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Tillings and independent sets

The triangle solitaire arises form the study of a class of tillings

[Cutting Corners, V. Salo, 2020].
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Tillings and independent sets

The triangle solitaire arises form the study of a class of tillings
[Cutting Corners, V. Salo, 2020].

b

a+b
mod 2

An independent set is a set X C Z* whose content can be chosen freely.
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The solitaire moves

-8

Figure: The action of the triangle shape.
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The solitaire moves

Figure: The action of the triangle shape.

The set of independent sets is stable under the solitaire moves.
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The solitaire moves

Figure: The action of the triangle shape.

The set of independent sets is stable under the solitaire moves.

The orbit of a pattern P, denoted y(P) is the set of patterns reachable
from it using the triangle moves.

Questions :

» What are the orbits ? In particular what is the orbit of the line ?
» Can we recognise them easily ?
> What are their sizes ?
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The solitaire graph

Consider the graph G, with vertices the patterns of size n and edges
between p and q if there is a solitaire move that changes p into g.

Figure: The Solitaire graph for n =2
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The solitaire graph
Consider the graph G, with vertices the patterns of size n and edges
between p and g if there is a solitaire move that changes p into g.

Figure: The Solitaire graph for n =3
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The solitaire graph

Consider the graph G, with vertices the patterns of size n and edges
between p and g if there is a solitaire move that changes p into g.

The orbits of a pattern is its connected component in this graph.
Questions :

> What are the connected components of this graph ? In particular
what is the connected component of the line ?

» Can we recognise them easily ?
» How are they structured ?
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The orbit of the lines

Figure: The lines for n =5

Proposition 1

For every n, the three edges of T, are in the same orbit.
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The orbit of the lines

Figure: The lines for n =5

Proposition 1
For every n, the three edges of T, are in the same orbit.

Proof.
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The filling process

In a filling step we may complete a triangle that has exactly one point
missing.
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The filling process

In a filling step we may complete a triangle that has exactly one point
missing.

We denote by ¢(P) its unique the fixed point.
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Shape of the filling

Figure: The orange point touches all the blue points and himself.

Lemma 2
For any pattern P, @(P) is an union of non touching triangle whose sizes
sum up to less that |P|.
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Shape of the filling

Proof.
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Shape of the filling

Proof.
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Invariance property of the filling

Lemma 3
If two patterns P and Q are in the same orbit, then ¢(P) = ¢(Q).
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Invariance property of the filling

Lemma 3
If two patterns P and Q are in the same orbit, then ¢(P) = @(Q).

Proof.
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Excess

r
The excess of P is the difference e(P) = |P|— Zki.
i=1
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Excess

r
The excess of P is the difference e(P) = |P| - Zki.
i=1

Here, e(P)=14-(5+3+2)=4
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Excess

.
The excess of P as the difference e(P) = |P| - Zki'
i=1

Lemma 4
If two patterns P and Q are in the same orbit, then e(P) = e(Q).
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Excess

.
The excess of P as the difference e(P) = |P| - Zki'
i=1

Lemma 4
If two patterns P and Q are in the same orbit, then e(P) = e(Q).

Lemma 5
If Q is a subpattern of P then e(Q) < e(P).
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Characterisation of the line orbit

Theorem 6
A pattern P has no excess if and only if it is in the orbit of the lines that
generate the Ty s.
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Characterisation of the line orbit

Theorem 6
A pattern P has no excess if and only if it is in the orbit of the lines that
generate the Ty s.

Proof.
If P e y(L,) then e(P) = e(L,) = 0 according to Lemma 4. O
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Characterisation of the other orbits

F

Figure: From left to right: Py, P47 and P4 4.
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Characterisation of the other orbits

F

Figure: From left to right: Py, P47 and P4 4.

Theorem 7
If P is a pattern, then P € y(P, x) if and only if (P) = T, and e(P) = k.

13/22



Characterisation of the other orbits

Theorem 7
If P is a pattern, then P € y(P, ;) if and only if (P) =T, and e(P) = k.

Proof.
A line can still be formed
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Characterisation of the other orbits

Theorem 7

If P is a pattern, then P € y(P, ;) if and only if (P) =T, and e(P) = k.

Proof.

How to move the excess :

|
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Characterisation of the other orbits

Theorem 7
If P is a pattern, then P € y(P, ;) if and only if (P) =T, and e(P) = k.

Proof.
How to move the excess :
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Characterisation of the other orbits

Theorem 7
If P is a pattern, then P € y(P, ;) if and only if (P) =T, and e(P) = k.

Proof.
How to move the excess :
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Characterisation of the orbits

Theorem 8 (Characterisation of the orbits)

If P is a finite pattern then there are integers ny,...n, and kq,...k, and
r

vectors vy,...v, such that P € y(Uvi + P, k;), the B, . +v; do not touch

i=1
r

r
each other, Zni =|P|—e(P) and Zki =e(P).

i=1 i=1
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How to find the canonical form of the pattern

Algorithm 1 (Identify orbit)
Data: pattern P. Result: the canonical representative of the orbit of P.
1. Fill the pattern.

2. Divide the filling into triangles vy + Ty ,..., v, + Tj .

3. Count the excess in each triangle, the canonical representative of the
r

orbit of the pattern is U Vi + B e(PA(v;+ T} )

i=1
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How to find the canonical form of the pattern

Algorithm 1 (Identify orbit)
Data: pattern P. Result: the canonical representative of the orbit of P.
1. Fill the pattern. O(|p(P)|) = O(n?)
2. Divide the filling into triangles vy + Ty ,..., v, + Tj .
O(lp(P)l) = O(n?)
3. Count the excess in each triangle, the canonical representative of the
r

orbit of the pattern is U v + Pki,e(pn(viJeri)). O(n)

i=1

The total time complexity of the algorithm is O(n?).
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How to put a pattern in canonical form

Algorithm 2 (Find a path)

1. Merge the different components and form lines using the process
described in Theorem 6.

2. Fetch the excess with the process described in Theorem 7.
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How to put a pattern in canonical form

Algorithm 2 (Find a path)
1. Merge the different components and form lines using the process
described in Theorem 6. 1 - O(nz)
2. Fetch the excess with the process described in Theorem 7. Ik - O(n?)

The algorithm runs in O(n®(n+k)) time. For k = 0, this is in fact
optimal.
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Diameter of the solitaire graph

Theorem 9
The connected component of the line of length n in the graph of the
solitaire for the triangle shape has diameter © (n°).
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[F

Proof.
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Lower bound on the size

The method
1. Choose a corner

2. Choose a point on each line parallel to the edge opposed to the
corner

gives an element of the line orbit.
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Lower bound on the size
The method
1. Choose a corner

2. Choose a point on each line parallel to the edge opposed to the
corner

gives an element of the line orbit.

Lemma 10
[y(L,)| > 3n!-3.

Proof.
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Upper bound on the size

Proposition 11

If P € y(L,) then the number of points in P in the first k columns is at
most k.
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Upper bound on the size

Proposition 11

If P € y(L,,) then the number of points in P in the first k columns is at
most k.

The number of patterns with this property is equivalent to
n
C(E) (n— 1)”_% with ¢ ~ 0.086. [G. Kirchner & V. Kotesovec, OEIS,

2
2017]
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Estimation of the size

Theorem 12

There are constants ¢; and c, such that
e\"” 5
cre” ntI g <|y(Ly)l < 62(2) (n—1)""2,
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Estimation of the size

Theorem 12

There are constants ¢y and ¢y such that

n
crenh <Lyl <e(5) (-1,
Conjecture 1

2 n+r
There are two constants — < ¢ < e and r such that |y(L,)| = © ((E) )
e c
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Prospects for future work

> What can be said on the structure of the solitaire graph ?

> What can be said about the family of excess sets as a set system ?
Can we determine the maximum cardinality of an excess set ? If
so, how ?

> Is it easier to decide whether a pattern belongs to the orbit of the
line with some additional hypothesis ? (e.g. the pattern is
contained in few lines).

» For other convex shapes, similar arguments lead to
characterisations of the orbits. But we have no general results
yet.

» The solitaire can be played on other groups (F,, Z3, ...), do we
get similar results there ?
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Excess sets

The excess sets of P are the subsets Q C P such that @(P\ Q) = ¢(P).
Let E(P) be the set of all such sets.

Lemma 9
If U € E(P) then |U| < e(P).
There is not always a set U € E(P) such that |U| = e(P).

Figure: Here, e(p) = 1 but E(P) = {@}.
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Excess sets

The excess sets of P are the subsets Q C P such that @(P\ Q) = ¢(P).

Let E(P) be the set of all such sets.

Lemma 9
If U € E(P) then |U| < e(P).

There is not always a set U € E(P) such that |U| = e(P).
And maximal excess sets do not all have the same cardinality.
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