Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0000 00000 (e]e) 0000

Compilation of Scheme to WebAssembly
L3 internship

Hubert Gruniaux!

Superviser: Manuel Serrano?

1ENS-PSL

2Inria Sophia-Antipolis

September 2024

lreia— 1 1PSLx

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
@00 0000 00000 (e]e) 0000

Scheme

(define (fib n)

® Based on Lisp (if (< n 2)
® Dynamically typed functional n
language (+
® Runtime polymorphism (fib (- n 1))

(fib (- n 2)))))

f’L PSL*

&ZW

Introduction epresentation of types Control flow in WebAssembly Interfacing with JavaScript
o1 1] 0000 ©) 00

Bigloo

® An optimizing Scheme compiler
A large project and old project (since the 90s)

® The compiler: 100,000 lines of Scheme

® The runtime: 70,000 lines of Scheme and 20,000 of C
Two backends:

® C code generation (cgen and saw-c)
® Java bytecode generation (saw-jvm)
® .. and our new WASM backend

&zz&b/- E@g PSL*

Introduction
ocoe

WebAssembly

Low-level virtual machine specification introduced in 2016

High performance code execution inside web browsers

Initially to port native code (C, Rust, etc.) to the Web
® Modern alternative to asm. js

New proposals useful for dynamic functional languages:

® Garbage collector (october 2023 in Chrome),
® First-class functions,
® Tail calls (avril 2023 in Chrome), etc.

Public presentation of Guile Hoot and Wasocaml at ICFT
2024

® Scheme and ML Workshops

&Z?tla/- ErNTs PSL*

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 @000 00000 (e]e) 0000

Representation of types

anyref
® Primitive types use WASM 132, i64, £32 T
and f64
® Boxed types use WASM GC types eqref

® FEitheir GC structures:
(type $bint (struct| (field i64))) / \
® Or GC arrays:

(type $bstring ((mut 8))) structs atrays
® The Scheme obj is WASM eqref

Figure: Hierarchy of
GC types

lrzia— Ef;ls PSL*

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0e00 00000 (e]e) 0000

Compilation of literals

® Boxed constants literals are globals

® Problem with non-trivial constants like strings or lists
® Bigloo already supported lists manual initialization

¢ Globals initialization code must be constant,
® BUT, array.new_data instruction is not constant

(data $my-str-data "Hello")

(global $my-str ($bstring) (ﬁref.null‘ ﬁnone‘))
(func $my-module-init
Go.o.o3)
(global.set $my-str
(prray.new_data $bstring $my-str-data
(i32.const 0)
(i32.const 5))))

lrzia— Ef;ls PSL*

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
(e]e)

[e]e]e}

[e]e] o) 00000

Implementation of classes

® Bigloo classes are lowered as GC structures
® We use WASM struct inheritance and subtyping
(type $my-parent-class

(sub
(struct (Eiel& i32))))
(type $my-class

(sub $my-parent-class
(struct] (field i32 £32)))

0000

lezia—~ E@s PSL*

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 [e]e]e]) 00000 (e]e) 0000

Structural equivalence

® WASM uses structural equivalence
® Two classes with the same types are equivalent in WASM!

® The solution: using rec clauses

((type $my-class ((; fields ;))))

lezia—~ E@s PSL*

Conclusion

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript
(e]e) 0000

[e]e]e} 0000 @0000

Control flow in WebAssembly

e Use structured control flow based on a stack

® No arbitrary gotos
® BUT, the backend uses basic blocks implemented using gotos

(block $label (loop $label
(; code... ;) (; <TARGET> ;)
;5 Jumps to <TARGET> (; code... ;)
(br $label) ;5 Jumps to <TARGET>
(; code... ;)) (br $label)
(; <TARGET> ;) (; code... ;))

I | psL*

&Z’Z&ZI/- ENS

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0000 (o] lele]e] (e]e) 0000

Naive approach: dispatcher pattern

® We can use a big switch to emulate gotos

(local $label i32)
(local.set $label (i32.const 0))
(loop $dispatcher
(block $bb_0
G oo s)
(br_table $bb_0 (; ... ;) $bb_n (local.get $label)))
;5 Basic block 0 code...
;5 Jumps to basic block b
(local.set $label (i32.const 5))
(br $dispatcher))

Y/ E@g PSLx

Introduction
000

Representation of types Control flow in WebAssembly Interfacing with JavaScript
(e]e)

0000 00e00

Drawbacks with the dispatcher pattern

Destroys the static analysis of the control flow graph

® By the JIT compiler and WASM assembler
Prevent use of non-nullable references in locals

® WASM requires that uses are dominated by a definition for

non-nullable references

® We must use nullable references, possible slowdown

Less readable code
More difficult to debug

lezia—~

Conclusion
0000

ﬁ

ENS

PSL*

Control flow in WebAssembly Interfacing with JavaScript Conclusion
(e]e) 0000

Representation of types
[ee]e] o]

Introduction
000

A better approach: Relooper

® Problem is not new!
® B.S. Baker, "An Algorithm for Structuring Flowgraphs" (1977)

® A. Zakai, "Emscripten: [...]" (2011)
® The idea: reconstruct the control flow with higher structures
® We use dominator trees and reverse postorder numbers

® N. Ramsey, "Beyond Relooper: [...]" (2022)
® Same algorithm used by Guile Hoot and Wasocaml

&zz&b/- E@S PSL*

epresentation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0000 0000e 00 0000

Limits of Relooper

Limited to reducible CFGs

Almost all CFGs are reducibles in Bigloo
But irreducible CFGs may happen in practice

® Compilation of regular expressions
® Bigloo BBV optimization

In that case:

® We can transform irreducible CFGs to reducible ones
® |n Bigloo, we simply fallback to the dispatcher pattern

&zz&b/- E@g PSL*

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0000 00000 [o) 0000

Interfacing with JavaScript

Not everything can be done in WASM

® |ike interfacing with the OS
® Two possibilities: JavaScript or WASI

JS can call WASM functions and vice-versa

But not the same type representation

® Strings must be copied to a common memory (costly)
® GC references can not be passed to JS

&zz&b/- E[I?S PSL*

epresentation of types Control flow in WebAssembly Interfacing with JavaScript
pYolele} G) oe

OS interface using NodelS API

® Bigloo runtime requires POSIX
® We use the NodelS API
® Not compatible with web browsers
® Bigloo C have dependencies on external C libraries
® PCRE for regular expressions
® GMP for big numbers
® pthread for threads
® etc.
e Difficult to call C code compiled to WASM

® Emscripten and C do not support GC
® Use of a virtual stack (difficult to call C functions)

&zz&b/- E@g PSL*

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0000 00000 (e]e) @000

The current state of Bigloo-WASM

Most of compilation work is done
® Call/CC not supported

Still work to be done for the runtime library
® Threads

® Regular expressions
® Network (POSIX sockets)

The project is usable but still experimental

lrzia— E@s PSL*

Introduction
000

Representation of types Control flow in WebAssembly Interfacing with JavaScript
0000 00000 oo

Benchmarks |

Relative execution time (smaller is better, Bigloo C performance = 1)

mmm Bigloo WASM
s Bigloo WASM without V8 checks

IS
x

Time multiplier
w
x

- N
x

| .I I I
0x

©

Q’\ N o

6\'\ o qp \0 && go é,w‘\é\ ¢ & Qo & s &”&
& <
Figure: Benchmarks results e

Conclusion
0e00

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion
000 0000 00000 00 0000

Benchmarks Il

Relative execution time (smaller is better, Bigloo C performance = 1)

. Bigloo JVM
5X mmm Bigloo WASM

4x
.- "I i‘l]
N ll
. N
& Q? &2 &
&

w
x

Time multiplier

N
x

@
&

&
&S é’ N Q° < v"’ &

Figure: Benchmarks results

Y/ %‘PSL*

Conclusion

WASM-GC is fast
Ecosystem not mature enough

Conclusion
000e

® WASM-GC not supported by WebKit (will be in next version)
Support in Wasmtime, Wasmer lacking or experimental

[]
® Many bugs in toolchains (binaryen, Deno)
[]

Multiple crashes with Chrome Devtools and NodeJS

No WASM runtime and not enough libraries

No standardized ABI between languages for WASM

https://github.com/hgruniaux/bigloo-wasm

&Z?tla/- ErNTs PSL*

	Introduction
	Representation of types
	Control flow in WebAssembly
	Interfacing with JavaScript
	Conclusion

