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1. Boyer Factorization in Fjp[X]



Algorithmic aspect.

The deterministic aspect is crucial in this talk : everything be-
comes “trivial” in probabilistic time. In the same way, assuming
G.R.H. would withdraw some of the interest of the following !
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Factorization in F,[X] — Square roots in F,,.

» There are deterministic algorithms in F),[X] ( e.g. Berlekamp’s
algorithm) but exponential in log p.
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Factorization in F,[X] — Square roots in F,,.

» There are deterministic algorithms in F),[X] ( e.g. Berlekamp’s
algorithm) but exponential in log p.

» No deterministic polynomial-time algorithm is known
for factorization in Fy[X]. Even in degree 2 !

» Easy to decide if a € I, is a square (Legendre symbol, or
more generally the g.c.d. with z? — z)

» A lot of literature for square root probabilistic-algorithms,
but as for now, we don’t know if it’s a P—problem.

» However, thanks to Schoof’s algorithm, we can say some-
thing in deterministic time.
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Schoof’s algorithm and square roots.

In his 1985 paper, Schoof showed these two results :

Theorem

Let E be an elliptic curve defined over F,,. There’s a deterministic

algorithm, polynomial in log p, that counts the number of rational
points of E over I,

Let a € Z be a fixed integer. There’s a deterministic algorithm,
polynomial in log p, that finds a square root of a mod p.
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Schoof’s algorithm and square roots : ideas

pt1

2
@ We assume p = 1[4] (otherwise, (a 1 ) = a) and so a < 0.
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Schoof’s algorithm and square roots : ideas
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@ We assume p = 1[4] (otherwise, (a%) = a) and so a < 0.

@ So a (or 4a) is a discriminant of a quadratic imaginary field.

1. Boyer Factorization in Fp[X]



Schoof’s algorithm and square roots : ideas

2
@ We assume p = 1[4] (otherwise, (a%l) = a) and so a < 0.

@ So a (or 4a) is a discriminant of a quadratic imaginary field.

@ In constant time (depending “badly” on a) we write the
equation of an elliptic curve E, s.t. :
o F, is defined over an extension of F, depending only on a.
o E, has complex multiplication by an order of Q[/d]
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Schoof’s algorithm and square roots : ideas

2
@ We assume p = 1[4] (otherwise, (a%l) = a) and so a < 0.

@ So a (or 4a) is a discriminant of a quadratic imaginary field.

@ In constant time (depending “badly” on a) we write the
equation of an elliptic curve E, s.t. :

o F, is defined over an extension of F, depending only on a.
o E, has complex multiplication by an order of Q[/d]

© The Frobenius 7 belongs to End(E,) :

a+bvD
2

m =
With #FE,, we know Tr(7) and its norm, so :
a® — b>D = 0[p]

and 7 is the wanted square root.

1. Boyer Factorization in Fp[X]



Generalization of Schoof’s result : what we want to do.

> So, if we fix a polynomial of degree 2, we can factorize its
reduction over IF), in deterministic polynomial time in log p.
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Generalization of Schoof’s result : what we want to do.

> So, if we fix a polynomial of degree 2, we can factorize its
reduction over IF), in deterministic polynomial time in log p.

» Now, we want to do the same thing in higher degree, with
abelian varieties.

» Cyclotomic polynomials is a familiy with a lot of inter-
esting properties !
» We can hope in a first time to :

@ Find their roots in F, if they have any.
@ Factorize them (ie. find the roots in extensions).
@ Generalize to abelian extensions.
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Pila’s generalization to Schoot’s algorithm.

Pila generalized Schoof’s algorithm :

Theorem (Pila, 1989)

Given an abelian variety A over F, (with equations for the group
law), it’s possible to compute the number of IFy—points in polyno-
mial time in log g and hence the zeta function of A.
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Pila’s generalization to Schoot’s algorithm.

The easiest way to use this result is when A is a jacobian of a
curve.
With the Fermat curve, Pila obtained

Fizing a prime | and assuming p = 1[I], it’s possible to find the
roots, in Fp, of ¢)(X) = % in deterministic polynomial-time

in log p.

Factorization in Fjp[X]



“Separation” of primes.

Sketch of the proof :

@ The Fermat curve has complex multiplication by the
I*h—cyclotomic field Q(¢;).
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“Separation” of primes.

Sketch of the proof :

@ The Fermat curve has complex multiplication by the
I*h—cyclotomic field Q(¢;).

@ (p) totally splits in Z[(;] and the ideal (7), generated by the
Frobenius, is the product of 1771 ideals of the shape ((; — a)

(with ¢;(a) = 0[p)).
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“Separation” of primes.

Sketch of the proof :
@ The Fermat curve has complex multiplication by the
I*h—cyclotomic field Q((;).

@ (p) totally splits in Z[(;] and the ideal (7), generated by the
Frobenius, is the product of 1771 ideals of the shape ((; — a)
(with ¢1(a) = 0[p)).

@ The action of Gal(Q((;)/Q) “splits” the primes, i.e.
there’re never two ideals above (p) dividing exactly the same
conjugates of (7).
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“Separation” of primes.

Sketch of the proof :
@ The Fermat curve has complex multiplication by the
I*h—cyclotomic field Q((;).

@ (p) totally splits in Z[(;] and the ideal (), generated by the
Frobenius, is the product of =t ideals of the shape (¢ — a)
(with ¢(a) = 0[p]).

@ The action of Gal(Q((;)/Q) “splits” the primes, i.e.
there’re never two ideals above (p) dividing exactly the same
conjugates of (7).

@ We deduce a root a of ¢y, just by calculating some g.c.d.
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Example of separation.

I=5,p=11and (Fs): 2° + y° + 2° over Fy;

The numerator of the zeta function of F5 can be computed :
L(F5/Fp,m) = (% + 7% — 97% 4 117 + 121)3,

The number field generated by 7 is isomorphic to Q(¢s). For
instance,

T=-3C-G+¢G-1
o(m) = G5 + 265 — 26
¥a(m) = 4G5 + 3¢5 +2¢5 + 2
pa(m) = =2¢5 — 4¢3 — G5 — 2
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Example of separation.

I=5,p=11and (Fs): 2° + y° + 2° over Fy;

» It remains to compute some g.c.d. : as [ is fixed, we can
compute all of them if we want.

» Here, we compute for instance the g.c.d. of the polynomials
in (5 which give 7 and (7).

Gedr, (—3X% - X2+ X -1, X° +2X° —2X) =X +6

» So, —6 = 5[11] is a 5" primitive root of unity.
» The others are 52 = 3[11], 5% = 4[11] and 5* = 9[11].
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Separation of “primes”, CM types and simple abelian

varieties (1).

» The demonstration of the “separation” uses Jacobi sums, for
which [ and p prime is important.

» The jacobian of the Fermat curve isn’t a simple abelian va-
riety over [}, : we don’t need all of it !
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Separation of “primes”, CM types and simple abelian

varieties (1).

» The demonstration of the “separation” uses Jacobi sums, for
which [ and p prime is important.

» The jacobian of the Fermat curve isn’t a simple abelian va-
riety over [}, : we don’t need all of it !

» The idea is to use hyperelliptic curves with complex
multiplication by Q((;).

Proposition

Let I, p to primes s.t. p = 1[l]. Then, the jacobian of the curve

y? = z! — 1 over F, is simple and its Frobenius generates Q((;).

Once we have the “separation” property, the mechanism is the
same as above.
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Separation of “primes”, CM types and simple abelian

varieties (2).

» The hyperelliptic curve y2 = z! — 1 has the automorphism

(z,y) = (Gz, y)
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Separation of “primes”, CM types and simple abelian

varieties (2).

» The hyperelliptic curve y2 = z! — 1 has the automorphism

(z,y) = (Gz, y)

» We find the CM type with its action on a basis of differen-

tials:
;dz o 1-3
'—, 0< i< ——
Y 2

Gl —f—cﬂlmj mﬂ@m—f

and so the CM type is :

—1
v={u 1<i< Y
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Separation of “primes”, CM types and simple abelian

varieties (3).

» An easy computation shows that the CM type ¥ is primitive
so the abelian variety is simple.
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own reflex.
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Separation of “primes”, CM types and simple abelian

varieties (3).

» An easy computation shows that the CM type ¥ is primitive
so the abelian variety is simple.

» The extension Q((;)/Q is abelian so that (Q({;), V) is its
own reflex.

» We denote by B an ideal above (p), which splits totally
(p = 1[1]).

1. Boyer Factorization in Fjp[X]



Separation of “primes”, CM types and simple abelian

varieties (3).

» An easy computation shows that the CM type ¥ is primitive
so the abelian variety is simple.

» The extension Q((;)/Q is abelian so that (Q({;), V) is its
own reflex.

» We denote by B an ideal above (p), which splits totally
(v = 1[1).

» We use a theorem of Shimura to show the existence of my €
Z[¢;] corresponding to the Frobenius (of the reduction mod

PB) s.t.
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Separation of “primes”, CM types and simple abelian
varieties (4).

Proposition
The “separation” property is equivalent to the fact that the CM
type is primitive.
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Separation of “primes”, CM types and simple abelian
varieties (4).

Proposition
The “separation” property is equivalent to the fact that the CM
type is primitive.

Idea : Two prime ideals P; and B2 can’t be separated iff the
automorphism v s.t. ¥(PB1) = P2 stabilize the CM type.

1. Boyer Factorization in Fjp[X]



Generalization.

We have two different kinds of generalization of this result,
both of them are needed for the factorization of polynomials
which generate abelian extensions.

© The first one is to obtain the result for every cyclotomic
polynomial ¢,, n not necessarily prime, but still with roots
in IFp.
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Generalization.

We have two different kinds of generalization of this result,
both of them are needed for the factorization of polynomials
which generate abelian extensions.

© The first one is to obtain the result for every cyclotomic
polynomial ¢,, n not necessarily prime, but still with roots
in IFp.

@ The second one is to generalize to [F,-[X] or equivalently to
factorize in irreducible factors in Fp[X].
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A generalization to ¢,, p = 1[n].

» If n = ab with a, b coprime, then, as p = 1[a] and p = 1[b],
we only need to find ' and b*" primitive roots of unity

» So we concentrate on ¢, with p = 1[{"].
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A generalization to ¢,, p = 1[n].

» If n = ab with a, b coprime, then, as p = 1[a] and p = 1[b],
we only need to find ' and b*" primitive roots of unity

» So we concentrate on ¢, with p = 1[{"].

Proposition

Let p,1 primes and r € N* s.t. p = 1[I"]. Then, the jacobian
of the hyperelliptic curve y?> = 2™ — 1 isn’t simple but contains

a subvariety with complex multiplication by Q((;r) and primitive
CM type :

{wi, 1<z‘<ln21,z’¢0[ll}-
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A generalization to ¢,, p = 1[n].

We can in fact find better curves s.t. their jacobians are simple,
so the genus is reduced from * 1 to 1"~ ”

Proposition

Let p, 1 primes and r € N* s.t. p = 1[I"]. Then, the jacobian of
the “superelliptic” curve y* = x(z"" =" — 1) has complex multipli-
cation by Q((r) with the primitive CM type :

3
|

{buirn-p 1< <=1, 0<i< "% —1}.

So this jacobian is simple, with complex multiplication by Q((;).
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The second generalization : no condition on p mod /.

This generalization is more difficult and depends on the order of
pin (Z/1Z)*. Some examples :
> [ =11, p =109 : order 2.
L = (t* +109)°
> [ =31, p=149 : order 3.
L = t3 + 619027 4 18863049¢2* + 34431784200¢! +
43370374988098¢'8 + 56345551609871220¢15 +
43370374988098 - 1493#12 + 34431784200 - 149549 +
18863049 - 149t + 6190 - 14912¢3 + 14915,
» [ =31, p=37: order 6.
L= (t5+37%)5.
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Order of p : the odd case.

The above results are quite different :

» In the 15° and 34 example, p is of even order and the zeta
function gives no information in term of complex multipli-
cation.

» In the second one, 73 generates the subfield of index 3 of
Q((31) and everything works well !

If we note r the order of p € (Z/IZ)*, then ¢; hasn’t any roots
in Fp but in Fpr. So m no longer commutes with (z,y) — ({1, y)
but ™" does.
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Order of p : the odd case.

Proposition

If the order v of p € (Z/IZ)* is odd, the same deterministic
polynomial-time algorithm works to find the roots of the minimal
polynomial of

=1l ;
> ¢
=0

which generates the index r subfield of Q((;). This is equivalent
to the factorization of ¢; over IFp.

v
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Order of p : the even case — real multiplication curves.

We examine now the situation where p is of order 2.
Here, we can use a result of Tautz, Top and Verberkmoes :

Theorem

Let I # 5 be a prime and let g € Z[X] the minimal polynomial of
—Cl—Cfl- The jacobian of the hyperelliptic curve y? = xg(x? —2)
has a primitive CM type and complex multiplication by the field
QG+ ¢t 9).
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Order of p : the even case — real multiplication curves.

We examine now the situation where p is of order 2.
Here, we can use a result of Tautz, Top and Verberkmoes :

Theorem

Let I # 5 be a prime and let g € Z[X] the minimal polynomial of
—Cl—Cfl- The jacobian of the hyperelliptic curve y? = xg(x? —2)
has a primitive CM type and complex multiplication by the field
QG+ ¢t 9).

To use it, we first need :

» p = 1[4] to have complex multiplication by .

» p of order 2 (p = —1[I]).
Then, m commutes with [¢;+¢; '] and [4] (i.e. with the automor-
phism (z,y) — (-, iy)).
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An example with p of order 2.

[1=11,p=109.]

> g=1" —t* =43 + 362+ 3t — 1.
» The curve on Figg :
y? = z(z'0 + 982% + 4425 + 322 + 552% + 98).

The numerator of its zeta function is :

10 — 52¢° + 1345¢% — 23248¢" + 311034¢° — 3493496¢° + 311034 - 109¢* —
23248 - 109%¢3 4 1345 - 1093t — 52 - 109*¢ 4 109°

which generates a field isomorphic to Q(¢{11 + (1_11, 7). It “splits”
the primes so we find for instance :

—C11 — 3t = 90 € Figg,

so 22 + 90z + 1 is an irreducible factor of z* — 1.
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Order of p : the even case — real multiplication curves.

If the order is 4, 7% and [(;+(; 1 commutes, the jacobian has still
complex multiplication but it’s no longer simple but isogenous to
a product of supersingular varieties. Nevertheless,

Proposition

Let A be the jacobian of y*> = z**!1 4+ z. Then A has a simple
abelian subvariety with complex multiplication by the field K =
Q(¢s1 — Cgll) and with primitive CM type.
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Order of p : the even case — real multiplication curves.

If the order is 4, 7% and [(;+(; 1 commutes, the jacobian has still
complex multiplication but it’s no longer simple but isogenous to
a product of supersingular varieties. Nevertheless,

Proposition

Let A be the jacobian of y*> = z**!1 4+ z. Then A has a simple
abelian subvariety with complex multiplication by the field K =
Q(¢s1 — Cgll) and with primitive CM type.

Let p prime of order r : #" and (g; — Cg_ll commutes so 7" € K.

Conjecture
Let Ky be the decomposition field of (p) in K. Then Q(n") = Ky

With this result, we could positively answer our problem !
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Order of p : the even case — Ad hoc constructions.

We can try to build directly our abelian variety, with the
appropriate complex multiplication and CM type. For instance :

Find an abelian variety with complex multiplication by

Q ( 5, Z) where ({3 = (13 + (%5 + (&5 + (2,

and primitive CM type.

With p of order 4 in (Z/13Z)*, and p = 1[4] (for the complex
multiplication by [7]), the reduction of such a curve mod p shall
give a zeta function which generates the field Q <C%), i), with the
prime “separation” property.
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Order of p : the even case — Ad hoc constructions.

‘Sketch of the construction‘

@ First, we compute the ring O of integers of the CM field,
we choose our CM type ¥, such that our torus with the
appropriate complex multiplication is C*/¥(0).
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Order of p : the even case — Ad hoc constructions.

‘Sketch of the construction‘

@ First, we compute the ring O of integers of the CM field,
we choose our CM type ¥, such that our torus with the
appropriate complex multiplication is C*/¥(0).

© With the different of O we can find a principal polarization
together with a a non-degenerate Riemann form.
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Order of p : the even case — Ad hoc constructions.

‘Sketch of the construction‘

@ First, we compute the ring O of integers of the CM field,
we choose our CM type ¥, such that our torus with the
appropriate complex multiplication is C*/¥(0).

© With the different of O we can find a principal polarization
together with a a non-degenerate Riemann form.

@ By computing the theta constants, we can check if we have
the jacobian of a curve.
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Order of p : the even case — Ad hoc constructions.

‘Sketch of the construction‘

@ First, we compute the ring O of integers of the CM field,
we choose our CM type ¥, such that our torus with the
appropriate complex multiplication is C*/¥(0).

© With the different of O we can find a principal polarization
together with a a non-degenerate Riemann form.

@ By computing the theta constants, we can check if we have
the jacobian of a curve.

@ The complex multiplication by ¢ implies it’s an hyperelliptic
curve.
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Order of p : the even case — Ad hoc constructions.

‘Sketch of the construction‘

First, we compute the ring O of integers of the CM field,
we choose our CM type ¥, such that our torus with the
appropriate complex multiplication is C*/¥(0).
With the different of O we can find a principal polarization
together with a a non-degenerate Riemann form.

By computing the theta constants, we can check if we have
the jacobian of a curve.
The complex multiplication by ¢ implies it’s an hyperelliptic

curve.

Mumford gives formulas between theta constants and the
Rosenhain form of the hyperelliptic curve.
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Order of p : the even case — Ad hoc constructions.

o

o

o

‘Sketch of the construction‘

First, we compute the ring O of integers of the CM field,
we choose our CM type ¥, such that our torus with the
appropriate complex multiplication is C*/¥(0).

With the different of O we can find a principal polarization
together with a a non-degenerate Riemann form.

By computing the theta constants, we can check if we have
the jacobian of a curve.

The complex multiplication by ¢ implies it’s an hyperelliptic
curve.

Mumford gives formulas between theta constants and the
Rosenhain form of the hyperelliptic curve.

We finally write “beautiful” equations with algdep.
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Ad hoc construction : example of Q(Cl(é), 7).

Up to the precision of the computer, we find a curve defined
over the (minimal) number field generated by a with minimal
polynomial ¢3 — 2 + 9t — 1 :

yz_x(mﬁ_a2—2a+l3 4_a2—12a+1x2_a2>'

2 o 2
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Ad hoc construction : example of Q(Cl(é), 7).

Up to the precision of the computer, we find a curve defined
over the (minimal) number field generated by a with minimal
polynomial ¢3 — 2 + 9t — 1 :

2.2 13 212 1
yz—x(xﬁ—a 2a+ x4—a 2a+ 2 —a?).

Modulo 109, its reduction is defined over Fygg :
y? = x(28 + 7521 4 9622 + 4).
The numerator of the zeta function is :
19 + 1415 — 93¢* — 314843 — 93 - 109¢% + 14 - 109%¢ + 1092,

and we check that it generates the field Q (CS), z)
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Determine the endomorphism ring (1).

The construction described above has floating point computa-
tions and some denominators are not yet bounded. So :

We have to prove the jacobian has CM by Q (Cg), z)
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Determine the endomorphism ring (1).

The construction described above has floating point computa-
tions and some denominators are not yet bounded. So :

We have to prove the jacobian has CM by Q (Cg), z)

Before, we notice the good properties of the equation :

» Its coefficients are integers.

v

Its discriminant is a square (64a?)

v

The equation can be factorized : let 8 = 2a —a+ 2 :
y? = z(2® + B2® + (o — Bz — a)(2® — B2 + (a — B)z + )

The number field Q(a) has class number 3 and its Hilbert
class field, H, is the extension by Q ({%)).

v
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Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a
morphism on the jacobian with minimal polynomial X3 + X2 —

4X + 1 (a defining polynomial of Q ( g))) :

» In genus g, it’s natural to expect a (n, g)—correspondance.
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Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a
morphism on the jacobian with minimal polynomial X3 + X2 —

4X + 1 (a defining polynomial of Q ( g))) :
» In genus g, it’s natural to expect a (n, g)—correspondance.
» We switch back to floating point computations in the jaco-
bian over C.
» We compute a matrix, preserving the lattice, with the good
minimal polynomial.
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Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a
morphism on the jacobian with minimal polynomial X3 + X2 —
4X + 1 (a defining polynomial of Q ( g))) :
» In genus g, it’s natural to expect a (n, g)—correspondance.
» We switch back to floating point computations in the jaco-
bian over C.
» We compute a matrix, preserving the lattice, with the good
minimal polynomial.
» For (z,y) € Z* x C, s.t. (z,y) is a point on the curve, we
compute the image of (z,y) — oo with this matrix.

» So, we find 3 x—coordinates, whose symmetric functions must
be in the field of definition of the correspondance.
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Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a
morphism on the jacobian with minimal polynomial X3 + X2 —
4X + 1 (a defining polynomial of Q ( g))) :

>

>

In genus g, it’s natural to expect a (n, g)—correspondance.

We switch back to floating point computations in the jaco-
bian over C.

We compute a matrix, preserving the lattice, with the good
minimal polynomial.

For (z,y) € Z* x C, s.t. (z,y) is a point on the curve, we
compute the image of (z,y) — oo with this matrix.

So, we find 3 x—coordinates, whose symmetric functions must
be in the field of definition of the correspondance.

With sufficient data, we interpolate and find an equation C.
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Determine the endomorphism ring (3).

» We actually find a (8,3)—correspondance defined over the
Hilbert class field.
» [t remains to find an equation for the y—coordinates :
yy' = V(z,a')* [C].

» We do that by Grébner basis algorithms in the field H(z) (so
V could be find as a degree 2 polynomial on H(z)).
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Determine the endomorphism ring (3).

» We actually find a (8,3)-correspondance defined over the
Hilbert class field.
» [t remains to find an equation for the y—coordinates :

yy = V(z,2')* [C].
» We do that by Grébner basis algorithms in the field H(z) (so
V could be find as a degree 2 polynomial on H(z)).

» The correspondance (C, V) induce an endomorphism on the
jacobian. We compute its action on regular differentials:

T (dx> _dn  do | do
Y Y1 Y2 Y3
which must be of the shape

g oo

(a+ﬁx—|—7x2) dyx’
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The equations ! (1).

Let a generating the Hilbert class field mentioned above :

a—a®—2d"—a®+5a° +a* —5a°+2d*>+2a—1=0.

C= ((—wa8 +10a" + 2448 + 164° — 54a* — 264% + 400> — 10a — 26)27 + (—2a® + 44" — 64 +
4a® — 2a* 420403 — 18a% — 16a + 30)2® + (84® — 1047 + 648 — 24a® + 10a* — 3843 4 5242 + 50a —
36)z> + (14a% — 1247 — 3645 — 204° +82a* +52a° — 7642 — 200+ 18)1») 2+ (218 +(—6a" +10a8 +
2a% + 4a* — 30a® + 2642 + 16a — 30)2% + (19a% — 1647 — 444 — 264° + 99a* + 534 — 100a? +
30)z? + (—28a% + 1547 +70a° + 63a® — 129a* — 1204° + 97402 + 364 — 27)2% — 21a® 4+ 847 +57a% +
540 —954* —111a° 46742 +47a722) 2+ ((72,17 —4a%+6a® +14a* +40® —240% —8a+16)z” +

(2a® +11a7 + 1705 — 47a® — 79a* — 124 + 1464? + 654 — 63)2° + (31a® — 184" — 14448 — 184° +
271a* 4 2830 — 38802 — 204a + 142)2° + (—43a% 4+ 41a” + 56a% + 914° — 164a* — 234> + 274% —
76a+37)x)z+ ((23:18 — 200" —46a% —42a° +113a* + 530> —72a% —6a+14)2% + (—94a® + 2507 +
217a% +291a% — 309a* — 430a> 4 8842 4+ 97a — 19)z* + (—5a% + 14547 — 4248 — 29345 — 4424 +
461a° +575a% —118a—89)z2 +61a® — 1147 —191a% — 167a° +278a* +411a> — 2364 — 195a+93)




The equations ! (2).

vV = (zfu,ﬁ»l) (z+a71) (172a8+2a7+3a6+3a579a47a3+6a273a) (z+2a872a77

3a% — 3a® + 94 + a3 — 642 + 3a (lezQ +1/2(—a® —3a” +4a% + 8a® + 6a* — 14a% — 6a% + a —

1)2%2+1/2(31a® — 1807 — 68a® — 644° + 128a* 4+ 86a% — 10402 + 94+ 50)2%22 +1/2(—a® — 247 +
8a% — 3a* — 164> + 2542 — 2a — 15)a® 4 1/2(280® — 3447 — 6a% — 61a® + 75a* — 784> + 63a? +
134a — 66)z” z + 1/2(—764% + 464" + 167a® + 159a® — 320a* — 2254% + 24042 — 4a — 94)2522 +
1/4(63a® —64a” —57a% —121a° +189a* — 610 — 17a? + 2740 —83)a% 4+ 1/4(51a® — 4407 — 22445 +
8a® + 452a* + 400a° — 694a? — 221a + 190)2°z + 1/4(1494% — 4847 — 2854% — 465a° + 403a* +
489a° —5a% +46a+13)z?22 +1/4(3154% — 25247 — 1020a% — 3544° +2188a* + 17140 — 245242 —
1031a+734)z* +1/4(—137a% +134a” + 2194 4 2554° — 615a* — 163403 +277a% — 134a+41)z3 2 +
1/4(—85a% — 794" 4 19848 + 506a° + 88a* — 6444 — 462a> + 83a + 89)z22% + 1/4(—1080a% +
46707 + 26250% + 2825a° — 4453a* — 484343 + 256142 4 14450 — 612)z2 + 1/4(264a° + 17347 —
643a% — 1385a° + 394* 4 19094° 4 96102 — 341a — 212)zz + 1/4(119a° — 14747 — 325a% — 5545 +
911a* 4 3754 — 961a> — 262a 4 258)22 + 1/4(—356a° + 500a” + 977a% + 154° — 2953a% —

983a” 4 32274% + 7954 — 849))) / (z(z —a® 4+ a7 +2a% +24% — 5a* — 243 + 242 — a) (z + a8 —

5 2 S 5 2 3
a772a672a°+5a4+2a3720,2+a)(z2+a872a77a67a"+6a472ad7a2+4a72) )




The equations ! (3).

The action of the correspondance on the basis of holomorphic
differentials
{dx dz de}
e
Yy Yy Y
is given by the matrix

2a%—-3a%—5a°+4a%+3a3— 50242 0 —9a%+2a7+16a%+21a%—25a*—19a%+26a%— 12
0 v 0
3a8—5a"—2a%— 245+ 164*—94%—7a%+9a—2 0 —30%+a"+6a%4+ 70— 10a*—8a%+9a%+a—5

were v = a%— a’—3a5—2a°+6a*+5a%—4a*—a+2 € Q (Cg)).
Its minimal polynomial is

X34+ X2 —4X +1.
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Conclusion.

This situation is quite beautiful but there’s no obvious rea-
son that there’s always an hyperelliptic curve such that its
jacobian has the desired complex multiplication and CM type !

More generally, we can ask

Can we compute all the equations of an abelian variety with a
determined CM field and CM type ? (the time doesn’t matter at
all !)
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