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Plane tree = rooted tree with ordered children.
Size n = number of vertices.

n “ 9

First example: Trees
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Plane tree = rooted tree with ordered children.
Size n = number of vertices.

size 1 : t1 “ 1

size n ą 1 :

k n´ k ´ 1

n “ 9

k “ 5

n´ k ´ 1 “ 3

First example: Trees

Binary trees: all vertices have 0 or 2 children.
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Plane tree = rooted tree with ordered children.
Size n = number of vertices.

size 1 : t1 “ 1

size n ą 1 :

k n´ k ´ 1

tn “
n´1
ÿ

k“1

tktn´k´1

Solution : tn “
1

n` 1

ˆ

2n

n

˙

First example: Trees

Binary trees: all vertices have 0 or 2 children.
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Plane tree = rooted tree with ordered children.
Size n = number of vertices.

size 1 : t1 “ 1

size n ą 1 :

k n´ k ´ 1

tn “
n´1
ÿ

k“1

tktn´k´1

Solution : tn “
1

n` 1

ˆ

2n

n

˙

First example: Trees

Binary trees: all vertices have 0 or 2 children.

Trees with nodes

?
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Generating functions

The generating function of a combinatorial class C is the series

Cptq “
ÿ

γPC
t|γ| “

ÿ

ně0

cnt
n P Qrrtss.
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Generating functions

The generating function of a combinatorial class C is the series

Cptq “
ÿ

γPC
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ÿ

ně0

cnt
n P Qrrtss.

A recursive decomposition translates into an equation on the generating
function.

`

T ptq “ t ` tT ptq2

Binary trees:
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Generating functions

The generating function of a combinatorial class C is the series

Cptq “
ÿ

γPC
t|γ| “

ÿ

ně0

cnt
n P Qrrtss.

A recursive decomposition translates into an equation on the generating
function.

`

T ptq “ t ` tT ptq2

Binary trees:

Trees with nodes

T ptq “ 2t` 3tT ptq2 ` tT ptq3 ` tT ptq7
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Generating functions

The generating function of a combinatorial class C is the series

Cptq “
ÿ

γPC
t|γ| “

ÿ

ně0

cnt
n P Qrrtss.

What to do with it ?

§ If we can solve the equation and get a closed form for Cptq, we can
recover the cn through Cpnqp0q “ n!cn.

§ Use the equation to compute asymptotics of cn.
§ Build random generator (Boltzmann).
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Generating functions

The generating function of a combinatorial class C is the series

Cptq “
ÿ

γPC
t|γ| “

ÿ

ně0

cnt
n P Qrrtss.

What to do with it ?

§ If we can solve the equation and get a closed form for Cptq, we can
recover the cn through Cpnqp0q “ n!cn.

§ Use the equation to compute asymptotics of cn.
§ Build random generator (Boltzmann).

The form of the equation gives information on the class:

§ Rational function: Cptq “ P ptq `QptqCptq, P,Q polynomials.
ùñ cn „ κλnnα, α P N. C « regular language?

§ Algebraic function: P pt, Cptqq “ 0, P pt, Cq polynomial.
ùñ cn „ κλnnα, α P Q. C « non-ambiguous grammar (trees)?
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I- Recursive decomposition of
colored planar maps

1) Definitions
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Planar maps

A planar map is the embedding of a connected graph onto the sphere, up to
orientation preserving homeomorphism.
Multi-edges and loops are allowed.

Planar map = planar graph + cyclic ordering of the edges around each vertex.

All maps are rooted, i.e. an oriented edge is marked.
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Planar maps

• Vertices and edges are inherited from the graph.
• Faces are the connected components of the sphere minus the map.

Here: 6 vertices, 9 edges
et 5 faces.

Planar map = planar graph + cyclic ordering of the edges around each vertex.

Size: number of edges n.
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Planar maps

• Vertices and edges are inherited from the graph.
• Faces are the connected components of the sphere minus the map.

Degree (of a vertex or face) = number of incident half-edges.

3
8

4

1

2

4

4

4

1

23

Planar map = planar graph + cyclic ordering of the edges around each vertex.

Size: number of edges n.
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Colored maps

Colored map: assign a color to each vertex so that each pair of adjacent
vertices receives different colors.

proper coloring non-proper coloring
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I- Recursive decomposition of
colored planar maps

2) Tutte’s decomposition
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2-colored maps

“

Bptq: generating function of bicolored planar maps counted by number of
edges.

Bptq “
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2-colored maps

“ `

Bptq: generating function of bicolored planar maps counted by number of
edges.

Bptq “ 1 ` tBptq2
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2-colored maps

`“ `

Bptq: generating function of bicolored planar maps counted by number of
edges.

Bptq “ 1 ` tBptq2 ` ???
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2-colored maps

“ `

Bptq: generating function of bicolored planar maps counted by number of
edges.

Bptq “ 1 ` tBptq2 ` ???

`
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2-colored maps

`“ `

ãÑ Bpt, yq “ 1` tyBpt, yq2 ` ty
Bpt, yq ´Bpt, 1q

y ´ 1
.

Bptq: generating function of bicolored planar maps counted by number of
edges.

1 `

ùñ add a catalytic variable recording the half-length of the boundary

Bpt, yq “ 1 ` tyBpt, yq2 ` ty
ÿ

pě1

˜

p
ÿ

kě1

yp´k

¸

rypsBpt, yq

ãÑ Bpt, yq “
ÿ

bPB
tepbqybpbq.
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2-colored maps

Bpt, yq “ 1` tyBpt, yq2 ` ty
Bpt, yq ´Bpt, 1q

y ´ 1

ãÑ Can be solved with the quadratic method [Brown ‘60s].

Bpt, yq: generating function of bicolored planar maps, tÑ edges, y Ñ half
degree of the outer face.
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2-colored maps

Bpt, yq “ 1` tyBpt, yq2 ` ty
Bpt, yq ´Bpt, 1q

y ´ 1

ãÑ Can be solved with the quadratic method [Brown ‘60s].

Theorem. [Bousquet-Mélou Jehanne ‘06] If F pyq ” F pt, yq P Qrysrrtss
satisfies an equation

where P,Q are polynomials and ∆F pyq “
F pyq ´ F p1q

y ´ 1
then F pyq is an algebraic series.

F pyq “ P pyq ` tQpt, y, F pyq,∆F pyq, . . . ,∆kF pyqq

ãÑ Bpt, yq is algebraic.

+ Explicit bijection with a family of trees [Schaeffer ‘97].

Bpt, yq: generating function of bicolored planar maps, tÑ edges, y Ñ half
degree of the outer face.
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3-colored maps

`“ `

1 `Mpt, yq “ 1 ` 2ty2Mpt, yq2 ` ty???

Mpt, yq: generating function of 3-colored planar maps counted by number of
edges (variable t) and degree of the outer face (variable y).
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3-colored maps

`“ `

1 `Mpt, yq “ 1 ` 2ty2Mpt, yq2 ` ty???

Mpt, yq: generating function of 3-colored planar maps counted by number of
edges (variable t) and degree of the outer face (variable y).

Solution:

“ ´

ùñ need a second catalytic variable recording the degree of the root vertex.



10

3-colored maps

Mpt, x, yq: generating function of 3-colored planar maps counted by number
of edges (variable t), degree of the outer face (variable y) and degree of the
root vertex (variable x).

Mpx, yq “ 1` xytp2y ´ 1qMpx, yqMp1, yq ´ xytMpx, yqMpx, 1q

´xyt
xMpx, yq ´Mp1, yq

x´ 1
` xyt

yMpx, yq ´Mpx, 1q

y ´ 1
.

Theorem. [Bernardi Bousquet-Mélou ‘11]

`

“ `

´
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3-colored maps

Mpx, yq “ 1` xytp2y ´ 1qqMpx, yqMp1, yq ´ xytMpx, yqMpx, 1q

´xyt
xMpx, yq ´Mp1, yq

x´ 1
` xyt

yMpx, yq ´Mpx, 1q

y ´ 1
.

Equation for 3-colored planar maps:

Not an algebraic/D-finite/. . . equation ùñ no toolbox ?

Negative coefficients ùñ cannot build a random generator.

We have 2 catalytic variables so Bousquet-Mélou and Jehanne’s theorem
does not apply.
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3-colored maps

Mpx, yq “ 1` xytp2y ´ 1qqMpx, yqMp1, yq ´ xytMpx, yqMpx, 1q

´xyt
xMpx, yq ´Mp1, yq

x´ 1
` xyt

yMpx, yq ´Mpx, 1q

y ´ 1
.

Equation for 3-colored planar maps:

Theorem. [Bernardi Bousquet-Mélou ‘11] The generating function of
3-colored planar map is algebraic and is equal to

ãÑ Obtained via a reduction to 1-catalytic equation.

Not an algebraic/D-finite/. . . equation ùñ no toolbox ?

Negative coefficients ùñ cannot build a random generator.

We have 2 catalytic variables so Bousquet-Mélou and Jehanne’s theorem
does not apply.

Mp1, 1q “
p1` 2Sqp1´ 2S2 ´ 4S3 ´ 4S4q

p1´ 2S3q2

with S the solution of t “
Sp1´ S3q

p1` 2Sq3
with constant term 0.
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I- Recursive decomposition of
colored planar maps

3) Gasket decomposition
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.

`“ `

Mpt, yq “ 1 ` tyMpt, yq2 ` ???
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

3-colored map where all neighbors
of the root vertex are red.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.

` connection caterpillar.
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.

Let H be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let Hpt, xq be their generating function with t counting
the edges and x the degree of the root vertex.

`“ `m m2 m1

h

m1
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.

hk “
ÿ

dě0

ˆ

2k ` d´ 1

2k ´ 1

˙

rxdsHpt, xq

Let H be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let Hpt, xq be their generating function with t counting
the edges and x the degree of the root vertex.

`“ `

Mpt, yq “ 1 ` tyMpt, yq2 ` ty
ÿ

pě1

˜

p
ÿ

kě1

yp´khk

¸

rypsMpt, yq

m m2 m1

h

m1
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Gasket decomposition

Idea: Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let Mpt, yq be their generating function with t counting the edges and
y half the degree of the outer face.

Let H be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let Hpt, xq be their generating function with t counting
the edges and x the degree of the root vertex.

`“ `

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

rHpt, yq “
ÿ

kě1

ykhk “
1

2

„ ?
y

1´
?
y
H

ˆ

t,
1

1´
?
y

˙

´

?
y

1`
?
y
H

ˆ

t,
1

1`
?
y

˙

.

m m2 m1

h

m1

y “ 1{y
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Gasket decomposition

Let M be the class of 3-colored planar maps with a black and white outer
face.

Let H be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let Hpt, xq be their generating function with t counting
the edges and x the degree of the root vertex.

“ ` `h
h1 h2

m h1
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Gasket decomposition

Let M be the class of 3-colored planar maps with a black and white outer
face.

Let H be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let Hpt, xq be their generating function with t counting
the edges and x the degree of the root vertex.

“ ` `h
h1 h2

m h1

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

ĂMpt, xq “
ÿ

iě1

xi
ÿ

pě0

ˆ

2p` i´ 1

i´ 1

˙

rypsMpt, yq “
x

p1´ xq2
M

ˆ

t,
1

p1´ xq2

˙

,
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Gasket decomposition

Let M be the class of 3-colored planar maps with a black and white outer
face.

Let H be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let Hpt, xq be their generating function with t counting
the edges and x the degree of the root vertex.

ĂMpt, xq “
ÿ

iě1

ximi “
x

p1´ xq2
M

ˆ

t,
1

p1´ xq2

˙

,

rHpt, yq “
ÿ

iě1

yihi “
1

2

„ ?
y

1´
?
y
H

ˆ

t,
1

1´
?
y

˙

´

?
y

1`
?
y
H

ˆ

t,
1

1`
?
y

˙

.

#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq,

Theorem. [S. ‘26]

with
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PM pS, y,Mq “ 4y
5
py´1q

2
S

5
p2S

3
´1q

6
M

6
`24y

4
py´1q

2
p1`2Sq

3
p2S

3
´1q

5
S

4
M

5
´p1`2Sqp2S

3
´

1q
4
pp64S

6
`96S

5
`88S

4
`32S

3
´2S`1qy

2
´p16S

4
`456S

3
`684S

2
`334S`57qp1`2Sq

2
y`56p1`

2Sq
5
qS

3
py´ 1qy

3
M

4
´ 4p2S

3
´ 1q

3
p1` 2Sq

4
pp64S

6
` 96S

5
` 88S

4
` 32S

3
´ 2S` 1qy

2
´ p16S

4
`

136S
3
`204S

2
`94S`17qp1`2Sq

2
y`16p1`2Sq

5
qS

2
py´1qy

2
M

3
´p1`2Sq

2
p2S

3
´1q

2
p2Sp64S

6
`

96S
5
`94S

4
`50S

3
`18S

2
`4S`1qpS`1q

3
y
4
`p1`2Sqp6144S

10
`20928S

9
`33600S

8
`32064S

7
`

18380S
6
` 5244S

5
´ 162S

4
´ 536S

3
´ 87S

2
` 18S` 5qy

3
´ 2p384S

6
` 1120S

5
` 1914S

4
` 1604S

3
`

706S
2
`171S`23qp1`2Sq

5
y
2
`p96S

4
`616S

3
`924S

2
`414S`77qp1`2Sq

7
y´36p1`2Sq

10
qSyM

2
´

2p2S
3
´1qp1`2Sq

5
p2Sp64S

6
`96S

5
`94S

4
`50S

3
`18S

2
`4S`1qpS`1q

3
y
4
`p1`2Sqp2048S

10
`

6592S
9
` 9536S

8
` 7488S

7
` 2508S

6
´ 900S

5
´ 1346S

4
´ 600S

3
´ 119S

2
´ 6S` 1qy

3
´ 2p128S

6
`

224S
5
`266S

4
`164S

3
`50S

2
`11S`3qp1`2Sq

5
y
2
`p32S

4
`72S

3
`108S

2
`38S`9qp1`2Sq

7
y´

4p1`2Sq
10
qM´p1`2Sq

3
pSp4S

2
`2S`1q

3
pS`1q

6
y
4
`2p64S

6
`96S

5
`94S

4
`50S

3
`18S

2
`4S`

1qpS`1q
3
p1`2Sq

5
y
3
`p1024S

9
`3008S

8
`3520S

7
`1344S

6
´1460S

5
´2436S

4
´1642S

3
´616S

2
´

127S´12qp1`2Sq
6
y
2
´2p64S

5
`64S

4
`14S

3
´36S

2
´34S´9qp1`2Sq

10
y`8p2S

3
´1qp1`2Sq

12
q

PH pS,
?

∆, x,Hq “ S
3
x
5
p2S

3
´ 1q

4
p2x´ 1qH

4
´ 2S

2
x
3
p2x´ 1qpx´ 2qp1` 2Sq

3
p2S

3
´ 1q

3
H

3
`

Sxp1`2Sqp2S
3
´1q

2
p2Sp2S

3
`4S

2
`2S`1qx

4
´2p8S

4
`8S

3
`12S

2
`2S`1qp1`2Sq

2
x
3
`p8S

4
´

24S
3
´36S

2
´22S´3qp1`2Sq

2
x
2
`10p1`2Sq

5
x´4p1`2Sq

5
qH

2
´2p1`2Sqp2S

3
´1qpSpp8S

5
`

28S
4
`38S

3
`26S

2
`10S`2q

?
∆`16S

6
`56S

5
`76S

4
`58S

3
`28S

2
`8S`1qx

4
´2p16S

6
`48S

5
`

86S
4
`76S

3
`34S

2
`9S`1qp1`2Sq

3
x
3
`p20S

4
`56S

3
`84S

2
`32S`7qp1`2Sq

5
x
2
´p8S

4
`56S

3
`

84S
2
`38S`7qp1`2Sq

5
x`2p1`2Sq

8
qHp1`2Sq

3
pp32S

8
`p16S

6
`64S

5
`104S

4
`90S

3
`46S

2
`

14S`2q
?

∆`176S
7
`384S

6
`452S

5
`356S

4
`182S

3
`64S

2
`15S`2qx

3
´2p1`2Sqp´64S

9
´320S

8
´

656S
7
`p8S

5
` 28S

4
` 38

?
∆S

3
` 26S

2
` 10S` 2q

?
∆´ 560S

6
´ 72S

5
` 332S

4
` 354S

3
` 172S

2
`

44S`5qx
2
´2p8S

7
`96S

6
`144S

5
`60S

4
´46S

3
´80S

2
´38S´7qp1`2Sq

3
x`4p2S

3
´1qp1`2Sq

6
q

II- Algebraicity proof
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The strategy: Guess and Check

Idea: The equations allow us to recursively compute all the coefficients of the
series M and H
ùñ unique solution in Qrysrrtss ˆQrxsrrtss.

#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

Guess and Check:
1. Guess polynomial equations satisfied by our series.
2. Prove that the solutions of the polynomial equations satisfy the original

equations.
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Guess
#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

Guess:

1. Use the equations to compute the first (250) terms of the series M and H.
2. Guess polynomial equations with algeqtoseries (package gfun).

ãÑ We use the intermediate field Qpt, yq Ñ QpS, yq Ñ Qpt, y,Mpt, yqq

where t “
Sp1´ S3q

p1` 2Sq3
to have smaller equations.

ãÑ Equations of degree 6 for Mpt, yq over QpS, yq and of degree 8 for Hpt, xq
over QpS, xq.

3. Determine which solution of the polynomial equation is the candidate.
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Guess

PM pS, y,Mq “ 4y
5
py ´ 1q

2
S

5
p2S

3
´ 1q

6
M

6
` 24y

4
py ´ 1q

2
p1` 2Sq

3
p2S

3
´ 1q

5
S

4
M

5
´ p1`

2Sqp2S
3
´1q

4
pp64S

6
`96S

5
`88S

4
`32S

3
´2S`1qy

2
´p16S

4
`456S

3
`684S

2
`334S`57qp1`

2Sq
2
y ` 56p1` 2Sq

5
qS

3
py ´ 1qy

3
M

4
´ 4p2S

3
´ 1q

3
p1` 2Sq

4
pp64S

6
` 96S

5
` 88S

4
` 32S

3
´

2S` 1qy
2
´p16S

4
` 136S

3
` 204S

2
` 94S` 17qp1` 2Sq

2
y` 16p1` 2Sq

5
qS

2
py´ 1qy

2
M

3
´p1`

2Sq
2
p2S

3
´1q

2
p2Sp64S

6
`96S

5
`94S

4
`50S

3
`18S

2
`4S`1qpS`1q

3
y
4
`p1`2Sqp6144S

10
`

20928S
9
` 33600S

8
` 32064S

7
` 18380S

6
` 5244S

5
´ 162S

4
´ 536S

3
´ 87S

2
` 18S ` 5qy

3
´

2p384S
6
` 1120S

5
` 1914S

4
` 1604S

3
` 706S

2
` 171S ` 23qp1 ` 2Sq

5
y
2
` p96S

4
` 616S

3
`

924S
2
` 414S` 77qp1` 2Sq

7
y´ 36p1` 2Sq

10
qSyM

2
´ 2p2S

3
´ 1qp1` 2Sq

5
p2Sp64S

6
` 96S

5
`

94S
4
` 50S

3
` 18S

2
` 4S ` 1qpS ` 1q

3
y
4
` p1` 2Sqp2048S

10
` 6592S

9
` 9536S

8
` 7488S

7
`

2508S
6
´ 900S

5
´ 1346S

4
´ 600S

3
´ 119S

2
´ 6S` 1qy

3
´ 2p128S

6
` 224S

5
` 266S

4
` 164S

3
`

50S
2
`11S`3qp1`2Sq

5
y
2
`p32S

4
`72S

3
`108S

2
`38S`9qp1`2Sq

7
y´4p1`2Sq

10
qM´p1`

2Sq
3
pSp4S

2
`2S`1q

3
pS`1q

6
y
4
`2p64S

6
`96S

5
`94S

4
`50S

3
`18S

2
`4S`1qpS`1q

3
p1`

2Sq
5
y
3
`p1024S

9
` 3008S

8
` 3520S

7
` 1344S

6
´ 1460S

5
´ 2436S

4
´ 1642S

3
´ 616S

2
´ 127S´

12qp1` 2Sq
6
y
2
´ 2p64S

5
` 64S

4
` 14S

3
´ 36S

2
´ 34S´ 9qp1` 2Sq

10
y` 8p2S

3
´ 1qp1` 2Sq

12
q

1. Use the equations to compute the first (250) terms of the series M and H.
2. Guess polynomial equations with algeqtoseries (package gfun).

ãÑ Equations of degree 6 for Mpt, yq over QpS, yq and of degree 8 for Hpt, xq
over QpS, xq.

3. Determine which solution of the polynomial equation is the candidate.
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Guess
1. Use the equations to compute the first (250) terms of the series M and H.
2. Guess polynomial equations with algeqtoseries (package gfun).

ãÑ Equations of degree 6 for Mpt, yq over QpS, yq and of degree 8 for Hpt, xq
over QpS, xq.

3. Determine which solution of the polynomial equation is the candidate.

Both polynomial equations have only one solution that is a power series in t
and they both have polynomial coefficients.
ãÑ We denote them Mc and Hc.
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Check

Check: Prove that Mc and Hc satisfy
#

Mcpt, yq “ 1` tyMcpt, yq
2 ` tyryě0spMcpt, yq ´ 1q rHcpt, yq,

Hcpt, xq “ 1` txHcpt, xq
2 ` 2txrxě0spHcpt, xq ´ 1qĂMcpt, xq,

with ĂMcpt, xq “
x

p1´ xq2
Mc

ˆ

t,
1

p1´ xq2

˙

and rHcpt, yq “
1

2

„ ?
y

1´
?
y
Hc

ˆ

t,
1

1´
?
y

˙

´

?
y

1`
?
y
Hc

ˆ

t,
1

1`
?
y

˙

.
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Check

Check: Prove that Mc and Hc satisfy
#

Mcpt, yq “ 1` tyMcpt, yq
2 ` tyryě0spMcpt, yq ´ 1q rHcpt, yq,

Hcpt, xq “ 1` txHcpt, xq
2 ` 2txrxě0spHcpt, xq ´ 1qĂMcpt, xq,

with ĂMcpt, xq “
x

p1´ xq2
Mc

ˆ

t,
1

p1´ xq2

˙

and rHcpt, yq “
1

2

„ ?
y

1´
?
y
Hc

ˆ

t,
1

1´
?
y

˙

´

?
y

1`
?
y
Hc

ˆ

t,
1

1`
?
y

˙

.

1. Reformulate the equations:

where RM pyq “ pMcpyq ´ 1q rHcpyq ´
1

ty

´

Mcpyq ´ 1´ tyMcpyq
2
¯

P Qppyqqrrtss

and RHpxq “ pHcpxq ´ 1qĂMcpxq ´
1

2tx

´

Hcpxq ´ 1´ txHcpxq
2
¯

P Qppxqqrrtss.

$

&

%

ryě0sRM pyq “ 0,

rxě0sRHpxq “ 0,
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Check

Check: Prove that ryě0sRM pyq “ rx
ě0sRHpxq “ 0.

2. Compute minimal polynomials for RM and RH by eliminating Mc and Hc

using resultants.

ãÑ An equation of degree 12 for RM over QpS, yq and one of degree 12 for
RH over QpS, xq.
Unfortunately, the equations have solutions with positive powers
ùñ no “all solutions are negative” result
ùñ getting something on R will be hard.
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Check

Check: Prove that ryě0sRM pyq “ rx
ě0sRHpxq “ 0.

2. Compute minimal polynomials for RM and RH by eliminating Mc and Hc

using resultants.

ãÑ An equation of degree 12 for RM over QpS, yq and one of degree 12 for
RH over QpS, xq.
Unfortunately, the equations have solutions with positive powers
ùñ no “all solutions are negative” result
ùñ getting something on R will be hard.

3. Find intermediate field extensions.

QpS, yq 3
ÝÝÝÑ QpS,Lq 2

ÝÝÝÑ QpS,Kq 2
ÝÝÝÑ QpS, y,RM q

L “ ´
1

y

p1` 2Sq3pS ` 2S2 ` 4S3 ´ Lqp4S3 ´ Lq

Sp1` 2S ` 2S2 ` 4S3 ´ Lq2
,

K “
L

4Sp4S2 ` 2S ` 1qp1´Kq
.
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Check

3. Find intermediate field extensions.

QpS, yq 3
ÝÝÝÑ QpS,Lq 2

ÝÝÝÑ QpS,Kq 2
ÝÝÝÑ QpS, y,RM q

4. Solve the equation for RM over QpS,Kq.

Check: Prove that ryď0sRM pyq “ rx
ď0sRHpxq “ 0.

RM pyq “
B ´ C

?
D

2A
with A,B,C,D P QrS,Ks.ãÑ

5. Prove that L then K then RM is y-negative.

L “ ´
1

y

p1` 2Sq3pS ` 2S2 ` 4S3 ´ Lqp4S3 ´ Lq

Sp1` 2S ` 2S2 ` 4S3 ´ Lq2
,

K “
L

4Sp4S2 ` 2S ` 1qp1´Kq
.

6. Apply the same method to RH .
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Algebraicity
#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

has a unique solution in Qrysrrtss ˆQrxsrrtss.

There are polynomials PM pS, y,Mq and PHpS, x,Hq whose only power series
solution satisfy the system.

a.

b.

Theorem. [S. ‘26] The generating function Mpt, yq of 3-colored planar maps
with black and white border is algebraic over Qpt, yq of degree 24.

§ Complete map of the subfields of Qpt, y,Mpyqq.

Qpt, yq 4
ÝÝÝÑ QpS, yq 3

ÝÝÝÑ QpS,Lq 2
ÝÝÝÑ QpS, y,Mpyqq

§ All rypsMpS, yq are rational fractions in S.
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III- Random sampling:
Bolztmann samplers

[Duchon, Flajolet,
Louchard, Schaeffer ‘04]
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Exact size sampling

`

Principle: use the recursive decomposition to sample uniformly objects of a
given size n.

For binary trees :

“ tn “
n´1
ÿ

k“1

tktn´k´1

t1 “ 1

BinTreeSampler(n) =

if n = 1 then ‚

else draw k with Ppkq “ tktn´k´1{tn
(BinTreeSampler(k), BinTreeSampler(n-1-k))
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Exact size sampling

`

Principle: use the recursive decomposition to sample uniformly objects of a
given size n.

For binary trees :

“ tn “
n´1
ÿ

k“1

tktn´k´1

t1 “ 1

BinTreeSampler(n) =

if n = 1 then ‚

else draw k with Ppkq “ tktn´k´1{tn
(BinTreeSampler(k), BinTreeSampler(n-1-k))

very expensive

§ Need an explicit recurrence.
§ Very slow for large size objects.
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Boltzmann samplers

`

T ptq “ t ` tT ptq2

Principle: sample objects γ P C according to the probability distribution

For binary trees :

“ ΓT ptq “

probability
t

T ptq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

% ΓT ptq ΓT ptq

probability tT ptq

Ppγq “
t|γ|

Cptq

with t a parameter, by following a recursive decomposition of C.
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Boltzmann samplers

`

T ptq “ t ` tT ptq2

Principle: sample objects γ P C according to the probability distribution

For binary trees :

“ ΓT ptq “

probability
t

T ptq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

% ΓT ptq ΓT ptq

probability tT ptq

§ Unfixed size (adjust the value of t to aim a given size).
§ Uniform distribution when conditioned by the size of the object.
§ Can be built as long as we have a positive combinatorial equation.
§ Very efficient for large objects.

Ppγq “
t|γ|

Cptq

with t a parameter, by following a recursive decomposition of C.
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Boltzmann sampler for 3-colored maps

ΓMpt, yq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

§ The catalytic variables becomes a second parameter: Ppmq “
tepmqybpmq

Mpt, yq
.

ΓMpt, yq

with probability
1

Mpt, yq

with probability tyMpt, yq

ΓrHpt, yq

ΓMpt, yq

ΓpMpt, yq ´ 1q

Otherwise.
Reject while the lengths of the
borders of the maps are
incompatible.

#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

ΓHpt, xq similarly.

§ We use rejection to handle the ryě0s and rxě0s.
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Boltzmann sampler for 3-colored maps

§ The catalytic variables becomes a second parameter: Ppmq “
tepmqybpmq

Mpt, yq
.

#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

ΓrHpt, yq “ ΓHpt, xq
Reject while number of legs
of c ‰ root degree of h.

§ We use rejection to handle the ryě0s and rxě0s.

C counts caterpillars of even length with xÑ legs and y Ñ half length.

ΓCpx, yq`
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Boltzmann sampler for 3-colored maps

§ The catalytic variables becomes a second parameter: Ppmq “
tepmqybpmq

Mpt, yq
.

#

Mpt, yq “ 1` tyMpt, yq2 ` tyryě0spMpt, yq ´ 1q rHpt, yq,

Hpt, xq “ 1` txHpt, xq2 ` 2txrxě0spHpt, xq ´ 1qĂMpt, xq.

ΓrHpt, yq “ ΓHpt, xq
Reject while number of legs
of c ‰ root degree of h.

§ We use rejection to handle the ryě0s and rxě0s.

ΓCpx, yq “

$

’

’

’

’

&

’

’

’

’

%

ΓCpx, yq

C counts caterpillars of even length with xÑ legs and y Ñ half length.

ΓCpx, yq

with probability
a

y{Apx, yq,

with probability
a

y,

with probability x.

Reject if the length is odd.

ΓCpx, yq`
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Boltzmann sampler for 3-colored maps

Pretty image of a big random 3-colored map
that I’ll have as soon as I find time to

implement this sampler.
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Perspectives

§ Adapt the gasket decomposition for others families of colored maps.

ãÑ Colorful quadrangulations [Budd ‘25].
ãÑ 4-colored triangulations.

§ Others applications of the decomposition?

§ Implement the samplers.
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Perspectives

§ Adapt the gasket decomposition for others families of colored maps.

ãÑ Colorful quadrangulations [Budd ‘25].
ãÑ 4-colored triangulations.

§ Others applications of the decomposition?

Thank you !

§ Implement the samplers.


