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The situation

Genus 1 Classical to determine 2-isogenies between elliptic
curves.

Genus 2 Construction known since Richelot (19th century).
Other explicit formulae for the curves given by Bost
and Mestre.

Genus 3 Smith has given examples of hyperelliptic curves in
genus 3 that are 2−2−2 isogenous thanks to the
existence of non trivial factorization of f(x)− g(z)
leading to a correspondence between hyperelliptic
curves y2 = f(x) and y2 = g(x).

Genus g Mestre gives families (dimension g + 1) of hyperel-

liptic curves of genus g with a
g︷ ︸︸ ︷

2 · · · 2 isogeny.
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The situation

Goal (of part one)
Find all hyperelliptic curves of genus 3 for which there is an
hyperelliptic curve and a 2−2−2 isogeny between their jacobians.
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Factorization of the multiplication by 2

The factorization of the multiplication by two is given by:

C3/(Z3 +ΩZ3) C3/(Z3 + 2ΩZ3)

C3/(Z3 +ΩZ3)

ϕ

[2]
z 7→ z

where the 2−2−2 isogeny ϕ is

ϕ : C3/(Z3 +ΩZ3) −→ C3/(Z3 + 2ΩZ3)
z 7−→ 2z

I. Boyer – IMJ – Paris 7 2−2−2 isogenies and hyperelliptic curves 3 / 19
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Factorization of the multiplication by 2

The general situation is given by the action of Sp6(Z):

C3/(Z3 +ΩZ3) C3/(Z3 +Ω′Z3) C3/(Z3 + 2Ω′Z3)

C3/(Z3 +Ω′Z3)

αΓ
∼

β

ϕ

[2]
z 7→ z

where
Ω′ = Γ ·Ω = (AΩ +B)(CΩ +D)−1

αΓ : C3/(Z3 +ΩZ3) −→ C3/(Z3 +Ω′Z3)

z 7−→ t(CΩ +D)−1z

is the action of Sp6(Z).
I. Boyer – IMJ – Paris 7 2−2−2 isogenies and hyperelliptic curves 3 / 19



The 4 families
Correspondences between two families

Introduction
2−2−2 isogenies in genus 3
Structure of the kernels
Thêta functions

The kernels: two geometric situations

In order to determine all curves, it’s easier to determine the
possible kernels.They must be:

I isomorphic to (Z/2Z)3,
I totally isotropic for the Weil pairing modulo 2.

Proposition
There are 135 such groups.

The kernels split into two categories:
I 105 “tractable” groups i.e. generated by differences of 2

points,
I 30 groups in “Fano disposition”.
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The “Fano disposition”

P1

P2P3

P4 P5

P6

P7

I P8 is not represented: elements are sets of points modulo
complementary.

I Elements of the group: the 7 lines, of order 2, and the identity
element.

I The group law: the addition of two distinct lines is the third
which has a common intersection point.
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Thêta constants

Definition (half characteristics)

We call thêta constant with half characteristics η′, η′′ ∈ (12Z/Z)
3

the function

ϑ

[
η′

η′′

]
(0, Ω) = exp(iπ

t
η′Ωη′ + 2iπ

t
η′η′′)ϑ(Ωη′ + η′′, Ω)

It is said even if 4tη′η′′ is even or odd otherwise.

Odd thêta constants are zero. On the other side:

Theorem (genus 3)

An abelian variety is the jacobian of an hyperelliptic curve iff
exactly one even thêta constant, among 36, is zero.
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Thomae formula, duplication formula

Link between thêta constants and Weierstrass points:

Theorem (Thomae)

ϑ[ηS ](0, Ω)4 =


c(−1)|S∩U |

∏
i∈S∆U
j 6∈S∆U

1

xi − xj
if |S∆U | = g + 1,

0 if |S∆U | 6= g + 1.

To compute thêta constants of periods 2Ω with those ofΩ, we have:

Proposition (Duplication formula, Riemann)

2gϑ

[
η′

η′′

]
(0, 2Ω)2 =

∑
δ∈(1

2
Z/Z)g
(−1)4

tη′δϑ

[
0

η′′ + δ

]
(0, Ω)ϑ

[
0
δ

]
(0, Ω).
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Functional equation of ϑ

The functional equation is verified on the subset Γ1,2 ⊂ Sp2g(Z).

Theorem (Functional equation, Riemann)
ϑ
(t(CΩ +D)−1z, (AΩ +B)(CΩ +D)−1

)
= ζΓ

(
det(CΩ +D)

) 1
2 exp

(
iπ tz(CΩ +D)−1Cz

)
ϑ
(
z,Ω

)
.

Proposition

The set of matrix
{(

I ∆
0 I

)
, ∆ diagonal with coefficients in {0, 1}

}
,

and Γ1,2 span Sp2g(Z).

Proposition

ϑ

[
η′

η′′

]
(0, Ω +∆) = exp(iπ tη′∆η′)ϑ

[
η′

η′′ +∆η′

]
(0, Ω)
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Computational aspects and results

I We split the thêta constants in 8 subsets:

The set S1 of the 8 thêta constants
[
η′

0

]
.

The 7 sets S2, . . . S8 of even thêta constants with η′′ 6= 0 fixed.
I Fixing 3 out of 8 Weierstrass points xi and we can compute

the products for these 8 subsets.
I We multiply 2 by 2 with simplifications: we can assume that

thêta constants are positively dependant, so all the square
roots can be taken positive.

I We reconstruct the polynomial in 8 variables by taking an
homography.
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Computational aspects and results

“Tractable” kernels

I The sets S2, . . . , S8 give only one family, (f-1), which is the genus
3 case of a family studied by Mestre, represented by the polyno-
mial
“Trace”S3↪→S6(x1x2x3 + x1x2x4) =

∑
σ∈S3↪→S6

ε(σ)(x1x2x3 + x1x2x4)
σ

where S3 ↪→ S6 : σ 7→ σ({1, 2}, {3, 4}, {5, 6}).
I The set S1 gives another family (f-2) with a polynomial of total

degree 16, degree 4 in each variable and 19591 monomials. The
stabilizing group is (Z/2Z)4 oS4, letting invariant the transposi-
tions (12), (34), (56) et (78) and acting by S4 on these pairs.
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Computational aspects and results

“Fano” kernels
I The sets S2, . . . S8 give only one family, (f-3); 24 monomials,

degree total 4, linear in each variable:

“Trace”S4↪→S8(x1x2x5x7) =
∑

σ∈S4↪→S8

ε(σ)(x1x2x5x7)
σ

where S4 ↪→ S8 : σ 7→ σ{1, 2, 3, 4}σ{5, 6, 7, 8}.
I S1 gives another family (f-4) : total degree 24, degree 6 in each

variable and 215601 monomials!
Smith gives an example in this family: in Q(

√
7), α7 =

1+
√
7

2 , the
family, in t, of curves

y2=x7

7
−α7tx5−α7tx4−(2α7+5)t2x3−(4α7+6)t2x2+((3α7−2)t3−(α7+3)t2)x+α7t3.

and their conjugates (α7 7→ 2
α7

) have jacobians 2−2−2 isogenous.
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The 4 families
Correspondences between two families

Introduction
2−2−2 isogenies in genus 3
Structure of the kernels
Thêta functions

Part one summary

y2=
∏
(x−xi)

ϑ

[
η′

η′′

]
(0, Ω)=ϕ(xi)

ϑ

[
η′

η′′

]
(0, 2Ω)=ψ(xi)

ϑ

[
η′

η′′

]
(0, Γ ·Ω)=ϕ′(xi)

ϑ

[
η′

η′′

]
(0, 2Γ ·Ω)=ψ′(xi)

(f-1) (f-2) (f-3) (f-4)

Thomae formula

duplication formula

generalized functional equation forϑ

duplication formula

Fa
no

tra
ct

ab
le

S2, . . . , S8 S1 S2, . . . , S8 S1
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Tractable and Fano curves

Goal (of part 2)
Find equations of “tractable” curves in family (f-2), of “Fano”
curves in family (f-3) and correspondences between them.

I. Boyer – IMJ – Paris 7 2−2−2 isogenies and hyperelliptic curves 11 / 19



The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Recillas’ trigonal construction
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C P1

H

ψ ϕ

π

The diagram of the trigonal construction
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Recillas’ trigonal construction

P1

C P1

H
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π

The diagram of the trigonal construction

I π is a degree 2 covering, ϕ has degree 3 and ψ has degree 4.
I The trigonal ϕ identifies pairs of Weierstrass points.

Proposition
There is a 3− 2 correspondence between C and H that induce
a 2−2−2 isogeny between their jacobians.
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Recillas’ trigonal construction

P1

C P1

H

ψ ϕ

π

Parametrization
I Easier to parametrize H than to compute ϕ.
I Thanks to homographies, we choose P (x)=x2 + bx+ c and

ϕ(x) = xP (x)
P (x)+a(x−1)(x−d) and the equation of H :

y2=P (x)
(
P (x)+a(x−1)(x−d)

)(
P (x)−a(x−d)

)(
f2(x)

ϕ(x)−ϕ(e)
x−e

)
.

I ϕ identifies pairs of Weierstrass points at 0,∞, 1 and e.
I There is generically another trigonal, unless d = e.
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Recillas’ trigonal construction

P1

C P1

H

ψ ϕ

π

Equation of C

I For Q ∈ C , we put T = ψ(Q) and P1, P2, P3 ∈ H s.t.
ϕ ◦ π(Pi) = T = ψ(Q) = ϕ ◦ π(ı(Pi)).

I We interpolate
(
π(Pi), h(π(Pi)

)
with h(x) = Λ x+V

x+W .
I We have two copies of C :

Λ2(x+ V )2 = (x+W )2f(x) mod Tf2(x)− xf1(x).
I We take U = V 2 and we eliminate U,W in the coefficients in x.
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Family (f-3)

Theorem
The following are equivalent.

1 The curve C is hyperelliptic .
2 There is only one trigonal (ie. d = e).
3 The curve H belongs to family (f-2).

Remark
If there is no trigonal, H is in the family (f-1) of Mestre.
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

The kernel of the dual isogeny

With the 3 − 2 correspondence, we can compute the kernel of
the dual isogeny between JacC and JacH .

Proposition
This kernel is of type “Fano” and so the curve C is in family (f-3)
or (f-4).
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Weierstrass model and definition field

Let [f, g](x) be the polynomial f ′(x)g(x)−f(x)g′(x) and f1, f2, f3
and f4 the four polynomials which correspond to the pairs of
identified points in the equation of H .

Proposition (Fields of definition)
1 We have a Weierstrass equation of C above a conic, defined

over the base field.
2 We have a Weierstrass equation above P1 if all the [fi, fj ](x)

are split or equivalently in the extension generated by√
Resx(fi, fj), generically of degree 8.
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Correspondences between two families

Trigonal construction
The curve C
An other correspondence

The equations

I This field extension can be parametrized by

a =
A2 − dB2 + d+ dC2 − C2 − d2

d(d− 1)
,

b =
A2 + 1−B2 − d2

d− 1
,

c =
dB2 + d2 − d−A2

d− 1
.

I A Weierstrass model is given by

W1 :=∞ W2 := 0 W3 := 1 W4 := d

W5 :=
A+C+d
B+C+1 W6 :=

(B−C−1)d
A−C−d W7 :=

Bd−Cd+A+C
A+B−d+1 W8 :=

(A+B+d−1)d
Bd+Cd+A−C .

W1, . . . ,W4 are the 4 fixed points of the trigonal ϕ.
I. Boyer – IMJ – Paris 7 2−2−2 isogenies and hyperelliptic curves 16 / 19
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Characterization of the Weierstrass model of C

Theorem (Geometrical characterization of family (f-3))
1 The j-invariants of {W5, . . . ,W8} and {W1, . . . ,W4} are

equal.
2 An hyperelliptic curve is in (f-3) iff there is a partition 4-4 of

its Weierstrass points with a common cross-ratio.

Corollary
An hyperelliptic curve C is in family (f-3) iff it appears in a trigonal
construction.
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Characterization of the Weierstrass model of C

Corollary
1 The curve C can be deduced of H by the 4 Weierstrass

points (0, 1, d,∞), fixed points of ϕ, and by the homography

J : w 7→ (x1,3 + x3,4)w − d(x1,4 + x3,4)

(x1,4 + x3,4)w − (x1,3 + x3,4)

where xi,j and xi,j are the roots of [fi, fj ](x).
2 Conversely, if∞, 0, 1, λ4, . . . λ8 are the Weierstrass points of

C ,
A = −

(λ5λ6 − λ6λ7 − λ5 + λ6)(λ4 − 1)λ4

λ4λ5λ6 − λ4λ6λ7 − λ4λ6 + λ4λ7 − λ5λ7 + λ6λ7

B =
(λ4 − 1)(λ4λ5 − λ4λ7 − λ5λ7 + λ6λ7

λ4λ5λ6 − λ4λ6λ7 − λ4λ6 + λ4λ7 − λ5λ7 + λ6λ7

C =
(λ4λ5 − λ4λ7 − λ5λ6 + λ5λ7 − λ5 + λ6)λ4

λ4λ5λ6 − λ4λ6λ7 − λ4λ6 + λ4λ7 − λ5λ7 + λ6λ7

d = λ4.
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Trigonal construction
The curve C
An other correspondence

Correspondence and hyperelliptic involutions

The 3−2 correspondence given by the trigonal construction does
not preserve the hyperelliptic involutions. However:

Theorem
It exists, over the field extension of degree 8, a correspondence
4−3 between Weierstrass models of curves H et C , which re-
spects hyperelliptic involutions, i.e. we have polynomials P (x,X)
and Q(x,X) s.t. 

y2 = f(x) (H )
0 =P (x,X)
yY =Q(x,X)
Y 2 =F (X) (C ),

where degx(P ) = 4 et degX(P ) = 3.
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The 4 families
Correspondences between two families

Trigonal construction
The curve C
An other correspondence

Description of the correspondence

Proposition
This correspondence associates to Weierstrass points 0, 1, d,and
∞ of C , one pair of identified Weierstrass points of H .
To the points W5, . . . ,W8, it associates 0 or 2 pairs of Weierstrass
points of H .

More precisely, we have constants s.t.

P (x, 0) = λ1(x+ λ2)
2f4(x) P (x, 1) =λ3f2(x)

P (x, d) = λ4(x+ λ5)
2f1(x) P (x,∞)=λ6(x+ λ7)

2f3(x)

and
P (x,W5) = λ8f1f4 P (x,W6)=λ9f1f4
P (x,W7) = λ10(x

2 + λ11x+ λ12)
2 P (x,W8)=λ13f3f4

I. Boyer – IMJ – Paris 7 2−2−2 isogenies and hyperelliptic curves 19 / 19
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P (x, d) = λ4(x+ λ5)
2f1(x) P (x,∞)=λ6(x+ λ7)

2f3(x)

and
P (x,W5) = λ8f1f4 P (x,W6)=λ9f1f4
P (x,W7) = λ10(x

2 + λ11x+ λ12)
2 P (x,W8)=λ13f3f4
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