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Tillings and independent sets

The triangle solitaire arises form the study of a class of tillings
[Cutting Corners, V. Salo, 2020].

a b

a+ b
mod 2

An independent set is a set X ⊂Z
2 whose content can be chosen freely.
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The solitaire moves

Figure: The action of the triangle shape.

The set of independent sets is stable under the solitaire moves.
The orbit of a pattern P , denoted γ(P ) is the set of patterns reachable
from it using the triangle moves.
Questions :
▶ What are the orbits ? In particular what is the orbit of the line ?
▶ Can we recognise them easily ?
▶ What are their sizes ?
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The solitaire graph

Consider the graph Gn with vertices the patterns of size n and edges
between p and q if there is a solitaire move that changes p into q.

• •
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• ◦
•

Figure: The Solitaire graph for n = 2
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Figure: The Solitaire graph for n = 3
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The solitaire graph

Consider the graph Gn with vertices the patterns of size n and edges
between p and q if there is a solitaire move that changes p into q.

The orbits of a pattern is its connected component in this graph.
Questions :
▶ What are the connected components of this graph ? In particular

what is the connected component of the line ?
▶ Can we recognise them easily ?
▶ How are they structured ?

4 / 22



The orbit of the lines

Figure: The lines for n = 5

Proposition 1
For every n, the three edges of Tn are in the same orbit.

Proof.
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The filling process
In a filling step we may complete a triangle that has exactly one point
missing.

We denote by ϕ(P ) its unique the fixed point.
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Shape of the filling

Figure: The orange point touches all the blue points and himself.

Lemma 2
For any pattern P , ϕ(P ) is an union of non touching triangle whose sizes
sum up to less that |P |.
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Shape of the filling

Proof.
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Shape of the filling

Proof.
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Invariance property of the filling

Lemma 3
If two patterns P and Q are in the same orbit, then ϕ(P ) = ϕ(Q).

Proof.
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Excess

The excess of P is the difference e(P ) = |P | −
r∑

i=1

ki .

Here, e(P ) = 14− (5 + 3 + 2) = 4
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Excess

The excess of P as the difference e(P ) = |P | −
r∑

i=1

ki .

Lemma 4
If two patterns P and Q are in the same orbit, then e(P ) = e(Q).

Lemma 5
If Q is a subpattern of P then e(Q) ⩽ e(P ).
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Characterisation of the line orbit

Theorem 6
A pattern P has no excess if and only if it is in the orbit of the lines that
generate the Tki s.

Proof.
If P ∈ γ(Ln) then e(P ) = e(Ln) = 0 according to Lemma 4.
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Characterisation of the other orbits

Figure: From left to right: P4,0, P4,2 and P4,4.

Theorem 7
If P is a pattern, then P ∈ γ(Pn,k) if and only if ϕ(P ) = Tn and e(P ) = k.
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Characterisation of the other orbits
Theorem 7
If P is a pattern, then P ∈ γ(Pn,k) if and only if ϕ(P ) = Tn and e(P ) = k.

Proof.
A line can still be formed

How to move the excess :
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Characterisation of the orbits

Theorem 8 (Characterisation of the orbits)
If P is a finite pattern then there are integers n1, . . .nr and k1, . . . kr and

vectors v1, . . .vr such that P ∈ γ(
r⋃

i=1

vi + Pni ,ki ), the Pni ,ki + vi do not touch

each other,
r∑

i=1

ni = |P | − e(P ) and
r∑

i=1

ki = e(P ).

15 / 22



How to find the canonical form of the pattern

Algorithm 1 (Identify orbit)
Data: pattern P . Result: the canonical representative of the orbit of P .

1. Fill the pattern.

O(|ϕ(P )|) = O(n2)

2. Divide the filling into triangles v1 + Tk1
, . . . , vr + Tkr .

O(|ϕ(P )|) = O(n2)

3. Count the excess in each triangle, the canonical representative of the

orbit of the pattern is
r⋃

i=1

vi + Pki ,e(P∩(vi+Tki )).

O(n)

The total time complexity of the algorithm is O(n2).

16 / 22



How to find the canonical form of the pattern

Algorithm 1 (Identify orbit)
Data: pattern P . Result: the canonical representative of the orbit of P .

1. Fill the pattern. O(|ϕ(P )|) = O(n2)

2. Divide the filling into triangles v1 + Tk1
, . . . , vr + Tkr .

O(|ϕ(P )|) = O(n2)

3. Count the excess in each triangle, the canonical representative of the

orbit of the pattern is
r⋃

i=1

vi + Pki ,e(P∩(vi+Tki )). O(n)

The total time complexity of the algorithm is O(n2).

16 / 22



How to put a pattern in canonical form

Algorithm 2 (Find a path)

1. Merge the different components and form lines using the process
described in Theorem 6.

n ·O(n2)

2. Fetch the excess with the process described in Theorem 7.

k ·O(n2)

The algorithm runs in O(n2(n+ k)) time. For k = 0, this is in fact
optimal.
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Diameter of the solitaire graph

Theorem 9
The connected component of the line of length n in the graph of the
solitaire for the triangle shape has diameter Θ(n3).

Proof.
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Lower bound on the size

The method

1. Choose a corner

2. Choose a point on each line parallel to the edge opposed to the
corner

gives an element of the line orbit.
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Upper bound on the size

Proposition 11
If P ∈ γ(Ln) then the number of points in P in the first k columns is at
most k.

The number of patterns with this property is equivalent to

c
( e

2

)n
(n− 1)n−

5
2 with c ≈ 0.086. [G. Kirchner & V. Kotesovec, OEIS,

2017]
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Estimation of the size

Theorem 12
There are constants c1 and c2 such that

c1e
−nnn+ 1

2 ⩽ |γ(Ln)| ⩽ c2

( e
2

)n
(n− 1)n−

5
2 .

Conjecture 1
There are two constants

2
e
⩽ c ⩽ e and r such that |γ(Ln)| = Θ

((n
c

)n+r)
.
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Prospects for future work

▶ What can be said on the structure of the solitaire graph ?
▶ What can be said about the family of excess sets as a set system ?

Can we determine the maximum cardinality of an excess set ? If
so, how ?

▶ Is it easier to decide whether a pattern belongs to the orbit of the
line with some additional hypothesis ? (e.g. the pattern is
contained in few lines).

▶ For other convex shapes, similar arguments lead to
characterisations of the orbits. But we have no general results
yet.

▶ The solitaire can be played on other groups (F2, Z3, ...), do we
get similar results there ?
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Excess sets

The excess sets of P are the subsets Q ⊂ P such that ϕ(P \Q) = ϕ(P ).
Let E(P ) be the set of all such sets.

Lemma 9
If U ∈ E(P ) then |U | ⩽ e(P ).
There is not always a set U ∈ E(P ) such that |U | = e(P ).

And maximal excess sets do not all have the same cardinality.

Figure: Here, e(p) = 1 but E(P ) = {∅}.
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