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Abstract—In this paper, we evaluate the performance per-
ceived by end-users with very high access rates, connected to
a common backhaul link that aggregates the traffic of multiple
access areas. We model, at flow level, the way a finite population of
users with heterogeneous access rates and traffic demands shares
the capacity of this common backhaul link. We then evaluate
several practically interesting use cases, focusing particularly on
the performance of users subscribing to recent FTTH offers
in which the user access rates may be of the same order of
magnitude as the backhaul link capacity. We show that, despite
such high access rates, reasonable performance can be achieved
as long as the total offered traffic is well below the backhaul link
capacity. The obtained performance results are used to derive
simple dimensioning guidelines for backhaul networks.

I. INTRODUCTION

Ever-growing Internet traffic raises the problem of efficient
link dimensioning. The goal is to achieve a trade-off between
capacity investments and the guarantee of a certain Quality
of Service (QoS) level. The links of backhaul networks are
particularly critical in this respect since they aggregate het-
erogeneous traffic from different kinds of end-users and are
placed close to the edge of the network, which makes them
particularly cost-sensitive. The goal of this paper is to analyze
the performance perceived by users connected to high speed
access networks, e.g., Fiber To The Home (FTTH) or Very high
bit-rate Digital Subscriber Line (VDSL), and to derive simple
dimensioning rules accordingly. This work is more specifically
motivated by the introduction of very high speed (500 Mbit/s,
1 Gbit/s) offers for FTTH residential users. The actual use of
this high bandwidth by some of these users clearly poses some
acute QoS and/or dimensioning problems regarding the Passive
Optical Network (PON) access and associated backhaul links
with capacities of the order of a few Gbit/s.

In this paper, we propose a flow-level performance model
which allows to evaluate the QoS perceived by the end-users.
Given that users typically perceive performance at flow level
(e.g., the duration of a file download), flow-level modeling
has proven to be a convenient approach for both performance
evaluation and link dimensioning purposes [1].

Most of the flow-level models proposed in the litera-
ture assume a Poisson flow arrival process, thus neglecting
the problem of finite source population typical of an ac-
cess/backhaul area. Flow-level models for a finite set of sources
were first proposed by [2] and [3]. These papers, however,
only considered uniform access rates, whereas we propose a
model that handles both heterogeneous access rates and traffic

demands. The present paper elaborates on [4] where simple
models were developed to dimension IP access links carrying
data traffic. The latter paper focused mainly on some useful
approximations and only tackled the multirate aspect in a
preliminary manner. Moreover, the derived approximations do
not readily apply to the case of FTTH access where the access
rates are in the same order of magnitude as the backhaul links.

In Section II of the present paper, we introduce the network
context, the traffic model and related assumptions. Section III
develops the multirate performance model which analyzes the
way a finite number of active users share the downlink capacity
of a common backhaul link. The considered users may have
different access rates (i.e., users that subscribe to different
offers) and different traffic demands. The bandwidth of the
common link is shared according to the Balanced Fairness
policy [5] which allows to allocate bandwidth among different
classes of flows in a tractable way. In this model, like in
the Erlang model for circuit-switched telephone networks, the
main performance outputs depend only on one key parameter,
namely, the average offered traffic.

We then define and compute several user-centric perfor-
mance indicators such as the average user throughput and the
congestion probability. We also compute the user insatisfaction
probability, a novel performance indicator representing the
probability that a user obtains less than a minimum satisfying
rate. Reciprocally, the proposed model can be used to dimen-
sion the considered link, or to determine how many users can
be accepted in an access area such that a target QoS is attained.

A significant contribution of the paper is to provide,
in Section IV, some simple illustrative use cases with user
populations having different access rates and different offered
traffics. We assess the performance obtained by end-users
and show the potential impact of greedy users on the QoS
perceived by ”standard” users. Based on these results, we
derive some guidelines for backhaul link dimensioning which
are summarized in the Conclusion.

II. NETWORK AND TRAFFIC MODEL

This section presents the considered network architecture,
the traffic model and the related assumptions.

A. Network architecture

We consider a backhaul link which aggregates traffic from
several access areas. These links are among the most limiting



in today’s networks. Indeed, backhaul links have capacities of
a few Gbit/s and may aggregate the traffic of a few thousands
of users. As FTTH offers with access rate of 500 Mbit/s
or 1 Gbit/s are being launched, the access rates of the end
users become of the same order of magnitude as the backhaul
link, which raises some legitimate questions regarding the QoS
perceived by the users. In the following, we analyze the end-
user performance assuming that the considered backhaul link
is the bottleneck, i.e., the most limiting link of the network.
We focus on the downlink of this backhaul link since traffic
is generally higher in this direction.

B. Traffic context

Todays Internet traffic mainly consists of video streaming,
TCP-controlled data transfers (web browsing, downloads, P2P,
etc.) and real-time flows such as audio/video conversational
flows. TCP-controlled traffic and HTTP adaptive streaming
represent about 90% of the total traffic [6]. This traffic is said
to be elastic in the sense that the duration of the transmission
dynamically adjusts to the available bandwidth. The perfor-
mance of an elastic flow is thus perceived by the user through
the time it takes to complete a transfer, or equivalently through
the realized throughput.

In the following, we assume all traffic to be elastic which
is a conservative assumption. Indeed, for elastic traffic, all
packets that are lost are retransmitted until they are correctly
received. On the contrary, packets from real-time flows (e.g.,
voice calls) that are lost are typically not retransmitted due
to strict delay requirements thus decreasing the total network
load in case of congestion.

C. User session model

Traffic generated by an active user is typically composed of
a random succession of flow transfers and periods of inactivity.
Each user flow corresponds to a sequence of contiguous
transfers originated by the same user: a digital document (e.g.,
web page, e-mail, video) or several documents transferred
successively or in parallel (e.g., elements of a web page or
successive e-mails). The inactivity period typically corresponds
to the time during which the user consults the transferred
document and is referred to as the “think time”or “silence
time”, see, e.g., [4] for details. We assume that users can
fully use their access rate during flow transfers (apart from
congestion situations on the considered link). This assumption
may be proven to be a worst case scenario, which makes it
robust for dimensioning, see the discussion below in IV-A1.
OFF periods of silence correspond to zero bit rate.

We consider a total population of N active users, i.e., users
that generate active sessions as described above during the
considered busy period. Note that this corresponds only to a
fraction of total connected users. The total population consists
of K classes with Nk users each, with

∑
1≤k≤K Nk = N .

Each user class may have specific traffic requirements and
different access rates. For each set of class-k users:
• E[Vk] is the mean flow volume generated;
• E[Sk] is the mean silence time duration;
• E[Tk] is the mean flow transfer duration;
• ck is the common access rate of class-k users, it constitutes
a kind of ”peak rate”, the maximum rate at which a user is
able to transmit at any given time.

The above parameters describe the ON/OFF profiles of
active user sessions. They are all input parameters to the model
except for the mean flow transfer time E[Tk] which is an
output performance parameter. Indeed, as explained above,
the transfer time of elastic flows depends on the possible
congestion situations in the network.

We are now able to characterize the average traffic gener-
ated in each class. The per-user carried traffic is the average bit
rate generated by a user that can be measured on the considered
link during the busy period. It is defined as follows:

bk ≡
E[Vk]

E[Tk] + E[Sk]
. (1)

Note that the carried traffic is actually a performance parameter
as it depends on the time necessary to transfer documents.

The user demand is characterized by one key parameter,
namely, per-user offered traffic ak. The offered traffic repre-
sents the average bit rate a user would generate if it would not
be constrained by the network. The flow transfer time would
thus be E[Vk]/ck and the offered traffic writes:

ak =
E[Vk]

E[Vk]/ck + E[Sk]
. (2)

III. PERFORMANCE MODEL

This section details the multirate performance model and
introduces the proposed user-centric performance metrics.

A. System state equations

We model the way in which N active users share the
capacity C of a backhaul link. The system state is a random
process where user flows arrive and disappear dynamically.
We assume a stationary regime where the state vector x =
(x1, ..., xk, ..., xK), 0 ≤ xk ≤ Nk, gives the number of
flows in progress in each class at equilibrium. We denote
by S = {x = (xk)k=1,K ∈ N

K ; ∀k, xk ≤ Nk} the set of
admissible states and by x · c =

∑
1≤k≤K xk ck the scalar

product of state and access rate vectors, which represents the
overall required bandwidth at a given state.

Since we consider elastic traffic only, we model this traffic
at flow level assuming the packet level mechanisms of TCP
realize fair bandwidth sharing among ongoing flows of the
considered class [1]. Thus, the system can be modeled as a
network of Processor Sharing queues working in parallel. The
service speed of each queue depend on the network state: we
assume a total amount of bandwidth φk(x) is allocated to each
class k at state x (with xk > 0). This amount is equally shared
so that each class k flow receives a portion φk(x)/xk. This
bandwidth allocation scheme must satisfy the constraints set
by the link capacity and user access rates:

∑

1≤k≤K

φk(x) ≤ C and ∀k = 1,K, φk(x) ≤ xk ck. (3)

Assume for now that the flow volumes (Vk)k=1,K and
silence times (Sk)k=1,K random variables have exponential
distributions and are independent to each other. The state
vector x(t) then forms an homogeneous Markov process, and



more precisely a multi-class Birth-Death process, whose per-
class arrival and departure rates at state x are the following:

λk(x) = (Nk − xk)/E[Sk], x ∈ S, (4)

µk(x) = φk(x)/E[Vk], x ∈ S. (5)

Such a Markov process is known to have an equilibrium
regime whose stationary distribution π(x) is the unique solu-
tion to the system of Kolmogorov balance equations [7]

K∑

k=1

[λk(x− ek)π(x− ek) + µk(x+ ek)π(x+ ek)]

=

K∑

k=1

[λk(x) + µk(x)]π(x), ∀x ∈ S, (6)

together with the normalizing condition
∑

x∈S π(x) = 1. In

these equations, ek denotes the unit vector in the kth direction.

B. Bandwidth allocation

When the total required bandwidth x · c at a given flow
state x is no greater than link capacity C, each flow of class k
may be allocated its peak rate ck. When the link is congested,
i.e., x · c > C, it is no longer possible to ensure full access
rate use for all flows in progress, and thus bandwidth must be
divided among flow classes in a non trivial manner.

Numerous bandwidth allocation strategies have been pro-
posed in the literature, see [8], [9], for instance. Most of these
algorithms try to achieve fairness by maximizing some overall
utility function. Such utility-based allocations have two major
drawbacks. First, they generally do not lead to a reversible
Markov process, and thus do not allow tractable analysis using
closed-form solution to the equilibrium equations [7]. This is
true in particular in the multirate scenario we are interested in.
The equilibrium equations (6) must then be solved numerically,
leading to high computation times as the system size grows.
Second, these allocations are sensitive in the sense that the
performance results depend on detailed traffic characteristics
such as the flow arrival process or flow size distribution [5].
This is an important limitation since performance results are
in that case valid for exponential flow sizes and silence times
only, which do not represent realistic assumptions [10].

The Balanced Fairness allocation proposed in [5] over-
comes the above limitations of utility-based allocations. An
allocation is said to be balanced if, for any pair of classes
(i, j), the product of bandwidth consumptions from state x to
state x−ei−ej does not depend on the path followed between
these two states:

φi(x)φj(x− ei) = φj(x)φi(x− ej), ∀i, j, ∀x ∈ S, xi, xj > 0.

This condition is equivalent to the existence of a positive
balance function Φ(x) such that

φk(x) =
Φ(x− ek)

Φ(x)
, ∀k = 1,K, ∀x ∈ S, xk > 0. (7)

The Balanced Fairness is the unique balanced allocation
that maximizes resources utilization, i.e., it saturates at least

one of the constraints expressed in (3) at each state. The
corresponding balance function can be defined as follows:

x · c ≤ C : φk(x) = xk ck, ∀k, and Φ(x) =
K∏

k=1

1

cxk

k xk!
,

x · c > C :
K∑

k=1

φk(x) = C and Φ(x) =
1

C

K∑

k=1

Φ(x− ek).

In the following, we consider that bandwidth allocation is
performed according to Balanced Fairness.

In a Markovian setting, the balance property is equivalent to
the reversibility of the Markov process (as long as the arrival
rates are also balanced). Thus, for exponentially distributed
flow volumes and silence times, the Markov process x(t)
converges to an equilibrium regime, whatever its initial state.
The stationary distribution π(x) is the unique solution to local
balance equations. The state probabilities have the following
product form solution:

π(x) = π(0)
Φ(x)

Φ(0)

K∏

k=1

rxk

k

Nk!

(Nk − xk)!
, x ∈ S, (8)

where rk = E[Vk]/E[Sk] = akck/(ck − ak) is a quantity
related to the offered traffic ak. This result is shown to have
the insensitivity property [5] which ensures that performance
results only depend on the mean traffic demand of each class.

C. Performance metrics

The probability distribution of the number of ongoing flows
(8) allows us to derive various performance indicators. All of
them clearly inherit the insensitivity property quoted above.

In the case of elastic traffic, the user perceives QoS in
terms of the average time needed to transfer a document.
The useful rate dk defined as the mean flow volume to the
mean flow transfer time ratio for class-k flows is an equivalent
performance metric [1]. It can be expressed as

dk ≡
E[Vk]

E[Tk]
. (9)

From definition (9) and Little’s formula applied to class-
k flows in progress, E[xk] = E[λk] E[Tk], we deduce dk =
E[Vk] E[λk]/E[xk]. The useful rate finally writes

dk = rk
Nk − E[xk]

E[xk]
. (10)

Note that in view of (1) and (10), we obtain a conservation
law between the mean rate of all users of class k and the useful
rate of their active flows, Nkbk = E[xk]dk.

Although the useful rate is an adequate performance mea-
sure for elastic traffic, it remains only an average metric. We
now define performance metrics which reflect the proportion
of time the end users perceive a degradation of their QoS. The
link congestion probability is the stationary probability that
flows in progress are allocated a bandwidth less than the user
access rate. It is denoted as PC and is independent of the class
of flows:

PC =
∑

x∈S, x·c>C

π(x). (11)
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Fig. 1. Useful rate (a), user congestion probability (b), and user insatisfaction probability with β = 60% (c) vs total offered traffic for different per-user offered
traffics - Link capacity = 1 Gbit/s and access rate = 500 Mbit/s
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Fig. 2. Useful rate (a), user congestion probability (b), and user insatisfaction probability with β = 60% (c) vs total offered traffic for different per-user offered
traffics - Link capacity = 1 Gbit/s and access rate = 10 Mbit/s

The link congestion probability is a performance metric
that reflects the network point of view. For present purposes
in this paper, it is desirable to consider the user point of view.
We thus define the user congestion probability PU (k) which
measures the probability that a flow is allocated less than its
access rate given that the flow is in transfer. Unlike the link
congestion, the user congestion probability depends on the flow
class; it is obtained by considering the weighted distribution
xkπ(x)/E[xk]:

PU (k) =
1

E[xk]

∑

x∈S, φk(x)<xkck

xkπ(x), k = 1,K. (12)

The congestion probability is a rather strict performance
criteria since it only relates to whether or not the flows in
transfer attain their access rates. In practice, users may be
satisfied with a rate which is only a fraction of the access
rate βk ck, βk ∈ [0, 1], that we refer to as the satisfying rate.
The latter may represent a bit rate that the operator aims at
guaranteeing. We define the user insatisfaction probability as
the probability that a flow of class k is allocated a bandwidth
less than the satisfying rate, given that the flow is in transfer:

PI(k) =
1

E[xk]

∑

x∈S, φk(x)<βkxkck

xkπ(x), k = 1,K. (13)

IV. USE CASES

We now apply the proposed model to a few practically
interesting use cases. We consider both the case in which all
users have the same access rate and the case of different access
rates and different traffic demands.

A. Uniform access rate

1) Uniform demand: We first consider the case of an FTTH
access network in which a 1 Gbit/s backhaul link aggregates
traffic from FTTH clients that have subscribed to high access
rate offers. We assume all users have a 500 Mbit/s access
rate and a uniform demand. Figure 1 gives the realized useful
rate (a), the user congestion probability (b), and the user
insatisfaction probability with β = 60% (c) as functions of
the overall offered traffic Na for various values of the per-user
offered traffic. An important observation is that performance
mainly depends on the total offered traffic. Indeed, as long as
Na is well below the backhaul capacity, reasonable perfor-
mance can be achieved despite the high access rates of end
users. On the contrary, when the total offered traffic exceeds
the link capacity, the link becomes saturated and the useful
rate drops to 0, while the user congestion and insatisfaction
probabilities attain 100%. Note also that since the per user
offered traffic is very small compared to the backhaul link
capacity, performance results are practically insensitive to this
parameter.

From plots (a) and (b) we note that the user-perceived
congestion level may appear rather large, say, about 20-40%,
while the useful rate remains at an acceptable level, more than
80% of the access rate. The congestion probability is thus a
very strict performance indicator. The insatisfaction probability
shown in plot (c) may be a more practical performance metric
although the value of the satisfying rate must be set carefully.

Consider now that the same 1 Gbit/s backhaul link is shared
by a population of users having an access rate of c = 10 Mbit/s,
typical of a classical Asynchronous Digital Subscriber Line
(ADSL) access network. Figure 2 gives the same performance
metrics as above; all traffic parameters are the same, except



for the access rate. Observe that, as long as the total offered
traffic is lower than the backhaul link capacity, the useful rate
is approximately equal to the access rate. We say that the link
is transparent in this region since it does not impact the user
perceived performance. This result is in accordance with the
ones obtained in [4].

In the case of FTTH networks, the transparent regime is
almost inexistent and the approximation d ≈ c whenever Na <
C no longer holds. Indeed, in Figure 1, the useful rate d is
almost always below the access rate c and thus the link is far
from being transparent.

Comparing Figures 1 and 2, we observe that all perfor-
mance parameters behave better (although in a relative way
since the access rates are different) when all users have an
access rate of 10 Mbit/s. Performance is thus better when the
peak rate attained by the users is lower. Assuming that all
users can attain their full access rate is therefore a conservative
assumption since performance results would be better if flows
would be rate-limited elsewhere in the network, e.g., by a
codec or a different bottleneck link.

0 100 200 300 400 500
0

100

200

300

400

500

Number of standard users

U
s
e
fu

l 
ra

te
 (

M
b
it
/s

)

# greedy = 0

# greedy = 2

# greedy = 4

Fig. 3. Useful rate vs number of standard users in the presence of greedy
users - Link capacity = 1 Gbit/s and access rate = 500 Mbit/s; lines refer to
standard users useful rate, circles and crosses refer to that of greedy users

2) Impact of greedy users: We now evaluate the impact of
having some users which are greedy, i.e., they generate flow
transfers almost permanently such that their individual traffic
demand is close to their access rate. Figure 3 provides the
useful rate obtained by each class as a function of the number
of standard users. Standard users have a 4 Mbit/s per-user
traffic demand, while greedy users have an offered traffic equal
to 99% of their access rate. In this case with very contrasted
demand, the performance perceived by greedy users is slightly
better than that of standard users, but both of them quickly
deteriorate as the population size increases. Actually, even for
a small population size, the presence of only two greedy users
is not acceptable if we require that standard users get more
than half of their access rate, on average.

Admittedly, the considered scenario is an extreme case.
Although it may seem natural that the presence of one or
more greedy users with an average demand of 500 Mbit/s
on a 1 Gbit/s link will considerably degrade performance,
the proposed model helps quantify the precise impact of such
greedy users. Contrary to naive intuition, even in the presence
of two greedy users that require nearly 500 Mbit/s each, some
bandwidth is still available for standard users. This is due to
the principle of fair bandwidth sharing among ongoing flows
with same access rate.
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We now consider the case of heterogeneous demand with
non-greedy users. Figure 4 shows the mean useful rate for two
classes of end users, each with 500 Mbit/s access and with
average offered traffic of 1 and 10 Mbit/s, respectively. Given
that both classes have traffic demands which are very small
compared to the capacity of the backhaul link, their useful
rates are nearly the same, which is consistent with results of
Figure 1. Performance in terms of user congestion or user
insatisfaction probability is also very similar (not shown here
for the sake of brevity).

B. Multiple access rates

1) Standard users only: We now analyze the practically
interesting use case in which end-users subscribe to different
offers, thus benefiting from different access rates. Specifically,
we assume that the user population is made of two classes of
‘standard’ customers with reasonable traffic demand: class 1
users subscribe to a 100 Mbit/s offer and express a 2 Mbit/s
traffic demand, while class 2 users subscribe to a high access
rate offer at 500 Mbit/s and have a 4 Mbit/s per-user traffic
demand. Class 1 users represent 80% of the total population.

Figure 5 provides performance results in terms of the useful
rate (a) and the user insatisfaction probability corresponding to
a fraction β1 = β2 = 80% of the respective access rates (b), as
functions of the total number of active users N . Also reported
are the results of a fluid approximation according to which
the low access rate users are assumed to occupy a constant
bandwidth N1a1 (and thus to perceive perfect performance)
while the high access rate flows share the remaining capacity
C −N1a1.

First, remark that the simple fluid approximation is quite
accurate. Consequently, if we are interested in determining
only the performance of high rate users, it is sufficient to
consider a single user class sharing a link capacity of C−N1a1.
Results shown in Figure 5 also indicate that in case of high
link congestion, when the number of users is very large, there
is no performance differentiation between the two classes of
customers, both classes obtaining equally small useful rates.

We then observe that the performance of low rate users
degrades at a much slower pace than that of high rate users,
which at the same time explains the accuracy of the fluid
approximation. It is noteworthy that low rate users maintain a
high fraction of their access rate until, say, a total population
of 300 users, while high rate users have already perceived
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a considerable degradation of their performance. Thus, a
useful lesson we can learn from this is that when commercial
offers with high access rates are launched, network operators
should primarily ensure that capacity is sufficient to provide
a reasonable performance for high access rate users; low rate
users are less likely to experience severe QoS degradation.

2) Impact of greedy users: Finally, we consider a pes-
simistic scenario in which all high rate customers are greedy
users. Figure 6 provides the useful rate obtained by each class
as a function of the total number of users, when 10% of users
have an access rate of 500 Mbit/s and a 490 Mbit/s per-user
traffic demand; the remaining 90% have an access rate of 100
Mbit/s and a 5 Mbit/s demand. The overall behaviour of the
system is rather similar to the one presented in Figure 5, except
that performance degradation occurs very quickly, as soon as
there are a few tens of active customers. Such a scenario
is clearly unacceptable for an operational network, and an
upgrade of the considered link capacity would be required in
this case. Once more, the fluid approximation is perfectly able
to accurately predict performance of high rate users.

V. CONCLUSION

We proposed a general flow-level performance model
which we applied to evaluate the performance of end-users
with very high access rates. The capacity of the common
backhaul link is shared according to the Balanced Fairness
policy. To the best of our knowledge, this is the first time
that Balanced Fairness is applied to a finite source population
model. In order to assess user-perceived performance, we
defined and evaluated user-centric performance metrics such
as the useful rate, the user congestion probability and the user
insatisfaction probability.

Another significant contribution is the application of the
model to a few illustrative use cases where some users have
very high access rates, possibly comparable to the backhaul
link capacity. The impact of having multiple access rates
and users with various traffic demands (such as heavy users)
has been analyzed. Some approximations were discussed and
benchmarked against previous studies on ADSL networks. The
main guidelines that could be derived from the considered use
cases are:

• For dimensioning purposes, QoS analysis may be sim-
plified by assuming all users attain their full access rate which
constitutes a conservative approach;

• When launching high rate commercial offers, a network
provider should primarily ensure the QoS of the high rate
users; the QoS of low rate users is only marginally impacted;

• When considering users with different access rates, the
performance of high access rate users can be determined using
a single rate model applied to the residual link capacity left
by low rate users.

• The impact of greedy users on the overall performance
can be severe; the proposed model allows to quantify this
impact and to dimension the network accordingly.
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