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The 4 families 2—2—2isogenies in genus 3
Structure of the kernels
Théta functions

The situation

Genus 1 Classical to determine 2-isogenies between elliptic
curves.
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The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

The situation

Genus 1 Classical to determine 2-isogenies between elliptic
curves.

Genus 2 Construction known since Richelot (19th century).
Other explicit formulae for the curves given by Bost
and Mestre.

Genus 3 Smith has given examples of hyperelliptic curves in
genus 3 that are 2—2—2 isogenous thanks to the
existence of non trivial factorization of f(z) — g(z)
leading to a correspondence between hyperelliptic
curves y? = f(x) and y? = g(x).
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Introduction

The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

The situation

Genus 1

Genus 2

Genus 3

Genus g

Classical to determine 2-isogenies between elliptic
curves.

Construction known since Richelot (19th century).
Other explicit formulae for the curves given by Bost
and Mestre.

Smith has given examples of hyperelliptic curves in
genus 3 that are 2—2—2 isogenous thanks to the
existence of non trivial factorization of f(z) — g(z)
leading to a correspondence between hyperelliptic
curves y? = f(x) and y? = g(x).

Mestre gives families (dimension g + 1) of hyperel-

g

liptic curves of genus g with a 2 - - - 2 isogeny.

|. Boyer — IMJ — Paris 7 2—2—2 isogenies and hyperelliptic curves



Introduction

The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

The situation

Goal (of part one)

Find all hyperelliptic curves of genus 3 for which there is an
hyperelliptic curve and a 2—2—2 isogeny between their jacobians.
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Introduction
The 4 families 2—2—2isogenies in genus 3
Structure of the kernels

Théta functions

Factorization of the multiplication by 2

The factorization of the multiplication by two is given by:

C3 /(73 + 078) —

C3/(Z° + 2023)

2=z

C3 /(23 + 273)
where the 2—2—2 isogeny ¢ is

@ (C3/(Z3 + QZ3) — (Cs/(Z3 + 2QZ3)
z — 2z
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Introduction
The 4 families 2—2—2isogenies in genus 3

Structure of the kernels
Théta functions

Factorization of the multiplication by 2

The general situation is given by the action of Spg(Z):

¥

/—\

Yz + 78 T o3+ ) D Oy 12007

k JMZ

C3/(Z3 + Q,Z?’)
where
Q' =T-02=(AQ+ B)(C+ D)™
ap: C3/(Z3 + Q73) — C3/(Z3 + 2'73)
z — (CR+ D)2

is the action of Spg(Z).
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Introduction
The 4 families 2—2—2isogenies in genus 3
Structure of the kernels

Théta functions

The kernels: two geometric situations

In order to determine all curves, it's easier to determine the
possible kernels.
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The 4 families 2 2 isogenies in genus 3

Structure of the kernels
Théta functions

The kernels: two geometric situations

In order to determine all curves, it's easier to determine the
possible kernels. They must be:

» isomorphic to (Z/27)3,
» totally isotropic for the Weil pairing modulo 2.
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The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

The kernels: two geometric situations

In order to determine all curves, it's easier to determine the
possible kernels. They must be:

» isomorphic to (Z/27)3,
» totally isotropic for the Weil pairing modulo 2.

Proposition
There are 135 such groups.
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Introduction
The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

The kernels: two geometric situations

In order to determine all curves, it's easier to determine the
possible kernels. They must be:

» isomorphic to (Z/27)3,
» totally isotropic for the Weil pairing modulo 2.

Proposition
There are 135 such groups.

The kernels split into two categories:

» 105 “tractable” groups i.e. generated by differences of 2
points,
» 30 groups in “Fano disposition”.
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The 4 families 2 2 isogenies in genus 3
Structure of the kernels
Théta functions

The “Fano disposition”
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Introduction

The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

The “Fano disposition”

» Py is not represented: elements are sets of points modulo
complementary.
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Introduction

The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

The “Fano disposition”

» Py is not represented: elements are sets of points modulo
complementary.

» Elements of the group: the 7 lines, of order 2, and the identity
element.
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Introduction

The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

The “Fano disposition”

» Py is not represented: elements are sets of points modulo
complementary.

» Elements of the group: the 7 lines, of order 2, and the identity
element.

» The group law: the addition of two distinct lines is the third
which has a common intersection point.
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The 4 families 2 2 isogenies in genus 3
Structure of the kernels
Théta functions

Théta constants

Definition (half characteristics)
We call théta constant with half characteristics 7/, n" € (1Z/Z)?
the function

/
v {:77//} (0, £2) = exp(ir '/ Q' + 2im"n'n" YO (20 + 7", 2)

It is said even if 4'y'n” is even or odd otherwise.
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The 4 families 2 2 isogenies in genus 3
Structure of the kernels
Théta functions

Théta constants

Definition (half characteristics)

We call théta constant with half characteristics 7/, n" € (1Z/Z)?
the function

/
19{77 }(0 Q) = exp(in'n/ 20 + 2ix"n'n" )2y + 1", Q)

It is said even if 4'y'n” is even or odd otherwise.

Odd théta constants are zero. On the other side:
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Introduction

The 4 families 2—2—2isogenies in genus 3
Structure of the kernels
Théta functions

Théta constants

Definition (half characteristics)

We call théta constant with half characteristics 7/, n" € (1Z/Z)?
the function

/
19{77 }(O i2) = exp(m 0 Q'+ 2ir'y'n 79020 + 1", 02)

It is said even if 4'n" is even or odd otherwise.

Odd théta constants are zero. On the other side:

Theorem (genus 3)

An abelian variety is the jacobian of an hyperelliptic curve iff
exactly one even théta constant, among 36, is zero.
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Introduction
The 4 families 2—2—2isogenies in genus 3
Structure of the kernels

Théta functions

Thomae formula, duplication formula

Link between théta constants and Weierstrass points:

Theorem (Thomae)

(-1l T if |SAU| = g + 1,

s = TB4
iesAu J
JZSAU

0 if |SAU| # g + 1.
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The 4 families 2—2—2isogenies in genus 3
e of the kernels

Théta functions

Thomae formula, duplication formula

Link between théta constants and Weierstrass points:

Theorem (Thomae)

C(_1>|SOU| H

4_ i
9ls)(0, 2)* = iesay

0 if |SAU| # g + 1.

if |SAU| = g + 1,

T — Xy

To compute théta constants of periods 22 with those of {2, we have:

Proposition (Duplication formula, Riemann)

299 [7’77,/,] (0,22)2 = 3 (~1)4"%9 [n,,i 5} (0, 2)9 m 0,9).

6e(3z/z)9
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Introduction

The 4 families 2—2—2isogenies in genus 3
Structure of the kernels
Théta functions

Functional equation of ¢

The functional equation is verified on the subset I' 2 C Spy,(Z).
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The 4 families 2—2—2isogenies in genus 3
e of the kernels

Théta functions

Functional equation of ¢

The functional equation is verified on the subset I' 2 C Spy,(Z).

Theorem (Functional equation, Riemann)
9(((CR+ D)2, (AR + B)(CR + D))

— ¢ (det(CR2 + D)) exp(in'z(C2 + D)"1C2)9 (2, 02).
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The 4 families 2—2—2isogenies in genus 3
e of the kernels

Théta functions

Functional equation of ¢

The functional equation is verified on the subset I' 2 C Spy,(Z).

Theorem (Functional equation, Riemann)
9(((CR+ D)2, (AR + B)(CR + D))

— ¢ (det(CR2 + D)) exp(in'z(C2 + D)"1C2)9 (2, 02).

Proposition

The set of matrix {(} %), A diagonal with coefficients in {0,1} },
and I't 2 span Spy,(Z).
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The 4 families 2 2 isogenies in genus 3
e of the kernels

Théta functions

Functional equation of ¢

The functional equation is verified on the subset I' 2 C Spy,(Z).

Theorem (Functional equation, Riemann)
9(((CR+ D)2, (AR + B)(CR + D))

— ¢ (det(CR2 + D)) exp(in'z(C2 + D)"1C2)9 (2, 02).

Proposition

The set of matrix {(} %), A diagonal with coefficients in {0,1} },
and I't 2 span Spy,(Z).

Proposition

|

/

9 |::77//:| (0, 2+ A) = eXP(thﬁ/AU')ﬂ |:n// ‘:’7477/:| (07 Q)
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Introduction
The 4 families 2—2—2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

» We split the théta constants in 8 subsets:
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Introduction
The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

» We split the théta constants in 8 subsets:
/

@ The set S; of the 8 théta constants {%]
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The 4 families 2 2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

» We split the théta constants in 8 subsets:

/

n
ol
e The 7 sets S,, ... Sg of even théta constants with " # 0 fixed.

@ The set S; of the 8 théta constants
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The 4 families 2—2—2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

» We split the théta constants in 8 subsets:

/

n
ol
e The 7 sets S,, ... Sg of even théta constants with " # 0 fixed.

@ The set S; of the 8 théta constants

» Fixing 3 out of 8 Weierstrass points x; and we can compute
the products for these 8 subsets.
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The 4 families 2 2 isogenies in genus 3

Structure of the kernels
Théta functions

Computational aspects and results

» We split the théta constants in 8 subsets:

/

n
ol
e The 7 sets S,, ... Sg of even théta constants with " # 0 fixed.

@ The set S; of the 8 théta constants

» Fixing 3 out of 8 Weierstrass points x; and we can compute
the products for these 8 subsets.
» We multiply 2 by 2 with simplifications: we can assume that

théta constants are positively dependant, so all the square
roots can be taken positive.
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The 4 families 2 2 isogenies in genus 3

Structure of the kernels
Théta functions

Computational aspects and results

» We split the théta constants in 8 subsets:
/
@ The set S; of the 8 théta constants "

ol
e The 7 sets S,, ... Sg of even théta constants with " # 0 fixed.
» Fixing 3 out of 8 Weierstrass points x; and we can compute

the products for these 8 subsets.

» We multiply 2 by 2 with simplifications: we can assume that
théta constants are positively dependant, so all the square
roots can be taken positive.

» We reconstruct the polynomial in 8 variables by taking an
homography.
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Introduction
The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

“Tractable” kernels

» The sets Ss, ..., Sg give only one family, (-1), which is the genus
3 case of a family studied by Mestre, represented by the polyno-
mial

“Trace” gy, (12223 + T12224) = Z (o) (12223 + T12224)°
€G3 —>Gg

where &3 < ¢ : 0 — o({1,2}, {3,4}, {5,6)).
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The 4 families 2 2 isogenies in genus 3

Structure of the kernels
Théta functions

Computational aspects and results

“Tractable” kernels

» The sets Ss, ..., Sg give only one family, (-1), which is the genus
3 case of a family studied by Mestre, represented by the polyno-
mial

“Trace” gy, (12223 + T12224) = Z €(o)(z1xox3 + T1T274)°
€G3 —>Gg

where 63 — &g : 0 — o({1,2},{3,4},{5,6}).

» The set S; gives another family (7-2) with a polynomial of total
degree 16, degree 4 in each variable and 19591 monomials. The
stabilizing group is (Z/27)* x &4, letting invariant the transposi-
tions (12), (34), (56) et (78) and acting by &4 on these pairs.
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Introduction
The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

“Fano” kernels
» The sets Ss,...Sg give only one family, (-3); 24 monomials,
degree total 4, linear in each variable:

“Trace” g, 64 (T1222527) = Z (o) (r1z2m527)°
0€6,4,—6g

where 64 — G&g: 0 — 0{1,2,3,4}0{5,6,7, 8}.
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Introduction
The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

“Fano” kernels

» The sets Ss,...Sg give only one family, (-3); 24 monomials,
degree total 4, linear in each variable:

“Trace” g, 64 (T1222527) = Z (o) (r1z2m527)°
€S 4—Gg
where 64 — G&g: 0 — 0{1,2,3,4}0{5,6,7, 8}.
» S gives another family (f-4) : total degree 24, degree 6 in each
variable and 215601 monomials!
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Introduction
The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels

Théta functions

Computational aspects and results

“Fano” kernels

» The sets Ss,...Sg give only one family, (-3); 24 monomials,
degree total 4, linear in each variable:

“Trace” g, 64 (T1222527) = Z (o) (r1z2m527)°
€64 —Gg
where 64 — G&g: 0 — 0{1,2,3,4}0{5,6,7, 8}.
» S; gives another family (-4) : total degree 24, degree 6 in each
variable and 215601 monomials!
Smith gives an example in this family: in Q(+/7), ay = 1+2ﬁ, the
family, in ¢, of curves

Y= 4 —artx® —artrt —(207+5)t2 23 — (4ar+6)t2 22 +((3ar —2)t3 — (a7 +3) 12z +art3.

and their conjugates (a7 — a%) have jacobians 2—2—2 isogenous.
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Introduction

The 4 families 2—2— 2 isogenies in genus 3
Structure of the kernels
Théta functions

Part one summary

=[l(z—=)
Thomael formula
o) 1|0 2) =t

generalized functional equation for9
—~—

duplication formula !
19[:77//](0) I-2)=¢'(z;)
duplication | formula

ﬁ[gf,]<o, 20) = () a[é’,’,](o, 21 02) =/ (z)

(f-1) (f-2) | (f-3) (t-4)
\:_/

U U

tractable

|. Boyer — IMJ — Paris 7 2—2—2 isogenies and hyperelliptic curves



Trigonal construction
The curve ¢

Correspondences between two families D
An other correspondence

Tractable and Fano curves

Goal (of part 2)

Find equations of “tractable” curves in family (f-2), of “Fano”
curves in family (f-3) and correspondences between them.
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

H
m
¢ P!
¢\ 7

]P)l
The diagram of the trigonal construction
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

H
m
¢ P!
¢\ 7

]P)l
The diagram of the trigonal construction

» wis a degree 2 covering, ¢ has degree 3 and ¢ has degree 4.
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

]P)l
The diagram of the trigonal construction

» wis a degree 2 covering, ¢ has degree 3 and ¢ has degree 4.
» The trigonal ¢ identifies pairs of Weierstrass points.
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Trigonal construction
- The curve €
Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

Voo
The diagram of the trigonal construction

» wis a degree 2 covering, ¢ has degree 3 and ¢ has degree 4.
» The trigonal ¢ identifies pairs of Weierstrass points.

Proposition
There is a 3 — 2 correspondence between ¢ and ¢ that induce
a2—2-2 jsogeny between their jacobians.
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

H

T
€ P!
NS
Yo P
Parametrization
» Easier to parametrize 27 than to compute .
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction
H

™

¢ P!

¢\ 1/‘P

P
Parametrization

» Easier to parametrize 27 than to compute .
» Thanks to homographies, we choose P(z)=x? + bx + c and
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction
H

™

¢ P!

N/
I
Parametrization

» Easier to parametrize 27 than to compute .

» Thanks to homographies, we choose P(z)=x? + bx + c and
xP(x)

o (p(.’I}) = P@)rale—D(a—d) and the equation of 7.

|. Boyer — IMJ — Paris 7 2—2—2 isogenies and hyperelliptic curves



Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

€ P!
NS
Yo P
Parametrization
» Easier to parametrize 27 than to compute .

» Thanks to homographies, we choose P(z)=x? + bx + c and
zP(x
° o) = Pt e d

o y’=P(z)(P(z)+a(z—1)(z—d))(P(x)—a(z—d) )(fg( )%)

and the equation of J7:
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

€ P!
NS
Yo P
Parametrization
» Easier to parametrize 27 than to compute .

» Thanks to homographies, we choose P(z)=x? + bx + c and
zP(x
® 0(2) = Prrrate b

o y’=P(z)(P(z)+a(z—1)(z—d))(P(x)—a(z—d) )(fg( )ﬁ)
» ¢ identifies pairs of Weierstrass points at 0, co, 1 and e.

and the equation of J7:

|. Boyer — IMJ — Paris 7 2—2—2 isogenies and hyperelliptic curves



Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

4 P!
N/
(0 pl ¥
Parametrization

v

Easier to parametrize 7 than to compute .

Thanks to homographies, we choose P(z)=2? + bz + c and
° 9(v) = prmi e
o y’=P(z)(P(z)+a(z—1)(z—d))(P(x)—a(z—d) )(fg( )ﬁ)

 identifies pairs of Weierstrass points at 0,00, 1 and e.

There is generically another trigonal, unless d = e.

v

and the equation of J7:

v

v
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

]P)I
Equation of ¥
» For Q € ¢, we put T = ¢(Q) and P, P, P; € J s.t
pom(F) =T =v¢(Q) =pon(uF)).
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

]P)I
Equation of ¥
» For Q € ¢, we put T = ¢(Q) and P, P, P; € J s.t
pom(F) =T =v¢(Q) =pon(uF)).

» We interpolate (m(P;), h(m(P;)) with h(z) = AZHE.
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

]P)I
Equation of ¥
» For Q € ¢, we put T = ¢(Q) and P, P, P; € J s.t
pom(P) =T =4(Q) = pom(e(F)).
» We interpolate (m(P;), h(x(P;)) with h(z) = ALHE.
» We have two copies of ¢":
@+ V)? = (¢ +W)*f(z) mod Tfao(x) - zfi(z).
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

Recillas’ trigonal construction

]P)l
Equation of ¥
For @ € ¢, we put T = ¢(Q) and P, P, P; € J s.t.
pom(F) =T =¢(Q) =por(uF)).
We interpolate (m(P;), h(m(F;)) with h(z) = A5
We have two copies of ¢
Az 4+ V) = (x+W)2f(z) mod Tfy(x) — xfi(z).

We take U = V2 and we eliminate U, W in the coefficients in .

v

v

v

v
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Trigonal construction
The curve €
An other correspondence

Correspondences between two families

Family (f-3)

The following are equivalent.

@ The curve € is hyperelliptic .

© There is only one trigonal (ie. d = e).
© The curve 7 belongs to family (f-2).
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Trigonal construction
The curve €
An other correspondence

Correspondences between two families

Family (f-3)

The following are equivalent.

@ The curve € is hyperelliptic .

© There is only one trigonal (ie. d = e).
© The curve 7 belongs to family (f-2).

If there is no trigonal, 77 is in the family (f-1) of Mestre.
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Trigonal construction
The curve €

Correspondences between two families ) )
An other correspondence

The kernel of the dual isogeny

With the 3 — 2 correspondence, we can compute the kernel of
the dual isogeny between Jac ¢ and Jac 7.
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Trigonal construction
i The curve €
Correspondences between two families ) )
An other correspondence

The kernel of the dual isogeny

With the 3 — 2 correspondence, we can compute the kernel of
the dual isogeny between Jac ¢ and Jac 7.

Proposition

This kernel is of type “Fano” and so the curve € is in family (f-3)
or (f-4).
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Correspondences between two families ) )
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Weierstrass model and definition field

Let [, g]() be the polynomial f'(x)g(x) — f(x)g'(x) and fi, f2, f3
and f4 the four polynomials which correspond to the pairs of
identified points in the equation of 7.
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Trigonal construction
The curve €
An other correspondence

Correspondences between two families

Weierstrass model and definition field

Let [, g]() be the polynomial f'(x)g(x) — f(x)g'(x) and fi, f2, f3
and f4 the four polynomials which correspond to the pairs of
identified points in the equation of 7.

Proposition (Fields of definition)

@ We have a Weierstrass equation of ¢ above a conic, defined
over the base field.

@ We have a Weierstrass equation above P! if all the [f;, f;](x)
are split or equivalently in the extension generated by
Res;(fi, f;), generically of degree 8.
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The equations

» This field extension can be parametrized by
A? —dB? 4+ d+dC? — C? — d?

“= d(d—1) ’
b_A2+1—B2—d2

d—1 !
_dB*+d? —d— A?
‘= d—1
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The equations

» This field extension can be parametrized by

A?2 —dB? 4+ d+dC? - C? — &2

“= d(d—1) ’
) A2+ 1-B?2—d?
B d—1 ’
dB? +d? —d — A?
CcC =
d—1
» A Weierstrass model is given by
W = 00 Wo =0 Wy =1 W, =d
._ A+C+d ._ (B=C-1)d ._ Bd-Cd+A4C ._ (A+B+d-1)d
W= G o= Ut W= BEGHAC s = frcaiac
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Trigonal construction
The curve €

Correspondences between two families ) )
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The equations

» This field extension can be parametrized by
A? —dB? 4+ d+dC? — C? — d?

“= d(d—1) ’
) A2+ 1-B?2—d?
B d—1 ’
dB? +d? —d — A?
CcC =
d—1
» A Weierstrass model is given by
W = 00 Wo =0 Wy =1 W, =d
._ A+C+d ._ (B=C-1)d ._ Bd-Cd+A4C ._ (A+B+d-1)d
W= G o= Ut W= BEGHAC s = frcaiac

M, ..., ¥, are the 4 fixed points of the trigonal ¢.
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Characterization of the Weierstrass model of €

Theorem (Geometrical characterization of family (-3))
@ The j-invariants of {#s,...,#s} and {#,..., %4} are
equal.

@ An hyperelliptic curve is in (f-3) iff there is a partition 4-4 of
its Weierstrass points with a common cross-ratio.
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Correspondences between two families ) )
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Characterization of the Weierstrass model of €

Theorem (Geometrical characterization of family (-3))
@ The j-invariants of {#s,...,#s} and {#,..., %4} are
equal.

@ An hyperelliptic curve is in (f-3) iff there is a partition 4-4 of
its Weierstrass points with a common cross-ratio.

An hyperelliptic curve € is in family (f-3) iff it appears in a trigonal
construction.
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Characterization of the Weierstrass model of €

Corollary

@ The curve € can be deduced of 57 by the 4 Weierstrass
points (0, 1, d, o), fixed points of v, and by the homography
/ s (LL’173 aF (E314)’w — d(LL’lA + ;L'374)
(14 +z34)w — (13 + 34)
where x; ; and z; ; are the roots of [f;, f;](x).

@ Conversely, if 0,0,1, \y, ... \g are the Weierstrass points of
e,

_ (A5X6 — A6 A7 — A5 + A6) (Mg — )Ny
A4A506 — A A6 AT — Aade + AaA7 — A5 A7 + AgA7
(Ag — 1)(AgA5 — A A7 — A5A7 + X7

5= AaA5X6 — AaA6 AT — Aadg + AaA7 — A5 A7 + AgA7
_ (Aad5 — A7 — Ash6 + A5 A7 — A5 + A6)Aa
© AadsAe — Aad6A7 — Aade + Aad7 — AsA7 + AeAr
d=Xg.
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Correspondence and hyperelliptic involutions

The 3 — 2 correspondence given by the trigonal construction does
not preserve the hyperelliptic involutions.
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Correspondences between two families

Correspondence and hyperelliptic involutions

The 3 — 2 correspondence given by the trigonal construction does
not preserve the hyperelliptic involutions. However:

Theorem

It exists, over the field extension of degree 8, a correspondence
4—3 between Weierstrass models of curves 27 et ¢, which re-
spects hyperelliptic involutions, i.e. we have polynomials P(x, X)
and Q(x, X) s.t.
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Description of the correspondence

Proposition

This correspondence associates to Weierstrass points 0, 1, d,and
oo of €, one pair of identified Weierstrass points of .

To the points #5, . .., #3, it associates 0 or 2 pairs of Weierstrass
points of 7.

|. Boyer — IMJ — Paris 7 2—2—2 isogenies and hyperelliptic curves
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Correspondences between two families
An other correspondence

Description of the correspondence

Proposition

This correspondence associates to Weierstrass points 0, 1, d,and
oo of €, one pair of identified Weierstrass points of .

To the points #5, . .., #3, it associates 0 or 2 pairs of Weierstrass
points of 7.

More precisely, we have constants s.t.

P(x,0) = Xi(x + Xo)* fa(x)  P(x,1) =X3fa(z)
P(xz,d) = M(z + X5)% f1(2) P(z,00)=Xs(x 4+ \7)? f3(x)
and
P(z,%5) = Asf1fa P(z, Ws)=MXo f1fa
P(z, #7) = Mo(2? + A1z + M\i2)? P(x, #3)=M3f3fa
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