Pattern avoiding 3-permutations and triangle bases

Juliette Schabanel

LaBRI

I- The objects

a) Pattern avoiding 3-permutations

Permutations and diagrams

A permutation $\sigma = \sigma(1)\sigma(2) \dots \sigma(n)$ is a bijection from $\llbracket 1, n \rrbracket = \{1, 2, \dots, n\}$ to itself. Its diagram is the set of points $P_{\sigma} = \{(i, \sigma(i)) \mid 1 \leq i \leq n\}.$

The diagram of $\sigma = 324165$.

A diagram is a set of points on $\llbracket 1, n \rrbracket \times \llbracket 1, n \rrbracket$ with exactly one point per row and per column.

Pattern avoidance in permutations

A permutation $\sigma \in \mathfrak{S}_n$ contains a pattern $\pi \in \mathfrak{S}_k$ if there is a set of indices I such that $\sigma_{|I} = \pi$. Otherwise, it avoids it.

 $\sigma = 324615$ contains the pattern $\pi = 231$.

3-Permutations

A 3-diagram is a set of points in $[\![1,n]\!]^3$ with exactly one point per plane of the grid.

3-Permutations

A 3-diagram is a set of points in $[\![1, n]\!]^3$ with exactly one point per plane of the grid.

A 3-permutation is a couple of permutations $(\sigma, \tau) \in \mathfrak{S}_n^2$. It is represented by the diagram $P_{(\sigma, \tau)} = \{(i, \sigma(i), \tau(i)) \mid 1 \leq i \leq n\}.$

(264153, 632514)

Points : (1, 2, 6) (2, 6, 3) (3, 4, 2) (4, 1, 5) (5, 5, 1) (6, 3, 4)

Pattern avoidance in 3-permutations

A 3-permutation $(\sigma, \tau) \in \mathfrak{S}_n^2$ contains a pattern $(\pi_1, \pi_2) \in \mathfrak{S}_k^2$ if there is a set of points of (σ, τ) that is equal to (π_1, π_2) (once standardized). Otherwise it avoids it.

(264153, 632514) contains the pattern (312, 231).

It avoids the pattern (12, 12) although both 264153 and 632514 contain 12.

Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
$(12, 12), (12, 21), \\(21, 12)$	4	$1, 1, 1, 1, 1, 1, \cdots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 12), (21, 21)	1	$1, 0, 0, 0, 0, 0, \cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, \overline{16, 124, 1262, 15898, \cdots}$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, \overline{16, 122, 1188, 13844, \cdots}$	A295928?

[Bonichon & Morel, 22]

Pattern avoidance classes

Patterns	TWE	Sequence	Comment
(12, 12)	4	$1, 3, 17, 151, 1899, 31711, \cdots$	weak-Bruhat intervals
(12, 12), (12, 21)	6	$n! = 1, 2, 6, 24, 120 \cdots$	$\sigma_1 \Rightarrow \sigma_2$
(12, 12), (12, 21), (21, 12)	4	$1, 1, 1, 1, 1, 1, \cdots$	1 diagonal
(12, 12), (12, 21), (21, 12), (21, 12), (21, 21)	1	$1, 0, 0, 0, 0, 0, \cdots$	
(123, 123)	4	$1, 4, 35, 524, 11774, 366352, \cdots$	new
(123, 132)	24	$1, 4, 35, 524, 11768, 365558, \cdots$	new
(132, 213)	8	$1, 4, 35, 524, 11759, 364372, \cdots$	new
(12, 12), (132, 312)	48	$(n+1)^{n-1} = 1, 3, 16, 125, 1296 \cdots$	[Atkinson et al. 93,95]
(12, 12), (123, 321)	12	$1, 3, \overline{16, 124, 1262, 15898, \cdots}$	distributive lattices inter.
(12, 12), (231, 312)	8	$1, 3, \overline{16}, 122, 1188, 13844, \cdots$	A 295928?

[Bonichon & Morel, 22]

Pattern avoidance classes

A295928	Number of triangular matrices $T(n,i,k)$, $k \le i \le n$, with entries "0" or "1" with the property that each triple { $T(n,i,k)$, $T(n,i,k+1)$, $T(n,i-1)$
	1,k)} containing a single "0" can be successively replaced by {1, 1, 1} until finally no "0" entry remains.
1, 3, 16 (<u>list; graph;</u>	, 122, 1188, 13844, 185448, 2781348, 45868268 <u>refs; listen; history; text; internal format</u>)
OFFSET	1,2
COMMENTS	<pre>A triple {T(n,i,k), T(n,i,k+1), T(n,i-1,k)} will be called a primitive triangle. It is easy to see that b(n) = n(n-1)/2 is the number of such triangles. At each step, exactly one primitive triangle is completed (replaced by {1, 1, 1}). So there are b(n) "0"- and n "1"-terms. Thus the starting matrix has no complete primitive triangle. Furthermore, any triangular submatrix T(m,i,k), k <= i <= m < n cannot have more than m "1"-terms because otherwise it would have less "0"-terms than primitive triangles. The replacement of at least one "0"-term would complete more than one primitive triangle. This has been excluded. So T(n, i, k) is a special case of U(n, i, k), described in <u>A101481</u>: a(n) < <u>A101481</u>(n+1). A start matrix may serve as a pattern for a number wall used on worksheets for elementary mathematics, see link "Number walls". That is why I prefer the more descriptive name "fill matrix". The algorithm for the sequence is rather slow because each start matrix is constructed separately. There exists a faster recursive algorithm which produces the same terms and therefore is likely to be correct, but it is based on a conjecture. For the theory of the recurrence, see "Recursive aspects of fill matrices". Probable extension a(10)-a(14): 821096828, 15804092592, 324709899276, 7081361097108, 163179784397820. The number of fill matrices with n rows and all "1"- terms concentrated on the last two rows, is <u>A001960</u>(n). See link "Perconstruction of a sequence"</pre>
LINKS	Table of n, a(n) for n=19. Gerhard Kirchner, <u>Recursive aspects of fill matrices</u> Gerhard Kirchner, <u>Number walls</u> Gerhard Kirchner, <u>VB-program</u> Gerhard Kirchner, <u>Reconstruction of a sequence</u> Ville Salo, <u>Cutting Corners</u> , arXiv:2002.08730 [math.DS], 2020. Yuan Yao and Fedir Yudin, <u>Fine Mixed Subdivisions of a Dilated Triangle</u> , arXiv:2402.13342 [math.C0], 2024.
EXAMPLE	Example (n=2): 0 1 1 a(2)=3 11 01 10 Example for completing a 3-matrix (3 bottom terms): 1 1 1 1 1 00 -> 10 -> 11 -> 11 110 110 110 111

I- The objects

b) Triangle Bases

Tilings

A tiling with alphabet A and rule set $\mathcal{R} \subset S^A$ with $S \subset \mathbb{Z}^2$ is a coloring of \mathbb{Z}^2 with A such that every S-subpattern of it is in \mathcal{R} . The set of tilings for a rule set is called a subshift.

$$A = \left\{ \square, \square \right\}, \mathcal{R} = \left\{ \square, \square, \square, \square, \square, \square, \square, \square \right\}$$

Not valid

Valid

TEP subshifts

A subshift is **TEP** (totally extremally permutive) if for all $x \in S$, for all $c : S \setminus \{x\} \to A$, there is a unique $a \in A$ that extends c into an allowed subpattern.

A TEP subshift

TEP subshifts

A subshift is **TEP** (totally extremally permutive) if for all $x \in S$, for all $c : S \setminus \{x\} \to A$, there is a unique $a \in A$ that extends c into an allowed subpattern.

cannot be extended so the rule is not TEP.

TEP subshifts

A subshift is **TEP** (totally extremally permutive) if for all $x \in S$, for all $c : S \setminus \{x\} \to A$, there is a unique $a \in A$ that extends c into an allowed subpattern.

admits two valid extensions so the rule is not TEP.

Knowing the values in the cells of ${\cal P},$ which others can be deduced ?

Knowing the values in the cells of P, which others can be deduced ?

Knowing the values in the cells of P, which others can be deduced ?

Knowing the values in the cells of P, which others can be deduced ?

Knowing the values in the cells of P, which others can be deduced ?

Knowing the values in the cells of ${\cal P},$ which others can be deduced ?

Independence

Given a set of cells P, when can its content be chosen freely?

A set of cells $P \subset \mathbb{Z}^2$ is **independent** if all its colorings admit a valid extension to \mathbb{Z}^2 .

Independent

Not independent

Bases

 $T_n = \{(a, b) \in \mathbb{N}^2 \mid a + b < n\}$ triangle of size n.

A configuration of size n is a set of n points $C \subset T_n$.

A triangle basis of size n is an independent set that fills T_n . Denote \mathcal{B}_n their set.

Proposition. [Salo, S. 22] A configuration of size n is a basis if and only if it fills T_n .

Bases

 $T_n = \{(a, b) \in \mathbb{N}^2 \mid a + b < n\}$ triangle of size n.

A configuration of size n is a set of n points $C \subset T_n$.

A triangle basis of size n is an independent set that fills T_n . Denote \mathcal{B}_n their set.

Proposition. [Salo, S. 22] A configuration of size n is a basis if and only if it fills T_n .

Theorem. [S. 24] For all n, the set of bases of size n is in bijection with $Av_n((12, 12), (312, 231))$.

II- A bijection

z

х

Inversions

An inversion for $\sigma \in \mathfrak{S}_n$ is $(i, j) \in [\![1, n]\!]$ with i < j and $\sigma(i) > \sigma(j)$.

The inversion sets are $R_{\sigma}(i) = \{j > i \mid \sigma(j) < \sigma(i)\}$ (right inversions) and $L_{\sigma}(i) = \{j < i \mid \sigma(j) > \sigma(i)\}$ (left inversions). We denote $r_{\sigma}(i) = |R_{\sigma}(i)|$ and $l_{\sigma}(i) = |L_{\sigma}(i)|$.

 $\Gamma: (\sigma, \tau) \mapsto \{ (r_{\sigma}(i), l_{\tau}(i)) \mid i \in \llbracket 1, n \rrbracket \}$

Theorem. [S. 24] For all n, Γ is a bijection between $Av_n((12, 12), (312, 231))$ and the triangle bases of size n.

We need to prove that:

- If $(\sigma, \tau) \in Av_n((12, 12), (312, 231))$ then $\Gamma(\sigma, \tau)$ is a basis.
- One can recover the labels.

Avoiding (12, 12): no "points too close"

Avoiding (12, 12): no "points too close"

 $r_{\sigma}(i) > r_{\sigma}(j) \qquad l_{\tau}(i) < l_{\tau}(j)$

Avoiding (12, 12): no "points too close"

A configuration C is sparse if there is no triangle of size k such that $|C \cap T| > k$.

Proposition. [Salo, S. 22] If a configuration C is not sparse then it is not independent (and in particular C is not a basis).

Proposition. If (σ, τ) avoids (12, 12) then $\Gamma(\sigma, \tau)$ is sparse.

Avoiding (312, 231): no "points too far"

Points too far to fill

 $= \Gamma(312, 231)$ is the only sparse configuration of size 3 that does not fill.

Lemma. [Salo, S. 22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

Lemma. [Salo, S. 22] Any basis of size $n \ge 2$ can be cut into two smaller bases in one of the 3 following ways.

Lemma. Γ transports the cuts : $\Gamma(\sigma, \tau)$ admits a given cut if and only if (σ, τ) does.

Lemma. Γ transports the cuts : $\Gamma(\sigma, \tau)$ admits a given cut if and only if (σ, τ) does.

Lemma. All 3-permutations of $Av_n((12, 12), (312, 231))$ admit a cut.

Lemma. Γ transports the cuts : $\Gamma(\sigma, \tau)$ admits a given cut if and only if (σ, τ) does.

Lemma. All 3-permutations of $Av_n((12, 12), (312, 231))$ admit a cut.

Corollary. Γ is a bijection between $Av_n((12, 12), (312, 231))$ and \mathcal{B}_n . **Remark.** The cut is not unique, but a canonical one can be chosen.

III- Solitaire game

Theorem. [Salo, S. 22] The orbit of the line $[[0, n-1]] \times \{0\}$ consists of the triangle bases of size n.

Theorem. [Salo, S. 22] The orbit of the line $[[0, n-1]] \times \{0\}$ is the triangle bases of size n.

Theorem. The orbit of the line (\overline{id}, id) is $Av_n((12, 12), (312, 231))$.

22/24

Uniform sampling ?

Finding one basis is easy but enumerating them is hard \Rightarrow use the solitaire for random sampling !

Question. What is the mixing time of the solitaire ?

Lemma. [Salo, S. 22] The diameter of the line orbit for the solitaire is $\Theta(n^3)$.

• No enumerative result.

▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.

• No enumerative result.

- ▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.
- The solitaire is defined on all of Av(12, 12), what are the other orbits ?
- Γ is well defined on all of Av(12, 12). Could it give correspondence between other pattern avoiding classes of 3-permutations and sparse configurations ?

 \blacktriangleright Γ induces a bijection on each permutation orbit with a configuration orbit.

• No enumerative result.

- ▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.
- The solitaire is defined on all of Av(12, 12), what are the other orbits ?
- Γ is well defined on all of Av(12, 12). Could it give correspondence between other pattern avoiding classes of 3-permutations and sparse configurations ?

 \blacktriangleright Γ induces a bijection on each permutation orbit with a configuration orbit.

• Extend Γ to higher dimensions ?

• No enumerative result.

- ▶ Best known bounds : $3n! \leq |\mathcal{B}_n| \leq c \left(\frac{e}{2}\right)^n n^{n-\frac{5}{2}}$ with c > 0. $|Av_n((12, 12), (312, 231))| \leq |Av_n(12, 12)| =$ number of weak Bruhat intervals.
- The solitaire is defined on all of Av(12, 12), what are the other orbits ?
- Γ is well defined on all of Av(12, 12). Could it give correspondence between other pattern avoiding classes of 3-permutations and sparse configurations ?

 \blacktriangleright Γ induces a bijection on each permutation orbit with a configuration orbit.

• Extend Γ to higher dimensions ?

