the lifespan of a video may be far
longer than our current observation window in this dataset. As
regards the VoD data, most documents have a lifespan shorter
than one month. This corresponds to the numerous catch-
up TV programs. The remaining documents have a different
distribution, with lifespans varying on the range of a few
weeks to the observation period (3.5 years). Due to the large
observation period, the truncation effect is not visible.

As regards λ̂ (figures are here omitted for spatial con-
straints), the distribution of log λ̂ shows a behavior similar to
that of a Gamma distribution in the YT dataset and a Weibull
distribution in the VoD dataset, but still differs numerically
from this family. This suggests that, in our traces, the random
variable λ has a heavy tailed distribution.

The density estimation for the pair (log λ̂, τ̂) is shown in
Figure 3, with a focus on small values of τ̂ for the VoD data
(the probability mass is concentrated on the darkest areas). In
both cases, we conclude from the empirical densities that τ and
λ are not independent random variables. In fact, in YT dataset
for example, marginal distributions for τ̂ and log(λ) have
significant masses at τ̂ = 0.1 and log(λ̂) = −9.0; no mass,
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Fig. 3: Density kernel estimate for the pair (τ, log λ).

however, is observed in Figure 3a for the pair (0.1,−9.0).
Besides, the presence of managed catch-up TV documents in
the VoD data is visible in Figure 3b, τ̂ showing density peaks
at values 1, 2 and 4 weeks, corresponding to the availability
durations of programs. Finally, as the joint distribution is not
easy to fit in both YT and VoD cases, we will use the empirical
joint distribution in the following.

IV. SEMI-EXPERIMENTS

In this section, we identify the structural properties of the
request process that are relevant to LRU caching, namely:

(i) Overall correlation between requests.
(ii) Correlation in the catalog publications.

(iii) Correlation between the requests of a document.

Additionally, in the case of the first property, we look for the
timescale where it starts to influence the performance of LRU.

Original Request Sequence 

Global Randomization 

Positional Randomization 

Local Randomization 

Time 

Time 

Fig. 4: A schematic view of all three randomizations.

To this aim, we use the semi-experimental methodology
[14]. Each semi-experiment is based on two procedures: The
first one is to randomly rearrange the original request sequence
in a way that destroys a specific correlation structure; the
second one is to use this new trace as an input for a simulation
of a LRU cache and compute the corresponding hit ratio curve.
We then look at the discrepancies from the hit ratio curve of
the original trace; if they differ significantly we infer that the
broken structure is relevant to LRU caching. In the following,
we explain in detail each semi-experiment and its findings.

(i) Overall Correlation Between Requests: In this semi-
experiment, we completely break the correlation structure of
the request sequence by placing each request at an i.i.d.
uniform time in the interval [0;W ], where W is the size
of the observation window. Any request sequence shuffled
in this manner leads to a IRM sequence, since the process
destroys any dependence structure. We call this procedure
global randomization and show an example in Figure 4.

In Figure 5a, we compare the resulting hit ratio to that
obtained with the original trace and observe that the hit ratio
of the latter is lower for any cache size in both datasets, but
notoriously in the VoD case. More precisely, we compute the
mean absolute relative error or MARE2 between hit ratio
curves of the original and randomized sequence. In the YT
case, the MARE has a value of 5.0%; this value might seem
low, but it comes mostly from the left of the curve. Since
the left part of the curve is where practical cache sizes lie,
this discrepancy is still important. As for the VoD trace, the
MARE amounts to 17.3% which confirms the huge difference
observed in Figure 5a. We thus conclude that the correlation
between requests is a meaningful factor for the performance
of LRU caching and that the IRM assumption leads to an
underestimation of the hit ratio, which can be very significant.

(ii) Correlation in Catalog Publications: We now examine
how sensitive is our data with respect to the publication of new

2The MARE between a model sequence (yi)1≤i≤N and empirical data
(xi)1≤i≤N is defined as 1

N

∑N
i=1

|xi−yi|
|xi|

.



documents to the catalog. To this aim, we perform a positional
randomization, which breaks the correlation structure between
the first requests of documents, which we use as an estimate of
the publication time. The procedure consists, for a given docu-
ment, in leaving the inter-arrival times of its request sequence
unchanged and jointly shift all of them by a random quantity,
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Fig. 5: Comparison of the hit ratio of the original request
sequence versus the results of each randomization.

as shown in Figure 4. More precisely, let Θ1,Θ2, . . . ,Θk

the request times for a document; first, we draw a uniform
random number U from the interval [0,W − (Θk − Θ1)],
then we define the new request sequence Θ∗1,Θ

∗
2, . . . ,Θ

∗
k by

Θ∗i = U + Θi −Θ1 for 1 ≤ i ≤ k.

In both traces, the resulting hit ratio obtained shows no
difference from the original, as observed in Figure 5b. Indeed,
the MAREs in this semi-experiment are merely 0.3% in the
YT case and 0.1% in the VoD case. We therefore conclude that
document arrivals have no correlation structure with significant
impact on caching.

(iii) Correlation between Requests of a Document: In this
semi-experiment, we aim to break the request dependence
structure for each document. To achieve this, we perform
a local randomization: For a given document, we keep its
first and the last request times fixed and only shuffle the
ones in between at i.i.d. times following a Uniform [Θ1,Θk]-
distribution. Note that this procedure preserves the lifespan and
intensity statistics discussed in Section III-D, but breaks any
other correlation structure inherent to the request process of
the document.

Figure 5c shows that, although the resulting hit ratio is
slightly below (resp. over) the original for small (resp. large)
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Fig. 6: Comparison between the hit ratio of the original trace
and the global randomization at different scales.



cache sizes, the MARE is just 1.6% in the YT trace and 0.7%
in the VoD trace. We thus conclude that the correlation among
requests of a given document has little impact on the LRU
performance and we can safely neglect it for modeling purpose.

Relation between Correlations and Timescales: We now
determine at which timescale the correlation between requests
has an impact in the LRU performance. With this in mind,
we design a slightly different semi-experiment where we
first extract sub-traces of different timescales, choosing high
load periods. Then we apply the global randomization semi-
experiment to each of these shorter traces. For each dataset,
we distinguish three timescales and the results for each one
are shown in Figure 6; other timescales lead to results that are
just intermediate to the three presented here.

Near the first timescale (one week for YT and one month
for VoD) and beyond, all timescales have a request correlation
structure that approaches that observed in the full trace, and
thus its hit ratio differs significantly from that of the global
randomization. Indeed, already at this timescale, the MAREs
are of 5.3% and 11.6% in the YT and VoD datasets, respec-
tively; around the second timescale (four hours for YT and
one day for VoD), we observe a decrease in the discrepancies
as the MAREs are 5% and 2.3% in the YT and VoD case,
respectively. Though we see that the correlation structure does
not influence strongly the hit ratio, we remark again that the
underestimation happens in the left side of the curves which
corresponds to practical cache size. Finally for traces around
the last timescale (half hour for YT and three hours for VoD),
the MARE are 1.4% and 2.3% for YT and VoD, respectively,
and we thus conclude that there are no significant structures
between requests at this timescale.

Insights Gained: The latter results of the semi-experiments
lead us to conclude that:

I1: The correlation structure of the whole request process
is not negligible, in terms of the hit ratio, at large
timescales. We also infer that most of the correlation
comes from the fact that all requests for the same
document are grouped within its lifespan.

I2: The document publications exhibit a correlation
structure that does not have a significant impact on
the hit ratio. In particular, we deduce that document
arrivals to the catalog can be modeled by a Poisson
process without losing accuracy on the estimation of
the hit ratio curve.

I3: For a given document, the request process within its
lifespan exhibits some structure, but with little impact
of the hit ratio. Thus, for a given document, we
can approximate the requests sequence by a Poisson
process defined on the lifespan of the document while
still preserving the hit ratio.

V. MATHEMATICAL ANALYSIS

In this section, we use the previous insights to build a
mathematical model for the whole request process and detail
the estimation of the corresponding hit rate in a LRU cache
(throughout, the caching granularity is that corresponding to a
document). The proofs of all propositions are in [20].

A. Catalog Arrival and Request Processes

We build our model for the document request process by
following a top-down approach:

- on the top level, we consider the ground process Γ,
hereafter called catalog arrival process; this point process
dictates the consecutive arrivals of documents to the catalog.
In our model, Γ is assumed to be a homogeneous Poisson
process with constant intensity γ, according to Insight I2.

- let then d be the index of a document generated by
process Γ, whose arrival time to the catalog is denoted by ad.
Document d then generates a document request process Rd
determined by two random variables Λd and τd. Specifically,
given Λd and τd, we assume the document request process to
be Poisson with intensity function Λd on interval [ad, ad + τd]
(cf. Insight I3); the duration τd is the lifespan of document d,
intensity function Λd being zero outside interval [ad, ad + τd].
In the following, we assume that

nd =

∫ +∞

ad

Λd(u)du (3)

is almost surely finite;

- finally, the superposition of all processes Rd for all d
generates the total request process R = ΣdRd that contains
the requests to all documents. In the following, we will also
denote by R′d = R\Rd the request process resulting from the
removal from total process R of points pertaining to request
process Rd associated with given document d.

We can regard the point process R either as a doubly-
stochastic Poisson process (also called Cox in the literature),
that is a Poisson Process with random intensity (in our case
the shot-noise process generated by the popularity functions
Λd). Additionally, we can regard R as a cluster point process.
Figure 7 gives a schematic view of our request model.

As detailed below (Section V-C), we will specialize to “box
shaped” intensities, that is, Λd(s) = λd ·1{ad≤s≤ad+τd} where
we independently choose the pair of (possibly dependent)
random variables λd and τd. This setting will be referred
to as the Box Model. Note that in this case, (3) reduces to
nd = λdτd.

Time a’’ 

Catalog Arrival Process 

Document Request Processes 
a’ a 

Total Request Process 

Fig. 7: Sample of the document arrival and request processes.
Top: Boxes represent the lifespan and popularity by their
width and height, resp. (e.g., the document arriving at a is
less popular than that arriving at a′′ but it has a longer
lifespan). Bottom: Sample of document request processes.
Their superposition generates the total request process.



B. General Hit Ratio Estimation

Given the dynamical request model presented in Section
V-A, we now discuss the adaptation of the so-called “Che
approximation” [6], [11] to calculate the hit ratio for requests
addressed to a cache ruled by the LRU policy.

Assume that a given document d arrives to the catalog at
time ad. As the request process to document d is a Poisson pro-
cess with intensity function Λd, the sequence Θ1,Θ2, . . . ,Θnd

of request times to d has nd elements, where nd follows a
Poisson distribution with parameter nd introduced in (3). The
expected number of hits to the given document d then reads

Hd = Ed [Hd] = Ed

[
nd∑
r=2

1{Request at Θr is a hit}

]
(4)

=

+∞∑
k=2

(
k∑
r=2

Ed
[
1{Request at Θr is a hit} |nd = k

]) e−ndnkd
k!

where Ed denotes the expectation, given Λd and τd. To proceed
further with the calculation of Hd, we need to incorporate
the caching management policy. Specifically, we consider a
cache of size C ruled under the LRU policy; the request
at time Θr will then be a hit if and only if less than C
different documents have been requested since the request
arrival at time Θr−1. Formally, let Xs

t denote the number of
different documents requested in time interval [s, t], that is,
Xs
t = # {Different documents requested in [s, t]} for t > s.

From the stationarity of the ground process Γ, we first deduce
the following.

Proposition 1: For any s > 0, processes (Xs
t )t≥s and

(X0
t−s)t≥0 have identical distributions. Furthermore, X0 is a

Poisson process with associated mean function E
[
X0
t

]
= Ξ(t)

given by

Ξ(t) = γ

∫ t

−∞
E
[
1− exp

{
−
∫ t

0

Λd(v) dv

}]
da

for all t ≥ 0 (in the latter integral, variable a stands for ad).

The latter formula for E
[
X0
t

]
= Ξ(t) can be easily interpreted

by noting that the mean number of different documents arriving
in interval [a, a+ da[ being γda (for any −∞ < a = ad < t),
each of those documents is requested in interval [0, t] with
probability 1− exp(−

∫
[0,t]

Λd(v)dv).

Now, an immediate consequence of Proposition 1 is that
the first passage time T sC = inf {t ≥ s : Xs

t = C} of process
(Xs

t )t≥s to level C has the same distribution than TC + s,
where TC = T 0

C . We can now proceed with the calculation of
Hd expressed in (4). From the previous discussion, a hit event
at time Θr can be equivalently written as

{Request at Θr is a hit} =
{

Θr −Θr−1 < T
Θr−1

C −Θr−1

}
in terms of TC . Recall that, given the arrival of document d
at time ad, the remaining process R′d = R\Rd has the same
distribution than R. It follows that the distribution of TC for
process R is identical to that associated with process R′d. As
T

Θr−1

C = TC + Θr−1 in distribution, we can write (4) as

Hd =

+∞∑
k=2

(
k∑
r=2

Ed
[
1{Θr−Θr−1<TC} |nd = k

]) e−ndnkd
k!

.

(5)

The distribution of TC intervening in (5) is usually un-
known or hard to calculate. To overcome this difficulty, we
now invoke the so-called Che approximation: we assume
that the distribution of TC is very concentrated so that it
can be approximated by a constant tC , hereafter called the
characteristic time. The calculation of that characteristic time
then proceeds as follows; using Proposition 1.B together with
the approximation TC ≈ tC , we can write C = E [XTC

] ≈
E [XtC ] = Ξ(tC). We therefore define the characteristic time
tC by the inverse relation

tC = Ξ−1(C); (6)

replacing TC by tC in (5), we then obtain the approximation

Hd ≈
+∞∑
k=2

(
k∑
r=2

Ed
[
1{Θr−Θr−1<tC} |nd = k

]) e−ndnkd
k!

(7)
for the expected number of hits.

C. Application to the Box Model

The general expressions for the average Ξ(t) = E
[
X0
t

]
and the expected number of hits derived in Section V-B are
now specified for the Box Model in order to obtain explicit
formulas. In fact, the choice of a piecewise intensity function
is consistent with Insight I3 gained from Section IV.

Proposition 2: For the Box Model, the mean of the process
X0 is given by

Ξ(t) = γ E
[
2t+

(
1− e−λt

)(
τ − t− 2

λ

)
1{τ≥t}

]
+ γ E

[
2τ +

(
1− e−λτ

)(
t− τ − 2

λ

)
1{τ<t}

]
for all t ≥ 0, where the pair of positive variables (λ, τ) is
distributed as any pair (λd, τd).

To interpret the latter expression of Ξ(t), assume τd = τ0
and Λd = λ0 are constants; then Ξ(t) grows non-linearly in t
if t < τ0 and linearly otherwise; in the latter case, we can write
the mean function as Ξ(t) = Ξ(τ0) + γ(t − τ0)(1 − e−λ0τ0)
which is just the mean number of new objects up to time τ0,
plus the mean number of arrivals to the catalog in interval
[τ0, t] penalized by the probability that the document has at
least one request.

To finally specify the Che approximation for the Box
Model, we now state the following.

Proposition 3: Under the Che approximation and for the
Box Model, the conditional expectation of the expected num-
ber of hits to document d is given by

Hd =


λdτd − 1 + e−λdτd if τd < tC ,

(λdτd − 1)(1− e−λdtC ) + λdtCe
−λdtC if τd ≥ tC .

We then conclude from Proposition 3 that the expected
number of hits to all documents is given by

E [H] =

∫ ∫
λ>0,τ<tc

[
λτ − 1 + e−λτ

]
f(λ, τ)dλdτ + (8)∫ ∫

λ>0,τ≥tc

[
(λτ − 1)(1− e−λtC ) + λtCe

−λtC
]
f(λ, τ)dλdτ



where f denotes the joint probability density of the pair (λ, τ),
and with tC derived by (6) via the expression of Ξ(t) obtained
in Proposition 2.

VI. MODEL VALIDATION

The aim of this final section is to assess the validity of
our Box model for the calculation of the hit ratio (as derived
in Proposition 3), when compared to the values obtained by a
direct simulation. To this end, we first detail the computation of
the necessary statistics to use our model, namely (i) the catalog
arrival intensity γ, (ii) the mean Ξ(t) for all t ≥ 0, and (iii) the
hit ratio HR = (

∑
dHd)/(

∑
d nd) = E [Hd] /E [nd].

(i) Let first N be the number of documents in our sample
and denote by W the size of the observation window; we can
then estimate the catalog arrival rate γ by γ̂ = N/W ;

(ii) We have noted in Section III-D that estimators τ̂ and
λ̂, respectively expressed in (1) and (2), are not available
for documents with only one request. This sub-sample has,
however, a considerable size (58% of all documents) and
cannot be neglected in a direct application of Proposition 2.

To incorporate this data, we use the approximation dis-
cussed in [12] where the set of documents requested only
once is represented by a “noise” process. Let Ξ1 (resp. Ξ2)
denote the mean function of that noise process (resp. the mean
function associated with the “non-noise” part of the process),
with Ξ = Ξ1 + Ξ2. We can separate the noise process from
the rest of the request process and, using a procedure similar
to that of Proposition 2, we easily obtain an explicit formula
for Ξ1(t) (omitted here for brevity); the latter together with
the formula for Ξ(t) in Proposition 2 then gives

Ξ2(t) = Ξ(t)− Ξ1(t) = γ E [L(λ, τ, t)]

where

L(λ, τ, t) =[
2t(1− eλt) +

(
1− eλt − λteλt

)(
τ − t− 4

λ

)]
1{τ≥t} +[

2τ(1− eλτ ) +
(
1− eλτ − λτeλτ

)(
t− τ − 4

λ

)]
1{τ<t}.

Recall that the documents for which we have an estimate of
the pair (λd, τd) are precisely those accounted into Ξ2. We
thus estimate

Ξ̂2(t) = γ̂ × E [L(λ, τ, t)]

with the expectation taken w.r.t. the empirical distribution of
(λ, τ) in the trace.

Finally, let N1 and N2 be the number of documents with
one, and more than one requests, respectively. We then estimate
Ξ1(t) by the mean function of a homogeneous Poisson process,
that is,

Ξ̂1(t) = N1 × t/W.

The estimator of the characteristic time associated with the
Che approximation is therefore given by t̂C = Ξ̂−1(C), with
Ξ̂(t) = Ξ̂1(t) + Ξ̂2(t).

(iii) Concerning the hit ratio HR, we must similarly take
the documents with just one request into account. Note that

since the documents pertaining to the noise process do not
produce hits, we can write

HR =
E [Hd]

E [nd]
=

E
[
Hd1{nd≥2}

]
E
[
nd1{nd≥1}

] =
E
[
Ed
[
Hd1{nd≥2}

]
|nd ≥ 2

]
E [nd |nd ≥ 2] +

P (nd = 1)

P (nd ≥ 2)

.

Let Hd = M(τd, λd, tC) be the conditional expectation of the
number of hits given by Proposition 3; by similar arguments
to those used in (ii), the numerator of the hit ratio is thus
estimated by

E
[
Hd |nd ≥ 2

]
≈ E

[
M(τ, λ, t̂C)

]
with the expectation taken w.r.t. the empirical distribution of
(λ, τ) in the trace. As to the term E [nd |nd ≥ 2], it can be
computed as the average number of requests in the correspond-
ing sub-sample. Finally, the ratio P (nd = 1) /P (nd ≥ 2) in
the denominator is estimated by

P (nd = 1) /P (nd ≥ 2) ≈ N1/N2.

Using the above estimators, we can eventually compare
the hit ratio derived from the Box Model to that obtained by
simulation for each trace, as depicted in Figure 8. For compar-
ison purpose, we provide also the estimation of the hit ratio
obtained by the Che approximation when the request process
is assumed to be IRM. For the YouTube traffic, the Box Model
improves the accuracy by one order of magnitude compared to
the estimation with an IRM process, with respective MARE
of 0.5% and 4.1%. For the VoD traffic, the improvement is
even more spectacular, due to the large duration of the trace.
The IRM is far from estimating properly the hit ratio with
a MARE of 17.2% (this value is significantly decreased by
including the tail of the curve, not plotted here, and where
the IRM converges towards the correct value). On the other
hand, the Box Model estimates accurately the hit ratio, with a
MARE of 0.6%. This validates our model.

VII. CONCLUSION

The current literature on the performance of caching sys-
tems ignores the fact that content is produced and becomes out-
dated everyday. The consequence for caches is non-negligible,
as requests for a given document are concentrated within
its lifetime and the request process is thus non stationary.
This paper addresses the issue of catalog dynamics. Based on
two traffic traces, we provide evidence for the impact of the
catalog dynamics and identify the core structures of the request
process. We then propose a general model for the aggregated
request process and provide an estimate of the hit ratio of a
LRU cache fed by such a request process.

Our results show that the document request process can
be easily described, as far as caching is concerned, in terms
of basic document statistics: the document lifespan and its
average request intensity (within its lifespan). As expected,
the hit ratio is mainly driven by the distribution of the number
of requests for each document. The distribution of request
intensities, however, has a secondary impact on the hit ratio:
higher intensities (and thus shorter lifespan) lead to higher
performance, which confirms basic intuition.

Our proposed model currently uses documents as a basic
unit. In practice, however, bandwidth and cache size are
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Fig. 8: Fittings for the Che estimation

counted in bytes. Additionally, in the case of video streaming,
the downloads of videos are frequently interrupted because
users switch to another video. As a further study, we intend to
account for both the size distribution of videos and the impact
of these interruptions on caching. Our model for the catalog
dynamics can also be improved as follows: (i) the catalog
size in our model is stationary, while it actually increases
with time; (ii) the Box Model can be generalized to a broader
family of intensity functions. On the basis of these potential
generalizations, we believe that the approach of the present
paper can be easily extended to other traffic types.
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