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First example: Trees

Plane tree = rooted tree with ordered children.
Size n = number of vertices.

Binary trees: all vertices have 0 or 2 children.

size 1 : lf” t1 =1
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sizen > 1: t, = Z trtn—1—1
k=1
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Generating functions

The generating function of a combinatorial class C is the series

C(t) = > thh =" c,t" e Q[[t]].
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A recursive decomposition translates into an equation on the generating
function.
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Generating functions

The generating function of a combinatorial class C is the series

C(t) = > thh =" c,t" e Q[[t]].

veC n=0

A recursive decomposition translates into an equation on the generating
function.

Binary trees:

T T+
Tt) = t + tT(t)?

Trees with nodes @ O /.\ R R /T\ %TN

T(t) = 2t + 3tT(1)* +tT(t)° +tT(t)"




Generating functions

The generating function of a combinatorial class C is the series

C(t) = > thh =" c,t" e Q[[t]].
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What to do with it ?

» If we can solve the equation and get a closed form for C'(t), we can
recover the ¢, through C™(0) = nlc,.

» Use the equation to compute asymptotics of c¢,,.

» Build random generator (Boltzmann).



Generating functions

The generating function of a combinatorial class C is the series

C(t) = > thh =" c,t" e Q[[t]].

veC n=0

What to do with it ?

» If we can solve the equation and get a closed form for C'(t), we can
recover the ¢, through C™(0) = nlc,.

» Use the equation to compute asymptotics of c¢,,.

» Build random generator (Boltzmann).

The form of the equation gives information on the class:
Rational function: C'(t) = P(t) + Q(t)C(t), P, Q polynomials.
— ¢, ~ kA"n%, ae N. C =~ regular language?
Algebraic function: P(t,C(t)) =0, P(t,C) polynomial.
— ¢, ~ KA"n%, a€ Q. C =~ non-ambiguous grammar (trees)?



|- Recursive decomposition of
colored planar maps

1) Definitions



Planar maps

A planar map is the embedding of a connected graph onto the sphere, up to
orientation preserving homeomorphism.
Multi-edges and loops are allowed.

— -a

Planar map = planar graph + cyclic ordering of the edges around each vertex.

All maps are rooted, i.e. an oriented edge is marked.



Planar maps

Planar map = planar graph + cyclic ordering of the edges around each vertex.

e \ertices and edges are inherited from the graph.
e [aces are the connected components of the sphere minus the map.

Size: number of edges n.

Here: 6 vertices, 9 edges
et b faces.




Planar maps

Planar map = planar graph + cyclic ordering of the edges around each vertex.

e \ertices and edges are inherited from the graph.
e [aces are the connected components of the sphere minus the map.

Size: number of edges n.

Degree (of a vertex or face) = number of incident half-edges.




Colored maps

Colored map: assign a color to each vertex so that each pair of adjacent
vertices receives different colors.

.

proper coloring non-proper coloring



|- Recursive decomposition of
colored planar maps

2) Tutte’s decomposition



2-colored maps

B(t): generating function of bicolored planar maps counted by number of
edges.
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2-colored maps

B(t): generating function of bicolored planar maps counted by number of
edges.
—— add a catalytic variable recording the half-length of the boundary

— B(t y Z te(b) b(b)
beBB




2-colored maps

B(t,y): generating function of bicolored planar maps, ¢t — edges, y — half
degree of the outer face.

y— 1
Can be solved with the quadratic method [Brown ‘60s].

B(t,y) = 1 + tyB(t,y)* + ty




2-colored maps

B(t,y): generating function of bicolored planar maps, ¢t — edges, y — half
degree of the outer face.

y— 1
Can be solved with the quadratic method [Brown ‘60s].

B(t,y) = 1 + tyB(t,y)* + ty

Theorem. [Bousquet-Mélou Jehanne ‘06] If F(y) = F(t,y) € Q|y][[¢]]
satisfies an equation

F(y) = P(y) +tQ(t,y, F(y), AF(y), ..., A*F(y))
F(y) — F(1)
y—1

where P, () are polynomials and AF(y) =

then F'(y) is an algebraic series.

B(t,y) is algebraic.

+ Explicit bijection with a family of trees [Schaeffer ‘97].



3-colored maps

M (t,y): generating function of 3-colored planar maps counted by number of
edges (variable t) and degree of the outer face (variable ).

M(t,y) = 1 + 2ty* M (t,y)? +  ty???

10



3-colored maps

M (t,y): generating function of 3-colored planar maps counted by number of
edges (variable t) and degree of the outer face (variable ).

= O

M(t,y) = 1 + 2ty* M (t,y)? +  ty??7?
Solution:
—— need a second catalytic variable recording the degree of the root vertex.
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3-colored maps

M (t,x,y): generating function of 3-colored planar maps counted by number
of edges (variable t), degree of the outer face (variable y) and degree of the
root vertex (variable z).

SR
@ &

Theorem. [Bernardi Bousquet-Mélou ‘11]

M(z,y) = 1+ayt2y—1)M(z,y)M(1,y) — zytM(z,y)M(z, 1)
M — M(1 M — M(z,1
P (x,zn)_1 (1,y) taoyt? (w,z;)_1 (2,1)

10



3-colored maps

M(z,y) = 1+ayt(2y—1))M(z,y)M(1,y) —aytM(z,y)M(z,1)
_xytxM(ﬂf y) —M(1,y) xytyM(ﬂf,y) — M(z,1)
x—1 y—1

Negative coefficients = cannot build a random generator.

Not an algebraic/D-finite/. . .equation = no toolbox ?
We have 2 catalytic variables so Bousquet-Mélou and Jehanne's theorem

does not apply.

10



3-colored maps

M(z,y) = 1+ayt(2y—1))M(z,y)M(1,y) —aytM(z,y)M(z,1)
_xytévM(ﬂf,y) - My M@y - M@ 1)
x—1 y—1

Negative coefficients = cannot build a random generator.

Not an algebraic/D-finite/. . .equation = no toolbox ?
We have 2 catalytic variables so Bousquet-Mélou and Jehanne's theorem

does not apply.

Theorem. |[Bernardi Bousquet-Mélou ‘11| The generating function of
3-colored planar map is algebraic and is equal to

(14 29)(1 —28?% — 483 — 45%)
(1 —253)2

with constant term O.

M(1,1) =
S(1—5%)
(14 25)3

< Obtained via a reduction to 1-catalytic equation.

with S the solution of t =

10



|- Recursive decomposition of
colored planar maps

3) Gasket decomposition
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Gasket decomposition

Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let M/ (7, 1) be their generating function with ¢ counting the edges and
y half the degree of the outer face.

M(t,y) = 1 + tyM (t,y)? + 777
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Gasket decomposition

Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let M/ (7, 1) be their generating function with ¢ counting the edges and
y half the degree of the outer face.

\

—O Oo—e—oO
T A T
3-colored map where all neighbors

of the root vertex are red.
+ connection caterpillar.
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Gasket decomposition

Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let M/ (7, 1) be their generating function with ¢ counting the edges and
y half the degree of the outer face.

Let 7 be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let H (¢, x) be their generating function with ¢ counting
the edges and x the degree of the root vertex.

= O+ C +
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Gasket decomposition

Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let M/ (7, 1) be their generating function with ¢ counting the edges and
y half the degree of the outer face.

Let 7 be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let H (¢, x) be their generating function with ¢ counting
the edges and x the degree of the root vertex.

e
M(t,y) = 1 +  tyM(t,y)’ +ty2<2 ?/pkhk> [yP1M (t,y)

2% +d— 1 p=1 k=l
=3 (P 7 e
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Gasket decomposition

Use the structure from the coloring and get back to bipartite maps.

Let M be the class of 3-colored planar maps with a black and white outer
face. Let M/ (7, 1) be their generating function with ¢ counting the edges and
y half the degree of the outer face.

Let 7 be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let H (¢, x) be their generating function with ¢ counting
the edges and x the degree of the root vertex.

_o+ o

M(t,y) =1+ tyM(t,y)? + ty[yZ°| (M (t,y) — 1) H(t,7), y=1/y
~ 3 ko L WY 1 WY 1
HW),;ﬂhwll—wH(%—w) i)



Gasket decomposition

Let M be the class of 3-colored planar maps with a black and white outer

face.
Let 7 be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let H (7, ) be their generating function with ¢ counting

the edges and x the degree of the root vertex.
®
@ T + @
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Gasket decomposition

Let M be the class of 3-colored planar maps with a black and white outer

face.
Let 7 be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let H (7, ) be their generating function with ¢ counting

the edges and x the degree of the root vertex.
®

H(t,z) =1+txH(t,2)* + 2x[zZ°|(H (t,2) — 1) M (t, 7).

o)=Y o'y (2}9;:@'1— 1) [P 1M (t,y) = q fx)2M<t, i —1:1:)2) :

1=1 p=0




Gasket decomposition

Let M be the class of 3-colored planar maps with a black and white outer

face.

Let 7 be the class of 3-colored planar maps where all the neighbors of the
root vertex are red. Let H (7, ) be their generating function with ¢ counting
the edges and x the degree of the root vertex.

Theorem. [S. '26]
{ M(t,y) = 1+ tyM(t.y)? + ty[yP° (M (t,y) — 1) H (¢, 7),
0 1

H(t,z) =1+txH(t,2)* + 2tx[z”°|(H (t,z) — 1) M (t,T),
with N i . 1
M) = Gy o)
s a1 RN 1
H“’y)‘;y’“‘z[l—w (1—¢@) NG (’1+¢@)]‘
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lI- Algebraicity proof
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The strategy: Guess and Check

{ M(ty) = 1+ tyM(ty)? + ty[y>°) (M (t,y) — DH(t.7),
H(t,x) =1+ tcH(t,2)* + 2tx[zZ°|(H (t,2) — 1) M (t, 7).

The equations allow us to recursively compute all the coefficients of the
series M and H

— unique solution in Q[y][[t]] x Q[z][[¢]].

Guess and Check:

1. Guess polynomial equations satisfied by our series.
2. Prove that the solutions of the polynomial equations satisfy the original
equations.

15



Guess

M(t,y) =1+ tyM(t,y)* + ty[yZ°) (M (£, y) — 1 H(t,),
H(t,z) =1+ txH(t,z)* + 2tz[z”°|(H(t,2) — 1)M (t, 7).

Guess:

1. Use the equations to compute the first (250) terms of the series M and H.
2. Guess polynomial equations with algeqtoseries (package gfun).
3. Determine which solution of the polynomial equation is the candidate.

We use the intermediate field Q(t,y) — Q(S,y) — Q(t,y, M (t,y))
S(1—8?)
(1+25)3

Equations of degree 6 for M (t,y) over Q(.S,y) and of degree 8 for H(t, x)
over Q(5, ).

where t = to have smaller equations.

16



Guess

1. Use the equations to compute the first (250) terms of the series M and H.

2. Guess polynomial equations with algeqtoseries (package gfun).
3. Determine which solution of the polynomial equation is the candidate.

<~ Equations of degree 6 for M (t,y) over Q(S,y) and of degree 8 for H(t,x)
over Q(5, ).

P (S, y, M) = 4y° (y — 1)25° (253 — )0 MO 4 249% (5 — 1)2(1 +25)3 (253 — 1)°s%M° — (1 +
25)(253 —1)%((645% +965° +885% 13253 251+ 1)y? — (1654 + 45653 + 68452 +3345 +57)(1+
25)2y 4+ 56(1 + 25)°)53(y — Dy M+ — 4253 — 1)3(1 + 25)%((645° + 965° + 885% + 3253 —
25 + 1)y? — (165% + 13653 + 20452 4+ 945 +17)(1 4+ 25)2y 4+ 16(1 +25)°)S2% (y — 1)y M3 — (1 +
25)2 (253 —1)2(25(645% +965° +945% +505° +1852 +45+1)(S+1)3y* + (1 +25)(6144510 +
2092859 + 336005% + 3206457 + 183805° 4 52445° — 1625% — 53653 — 8752 + 185 + 5)y° —
2(3845% 1+ 11205° + 19145% + 160453 + 70652 + 1715 + 23)(1 + 25)°y?2 + (965* + 61653 +
02452 44145 + 77)(1 +25) 7y —36(1 +25)19)s5yM? —2(253 —1)(1 +25)°(25(645° + 965° +
045% + 505% + 1852 + 45 + 1)(S + 1)3y? + (1 + 25)(2048510 1 65925° + 953658 + 748857 +
250859 — 9005° — 134654 — 60053 — 11952 — 65 + 1)y> — 2(1285% + 2245° 1+ 2665% + 16453 +
5052 + 115 +3)(1+25)2y2 +(325% + 7253 +10852 +385+9)(14+25) y—4(1+25) M — (14
25)3 (5452 +25+1)3 (5 +1)%y* +2(645° +965° +945% + 5053 + 1852 +45 +1)(S+1)3(1 +
25)°y3 4+ (10245° + 300858 + 352057 + 134459 — 14605° — 24365% — 16425% — 61652 — 1275 —
12)(1 +25)%42 — 2(645° + 645% + 1453 — 3652 — 345 —9)(1 +25)10y +8(253 —1)(1 + 25)12)

16



Guess

1. Use the equations to compute the first (250) terms of the series M and H.
2. Guess polynomial equations with algeqtoseries (package gfun).
3. Determine which solution of the polynomial equation is the candidate.

Equations of degree 6 for M (t,y) over Q(.S,y) and of degree 8 for H(t, x)
over Q(5, ).

Both polynomial equations have only one solution that is a power series in ¢

and they both have polynomial coefficients.
We denote them M, and H..

16



Check

Check: Prove that M. and H,. satisfy

M(t,y) =1+ tyM.(t,y)? + ty[y= N (Mt y) — 1)
H.(t,z) =1+ txH.(t,2)* + 2tx[x” | (H.(t,2) — 1)M.(t.7),

with M,(t,z) = (12 2M0<t’ (1 —156)2)

and H,(t,y) =

17



Check

Check: Prove that M. and H,. satisfy

M (t,y) = 1+ tyM.(t,y)* + ty[y®°](Mc(t,y) — 1) Ho(t,7),
H.(t,z) =1+ txH.(t,2)* + 2tx[x” | (H.(t,2) — 1)M.(t.7),

with M.(t, z) = 1 x)2MC(t’ (1 —151;)2)

Bl = 5| XA = ) - T Al ) |

1. Reformulate the equations:

k 27| Ry (x) =
where Rar(y) = (M.(y) — 1) H.() - %(M(;(y) 1 tyM,(y)°) € Q@I
and Ry (x) = (He(z) — )ML(T) — % (He(w) =1~ teH,(2)*) € Q(@)[[]]
L 17



Check

Prove that [y= Ry (y) = [27°| Ry (z) = 0.

2. Compute minimal polynomials for R;; and Ry by eliminating M. and H.
using resultants.

An equation of degree 12 for Rj; over Q(.S,y) and one of degree 12 for
Ry over Q(S, ).
Unfortunately, the equations have solutions with positive powers
— no “all solutions are negative” result
— getting something on R will be hard.

17



Check

Prove that [y= Ry (y) = [27°| Ry (z) = 0.

2. Compute minimal polynomials for R;; and Ry by eliminating M. and H.
using resultants.

An equation of degree 12 for Rj; over Q(.S,y) and one of degree 12 for
Ry over Q(S, ).
Unfortunately, the equations have solutions with positive powers
— no “all solutions are negative” result
— getting something on R will be hard.

3. Find intermediate field extensions.
Q(S,y) —— Q(S, L) —— Q(S, K) —— Q(S,y, Rus)

1(1+25)%(S+25%+4S5° —L)(4S° — L)

y S(1+4 2S5 4252 + 453 — L)? ’
L

45(45%2 +25S+1)(1 - K)’

L = —

K —

17



Check
Check: Prove that [yS°|Ry(y) = [z="]Ry(x) = 0.

3. Find intermediate field extensions.
Q(S,y) —— Q(S, L) — Q(S, K) —— Q(S,y, Rar)

1(1+25)%(S+25%+4S5° —L)(4S° — L)

y S(1+4 2S5 4252 + 453 — L)? ’
L

45(452+25+ 1)1 - K)

L= —

K —

Solve the equation for Ry; over Q(S, K).

 B-CvVD
- 24
Prove that L then K then R, Is y-negative.

Rar(y)

with A, B,C, D € Q[S, K.

Apply the same method to Ry.

17



Algebraicity

M(t,y) =1+ tyM(t,y)* + ty[y>°) (M (t,y) — 1) H(t,7),
H(t,2) =1+ teH(t,2)? + 2tx[z>(H (t, 2) — )M (L. 7).

has a unique solution in Q[y]|[t]] x Q|x][[t]].

]
b. There are polynomials Py;(S,y, M) and Py (S, x, H) whose only power series
solution satisfy the system.

Theorem. [S. ‘26] The generating function M (t,y) of 3-colored planar maps
with black and white border is algebraic over Q(¢,y) of degree 24.
Complete map of the subfields of Q(¢,y, M(y)).
2
Qt,y) —— Q(S,y) —— Q(S, L) —— Q(S,y, M(y))
All [y?|M (S, y) are rational fractions in S.

18



lll- Random sampling:
Bolztmann samplers

[Duchon, Flajolet,
Louchard, Schaeffer ‘04]

19



Exact size sampling

Principle: use the recursive decomposition to sample uniformly objects of a
given size n.

For binary trees :

t =
n—1

ﬂ — zi‘/ tn = Z teln—k—1
k=1

BinTreeSampler(n) =
if n = 1 then o
else draw k with P(k) = tptn_r_1/tn
(BinTreeSampler(k), BinTreeSampler(n-1-k))

20



Exact size sampling

Principle: use the recursive decomposition to sample uniformly objects of a
given size n.

For binary trees :

t =
n—1

ﬂ — zi‘/ tn = Z teln—k—1
k=1

BinTreeSampler(n) =
if n = 1 then o
else draw k with P(k) = tptn_r_1/tn
(BinTreeSampler(k), BinTreeSampler(n-1-k))

Need an explicit recurrence.
Very slow for large size objects.
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Boltzmann samplers

Principle: sample objects v € C according to the probability distribution

ARl
C(t)

P(y) =

with ¢ a parameter, by following a recursive decomposition of C.

For binary trees :

¢

= +

IT(t)

tT(t)?

t
( ‘ﬁ‘/ prObablllty m

probability t7T'(t)

21



Boltzmann samplers

Principle: sample objects v € C according to the probability distribution

B ARl
with ¢ a parameter, by following a recursive decomposition of C.
For binary trees : .
)
obability ——
lf/ pr ity A0

=% + IT(¢) = <

probability t7T'(t)

Tt = t + tT(t)? TN AT(t

\

Unfixed size (adjust the value of ¢ to aim a given size).
Uniform distribution when conditioned by the size of the object.
Can be built as long as we have a positive combinatorial equation.

Very efficient for large objects.
21



Boltzmann sampler for 3-colored maps
pe(m)  b(m)

» The catalytic variables becomes a second parameter: P(m) =
» We use rejection to handle the [¢="] and [27"].

M(t,y) =1+ tyM(t,y)* + ty[y>°) (M (t,y) — 1) H(t,7),
H(t,2) =1+ teH(t,2)? + 2tx[z>(H (t,2) — V)M (. 7).

-

O with probability

1
M(t,y)

w .@ with probability tyM (¢, y)
IM(t,y) = <

0 Otherwise.

Reject while the lengths of the
borders of the maps are
iIncompatible.

[TH(t, x) similarly.

M(t,y)

22



Boltzmann sampler for 3-colored maps
pe(m)  b(m)

M(t,y)

» The catalytic variables becomes a second parameter: P(m) =

» We use rejection to handle the [¢="] and [27"].

{M(t,y>=1+tyM<t,y>2+ty[y>]< (t.y) — DH(t,7),
H(t,2) =1+ teH(t,2)? + 2tx[z>(H (t,2) — V)M (. 7).

~ Reject while number of legs
TH _ ?"'-“'_“':5"’.
(1,9) + TICEY of ¢ # root degree of h.

(' counts caterpillars of even length with * — legs and ¥ — half length.
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Boltzmann sampler for 3-colored maps
pe(m)  b(m)

M(t,y)

» The catalytic variables becomes a second parameter: P(m) =

» We use rejection to handle the [¢="] and [27"].

{M(t,y>=1+tyM<t,y>2+ty[y>]( (t.y) — DH(t,7),
H(t,2) =1+ teH(t,2)? + 2tx[z>(H (t,2) — V)M (. 7).

~ Reject while number of legs
TH _ ?""""_"":5"’.
(1,9) + TICEY of ¢ # root degree of h.

(' counts caterpillars of even length with * — legs and ¥ — half length.

® with probability \/?/A(fa ),
['C(T,y) =4 O I'c(z,y) with probability 4/7,
/¢ I'c(z,y) with probability =.
\

Reject if the length is odd.



Boltzmann sampler for 3-colored maps

Pretty image of a big random 3-colored map
that I'll have as soon as | find time to
Implement this sampler.
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Perspectives

Adapt the gasket decomposition for others families of colored maps.

Colorful quadrangulations [Budd ‘25].
4-colored triangulations.

Others applications of the decomposition?

Implement the samplers.
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Perspectives

Adapt the gasket decomposition for others families of colored maps.

Colorful quadrangulations [Budd ‘25].
4-colored triangulations.

Others applications of the decomposition?

Implement the samplers.

Thank vou !
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