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Scheme

(define (fib n)

® Based on Lisp (if (< n 2)
® Dynamically typed functional n
language (+
® Runtime polymorphism (fib (- n 1))

(fib (- n 2)))))

f’L PSL*

&ZW



Introduction epresentation of types Control flow in WebAssembly Interfacing with JavaScript
o1 1] 0000 © ) 00

Bigloo

® An optimizing Scheme compiler
A large project and old project (since the 90s)

® The compiler: 100,000 lines of Scheme

® The runtime: 70,000 lines of Scheme and 20,000 of C
Two backends:

® C code generation (cgen and saw-c)
® Java bytecode generation (saw-jvm)
® .. and our new WASM backend
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WebAssembly

Low-level virtual machine specification introduced in 2016

High performance code execution inside web browsers

Initially to port native code (C, Rust, etc.) to the Web
® Modern alternative to asm. js

New proposals useful for dynamic functional languages:

® Garbage collector (october 2023 in Chrome),
® First-class functions,
® Tail calls (avril 2023 in Chrome), etc.

Public presentation of Guile Hoot and Wasocaml at ICFT
2024

® Scheme and ML Workshops
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Representation of types

anyref
® Primitive types use WASM 132, i64, £32 T
and f64
® Boxed types use WASM GC types eqref

® FEitheir GC structures:
(type $bint (struct| (field i64))) / \
® Or GC arrays:

(type $bstring ( (mut 8))) structs atrays
® The Scheme obj is WASM eqref

Figure: Hierarchy of
GC types
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Compilation of literals

® Boxed constants literals are globals

® Problem with non-trivial constants like strings or lists
® Bigloo already supported lists manual initialization

¢ Globals initialization code must be constant,
® BUT, array.new_data instruction is not constant

(data $my-str-data "Hello")

(global $my-str ( $bstring) (ﬁref.null‘ ﬁnone‘))
(func $my-module-init
Go.o.o3)
(global.set $my-str
(prray.new_data $bstring $my-str-data
(i32.const 0)
(i32.const 5))))
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Implementation of classes

® Bigloo classes are lowered as GC structures
® We use WASM struct inheritance and subtyping
(type $my-parent-class

(sub
(struct (Eiel& i32))))
(type $my-class

(sub $my-parent-class
(struct] (field i32 £32)))
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Structural equivalence

® WASM uses structural equivalence
® Two classes with the same types are equivalent in WASM!

® The solution: using rec clauses

( (type $my-class ( (; fields ;))))
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Control flow in WebAssembly

e Use structured control flow based on a stack

® No arbitrary gotos
® BUT, the backend uses basic blocks implemented using gotos

(block $label (loop $label
(; code... ;) (; <TARGET> ;)
;5 Jumps to <TARGET> (; code... ;)
(br $label) ;5 Jumps to <TARGET>
(; code... ;)) (br $label)
(; <TARGET> ;) (; code... ;))
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Naive approach: dispatcher pattern

® We can use a big switch to emulate gotos

(local $label i32)
(local.set $label (i32.const 0))
(loop $dispatcher
(block $bb_0
G oo s)
(br_table $bb_0 (; ... ;) $bb_n (local.get $label)))
;5 Basic block 0 code...
;5 Jumps to basic block b
(local.set $label (i32.const 5))
(br $dispatcher))
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Drawbacks with the dispatcher pattern

Destroys the static analysis of the control flow graph

® By the JIT compiler and WASM assembler
Prevent use of non-nullable references in locals

® WASM requires that uses are dominated by a definition for

non-nullable references

® We must use nullable references, possible slowdown

Less readable code
More difficult to debug
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Representation of types
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A better approach: Relooper

® Problem is not new!
® B.S. Baker, "An Algorithm for Structuring Flowgraphs" (1977)

® A. Zakai, "Emscripten: [...]" (2011)
® The idea: reconstruct the control flow with higher structures
® We use dominator trees and reverse postorder numbers

® N. Ramsey, "Beyond Relooper: [...]" (2022)
® Same algorithm used by Guile Hoot and Wasocaml
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Limits of Relooper

Limited to reducible CFGs

Almost all CFGs are reducibles in Bigloo
But irreducible CFGs may happen in practice

® Compilation of regular expressions
® Bigloo BBV optimization

In that case:

® We can transform irreducible CFGs to reducible ones
® |n Bigloo, we simply fallback to the dispatcher pattern
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Interfacing with JavaScript

Not everything can be done in WASM

® |ike interfacing with the OS
® Two possibilities: JavaScript or WASI

JS can call WASM functions and vice-versa

But not the same type representation

® Strings must be copied to a common memory (costly)
® GC references can not be passed to JS
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OS interface using NodelS API

® Bigloo runtime requires POSIX
® We use the NodelS API
® Not compatible with web browsers
® Bigloo C have dependencies on external C libraries
® PCRE for regular expressions
® GMP for big numbers
® pthread for threads
® etc.
e Difficult to call C code compiled to WASM

® Emscripten and C do not support GC
® Use of a virtual stack (difficult to call C functions)
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The current state of Bigloo-WASM

Most of compilation work is done
® Call/CC not supported

Still work to be done for the runtime library
® Threads

® Regular expressions
® Network (POSIX sockets)

The project is usable but still experimental
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Benchmarks |

Relative execution time (smaller is better, Bigloo C performance = 1)
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WASM-GC is fast
Ecosystem not mature enough

Conclusion
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® WASM-GC not supported by WebKit (will be in next version)
Support in Wasmtime, Wasmer lacking or experimental

[ ]
® Many bugs in toolchains (binaryen, Deno)
[ ]

Multiple crashes with Chrome Devtools and NodeJS

No WASM runtime and not enough libraries

No standardized ABI between languages for WASM

https://github.com/hgruniaux/bigloo-wasm
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