Factorization of polynomials over finite fields in deterministic polynomial-time

Ivan Boyer

Doctorant sous la direction de Jean-François Mestre
Institut Mathématique de Jussieu

AGCT-13 — C.I.R.M.
March 15, 2011
Algorithmic aspect.

Remark

The deterministic aspect is crucial in this talk: everything becomes “trivial” in probabilistic time. In the same way, assuming G.R.H. would withdraw some of the interest of the following!
There are deterministic algorithms in $\mathbb{F}_p[X]$ (e.g. Berlekamp’s algorithm) but exponential in $\log p$.

No deterministic polynomial-time algorithm is known for factorization in $\mathbb{F}_p[X]$. Even in degree 2!

Easy to decide if $a \in \mathbb{F}_p$ is a square (Legendre symbol, or more generally the g.c.d. with $x^p - x$)

A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s a P–problem.

However, thanks to Schoof’s algorithm, we can say something in deterministic time.
There are deterministic algorithms in \(\mathbb{F}_p[X] \) (e.g. Berlekamp’s algorithm) but exponential in log \(p \).

No deterministic polynomial-time algorithm is known for factorization in \(\mathbb{F}_p[X] \). Even in degree 2!

Easy to decide if \(a \in \mathbb{F}_p \) is a square (Legendre symbol, or more generally the g.c.d. with \(x^p - x \))

A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s a \(\text{P} \)-problem.

However, thanks to Schoof’s algorithm, we can say something in deterministic time.
There are deterministic algorithms in $\mathbb{F}_p[X]$ (e.g. Berlekamp’s algorithm) but exponential in $\log p$.

No deterministic polynomial-time algorithm is known for factorization in $\mathbb{F}_p[X]$. Even in degree 2!

Easy to decide if $a \in \mathbb{F}_p$ is a square (Legendre symbol, or more generally the g.c.d. with $x^p - x$)

A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s a P–problem.

However, thanks to Schoof’s algorithm, we can say something in deterministic time.
There are deterministic algorithms in $\mathbb{F}_p[X]$ (e.g. Berlekamp’s algorithm) but exponential in $\log p$.

No deterministic polynomial-time algorithm is known for factorization in $\mathbb{F}_p[X]$. Even in degree 2!

Easy to decide if $a \in \mathbb{F}_p$ is a square (Legendre symbol, or more generally the g.c.d. with $x^p - x$)

A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s a \mathbf{P}–problem.

However, thanks to Schoof’s algorithm, we can say something in deterministic time.
There are deterministic algorithms in $\mathbb{F}_p[X]$ (e.g. Berlekamp’s algorithm) but exponential in $\log p$.

No deterministic polynomial-time algorithm is known for factorization in $\mathbb{F}_p[X]$. Even in degree 2!

Easy to decide if $a \in \mathbb{F}_p$ is a square (Legendre symbol, or more generally the g.c.d. with $x^p - x$)

A lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s a \mathbb{P}–problem.

However, thanks to Schoof’s algorithm, we can say something in deterministic time.
In his 1985 paper, Schoof showed these two results:

Theorem

Let E be an elliptic curve defined over \mathbb{F}_p. There’s a deterministic algorithm, polynomial in $\log p$, that counts the number of rational points of E over \mathbb{F}_p.

Corollary

Let $a \in \mathbb{Z}$ be a fixed integer. There’s a deterministic algorithm, polynomial in $\log p$, that finds a square root of $a \mod p$.
1. We assume $p \equiv 1[4]$ (otherwise, $\left(a^{\frac{p+1}{4}}\right)^2 = a$) and so $a < 0$.

2. So a (or $4a$) is a discriminant of a quadratic imaginary field.

3. In constant time (depending “badly” on a) we write the equation of an elliptic curve E_a s.t.:
 - E_a is defined over an extension of \mathbb{F}_p depending only on a.
 - E_a has complex multiplication by an order of $\mathbb{Q}[\sqrt{a}]$

4. The Frobenius π belongs to $\text{End}(E_a)$:

$$\pi = \frac{a + b\sqrt{D}}{2}$$

With $\#E_a$, we know $\text{Tr}(\pi)$ and its norm, so:

$$a^2 - b^2D \equiv 0[p]$$

and $\frac{a}{b}$ is the wanted square root.
We assume $p \equiv 1 \pmod{4}$ (otherwise, $\left(a \frac{p+1}{4} \right)^2 = a$) and so $a < 0$.

So a (or $4a$) is a discriminant of a quadratic imaginary field.

In constant time (depending “badly” on a) we write the equation of an elliptic curve E_a s.t.:
- E_a is defined over an extension of \mathbb{F}_p depending only on a.
- E_a has complex multiplication by an order of $\mathbb{Q}[\sqrt{a}]$.

The Frobenius π belongs to $\text{End}(E_a)$:

$$\pi = \frac{a + b\sqrt{D}}{2}$$

With $\#E_a$, we know $\text{Tr}(\pi)$ and its norm, so:

$$a^2 - b^2D \equiv 0 \pmod{p}$$

and $\frac{a}{b}$ is the wanted square root.
Schoof’s algorithm and square roots: ideas

1. We assume $p \equiv 1[4]$ (otherwise, $\left(a^{\frac{p+1}{4}}\right)^2 = a$) and so $a < 0$.

2. So a (or $4a$) is a discriminant of a quadratic imaginary field.

3. In constant time (depending “badly” on a) we write the equation of an elliptic curve E_a s.t.:
 - E_a is defined over an extension of \mathbb{F}_p depending only on a.
 - E_a has complex multiplication by an order of $\mathbb{Q}[\sqrt{a}]$.

4. The Frobenius π belongs to $\text{End}(E_a)$:

 $$\pi = \frac{a + b\sqrt{D}}{2}$$

 With $\#E_a$, we know $\text{Tr}(\pi)$ and its norm, so:

 $$a^2 - b^2D \equiv 0[p]$$

 and $\frac{a}{b}$ is the wanted square root.
We assume $p \equiv 1[4]$ (otherwise, $\left(a^{\frac{p+1}{4}}\right)^2 = a$) and so $a < 0$.

So a (or $4a$) is a discriminant of a quadratic imaginary field.

In constant time (depending “badly” on a) we write the equation of an elliptic curve E_a s.t.:

- E_a is defined over an extension of \mathbb{F}_p depending only on a.
- E_a has complex multiplication by an order of $\mathbb{Q}[\sqrt{a}]$

The Frobenius π belongs to $\text{End}(E_a)$:

$$\pi = \frac{a + b\sqrt{D}}{2}$$

With $\#E_a$, we know $\text{Tr}(\pi)$ and its norm, so:

$$a^2 - b^2D \equiv 0[p]$$

and $\frac{a}{b}$ is the wanted square root.
So, if we fix a polynomial of degree 2, we can factorize its reduction over \mathbb{F}_p in \textit{deterministic} polynomial time in $\log p$.

Now, we want to do the same thing in \textit{higher degree}, with abelian varieties.

\textbf{Cyclotomic polynomials} is a family with a lot of interesting properties!

We can hope in a first time to :

1. Find their roots in \mathbb{F}_p if they have any.
2. Factorize them (ie. find the roots in extensions).
3. Generalize to abelian extensions.
So, if we fix a polynomial of degree 2, we can factorize its reduction over \mathbb{F}_p in *deterministic* polynomial time in $\log p$.

Now, we want to do the same thing in *higher degree*, with abelian varieties.

Cyclotomic polynomials is a family with a lot of interesting properties!

We can hope in a first time to:

1. Find their roots in \mathbb{F}_p if they have any.
2. Factorize them (i.e. find the roots in extensions).
3. Generalize to abelian extensions.
So, if we fix a polynomial of degree 2, we can factorize its reduction over \mathbb{F}_p in deterministic polynomial time in $\log p$.

Now, we want to do the same thing in higher degree, with abelian varieties.

Cyclotomic polynomials is a family with a lot of interesting properties!

We can hope in a first time to:

1. Find their roots in \mathbb{F}_p if they have any.
2. Factorize them (ie. find the roots in extensions).
3. Generalize to abelian extensions.
So, if we fix a polynomial of degree 2, we can factorize its reduction over \mathbb{F}_p in **deterministic** polynomial time in $\log p$.

Now, we want to do the same thing in **higher degree**, with abelian varieties.

Cyclotomic polynomials is a family with a lot of interesting properties!

We can hope in a first time to:

1. Find their roots in \mathbb{F}_p if they have any.
2. Factorize them (ie. find the roots in extensions).
3. Generalize to abelian extensions.
Pila’s generalization to Schoof’s algorithm.

Pila generalized Schoof’s algorithm:

Theorem (Pila, 1989)

Given an abelian variety A over \mathbb{F}_q (with equations for the group law), it’s possible to compute the number of \mathbb{F}_q–points in polynomial time in $\log q$ and hence the zeta function of A.\]

The easiest way to use this result is when A is a *jacobian* of a
curve.

With the Fermat curve, Pila obtained

Theorem

*Fixing a prime l and assuming $p \equiv 1[l]$, it’s possible to find the
roots, in \mathbb{F}_p, of $\phi_l(X) = \frac{X^l-1}{X-1}$ in deterministic polynomial-time in $\log p$.*
Pila’s generalization to Schoof’s algorithm.

Pila generalized Schoof’s algorithm:

Theorem (Pila, 1989)

Given an abelian variety A over \mathbb{F}_q (with equations for the group law), it’s possible to compute the number of \mathbb{F}_q–points in polynomial time in $\log q$ and hence the zeta function of A.

The easiest way to use this result is when A is a *jacobian* of a curve.

With the Fermat curve, Pila obtained

Theorem

Fixing a prime l and assuming $p \equiv 1[l]$, it’s possible to find the roots, in \mathbb{F}_p, of $\phi_l(X) = \frac{X^l-1}{X-1}$ in deterministic polynomial-time in $\log p$.
“Separation” of primes.

Sketch of the proof:

1. The Fermat curve has complex multiplication by the \(l^{th} \)-cyclotomic field \(\mathbb{Q}(\zeta_l) \).

2. \((p) \) totally splits in \(\mathbb{Z}[\zeta_l] \) and the ideal \((\pi) \), generated by the Frobenius, is the product of \(\frac{l-1}{2} \) ideals of the shape \((\zeta_l - a) \) (with \(\phi_l(a) \equiv 0[p] \)).

3. The action of \(\text{Gal}(\mathbb{Q}(\zeta_l)/\mathbb{Q}) \) “splits” the primes, i.e. there’re never two ideals above \((p) \) dividing exactly the same conjugates of \((\pi) \).

4. We deduce a root \(a \) of \(\phi_l \), just by calculating some g.c.d.
“Separation” of primes.

Sketch of the proof:

1. The Fermat curve has complex multiplication by the l^{th}-cyclotomic field $\mathbb{Q}(\zeta_l)$.

2. (p) totally splits in $\mathbb{Z}[\zeta_l]$ and the ideal (π), generated by the Frobenius, is the product of $\frac{l-1}{2}$ ideals of the shape $(\zeta_l - a)$ (with $\phi_l(a) \equiv 0[p]$).

3. The action of $\text{Gal}(\mathbb{Q}(\zeta_l)/\mathbb{Q})$ “splits” the primes, i.e. there’re never two ideals above (p) dividing exactly the same conjugates of (π).

4. We deduce a root a of ϕ_l, just by calculating some g.c.d.
“Separation” of primes.

Sketch of the proof:

1. The Fermat curve has **complex multiplication by the \(l^{\text{th}} \)-cyclotomic field \(\mathbb{Q}(\zeta_l) \).**

2. \((p)\) totally splits in \(\mathbb{Z}[\zeta_l] \) and the ideal \((\pi)\), generated by the Frobenius, is the product of \(\frac{l-1}{2} \) ideals of the shape \((\zeta_l - a)\) (with \(\phi_l(a) \equiv 0[p] \)).

3. **The action of** \(\text{Gal}(\mathbb{Q}(\zeta_l)/\mathbb{Q}) \) “splits” the primes, i.e. there’re never two ideals above \((p)\) dividing exactly the same conjugates of \((\pi)\).

4. We deduce a root \(a \) of \(\phi_l \), just by calculating some g.c.d.
“Separation” of primes.

Sketch of the proof:

1. The Fermat curve has complex multiplication by the \(l^{th} \)-cyclotomic field \(\mathbb{Q}(\zeta_l) \).

2. \((p)\) totally splits in \(\mathbb{Z}[\zeta_l] \) and the ideal \((\pi)\), generated by the Frobenius, is the product of \(\frac{l-1}{2} \) ideals of the shape \((\zeta_l - a)\) (with \(\phi_l(a) \equiv 0[p] \)).

3. The action of \(\text{Gal}(\mathbb{Q}(\zeta_l)/\mathbb{Q}) \) “splits” the primes, i.e. there’re never two ideals above \((p)\) dividing exactly the same conjugates of \((\pi)\).

4. We deduce a root \(a \) of \(\phi_l \), just by calculating some g.c.d.
Example of separation.

\[l = 5, \ p = 11 \ \text{and} \ (F_5) : x^5 + y^5 + z^5 \ \text{over} \ \mathbb{F}_{11} \]

The numerator of the zeta function of \(F_5 \) can be computed:

\[
L(F_5/F_p, \pi) = (\pi^4 + \pi^3 - 9\pi^2 + 11\pi + 121)^3.
\]

The number field generated by \(\pi \) is isomorphic to \(\mathbb{Q}(\zeta_5) \). For instance,

\[
\pi = -3\zeta_5^3 - \zeta_5^2 + \zeta_5 - 1
\]

\[
\psi_2(\pi) = \zeta_5^3 + 2\zeta_5^2 - 2\zeta_5
\]

\[
\psi_3(\pi) = 4\zeta_5^3 + 3\zeta_5^2 + 2\zeta_5 + 2
\]

\[
\psi_4(\pi) = -2\zeta_5^3 - 4\zeta_5^2 - \zeta_5 - 2
\]
Example of separation.

\[
l = 5, \ p = 11 \text{ and } (F_5) : x^5 + y^5 + z^5 \text{ over } \mathbb{F}_{11}
\]

- It remains to compute some g.c.d. : as \(l \) is fixed, we can compute all of them if we want.
- Here, we compute for instance the g.c.d. of the polynomials in \(\zeta_5 \) which give \(\pi \) and \(\psi_2(\pi) \).

\[
\text{Gcd}_{\mathbb{F}_p}(-3X^3 - X^2 + X - 1, X^3 + 2X^2 - 2X) = X + 6
\]

- So, \(-6 = 5[11]\) is a 5\(^{th}\) primitive root of unity.
The demonstration of the “separation” uses Jacobi sums, for which l and p prime is important.

The jacobian of the Fermat curve isn’t a simple abelian variety over \mathbb{F}_p: we don’t need all of it!

The idea is to use hyperelliptic curves with complex multiplication by $\mathbb{Q}(\zeta_l)$.

Proposition

Let l, p to primes s.t. $p \equiv 1[l]$. Then, the jacobian of the curve $y^2 = x^l - 1$ over \mathbb{F}_p is simple and its Frobenius generates $\mathbb{Q}(\zeta_l)$.

Once we have the “separation” property, the mechanism is the same as above.
Separation of “primes”, CM types and simple abelian varieties (1).

- The demonstration of the “separation” uses Jacobi sums, for which l and p prime is important.
- The jacobian of the Fermat curve isn’t a simple abelian variety over \mathbb{F}_p: we don’t need all of it!
- The idea is to use hyperelliptic curves with complex multiplication by $\mathbb{Q}(\zeta_l)$.

Proposition

Let l, p to primes s.t. $p \equiv 1[l]$. Then, the jacobian of the curve $y^2 = x^l - 1$ over \mathbb{F}_p is simple and its Frobenius generates $\mathbb{Q}(\zeta_l)$.

Once we have the “separation” property, the mechanism is the same as above.
Separation of “primes”, CM types and simple abelian varieties (1).

- The demonstration of the “separation” uses Jacobi sums, for which \(l \) and \(p \) prime is important.
- The jacobian of the Fermat curve isn’t a simple abelian variety over \(\mathbb{F}_p \): we don’t need all of it!
- The idea is to use hyperelliptic curves with complex multiplication by \(\mathbb{Q}(\zeta_l) \).

Proposition

Let \(l, p \) to primes s.t. \(p \equiv 1[l] \). Then, the jacobian of the curve \(y^2 = x^l - 1 \) over \(\mathbb{F}_p \) is simple and its Frobenius generates \(\mathbb{Q}(\zeta_l) \).

Once we have the “separation” property, the mechanism is the same as above.
The hyperelliptic curve $y^2 = x^l - 1$ has the automorphism

$$(x, y) \mapsto (\zeta_l x, y)$$

We find the CM type with its action on a basis of differentials:

$$\left\{ x^i \frac{dx}{y}, \ 0 \leq i \leq \frac{l-3}{2} \right\}$$

$$[\zeta_l]^* x^i \frac{dx}{y} = \zeta_l^{i+1} x^i \frac{dx}{y} =: \psi_{i+1}(\zeta_l) x^i \frac{dx}{y}$$

and so the CM type is:

$$\Psi = \left\{ \psi_i, \ 1 \leq i \leq \frac{l-1}{2} \right\}$$
The hyperelliptic curve $y^2 = x^l - 1$ has the automorphism

$$(x, y) \mapsto (\zeta_l x, y)$$

We find the CM type with its action on a basis of differentials:

$$\left\{ x^i \frac{dx}{y}, \; 0 \leq i \leq \frac{l-3}{2} \right\}$$

$$[\zeta_l]^* x^i \frac{dx}{y} = \zeta_l^{i+1} x^i \frac{dx}{y} =: \psi_{i+1}(\zeta_l) x^i \frac{dx}{y}$$

and so the CM type is:

$$\Psi = \left\{ \psi_i, \; 1 \leq i \leq \frac{l-1}{2} \right\}$$
An easy computation shows that the CM type Ψ is primitive so the abelian variety is simple.

- The extension $\mathbb{Q}(\zeta_l)/\mathbb{Q}$ is abelian so that $(\mathbb{Q}(\zeta_l), \Psi)$ is its own reflex.

- We denote by \mathfrak{P} an ideal above (p), which splits totally $(p \equiv 1[l])$.

- We use a theorem of Shimura to show the existence of $\pi_0 \in \mathbb{Z}[\zeta_l]$ corresponding to the Frobenius (of the reduction mod \mathfrak{P}) s.t.

$$ (\pi_0) = \prod_{\psi \in \Psi} \psi^{-1}(\mathfrak{P}). $$
An easy computation shows that the CM type Ψ is *primitive* so the abelian variety is *simple*.

The extension $\mathbb{Q}(\zeta_l)/\mathbb{Q}$ is abelian so that $(\mathbb{Q}(\zeta_l), \Psi)$ is *its own reflex*.

We denote by \mathfrak{p} an ideal above (p), which splits totally ($p \equiv 1[l]$).

We use a theorem of Shimura to show the existence of $\pi_0 \in \mathbb{Z}[\zeta_l]$ corresponding to the Frobenius (of the reduction mod \mathfrak{p}) s.t.

$$(\pi_0) = \prod_{\psi \in \Psi} \psi^{-1}(\mathfrak{p}).$$
An easy computation shows that the CM type Ψ is primitive so the abelian variety is simple.

The extension $\mathbb{Q}(\zeta_l)/\mathbb{Q}$ is abelian so that $(\mathbb{Q}(\zeta_l), \Psi)$ is its own reflex.

We denote by \mathfrak{p} an ideal above (p), which splits totally $(p \equiv 1[l])$.

We use a theorem of Shimura to show the existence of $\pi_0 \in \mathbb{Z}[\zeta_l]$ corresponding to the Frobenius (of the reduction mod \mathfrak{p}) s.t.

$$(\pi_0) = \prod_{\psi \in \Psi} \psi^{-1}(\mathfrak{p}).$$
An easy computation shows that the CM type Ψ is primitive so the abelian variety is simple.

The extension $\mathbb{Q}(\zeta_l)/\mathbb{Q}$ is abelian so that $(\mathbb{Q}(\zeta_l), \Psi)$ is its own reflex.

We denote by \mathfrak{P} an ideal above (p), which splits totally ($p \equiv 1[l]$).

We use a theorem of Shimura to show the existence of $\pi_0 \in \mathbb{Z}[\zeta_l]$ corresponding to the Frobenius (of the reduction mod \mathfrak{P}) s.t.

\[(\pi_0) = \prod_{\psi \in \Psi} \psi^{-1}(\mathfrak{P}).\]
Proposition

The “separation” property is equivalent to the fact that the CM type is primitive.

Idea: Two prime ideals \(\mathfrak{p}_1 \) and \(\mathfrak{p}_2 \) can’t be separated \(\text{iff} \) the automorphism \(\psi \) s.t. \(\psi(\mathfrak{p}_1) = \mathfrak{p}_2 \) stabilize the CM type.
Separation of “primes”, CM types and simple abelian varieties (4).

Proposition

The “separation” property is equivalent to the fact that the CM type is primitive.

Idea: Two prime ideals \(\mathfrak{P}_1 \) and \(\mathfrak{P}_2 \) can’t be separated iff the automorphism \(\psi \) s.t. \(\psi(\mathfrak{P}_1) = \mathfrak{P}_2 \) stabilize the CM type.
We have two different kinds of generalization of this result, both of them are needed for the factorization of polynomials which generate abelian extensions.

1. The first one is to obtain the result for every cyclotomic polynomial ϕ_n, n not necessarily prime, but still with roots in \mathbb{F}_p.

2. The second one is to generalize to $\mathbb{F}_p^r[X]$ or equivalently to factorize in irreducible factors in $\mathbb{F}_p[X]$.
We have two different kinds of generalization of this result, both of them are needed for the factorization of polynomials which generate abelian extensions.

1. The first one is to obtain the result for every cyclotomic polynomial ϕ_n, n not necessarily prime, but still with roots in \mathbb{F}_p.

2. The second one is to generalize to $\mathbb{F}_{p^r}[X]$ or equivalently to factorize in irreducible factors in $\mathbb{F}_p[X]$.
A generalization to ϕ_n, $p \equiv 1[n]$.

- If $n = ab$ with a, b coprime, then, as $p \equiv 1[a]$ and $p \equiv 1[b]$, we only need to find a^{th} and b^{th} primitive roots of unity.
- So we concentrate on ϕ_{lr} with $p \equiv 1[lr]$.

Proposition

Let p, l primes and $r \in \mathbb{N}^*$ s.t. $p \equiv 1[lr]$. Then, the jacobian of the hyperelliptic curve $y^2 = x^n - 1$ isn't simple but contains a subvariety with complex multiplication by $\mathbb{Q}(\zeta_{lr})$ and primitive CM type:

$$\left\{ \psi_i, \ 1 \leq i \leq \frac{l^n - 1}{2}, i \not\equiv 0[l] \right\}.$$
A generalization to ϕ_n, $p \equiv 1[n]$.

- If $n = ab$ with a, b coprime, then, as $p \equiv 1[a]$ and $p \equiv 1[b]$, we only need to find a^{th} and b^{th} primitive roots of unity.
- So we concentrate on ϕ_{lr} with $p \equiv 1[lr]$.

Proposition

Let p, l primes and $r \in \mathbb{N}^*$ s.t. $p \equiv 1[lr]$. Then, the jacobian of the hyperelliptic curve $y^2 = x^n - 1$ isn't simple but contains a subvariety with complex multiplication by $\mathbb{Q}(\zeta_{lr})$ and primitive CM type:

$$\left\{ \psi_i, \ 1 \leq i \leq \frac{ln - 1}{2}, \ i \not\equiv 0[l] \right\}.$$
A generalization to ϕ_n, $p \equiv 1[n]$.

We can in fact find better curves s.t. their jacobians are simple, so the genus is reduced from $\frac{l^r - 1}{2}$ to $l^r - 1 \frac{l - 1}{2}$.

Proposition

Let p, l primes and $r \in \mathbb{N}^*$ s.t. $p \equiv 1[l^r]$. Then, the jacobian of the “superelliptic” curve $y^l = x(x^{l^r} - 1)$ has complex multiplication by $\mathbb{Q}(\zeta_{l^r})$ with the primitive CM type:

$$\{ \psi_{l(i+1)-j}, 1 \leq j \leq l - 1, 0 \leq i \leq l^{n-2}j - 1 \}.$$

So this jacobian is simple, with complex multiplication by $\mathbb{Q}(\zeta_l)$.

I. Boyer

Factorization in $\mathbb{F}_p[X]$
The second generalization: no condition on $p \text{ mod } l$.

This generalization is more difficult and depends on the order of p in $(\mathbb{Z}/l\mathbb{Z})^*$. Some examples:

 $L = (t^2 + 109)^5$

- $l = 31$, $p = 149$: order 3.
 $L = t^{30} + 6190t^{27} + 18863049t^{24} + 34431784200t^{21} + 43370374988098t^{18} + 56345551609871220t^{15} + 43370374988098 \cdot 149^3 t^{12} + 34431784200 \cdot 149^6 t^9 + 18863049 \cdot 149^9 t^6 + 6190 \cdot 149^{12} t^3 + 149^{15}$.

 $L = (t^6 + 37^3)^5$.
Order of p : the odd case.

The above results are quite different :

- In the 1st and 3rd example, p is of even order and the zeta function gives no information in term of complex multiplication.

- In the second one, π^3 generates the subfield of index 3 of $\mathbb{Q}(\zeta_{31})$ and everything works well !

Remark

If we note r the order of $p \in (\mathbb{Z}/l\mathbb{Z})^$, then ϕ_l hasn’t any roots in \mathbb{F}_p but in \mathbb{F}_{p^r}. So π no longer commutes with $(x, y) \mapsto (\zeta_l x, y)$ but π^r does.*
Proposition

If the order r of $p \in (\mathbb{Z}/l\mathbb{Z})^*$ is odd, the same deterministic polynomial-time algorithm works to find the roots of the minimal polynomial of

$$
\sum_{i=0}^{r-1} \zeta_l^{p^i}
$$

which generates the index r subfield of $\mathbb{Q}(\zeta_l)$. This is equivalent to the factorization of ϕ_l over \mathbb{F}_p.

Order of p : the odd case.
Order of p: the even case – real multiplication curves.

We examine now the situation where p is of order 2. Here, we can use a result of Tautz, Top and Verberkmoes:

Theorem

Let $l \neq 5$ be a prime and let $g \in \mathbb{Z}[X]$ the minimal polynomial of $-\zeta_l - \zeta_l^{-1}$. The jacobian of the hyperelliptic curve $y^2 = xg(x^2 - 2)$ has a primitive CM type and complex multiplication by the field $\mathbb{Q}(\zeta_l + \zeta_l^{-1}, i)$.

To use it, we first need:

- $p \equiv 1[4]$ to have complex multiplication by i.
- p of order 2 ($p \equiv -1[l]$).

Then, π commutes with $[\zeta_l + \zeta_l^{-1}]$ and $[i]$ (i.e. with the automorphism $(x, y) \mapsto (-x, iy)$).
We examine now the situation where p is of order 2. Here, we can use a result of Tautz, Top and Verberkmoes:

Theorem

Let $l \neq 5$ be a prime and let $g \in \mathbb{Z}[X]$ the minimal polynomial of $-\zeta_l - \zeta_l^{-1}$. The jacobian of the hyperelliptic curve $y^2 = xg(x^2 - 2)$ has a primitive CM type and complex multiplication by the field $\mathbb{Q}(\zeta_l + \zeta_l^{-1}, i)$.

To use it, we first need:

- $p \equiv 1[4]$ to have complex multiplication by i.
- p of order 2 ($p \equiv -1[l]$).

Then, π commutes with $[\zeta_l + \zeta_l^{-1}]$ and $[i]$ (i.e. with the automorphism $(x, y) \mapsto (-x, iy)$).
An example with p of order 2.

\[g = t^5 - t^4 - 4t^3 + 3t^2 + 3t - 1. \]

\[\text{The curve on } \mathbb{F}_{109}: \]
\[y^2 = x(x^{10} + 98x^8 + 44x^6 + 32x^4 + 55x^4 + 98). \]

The numerator of its zeta function is:

\[
t^{10} - 52t^9 + 1345t^8 - 23248t^7 + 311034t^6 - 3493496t^5 + 311034 \cdot 109t^4 - \\
23248 \cdot 109^2 t^3 + 1345 \cdot 109^3 t^2 - 52 \cdot 109^4 t + 109^5
\]

which generates a field isomorphic to $\mathbb{Q}(\zeta_{11} + \zeta_{11}^{-1}, i)$. It “splits” the primes so we find for instance:

\[-\zeta_{11} - \zeta_{11}^{-1} = 90 \in \mathbb{F}_{109},\]

so $x^2 + 90x + 1$ is an irreducible factor of $x^{11} - 1$.
If the order is 4, \(\pi^2 \) and \([\zeta_l + \zeta_l^{-1}]\) commutes, the jacobian has still complex multiplication but it’s no longer simple but isogenous to a product of supersingular varieties. Nevertheless,

Proposition

Let \(A \) be the jacobian of \(y^2 = x^{4l+1} + x \). Then \(A \) has a simple abelian subvariety with complex multiplication by the field \(K := \mathbb{Q}(\zeta_{8l} - \zeta_{8l}^{-1}) \) and with primitive CM type.

Let \(p \) prime of order \(r \): \(\pi^r \) and \(\zeta_{8l} - \zeta_{8l}^{-1} \) commutes so \(\pi^r \in K \).

Conjecture

Let \(K_0 \) be the decomposition field of \((p)\) in \(K \). Then \(\mathbb{Q}(\pi^r) = K_0 \)

With this result, we could positively answer our problem!
If the order is 4, π^2 and $[\zeta + \zeta^{-1}_{l}]$ commutes, the jacobian has still complex multiplication but it’s no longer simple but isogenous to a product of supersingular varieties. Nevertheless,

Proposition

Let A be the jacobian of $y^2 = x^{4l+1} + x$. Then A has a simple abelian subvariety with complex multiplication by the field $K := \mathbb{Q}(\zeta_{8l} - \zeta^{-1}_{8l})$ and with primitive CM type.

Let p prime of order $r : \pi^r$ and $\zeta_{8l} - \zeta^{-1}_{8l}$ commutes so $\pi^r \in K$.

Conjecture

Let K_0 be the decomposition field of (p) in K. Then $\mathbb{Q}(\pi^r) = K_0$

With this result, we could positively answer our problem!
We can try to **build directly our abelian variety**, with the appropriate complex multiplication and CM type. For instance:

Goal

Find an abelian variety with complex multiplication by

\[
\mathbb{Q}\left(\zeta_{13}^{(4)}, i\right) \quad \text{where} \quad \zeta_{13}^{(4)} := \zeta_{13} + \zeta_{13}^5 + \zeta_{13}^8 + \zeta_{13}^{12},
\]

and primitive CM type.

With \(p\) of order 4 in \((\mathbb{Z}/13\mathbb{Z})^*\), and \(p \equiv 1[4]\) (for the complex multiplication by \([i]\)), the reduction of such a curve mod \(p\) shall give a zeta function which generates the field \(\mathbb{Q}\left(\zeta_{13}^{(4)}, i\right)\), with the prime “separation” property.
Order of p: the even case – Ad hoc constructions.

Sketch of the construction

1. First, we compute the ring \mathcal{O} of integers of the CM field, we choose our CM type Ψ, such that our torus with the appropriate complex multiplication is $\mathbb{C}^3/\Psi(\mathcal{O})$.

2. With the different of \mathcal{O} we can find a principal polarization together with a non-degenerate Riemann form.

3. By computing the theta constants, we can check if we have the jacobian of a curve.

4. The complex multiplication by i implies it's an hyperelliptic curve.

5. Mumford gives formulas between theta constants and the Rosenhain form of the hyperelliptic curve.

6. We finally write “beautiful” equations with `algdep`.
Sketch of the construction

1. First, we compute the ring \mathcal{O} of integers of the CM field, we choose our CM type Ψ, such that our torus with the appropriate complex multiplication is $\mathbb{C}^3/\Psi(\mathcal{O})$.

2. With the different of \mathcal{O} we can find a principal polarization together with a non-degenerate Riemann form.

3. By computing the theta constants, we can check if we have the jacobian of a curve.

4. The complex multiplication by i implies it’s an hyperelliptic curve.

5. Mumford gives formulas between theta constants and the Rosenhain form of the hyperelliptic curve.

6. We finally write “beautiful” equations with `algdep`.

Order of ρ : the even case – Ad hoc constructions.
Sketch of the construction

1. First, we compute the ring \mathcal{O} of integers of the CM field, we choose our CM type Ψ, such that our torus with the appropriate complex multiplication is $\mathbb{C}^3/\Psi(\mathcal{O})$.

2. With the different of \mathcal{O} we can find a principal polarization together with a non-degenerate Riemann form.

3. By computing the theta constants, we can check if we have the jacobian of a curve.

4. The complex multiplication by i implies it’s an hyperelliptic curve.

5. Mumford gives formulas between theta constants and the Rosenhain form of the hyperelliptic curve.

6. We finally write “beautiful” equations with algdep.

Order of p: the even case – Ad hoc constructions.
Order of p : the even case – Ad hoc constructions.

Sketch of the construction

1. First, we compute the ring \mathcal{O} of integers of the CM field, we choose our CM type Ψ, such that our torus with the appropriate complex multiplication is $\mathbb{C}^3/\Psi(\mathcal{O})$.

2. With the different of \mathcal{O} we can find a principal polarization together with a non-degenerate Riemann form.

3. By computing the theta constants, we can check if we have the jacobian of a curve.

4. The complex multiplication by i implies it’s an hyperelliptic curve.

5. Mumford gives formulas between theta constants and the Rosenhain form of the hyperelliptic curve.

6. We finally write “beautiful” equations with algdep.
Order of p : the even case – Ad hoc constructions.

Sketch of the construction

1. First, we compute the ring \mathcal{O} of integers of the CM field, we choose our CM type Ψ, such that our torus with the appropriate complex multiplication is $\mathbb{C}^3/\Psi(\mathcal{O})$.

2. With the different of \mathcal{O} we can find a principal polarization together with a non-degenerate Riemann form.

3. By computing the theta constants, we can check if we have the jacobian of a curve.

4. The complex multiplication by i implies it’s an hyperelliptic curve.

5. Mumford gives formulas between theta constants and the Rosenhain form of the hyperelliptic curve.

6. We finally write “beautiful” equations with algdep.
Sketch of the construction

1. First, we compute the ring \mathcal{O} of integers of the CM field, we choose our CM type Ψ, such that our torus with the appropriate complex multiplication is $\mathbb{C}^3/\Psi(\mathcal{O})$.

2. With the different of \mathcal{O} we can find a principal polarization together with a non-degenerate Riemann form.

3. By computing the theta constants, we can check if we have the jacobian of a curve.

4. The complex multiplication by i implies it’s an hyperelliptic curve.

5. Mumford gives formulas between theta constants and the Rosenhain form of the hyperelliptic curve.

6. We finally write “beautiful” equations with `algdep`.
Ad hoc construction : example of $\mathbb{Q}(\zeta_{13}^{4}, i)$.

Up to the precision of the computer, we find a curve defined over the (minimal) number field generated by α with minimal polynomial $t^3 - t^2 + 9t - 1$:

$$y^2 = x \left(x^6 - \frac{\alpha^2 - 2\alpha + 13}{2} x^4 - \frac{\alpha^2 - 12\alpha + 1}{2} x^2 - \alpha^2 \right).$$

Modulo 109, its reduction is defined over \mathbb{F}_{109}:

$$y^2 = x(x^6 + 75x^4 + 96x^2 + 4).$$

The numerator of the zeta function is:

$$t^6 + 14t^5 - 93t^4 - 3148t^3 - 93 \cdot 109t^2 + 14 \cdot 109^2 t + 109^2,$$

and we check that it generates the field $\mathbb{Q}(\zeta_{13}^{4}, i)$.
Ad hoc construction : example of $\mathbb{Q}(\zeta_{13}^{(4)}, i)$.

Up to the precision of the computer, we find a curve defined over the (minimal) number field generated by α with minimal polynomial $t^3 - t^2 + 9t - 1$:

$$y^2 = x \left(x^6 - \frac{\alpha^2 - 2\alpha + 13}{2} x^4 - \frac{\alpha^2 - 12\alpha + 1}{2} x^2 - \alpha^2 \right).$$

Modulo 109, its reduction is defined over \mathbb{F}_{109} :

$$y^2 = x(x^6 + 75x^4 + 96x^2 + 4).$$

The numerator of the zeta function is :

$$t^6 + 14t^5 - 93t^4 - 3148t^3 - 93 \cdot 109t^2 + 14 \cdot 109^2 t + 109^2,$$

and we check that it generates the field $\mathbb{Q}(\zeta_{13}^{(4)}, i)$.
Determine the endomorphism ring (1).

The construction described above has floating point computations and some denominators are not yet bounded. So:

We have to prove the jacobian has CM by \(\mathbb{Q}(\zeta_{13}^{(4)}, i) \).

Before, we notice the good properties of the equation:

- Its coefficients are integers.
- Its discriminant is a square \((64\alpha^2)^2\)
- The equation can be factorized: let \(\beta = \frac{1}{2} \alpha^2 - \alpha + \frac{1}{2} \):
 \[
y^2 = x(x^3 + \beta x^2 + (\alpha - \beta) x - \alpha)(x^3 - \beta x^2 + (\alpha - \beta) x + \alpha)
 \]
- The number field \(\mathbb{Q}(\alpha) \) has class number 3 and its Hilbert class field, \(H \), is the extension by \(\mathbb{Q}(\zeta_{13}^{(4)}) \).
Determine the endomorphism ring (1).

The construction described above has floating point computations and some denominators are not yet bounded. So:

We have to prove the jacobian has CM by $\mathbb{Q}(\zeta_{13}^{(4)}, i)$.

Before, we notice the good properties of the equation:

- Its coefficients are integers.
- Its discriminant is a square ($64\alpha^{22}$)
- The equation can be factorized: let $\beta = \frac{1}{2}\alpha^2 - \alpha + \frac{1}{2}$:

$$y^2 = x(x^3 + \beta x^2 + (\alpha - \beta)x - \alpha)(x^3 - \beta x^2 + (\alpha - \beta)x + \alpha)$$

- The number field $\mathbb{Q}(\alpha)$ has class number 3 and its Hilbert class field, H, is the extension by $\mathbb{Q}(\zeta_{13}^{(4)})$.
Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a morphism on the jacobian with minimal polynomial $X^3 + X^2 - 4X + 1$ (a defining polynomial of $\mathbb{Q}(\zeta_{13}^{(4)})$):

- In genus g, it’s natural to expect a (n, g)–correspondance.
- We switch back to floating point computations in the jacobian over \mathbb{C}.
- We compute a matrix, preserving the lattice, with the good minimal polynomial.
- For $(x, y) \in \mathbb{Z}^* \times \mathbb{C}$, s.t. (x, y) is a point on the curve, we compute the image of $(x, y) - \infty$ with this matrix.
- So, we find 3 x–coordinates, whose symmetric functions must be in the field of definition of the correspondance.
- With sufficient data, we interpolate and find an equation C.
Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a morphism on the jacobian with minimal polynomial \(X^3 + X^2 - 4X + 1\) (a defining polynomial of \(\mathbb{Q}(\zeta_{13}^{(4)})\)):

- In genus \(g\), it’s natural to expect a \((n, g)\)-correspondance.
- We switch back to floating point computations in the jacobian over \(\mathbb{C}\).
- We compute a matrix, preserving the lattice, with the good minimal polynomial.
- For \((x, y) \in \mathbb{Z}^* \times \mathbb{C}\), s.t. \((x, y)\) is a point on the curve, we compute the image of \((x, y) - \infty\) with this matrix.
- So, we find 3 x-coordinates, whose symmetric functions must be in the field of definition of the correspondance.
- With sufficient data, we interpolate and find an equation \(C\).
Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a morphism on the jacobian with minimal polynomial $X^3 + X^2 - 4X + 1$ (a defining polynomial of $\mathbb{Q}(\zeta_{13}^{(4)})$):

- In genus g, it’s natural to expect a (n, g)–correspondance.
- We switch back to floating point computations in the jacobian over \mathbb{C}.
- We compute a matrix, preserving the lattice, with the good minimal polynomial.
- For $(x, y) \in \mathbb{Z}^* \times \mathbb{C}$, s.t. (x, y) is a point on the curve, we compute the image of $(x, y) - \infty$ with this matrix.
- So, we find 3 x–coordinates, whose symmetric functions must be in the field of definition of the correspondance.
- With sufficient data, we interpolate and find an equation C.

I. Boyer Factorization in $\mathbb{F}_p[X]$
Determine the endomorphism ring (2).

The idea is to find a correspondance on the curve that induce a morphism on the jacobian with minimal polynomial $X^3 + X^2 - 4X + 1$ (a defining polynomial of $\mathbb{Q}(\zeta_{13}^{(4)})$):

- In genus g, it’s natural to expect a (n, g)–correspondance.
- We switch back to floating point computations in the jacobian over \mathbb{C}.
- We compute a matrix, preserving the lattice, with the good minimal polynomial.
- For $(x, y) \in \mathbb{Z}^* \times \mathbb{C}$, s.t. (x, y) is a point on the curve, we compute the image of $(x, y) - \infty$ with this matrix.
- So, we find 3 x–coordinates, whose symmetric functions must be in the field of definition of the correspondance.
- With sufficient data, we interpolate and find an equation C.

Determine the endomorphism ring (3).

- We actually find a \((8, 3)\)-correspondance defined over the Hilbert class field.
- It remains to find an equation for the \(y\)-coordinates:
 \[y y' \equiv V(x, x')^2 \quad [C]. \]
- We do that by \textit{Gröbner basis algorithms} in the field \(H(x)\) (so \(V\) could be found as a degree 2 polynomial on \(H(x)\)).
- The correspondance \((C, V)\) induce an endomorphism on the jacobian. We compute its action on regular differentials:
 \[
 \text{Tr} \left(\frac{dx}{y} \right) = \frac{dx_1}{y_1} + \frac{dx_2}{y_2} + \frac{dx_3}{y_3}, \ldots
 \]
 which must be of the shape
 \[
 (\alpha + \beta x + \gamma x^2) \frac{dx}{y}, \ldots
 \]
Determine the endomorphism ring (3).

- We actually find a $(8, 3)$–correspondance defined over the Hilbert class field.
- It remains to find an equation for the y–coordinates:
 \[yy' \equiv V(x, x')^2 \quad \text{[C].} \]
- We do that by Gröbner basis algorithms in the field $H(x)$ (so V could be found as a degree 2 polynomial on $H(x)$).
- The correspondance (C, V) induce an endomorphism on the jacobian. We compute its action on regular differentials:

\[
\text{Tr} \left(\frac{dx}{y} \right) = \frac{dx_1}{y_1} + \frac{dx_2}{y_2} + \frac{dx_3}{y_3}, \ldots
\]

which must be of the shape

\[
\left(\alpha + \beta x + \gamma x^2 \right) \frac{dx}{y}, \ldots
\]
The equations! (1).

Let \(a \) generating the Hilbert class field mentioned above:

\[
a^9 - a^8 - 2a^7 - a^6 + 5a^5 + a^4 - 5a^3 + 2a^2 + 2a - 1 = 0.
\]

\[
C = \left((-10a^8 + 10a^7 + 24a^6 + 16a^5 - 54a^4 - 26a^3 + 40a^2 - 10a - 26)x^7 + (-2a^8 + 4a^7 - 6a^6 + 4a^5 - 2a^4 + 20a^3 - 18a^2 - 16a + 30)x^5 + (8a^8 - 10a^7 + 6a^6 - 24a^5 + 10a^4 - 38a^3 + 52a^2 + 50a - 36)x^3 + (14a^8 - 12a^7 - 36a^6 - 20a^5 + 82a^4 + 52a^3 - 76a^2 - 20a + 18)x \right) z^3 + \left(2x^8 + (-6a^7 + 10a^6 + 2a^5 + 4a^4 - 30a^3 + 26a^2 + 16a - 30)x^6 + (19a^8 - 16a^7 - 44a^6 - 26a^5 + 99a^4 + 53a^3 - 100a^2 + 30)x^4 + (-28a^8 + 15a^7 + 70a^6 + 63a^5 - 129a^4 - 120a^3 + 97a^2 + 36a - 27)x^2 - 21a^8 + 8a^7 + 57a^6 + 54a^5 - 95a^4 - 111a^3 + 67a^2 + 47a - 22 \right) z^2 + \left(-2a^7 - 4a^6 + 6a^5 + 14a^4 + 4a^3 - 24a^2 - 8a + 16 \right) x^7 + (2a^8 + 11a^7 + 17a^6 - 47a^5 - 79a^4 - 12a^3 + 146a^2 + 65a - 63)x^5 + (31a^8 - 18a^7 - 144a^6 - 18a^5 + 271a^4 + 283a^3 - 388a^2 - 204a + 142)x^3 + (-43a^8 + 41a^7 + 56a^6 + 91a^5 - 164a^4 - 23a^3 + 27a^2 - 76a + 37)x \right) z + \left(23a^8 - 20a^7 - 46a^6 - 42a^5 + 113a^4 + 53a^3 - 72a^2 - 6a + 14 \right) x^6 + (-94a^8 + 25a^7 + 217a^6 + 291a^5 - 309a^4 - 430a^3 + 88a^2 + 97a - 19)x^4 + (-5a^8 + 145a^7 - 42a^6 - 293a^5 - 442a^4 + 461a^3 + 575a^2 - 118a - 89)x^2 + 61a^8 - 11a^7 - 191a^6 - 167a^5 + 278a^4 + 411a^3 - 236a^2 - 195a + 93 \right)
The equations ! (2).

\[V = \left((x - a + 1)(x + a - 1) \left(x - 2a^8 + 2a^7 + 3a^6 + 3a^5 - 9a^4 - a^3 + 6a^2 - 3a \right) \right) \left(x + 2a^8 - 2a^7 - 3a^6 - 3a^5 + 9a^4 + a^3 - 6a^2 + 3a \right) \left(x^{10} z^2 + 1/2(-a^8 - 3a^7 + 4a^6 + 8a^5 + 6a^4 - 14a^3 - 6a^2 + a - 1)x^9 z + 1/2(31a^8 - 18a^7 - 68a^6 - 64a^5 + 128a^4 + 86a^3 - 104a^2 + 9a + 50)x^8 z^2 + 1/2(-a^8 - 2a^7 + 8a^6 - 3a^5 - 16a^4 + 25a^2 - 2a - 15)x^7 z + 1/2(28a^8 - 34a^7 - 6a^6 - 61a^5 + 75a^4 - 78a^3 + 63a^2 + 134a - 66)x^6 z^2 + 1/4(63a^8 - 64a^7 - 57a^6 - 121a^5 + 189a^4 - 61a^3 - 17a^2 + 274a - 83)x^6 z^2 + 1/4(51a^8 - 44a^7 - 224a^6 + 8a^5 + 452a^4 + 400a^3 - 694a^2 - 221a + 190)x^5 z + 1/4(149a^8 - 48a^7 - 285a^6 - 465a^5 + 403a^4 + 489a^3 - 5a^2 + 46a + 13)x^4 z^2 + 1/4(315a^8 - 252a^7 - 1020a^6 - 354a^5 + 2188a^4 + 1714a^3 - 2452a^2 + 1031a + 734)x^4 z^2 + 1/4(-137a^8 + 134a^7 + 219a^6 + 255a^5 - 615a^4 - 163a^3 + 277a^2 - 134a + 41)x^3 z + 1/4(-85a^8 - 79a^7 + 198a^6 + 506a^5 + 88a^4 - 644a^3 - 462a^2 + 83a + 89)x^2 z^2 + 1/4(-1080a^8 + 467a^7 + 2625a^6 + 2825a^5 - 4453a^4 - 4843a^3 + 2561a^2 + 1445a - 612)x^2 z^2 + 1/4(264a^8 + 173a^7 - 643a^6 - 1385a^5 + 39a^4 + 1909a^3 + 961a^2 - 341a - 212)xz + 1/4(119a^8 - 147a^7 - 325a^6 - 55a^5 + 911a^4 + 375a^3 - 961a^2 - 262a + 258)z^2 + 1/4(-356a^8 + 500a^7 + 977a^6 + 15a^5 - 2953a^4 - 983a^3 + 3227a^2 + 795a - 849)) / \left(x \left(x - a^8 + a^7 + 2a^6 + 2a^5 - 5a^4 - 2a^3 + 2a^2 - a \right) \left(x + a^8 - a^7 - 2a^6 - 2a^5 + 5a^4 + 2a^3 - 2a^2 + a \right) \left(x^2 + a^8 - 2a^7 - a^6 - a^5 + 6a^4 - 2a^3 - a^2 + 4a - 2 \right)^3 \right) \]
The equations ! (3).

The action of the correspondance on the basis of holomorphic differentials

\[\left\{ \frac{dx}{y}, x \frac{dx}{y}, x^2 \frac{dx}{y} \right\} \]

is given by the matrix

\[
\begin{pmatrix}
2a^8 - 3a^6 - 5a^5 + 4a^4 + 3a^3 - 5a^2 + 2 & 0 & -9a^8 + 2a^7 + 16a^6 + 21a^5 - 25a^4 - 19a^3 + 26a^2 - 12 \\
0 & \gamma & 0 \\
3a^8 - 5a^7 - 2a^6 - 2a^5 + 16a^4 - 9a^3 - 7a^2 + 9a - 2 & 0 & -3a^8 + a^7 + 6a^6 + 7a^5 - 10a^4 - 8a^3 + 9a^2 + a - 5
\end{pmatrix}
\]

were \(\gamma = a^8 - a^7 - 3a^6 - 2a^5 + 6a^4 + 5a^3 - 4a^2 - a + 2 \in \mathbb{Q} \left(\zeta_{13}^{(4)} \right) \).

Its minimal polynomial is

\[X^3 + X^2 - 4X + 1. \]
This situation is quite beautiful but there’s no obvious reason that there’s always an hyperelliptic curve such that its jacobian has the desired complex multiplication and CM type!

More generally, we can ask

Problem

Can we compute all the equations of an abelian variety with a determined CM field and CM type? (the time doesn’t matter at all!)