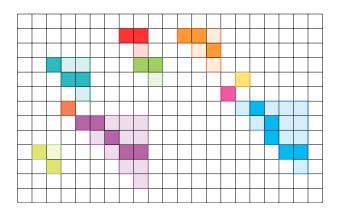
Triangle solitaire of independence

Ville Salo & Juliette Schabanel University of Turku Automata 2022



Tillings and independent sets

The triangle solitaire arises form the study of a class of tillings [Cutting Corners, V. Salo, 2020].

а	Ь
	<i>a</i> + <i>b</i> mod 2

Tillings and independent sets

The triangle solitaire arises form the study of a class of tillings [Cutting Corners, V. Salo, 2020].

а	Ь
	<i>a</i> + <i>b</i> mod 2

An *independent set* is a set $X \subset \mathbb{Z}^2$ whose content can be chosen freely.

The solitaire moves



Figure: The action of the triangle shape.

The solitaire moves

Figure: The action of the triangle shape.

The set of independent sets is stable under the solitaire moves.

The solitaire moves

Figure: The action of the triangle shape.

The set of independent sets is stable under the solitaire moves. The *orbit* of a pattern *P*, denoted $\gamma(P)$ is the set of patterns reachable from it using the triangle moves.

Questions :

- ▶ What are the orbits ? In particular what is the orbit of the line ?
- Can we recognise them easily ?
- What are their sizes ?

The solitaire graph

Consider the graph G_n with vertices the patterns of size n and edges between p and q if there is a solitaire move that changes p into q.

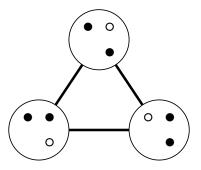


Figure: The Solitaire graph for n = 2

The solitaire graph

Consider the graph G_n with vertices the patterns of size n and edges between p and q if there is a solitaire move that changes p into q.

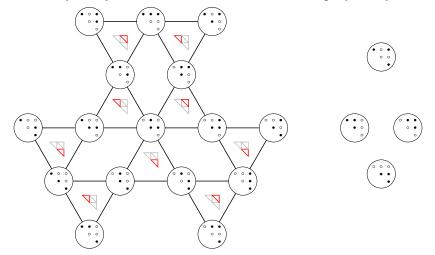


Figure: The Solitaire graph for n = 3

Consider the graph G_n with vertices the patterns of size n and edges between p and q if there is a solitaire move that changes p into q.

The orbits of a pattern is its connected component in this graph. **Questions :**

- What are the connected components of this graph ? In particular what is the connected component of the line ?
- Can we recognise them easily ?
- How are they structured ?

The orbit of the lines

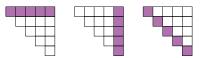


Figure: The lines for n = 5

Proposition 1

For every *n*, the three edges of T_n are in the same orbit.

The orbit of the lines

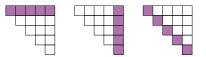
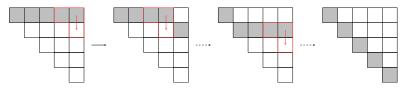
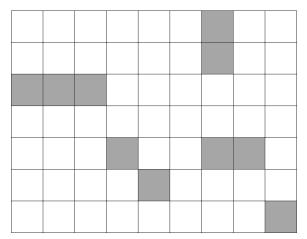


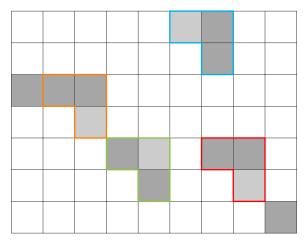
Figure: The lines for n = 5

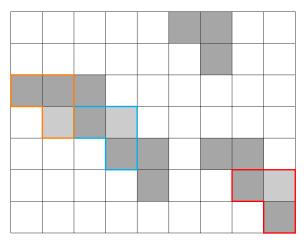
Proposition 1

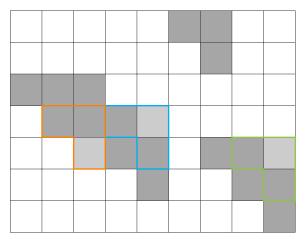
For every *n*, the three edges of T_n are in the same orbit.

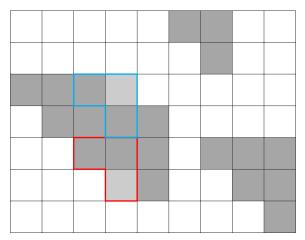


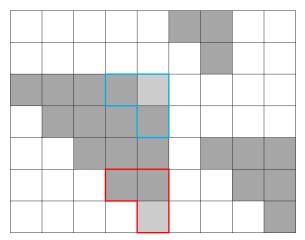




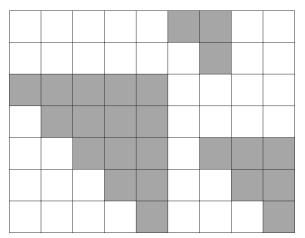








In a filling step we may complete a triangle that has exactly one point missing.



We denote by $\varphi(P)$ its unique the fixed point.

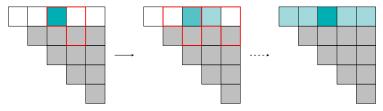
Shape of the filling

Figure: The orange point touches all the blue points and himself.

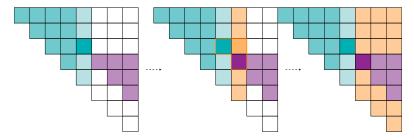
Lemma 2

For any pattern P, $\varphi(P)$ is an union of non touching triangle whose sizes sum up to less that |P|.

Shape of the filling

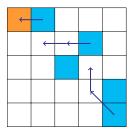


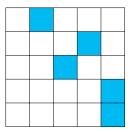
Shape of the filling



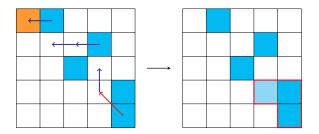
Lemma 3 *If two patterns P and Q are in the same orbit, then* $\varphi(P) = \varphi(Q)$ *.*

Lemma 3 *If two patterns P and Q are in the same orbit, then* $\varphi(P) = \varphi(Q)$ *.*

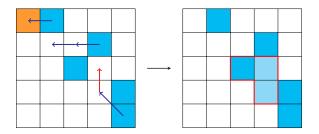




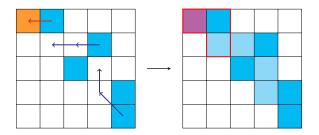
Lemma 3 *If two patterns P and Q are in the same orbit, then* $\varphi(P) = \varphi(Q)$ *.*



Lemma 3 *If two patterns P and Q are in the same orbit, then* $\varphi(P) = \varphi(Q)$ *.*

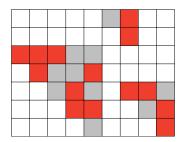


Lemma 3 *If two patterns P and Q are in the same orbit, then* $\varphi(P) = \varphi(Q)$ *.*



The *excess* of *P* is the difference
$$e(P) = |P| - \sum_{i=1}^{r} k_i$$
.

The *excess* of *P* is the difference $e(P) = |P| - \sum_{i=1}^{r} k_i$.



Here, e(P) = 14 - (5 + 3 + 2) = 4

The *excess* of *P* as the difference $e(P) = |P| - \sum_{i=1}^{r} k_i$.

Lemma 4 If two patterns P and Q are in the same orbit, then e(P) = e(Q).

The *excess* of *P* as the difference $e(P) = |P| - \sum_{i=1}^{r} k_i$.

Lemma 4 If two patterns P and Q are in the same orbit, then e(P) = e(Q).

Lemma 5 If Q is a subpattern of P then $e(Q) \le e(P)$.

Characterisation of the line orbit

Theorem 6

A pattern P has no excess if and only if it is in the orbit of the lines that generate the $T_{k_i}s$.

Characterisation of the line orbit

Theorem 6

A pattern P has no excess if and only if it is in the orbit of the lines that generate the $T_{k_i}s$.

Proof.

If $P \in \gamma(L_n)$ then $e(P) = e(L_n) = 0$ according to Lemma 4.

Characterisation of the other orbits

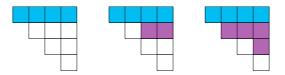


Figure: From left to right: $P_{4,0}$, $P_{4,2}$ and $P_{4,4}$.

Characterisation of the other orbits

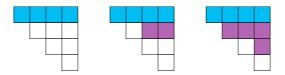


Figure: From left to right: $P_{4,0}$, $P_{4,2}$ and $P_{4,4}$.

Theorem 7 If *P* is a pattern, then $P \in \gamma(P_{n,k})$ if and only if $\varphi(P) = T_n$ and e(P) = k.

Characterisation of the other orbits

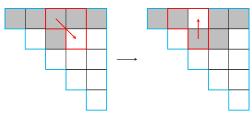
Theorem 7 If *P* is a pattern, then $P \in \gamma(P_{n,k})$ if and only if $\varphi(P) = T_n$ and e(P) = k.

Proof.

A line can still be formed

Theorem 7 If *P* is a pattern, then $P \in \gamma(P_{n,k})$ if and only if $\varphi(P) = T_n$ and e(P) = k.

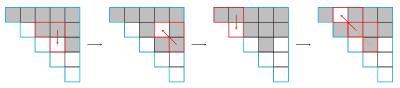
Proof.



Theorem 7

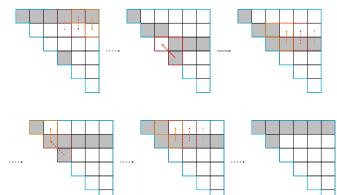
If P is a pattern, then $P \in \gamma(P_{n,k})$ if and only if $\varphi(P) = T_n$ and e(P) = k.

Proof.



Theorem 7 If *P* is a pattern, then $P \in \gamma(P_{n,k})$ if and only if $\varphi(P) = T_n$ and e(P) = k.

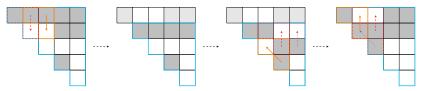
Proof.



Theorem 7

If P is a pattern, then $P \in \gamma(P_{n,k})$ if and only if $\varphi(P) = T_n$ and e(P) = k.

Proof.



Theorem 8 (Characterisation of the orbits) If *P* is a finite pattern then there are integers $n_1, ..., n_r$ and $k_1, ..., k_r$ and vectors $v_1, ..., v_r$ such that $P \in \gamma(\bigcup_{i=1}^r v_i + P_{n_i,k_i})$, the $P_{n_i,k_i} + v_i$ do not touch each other, $\sum_{i=1}^r n_i = |P| - e(P)$ and $\sum_{i=1}^r k_i = e(P)$.

How to find the canonical form of the pattern

Algorithm 1 (Identify orbit)

Data: pattern P. Result: the canonical representative of the orbit of P.

- 1. Fill the pattern.
- 2. Divide the filling into triangles $v_1 + T_{k_1}, \ldots, v_r + T_{k_r}$.
- 3. Count the excess in each triangle, the canonical representative of the orbit of the pattern is $\bigcup_{i=1}^{r} v_i + P_{k_i, e(P \cap (v_i + T_{k_i}))}.$

How to find the canonical form of the pattern

Algorithm 1 (Identify orbit)

Data: pattern P. Result: the canonical representative of the orbit of P.

- 1. Fill the pattern. $O(|\varphi(P)|) = O(n^2)$
- 2. Divide the filling into triangles $v_1 + T_{k_1}, \dots, v_r + T_{k_r}$. $O(|\varphi(P)|) = O(n^2)$
- 3. Count the excess in each triangle, the canonical representative of the orbit of the pattern is $\bigcup_{i=1}^{r} v_i + P_{k_i, e(P \cap (v_i + T_{k_i}))}.$ O(n)

The total time complexity of the algorithm is $O(n^2)$.

How to put a pattern in canonical form

Algorithm 2 (Find a path)

- 1. Merge the different components and form lines using the process described in Theorem 6.
- 2. Fetch the excess with the process described in Theorem 7.

How to put a pattern in canonical form

Algorithm 2 (Find a path)

- 1. Merge the different components and form lines using the process described in Theorem 6. $n \cdot O(n^2)$
- 2. Fetch the excess with the process described in Theorem 7. $k \cdot O(n^2)$

The algorithm runs in $O(n^2(n+k))$ time. For k = 0, this is in fact optimal.

Diameter of the solitaire graph

Theorem 9

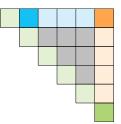
The connected component of the line of length n in the graph of the solitaire for the triangle shape has diameter $\Theta(n^3)$.

Diameter of the solitaire graph

Theorem 9

The connected component of the line of length n in the graph of the solitaire for the triangle shape has diameter $\Theta(n^3)$.

Proof.

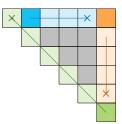


Diameter of the solitaire graph

Theorem 9

The connected component of the line of length n in the graph of the solitaire for the triangle shape has diameter $\Theta(n^3)$.

Proof.

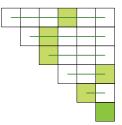


Lower bound on the size

The method

- 1. Choose a corner
- 2. Choose a point on each line parallel to the edge opposed to the corner

gives an element of the line orbit.



Lower bound on the size

The method

- 1. Choose a corner
- 2. Choose a point on each line parallel to the edge opposed to the corner

gives an element of the line orbit.

Lemma 10 $|\gamma(L_n)| \ge 3n! - 3.$

Lower bound on the size

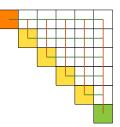
The method

- 1. Choose a corner
- 2. Choose a point on each line parallel to the edge opposed to the corner

gives an element of the line orbit.

$\frac{\text{Lemma 10}}{|\gamma(L_n)| \ge 3n! - 3.}$

Proof.



Upper bound on the size

Proposition 11

If $P \in \gamma(L_n)$ then the number of points in P in the first k columns is at most k.

Upper bound on the size

Proposition 11

If $P \in \gamma(L_n)$ then the number of points in P in the first k columns is at most k.

The number of patterns with this property is equivalent to $c\left(\frac{e}{2}\right)^n (n-1)^{n-\frac{5}{2}}$ with $c \approx 0.086$. [G. Kirchner & V. Kotesovec, OEIS, 2017]

Estimation of the size

Theorem 12 There are constants c_1 and c_2 such that $c_1 e^{-n} n^{n+\frac{1}{2}} \leq |\gamma(L_n)| \leq c_2 \left(\frac{e}{2}\right)^n (n-1)^{n-\frac{5}{2}}.$

Estimation of the size

Theorem 12 There are constants c_1 and c_2 such that $c_1 e^{-n} n^{n+\frac{1}{2}} \leq |\gamma(L_n)| \leq c_2 \left(\frac{e}{2}\right)^n (n-1)^{n-\frac{5}{2}}.$

Conjecture 1

There are two constants $\frac{2}{e} \leq c \leq e$ and r such that $|\gamma(L_n)| = \Theta\left(\left(\frac{n}{c}\right)^{n+r}\right)$.

Prospects for future work

- ▶ What can be said on the structure of the solitaire graph ?
- What can be said about the family of excess sets as a set system ? Can we determine the maximum cardinality of an excess set ? If so, how ?
- Is it easier to decide whether a pattern belongs to the orbit of the line with some additional hypothesis? (e.g. the pattern is contained in few lines).
- For other convex shapes, similar arguments lead to characterisations of the orbits. But we have no general results yet.
- ▶ The solitaire can be played on other groups $(F_2, \mathbb{Z}^3, ...)$, do we get similar results there ?

Excess sets

The *excess sets* of *P* are the subsets $Q \subset P$ such that $\varphi(P \setminus Q) = \varphi(P)$. Let E(P) be the set of all such sets.

Lemma 9 If $U \in E(P)$ then $|U| \le e(P)$.

There is not always a set $U \in E(P)$ such that |U| = e(P).

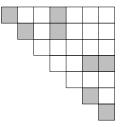


Figure: Here, e(p) = 1 but $E(P) = \{\emptyset\}$.

Excess sets

The *excess sets* of *P* are the subsets $Q \subset P$ such that $\varphi(P \setminus Q) = \varphi(P)$. Let E(P) be the set of all such sets.

Lemma 9 If $U \in E(P)$ then $|U| \le e(P)$.

There is not always a set $U \in E(P)$ such that |U| = e(P).

And maximal excess sets do not all have the same cardinality.

