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I. Boyer Factorization in Fp[X]



Algorithmic aspect.

Remark
The deterministic aspect is crucial in this talk : everything be-
comes “trivial” in probabilistic time. In the same way, assuming
G.R.H. would withdraw some of the interest of the following !
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Factorization in Fp[X ] – Square roots in Fp.

I There are deterministic algorithms in Fp[X ] ( e.g. Berlekamp’s
algorithm) but exponential in log p.

I No deterministic polynomial-time algorithm is known
for factorization in Fp[X ]. Even in degree 2 !

I Easy to decide if a ∈ Fp is a square (Legendre symbol, or
more generally the g.c.d. with xp − x)

I A lot of literature for square root probabilistic-algorithms,
but as for now, we don’t know if it’s a P–problem.

I However, thanks to Schoof’s algorithm, we can say some-
thing in deterministic time.
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Schoof’s algorithm and square roots.

In his 1985 paper, Schoof showed these two results :

Theorem
Let E be an elliptic curve defined over Fp. There’s a deterministic
algorithm, polynomial in log p, that counts the number of rational
points of E over Fp

Corollary
Let a ∈ Z be a fixed integer. There’s a deterministic algorithm,
polynomial in log p, that finds a square root of a mod p.

I. Boyer Factorization in Fp[X]



Schoof’s algorithm and square roots : ideas

1 We assume p ≡ 1[4] (otherwise,
(
a

p+1
4
)2

= a) and so a < 0.
2 So a (or 4a) is a discriminant of a quadratic imaginary field.
3 In constant time (depending “badly” on a) we write the

equation of an elliptic curve Ea s.t. :
Ea is defined over an extension of Fp depending only on a.
Ea has complex multiplication by an order of Q[

√
a]

4 The Frobenius π belongs to End(Ea) :

π = a + b
√
D

2

With #Ea, we know Tr(π) and its norm, so :

a2 − b2D ≡ 0[p]

and a
b is the wanted square root.
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Generalization of Schoof’s result : what we want to do.

I So, if we fix a polynomial of degree 2, we can factorize its
reduction over Fp in deterministic polynomial time in log p.

I Now, we want to do the same thing in higher degree, with
abelian varieties.

I Cyclotomic polynomials is a familiy with a lot of inter-
esting properties !

I We can hope in a first time to :
1 Find their roots in Fp if they have any.
2 Factorize them (ie. find the roots in extensions).
3 Generalize to abelian extensions.
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Pila’s generalization to Schoof’s algorithm.

Pila generalized Schoof’s algorithm :

Theorem (Pila, 1989)
Given an abelian variety A over Fq (with equations for the group
law), it’s possible to compute the number of Fq–points in polyno-
mial time in log q and hence the zeta function of A.

The easiest way to use this result is when A is a jacobian of a
curve.
With the Fermat curve, Pila obtained

Theorem
Fixing a prime l and assuming p ≡ 1[l], it’s possible to find the
roots, in Fp, of φl(X) = X l−1

X−1 in deterministic polynomial-time
in log p.
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“Separation” of primes.

Sketch of the proof :
1 The Fermat curve has complex multiplication by the

lth–cyclotomic field Q(ζl).
2 (p) totally splits in Z[ζl ] and the ideal (π), generated by the

Frobenius, is the product of l−1
2 ideals of the shape (ζl − a)

(with φl(a) ≡ 0[p]).
3 The action of Gal(Q(ζl)/Q) “splits” the primes, i.e.

there’re never two ideals above (p) dividing exactly the same
conjugates of (π).

4 We deduce a root a of φl , just by calculating some g.c.d.
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Example of separation.

l = 5, p = 11 and (F5) : x5 + y5 + z5 over F11

The numerator of the zeta function of F5 can be computed :

L(F5/Fp, π) = (π4 + π3 − 9π2 + 11π + 121)3.

The number field generated by π is isomorphic to Q(ζ5). For
instance,

π = −3ζ3
5 − ζ2

5 + ζ5 − 1
ψ2(π) = ζ3

5 + 2ζ2
5 − 2ζ5

ψ3(π) = 4ζ3
5 + 3ζ2

5 + 2ζ5 + 2
ψ4(π) = −2ζ3

5 − 4ζ2
5 − ζ5 − 2
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Example of separation.

l = 5, p = 11 and (F5) : x5 + y5 + z5 over F11

I It remains to compute some g.c.d. : as l is fixed, we can
compute all of them if we want.

I Here, we compute for instance the g.c.d. of the polynomials
in ζ5 which give π and ψ2(π).

GcdFp(−3X3 −X2 + X − 1,X3 + 2X2 − 2X) = X + 6

I So, −6 = 5[11] is a 5th primitive root of unity.
I The others are 52 = 3[11], 53 = 4[11] and 54 = 9[11].
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Separation of “primes”, CM types and simple abelian
varieties (1).

I The demonstration of the “separation” uses Jacobi sums, for
which l and p prime is important.

I The jacobian of the Fermat curve isn’t a simple abelian va-
riety over Fp : we don’t need all of it !

I The idea is to use hyperelliptic curves with complex
multiplication by Q(ζl).

Proposition
Let l, p to primes s.t. p ≡ 1[l]. Then, the jacobian of the curve
y2 = x l − 1 over Fp is simple and its Frobenius generates Q(ζl).

Once we have the “separation” property, the mechanism is the
same as above.
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Separation of “primes”, CM types and simple abelian
varieties (2).

I The hyperelliptic curve y2 = x l − 1 has the automorphism

(x, y) 7→ (ζlx, y)

I We find the CM type with its action on a basis of differen-
tials: {

x i dx
y , 0 6 i 6 l − 3

2

}
[ζl ]∗x i dx

y = ζ i+1
l x i dx

y =: ψi+1(ζl)x i dx
y

and so the CM type is :

Ψ =
{
ψi , 1 6 i 6 l − 1

2

}
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Separation of “primes”, CM types and simple abelian
varieties (3).

I An easy computation shows that the CM type Ψ is primitive
so the abelian variety is simple.

I The extension Q(ζl)/Q is abelian so that (Q(ζl),Ψ) is its
own reflex.

I We denote by P an ideal above (p), which splits totally
(p ≡ 1[l]).

I We use a theorem of Shimura to show the existence of π0 ∈
Z[ζl ] corresponding to the Frobenius (of the reduction mod
P) s.t.

(π0) =
∏
ψ∈Ψ

ψ−1(P).
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Separation of “primes”, CM types and simple abelian
varieties (4).

Proposition
The “separation” property is equivalent to the fact that the CM
type is primitive.

Idea : Two prime ideals P1 and P2 can’t be separated iff the
automorphism ψ s.t. ψ(P1) = P2 stabilize the CM type.
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Generalization.

We have two different kinds of generalization of this result,
both of them are needed for the factorization of polynomials
which generate abelian extensions.

1 The first one is to obtain the result for every cyclotomic
polynomial φn , n not necessarily prime, but still with roots
in Fp.

2 The second one is to generalize to Fpr [X ] or equivalently to
factorize in irreducible factors in Fp[X ].
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A generalization to φn, p ≡ 1[n].

I If n = ab with a, b coprime, then, as p ≡ 1[a] and p ≡ 1[b],
we only need to find ath and bth primitive roots of unity

I So we concentrate on φlr with p ≡ 1[lr ].

Proposition
Let p, l primes and r ∈ N∗ s.t. p ≡ 1[lr ]. Then, the jacobian
of the hyperelliptic curve y2 = xn − 1 isn’t simple but contains
a subvariety with complex multiplication by Q(ζlr ) and primitive
CM type : {

ψi , 1 6 i 6 ln − 1
2 , i 6≡ 0[l]

}
.
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A generalization to φn, p ≡ 1[n].

We can in fact find better curves s.t. their jacobians are simple,
so the genus is reduced from lr−1

2 to lr−1 l−1
2

Proposition
Let p, l primes and r ∈ N∗ s.t. p ≡ 1[lr ]. Then, the jacobian of
the “superelliptic” curve yl = x(x lr−1 − 1) has complex multipli-
cation by Q(ζlr ) with the primitive CM type :{

ψl(i+1)−j , 1 6 j 6 l − 1, 0 6 i 6 ln−2j − 1
}
.

So this jacobian is simple, with complex multiplication by Q(ζl).
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The second generalization : no condition on p mod l.

This generalization is more difficult and depends on the order of
p in (Z/lZ )∗. Some examples :

I l = 11, p = 109 : order 2.
L = (t2 + 109)5

I l = 31, p = 149 : order 3.
L = t30 + 6190t27 + 18863049t24 + 34431784200t21 +
43370374988098t18 + 56345551609871220t15 +
43370374988098 · 1493t12 + 34431784200 · 1496t9 +
18863049 · 1499t6 + 6190 · 14912t3 + 14915.

I l = 31, p = 37 : order 6.
L = (t6 + 373)5.

I. Boyer Factorization in Fp[X]



Order of p : the odd case.

The above results are quite different :
I In the 1st and 3rd example, p is of even order and the zeta

function gives no information in term of complex multipli-
cation.

I In the second one, π3 generates the subfield of index 3 of
Q(ζ31) and everything works well !

Remark
If we note r the order of p ∈ (Z/lZ)∗, then φl hasn’t any roots
in Fp but in Fpr . So π no longer commutes with (x, y) 7→ (ζlx, y)
but πr does.
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Order of p : the odd case.

Proposition
If the order r of p ∈ (Z/lZ)∗ is odd, the same deterministic
polynomial-time algorithm works to find the roots of the minimal
polynomial of

r−1∑
i=0

ζpi

l

which generates the index r subfield of Q(ζl). This is equivalent
to the factorization of φl over Fp.
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Order of p : the even case – real multiplication curves.

We examine now the situation where p is of order 2.
Here, we can use a result of Tautz, Top and Verberkmoes :

Theorem
Let l 6= 5 be a prime and let g ∈ Z[X ] the minimal polynomial of
−ζl−ζ−1

l . The jacobian of the hyperelliptic curve y2 = xg(x2−2)
has a primitive CM type and complex multiplication by the field
Q(ζl + ζ−1

l , i).

To use it, we first need :
I p ≡ 1[4] to have complex multiplication by i.
I p of order 2 (p ≡ −1[l]).

Then, π commutes with [ζl + ζ−1
l ] and [i] (i.e. with the automor-

phism (x, y) 7→ (−x, iy)).
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An example with p of order 2.

l = 11, p = 109.

I g = t5 − t4 − 4t3 + 3t2 + 3t − 1.
I The curve on F109 :

y2 = x(x10 + 98x8 + 44x6 + 32x4 + 55x4 + 98).

The numerator of its zeta function is :

t10 − 52t9 + 1345t8 − 23248t7 + 311034t6 − 3493496t5 + 311034 · 109t4 −
23248 · 1092t3 + 1345 · 1093t2 − 52 · 1094t + 1095

which generates a field isomorphic to Q(ζ11 + ζ−1
11 , i). It “splits”

the primes so we find for instance :

−ζ11 − ζ−1
11 = 90 ∈ F109,

so x2 + 90x + 1 is an irreducible factor of x11 − 1.
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Order of p : the even case – real multiplication curves.

If the order is 4, π2 and [ζl +ζ−1
l ] commutes, the jacobian has still

complex multiplication but it’s no longer simple but isogenous to
a product of supersingular varieties. Nevertheless,

Proposition
Let A be the jacobian of y2 = x4l+1 + x. Then A has a simple
abelian subvariety with complex multiplication by the field K :=
Q(ζ8l − ζ−1

8l ) and with primitive CM type.

Let p prime of order r : πr and ζ8l − ζ−1
8l commutes so πr ∈ K .

Conjecture
Let K0 be the decomposition field of (p) in K. Then Q(πr) = K0

With this result, we could positively answer our problem !
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Order of p : the even case – Ad hoc constructions.

We can try to build directly our abelian variety, with the
appropriate complex multiplication and CM type. For instance :

Goal
Find an abelian variety with complex multiplication by

Q
(
ζ

(4)
13 , i

)
where ζ(4)

13 := ζ13 + ζ5
13 + ζ8

13 + ζ12
13 ,

and primitive CM type.

With p of order 4 in (Z/13Z)∗, and p ≡ 1[4] (for the complex
multiplication by [i]), the reduction of such a curve mod p shall
give a zeta function which generates the field Q

(
ζ

(4)
13 , i

)
, with the

prime “separation” property.
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Order of p : the even case – Ad hoc constructions.

Sketch of the construction

1 First, we compute the ring O of integers of the CM field,
we choose our CM type Ψ, such that our torus with the
appropriate complex multiplication is C3/Ψ(O).

2 With the different of O we can find a principal polarization
together with a a non-degenerate Riemann form.

3 By computing the theta constants, we can check if we have
the jacobian of a curve.

4 The complex multiplication by i implies it’s an hyperelliptic
curve.

5 Mumford gives formulas between theta constants and the
Rosenhain form of the hyperelliptic curve.

6 We finally write “beautiful” equations with algdep.
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Ad hoc construction : example of Q(ζ(4)
13 , i).

Up to the precision of the computer, we find a curve defined
over the (minimal) number field generated by α with minimal
polynomial t3 − t2 + 9t − 1 :

y2 = x
(
x6 − α2 − 2α+ 13

2 x4 − α2 − 12α+ 1
2 x2 − α2

)
.

Modulo 109, its reduction is defined over F109 :

y2 = x(x6 + 75x4 + 96x2 + 4).

The numerator of the zeta function is :

t6 + 14t5 − 93t4 − 3148t3 − 93 · 109t2 + 14 · 1092t + 1092,

and we check that it generates the field Q
(
ζ

(4)
13 , i

)
.
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Determine the endomorphism ring (1).

The construction described above has floating point computa-
tions and some denominators are not yet bounded. So :

We have to prove the jacobian has CM by Q
(
ζ

(4)
13 , i

)
.

Before, we notice the good properties of the equation :
I Its coefficients are integers.
I Its discriminant is a square (64α22)
I The equation can be factorized : let β = 1

2α
2 − α+ 1

2 :

y2 = x(x3 + βx2 + (α− β)x − α)(x3 − βx2 + (α− β)x + α)

I The number field Q(α) has class number 3 and its Hilbert
class field, H , is the extension by Q

(
ζ

(4)
13

)
.
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class field, H , is the extension by Q

(
ζ

(4)
13

)
.

I. Boyer Factorization in Fp[X]



Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a
morphism on the jacobian with minimal polynomial X3 + X2 −
4X + 1 (a defining polynomial of Q

(
ζ

(4)
13

)
) :

I In genus g, it’s natural to expect a (n, g)–correspondance.
I We switch back to floating point computations in the jaco-

bian over C.
I We compute a matrix, preserving the lattice, with the good

minimal polynomial.
I For (x, y) ∈ Z∗ × C, s.t. (x, y) is a point on the curve, we

compute the image of (x, y)−∞ with this matrix.
I So, we find 3 x–coordinates, whose symmetric functions must

be in the field of definition of the correspondance.
I With sufficient data, we interpolate and find an equation C .
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Determine the endomorphism ring (3).
I We actually find a (8, 3)–correspondance defined over the

Hilbert class field.
I It remains to find an equation for the y–coordinates :

yy′ ≡ V (x, x ′)2 [C ].
I We do that by Gröbner basis algorithms in the field H (x) (so

V could be find as a degree 2 polynomial on H (x)).
I The correspondance (C ,V ) induce an endomorphism on the

jacobian. We compute its action on regular differentials:

Tr
(dx

y

)
= dx1

y1
+ dx2

y2
+ dx3

y3
, . . .

which must be of the shape(
α+ βx + γx2

) dx
y , . . .
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The equations ! (1).

Let a generating the Hilbert class field mentioned above :

a9 − a8 − 2a7 − a6 + 5a5 + a4 − 5a3 + 2a2 + 2a − 1 = 0.

C =
(

(−10a8 + 10a7 + 24a6 + 16a5 − 54a4 − 26a3 + 40a2 − 10a − 26)x7 + (−2a8 + 4a7 − 6a6 +

4a5 − 2a4 + 20a3 − 18a2 − 16a + 30)x5 + (8a8 − 10a7 + 6a6 − 24a5 + 10a4 − 38a3 + 52a2 + 50a −
36)x3 +(14a8 −12a7 −36a6 −20a5 +82a4 +52a3 −76a2 −20a +18)x

)
z3 +
(

2x8 +(−6a7 +10a6 +

2a5 + 4a4 − 30a3 + 26a2 + 16a − 30)x6 + (19a8 − 16a7 − 44a6 − 26a5 + 99a4 + 53a3 − 100a2 +
30)x4 + (−28a8 + 15a7 + 70a6 + 63a5 − 129a4 − 120a3 + 97a2 + 36a − 27)x2 − 21a8 + 8a7 + 57a6 +
54a5 −95a4 −111a3 +67a2 +47a −22

)
z2 +
(

(−2a7 −4a6 +6a5 +14a4 +4a3 −24a2 −8a +16)x7 +

(2a8 + 11a7 + 17a6 − 47a5 − 79a4 − 12a3 + 146a2 + 65a − 63)x5 + (31a8 − 18a7 − 144a6 − 18a5 +
271a4 + 283a3 − 388a2 − 204a + 142)x3 + (−43a8 + 41a7 + 56a6 + 91a5 − 164a4 − 23a3 + 27a2 −
76a +37)x

)
z +
(

(23a8 −20a7 −46a6 −42a5 +113a4 +53a3 −72a2 −6a +14)x6 +(−94a8 +25a7 +

217a6 + 291a5 − 309a4 − 430a3 + 88a2 + 97a − 19)x4 + (−5a8 + 145a7 − 42a6 − 293a5 − 442a4 +
461a3 +575a2 −118a −89)x2 +61a8 −11a7 −191a6 −167a5 +278a4 +411a3 −236a2 −195a +93

)
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The equations ! (2).

V =
((

x − a + 1
)(

x + a − 1
)(

x − 2a8 + 2a7 + 3a6 + 3a5 − 9a4 − a3 + 6a2 − 3a
)(

x + 2a8 − 2a7 −

3a6 − 3a5 + 9a4 + a3 − 6a2 + 3a
)(

x10z2 + 1/2(−a8 − 3a7 + 4a6 + 8a5 + 6a4 − 14a3 − 6a2 + a −

1)x9z + 1/2(31a8 − 18a7 − 68a6 − 64a5 + 128a4 + 86a3 − 104a2 + 9a + 50)x8z2 + 1/2(−a8 − 2a7 +
8a6 − 3a4 − 16a3 + 25a2 − 2a − 15)x8 + 1/2(28a8 − 34a7 − 6a6 − 61a5 + 75a4 − 78a3 + 63a2 +
134a − 66)x7z + 1/2(−76a8 + 46a7 + 167a6 + 159a5 − 320a4 − 225a3 + 240a2 − 4a − 94)x6z2 +
1/4(63a8 −64a7 −57a6 −121a5 +189a4 −61a3 −17a2 +274a −83)x6 +1/4(51a8 −44a7 −224a6 +
8a5 + 452a4 + 400a3 − 694a2 − 221a + 190)x5z + 1/4(149a8 − 48a7 − 285a6 − 465a5 + 403a4 +
489a3 − 5a2 + 46a + 13)x4z2 + 1/4(315a8 − 252a7 − 1020a6 − 354a5 + 2188a4 + 1714a3 − 2452a2 −
1031a + 734)x4 + 1/4(−137a8 + 134a7 + 219a6 + 255a5 − 615a4 − 163a3 + 277a2 − 134a + 41)x3z +
1/4(−85a8 − 79a7 + 198a6 + 506a5 + 88a4 − 644a3 − 462a2 + 83a + 89)x2z2 + 1/4(−1080a8 +
467a7 + 2625a6 + 2825a5 − 4453a4 − 4843a3 + 2561a2 + 1445a − 612)x2 + 1/4(264a8 + 173a7 −
643a6 − 1385a5 + 39a4 + 1909a3 + 961a2 − 341a − 212)xz + 1/4(119a8 − 147a7 − 325a6 − 55a5 +
911a4 + 375a3 − 961a2 − 262a + 258)z2 + 1/4(−356a8 + 500a7 + 977a6 + 15a5 − 2953a4 −

983a3 + 3227a2 + 795a − 849)
))

/

(
x
(

x − a8 + a7 + 2a6 + 2a5 − 5a4 − 2a3 + 2a2 − a
)(

x + a8 −

a7 − 2a6 − 2a5 + 5a4 + 2a3 − 2a2 + a
)(

x2 + a8 − 2a7 − a6 − a5 + 6a4 − 2a3 − a2 + 4a − 2
)3
)
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The equations ! (3).

The action of the correspondance on the basis of holomorphic
differentials {dx

y , x
dx
y , x

2dx
y

}
is given by the matrix(

2a8−3a6−5a5+4a4+3a3−5a2+2 0 −9a8+2a7+16a6+21a5−25a4−19a3+26a2−12
0 γ 0

3a8−5a7−2a6−2a5+16a4−9a3−7a2+9a−2 0 −3a8+a7+6a6+7a5−10a4−8a3+9a2+a−5

)

were γ = a8−a7−3a6−2a5+6a4+5a3−4a2−a+2 ∈ Q
(
ζ

(4)
13

)
.

Its minimal polynomial is

X3 + X2 − 4X + 1.
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Conclusion.

This situation is quite beautiful but there’s no obvious rea-
son that there’s always an hyperelliptic curve such that its
jacobian has the desired complex multiplication and CM type !

More generally, we can ask

Problem
Can we compute all the equations of an abelian variety with a
determined CM field and CM type ? (the time doesn’t matter at
all !)
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