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What is symbolic regression ?

Figure – Expression
Tree

Figure – Regression of 3x3 + 4x2 − 2x + 1 with
gaussian noise
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The different methods for symbolic regression

Figure – Different method for symbolic regression. DR : Deep learning
SR, GP : genetic programming, ML : Classic machine learning methods.
End-to-end symbolic regression with transformers, P.A Kamienny & al.
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Genetic algorithms
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Application to symbolic regression

1: G ← Random population of N formulas
2: while min {l(f , y), f ∈ G} > τtarget do
3: C ← k best candidates of G
4: Gm ← λmN mutations of C
5: Gc ← λcN crossover of C
6: Gr ← (1− λm − λc )N random formulas
7: G ← Gm

⋃
Gc

⋃
Gr

8: end while

Figure – Evolution of the best
candidate across generations.
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Representation of mathematical expressions

Mathematical expressions as trees, with
▶ Variables and constants as leaves
▶ Unary (sin, √., etc) and binary (+, ×, /, −) operators as

nodes
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Random generation of formulas

Random expression R(d)

d = 0 d > 0

Random leaf

Rd constant Rd variable

Random internal expression

Rd unary op. Rd binary op.

R(d-1) R(d-1) R(d-1)

xac

U(R(d − 1)) R(d − 1) ∗ R(d − 1)

Example of formulas generated by our system :
▶ arctan(e1.60−(x∗2.59+2.18) ∗ 4.19 +−1.20) ∗ 1.84 + 0.81
▶ (x ∗ 3.03 +−4.74) ∗ (x ∗ 0.67 + 1.40)
▶ ex∗−0.17+−0.59 ∗ (−1.51) +−4.84
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The mutations

▶ Random modification to generate a new different formula
▶ A vast family of mutations implemented in our framework :

▶ Operator swapping
▶ Operator insertion
▶ Operator removing
▶ Constant perturbations
▶ Variable swapping
▶ etc.

▶ Smarter mutations :
▶ Constant optimization using gradient descent
▶ Expression simplification
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The cross-overs

▶ Combine parts of previous formulas to generate a new one
▶ Only a cross-over strategy implemented in our framework :

▶ Pick two random best candidates
▶ Pick a random node from one candidate
▶ Insert at a random position into the other candidate

Parent 1 :

Parent 2 :

Crossover Point

Child 1 :

Child 2 :
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The loss

▶ General loss function based on MSE :

l(x , y , f ) = η

n∑
i=1

∥f (xi )− yi∥2
2︸ ︷︷ ︸

MSE

+(1 − η)

Regularization︷︸︸︷
C (f )

with C (f ) the complexity of f and η ∈ [0, 1] an
hyperparameter.

▶ Can extend the loss function :

lext(x , y , f ) =

{
l(x , y , f ) if P(x , y , f ) true,
+∞ if P(x , y , f ) false.

to force multiple variables, non constant formula, etc.
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Overfitting and underfitting

▶ Problem with high-complexity formulas
▶ Solution, the regularization term in the loss
▶ Different way to measure complexity :

▶ Max depth
▶ Node count
▶ Some arbitrary smart function
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Results with pure Genetic algorithm : 1D

Figure – Symbolic regression for the 1/x2 function with 500 samples. The
used parameters are a population size of 10000, for 15 iterations.
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Results with pure Genetic algorithm : 1D

Figure – Symbolic regression for a polynomial function of degree 3 with
500 samples. The used parameters are a population size of 10000, for 15

iterations.
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Results with pure Genetic algorithm : 2D
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Better guest of initial population
Sometimes, with our human eye, it is easy to see that a function
has more chances to include a cos than an exp.

Our idea is thus to train an neural network to do the work of the
human eye automatically, and detect the presence of certain unary
operators in the formula.
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Training data

The training data is generated as follows :
1. Generate 30, 000 random formulas of maximum depth 3.

2. For each formula, evaluate it on values evenly distributed
between −10 and 10, this will be the input of the neural
network. Data is normalized.

3. For each formula, check whether or not it contains each of the
following unary operators : exp , sin , tan , arcsin , arctan ,√, log
This will be the output of the neural network.
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Architecture of the CNN

1. Two 1 dimensional convolutional layers, each followed by a
pooling layer

2. 2 linear layers
All layers, except the final one, are followed with a relu activation.
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Performance of the CNN
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Issues with the CNN
The job of the CNN is complicated because of a number of
factors :

▶ Limited computation power causes the use of a rather simple
architecture and short training.

▶ Some unary operators overshadow others in the formula

Figure – exp x + cos x
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Does the CNN help ?

We can see there is a correlation between how accurate the CNN is
and how well the best function generated using probabilities from
the CNN does compared to the best function generated randomly.
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Better choice of mutations

We could use the same method to also guide mutations.
▶ It would increase the impact of a good prediction.
▶ But also make it very slow for the mutation algorithm to

converge if the prediction is bad.
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Conclusion

▶ Satisfying for simple functions
▶ Support multi-dimensional problems
▶ Difficulty to choose hyper parameters
▶ Hybrid version with CNN works but not really faster
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