
Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Compilation of Scheme to WebAssembly
L3 internship

Hubert Gruniaux1

Superviser: Manuel Serrano2

1ENS-PSL

2Inria Sophia-Antipolis

September 2024

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Scheme

• Based on Lisp
• Dynamically typed functional

language
• Runtime polymorphism

(define (fib n)
(if (< n 2)

n
(+

(fib (- n 1))
(fib (- n 2)))))

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Bigloo

• An optimizing Scheme compiler
• A large project and old project (since the 90s)

• The compiler: 100,000 lines of Scheme
• The runtime: 70,000 lines of Scheme and 20,000 of C

• Two backends:
• C code generation (cgen and saw-c)
• Java bytecode generation (saw-jvm)
• ... and our new WASM backend

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

WebAssembly

• Low-level virtual machine specification introduced in 2016
• High performance code execution inside web browsers
• Initially to port native code (C, Rust, etc.) to the Web

• Modern alternative to asm.js
• New proposals useful for dynamic functional languages:

• Garbage collector (october 2023 in Chrome),
• First-class functions,
• Tail calls (avril 2023 in Chrome), etc.

• Public presentation of Guile Hoot and Wasocaml at ICFT
2024

• Scheme and ML Workshops

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Representation of types

• Primitive types use WASM i32, i64, f32
and f64

• Boxed types use WASM GC types
• Eitheir GC structures:
(type $bint (struct (field i64)))

• Or GC arrays:
(type $bstring (array (mut i8)))

• The Scheme obj is WASM eqref
Figure: Hierarchy of
GC types

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Compilation of literals

• Boxed constants literals are globals
• Problem with non-trivial constants like strings or lists

• Bigloo already supported lists manual initialization
• Globals initialization code must be constant,

• BUT, array.new_data instruction is not constant

(data $my-str-data "Hello")
(global $my-str (ref null $bstring) (ref.null none))
(func $my-module-init

(; ... ;)
(global.set $my-str

(array.new_data $bstring $my-str-data
(i32.const 0)
(i32.const 5))))

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Implementation of classes

• Bigloo classes are lowered as GC structures
• We use WASM struct inheritance and subtyping

(type $my-parent-class
(sub

(struct (field i32))))
(type $my-class

(sub $my-parent-class
(struct (field i32 f32)))

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Structural equivalence

• WASM uses structural equivalence
• Two classes with the same types are equivalent in WASM!
• The solution: using rec clauses

(rec (type $my-class (struct (; fields ;))))

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Control flow in WebAssembly

• Use structured control flow based on a stack
• No arbitrary gotos
• BUT, the backend uses basic blocks implemented using gotos

(block $label
(; code... ;)
;; Jumps to <TARGET>
(br $label)
(; code... ;))

(; <TARGET> ;)

(loop $label
(; <TARGET> ;)
(; code... ;)
;; Jumps to <TARGET>
(br $label)
(; code... ;))

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Naive approach: dispatcher pattern

• We can use a big switch to emulate gotos
(local $label i32)
(local.set $label (i32.const 0))
(loop $dispatcher

(block $bb_0
(; ... ;)
(br_table $bb_0 (; ... ;) $bb_n (local.get $label)))

;; Basic block 0 code...
;; Jumps to basic block 5
(local.set $label (i32.const 5))
(br $dispatcher))

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Drawbacks with the dispatcher pattern

• Destroys the static analysis of the control flow graph
• By the JIT compiler and WASM assembler

• Prevent use of non-nullable references in locals
• WASM requires that uses are dominated by a definition for

non-nullable references
• We must use nullable references, possible slowdown

• Less readable code
• More difficult to debug

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

A better approach: Relooper

• Problem is not new!
• B.S. Baker, "An Algorithm for Structuring Flowgraphs" (1977)
• A. Zakai, "Emscripten: [...]" (2011)

• The idea: reconstruct the control flow with higher structures
• We use dominator trees and reverse postorder numbers
• N. Ramsey, "Beyond Relooper: [...]" (2022)
• Same algorithm used by Guile Hoot and Wasocaml

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Limits of Relooper

• Limited to reducible CFGs
• Almost all CFGs are reducibles in Bigloo
• But irreducible CFGs may happen in practice

• Compilation of regular expressions
• Bigloo BBV optimization

• In that case:
• We can transform irreducible CFGs to reducible ones
• In Bigloo, we simply fallback to the dispatcher pattern

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Interfacing with JavaScript

• Not everything can be done in WASM
• Like interfacing with the OS
• Two possibilities: JavaScript or WASI

• JS can call WASM functions and vice-versa
• But not the same type representation

• Strings must be copied to a common memory (costly)
• GC references can not be passed to JS

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

OS interface using NodeJS API

• Bigloo runtime requires POSIX
• We use the NodeJS API
• Not compatible with web browsers

• Bigloo C have dependencies on external C libraries
• PCRE for regular expressions
• GMP for big numbers
• pthread for threads
• etc.

• Difficult to call C code compiled to WASM
• Emscripten and C do not support GC
• Use of a virtual stack (difficult to call C functions)

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

The current state of Bigloo-WASM

• Most of compilation work is done
• Call/CC not supported

• Still work to be done for the runtime library
• Threads
• Regular expressions
• Network (POSIX sockets)

• The project is usable but still experimental

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Benchmarks I

nu
cle

ic
mbro

t
sie

ve
ea

rle
y

lev
al

qs
ort fft

bo
ye

r

alm
ab

en
ch

be
va

l

pu
zz

le fib

tra
ve

rse
maz

e
0 x

1 x

2 x

3 x

4 x

5 x

Ti
m

e
m

ul
tip

lie
r

Relative execution time (smaller is better, Bigloo C performance = 1)

Bigloo WASM
Bigloo WASM without V8 checks

Figure: Benchmarks results

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Benchmarks II

pe
va

l

nu
cle

ic
bo

ye
r fft

co
nfo

rm

qu
ee

ns
ea

rle
y

lev
al

alm
ab

en
ch fib

be
va

l

pu
zz

le
maz

e
ba

gu
e

tra
ve

rse
0 x

1 x

2 x

3 x

4 x

5 x

Ti
m

e
m

ul
tip

lie
r

Relative execution time (smaller is better, Bigloo C performance = 1)

Bigloo JVM
Bigloo WASM

Figure: Benchmarks results

Introduction Representation of types Control flow in WebAssembly Interfacing with JavaScript Conclusion

Conclusion

• WASM-GC is fast
• Ecosystem not mature enough

• WASM-GC not supported by WebKit (will be in next version)
• Support in Wasmtime, Wasmer lacking or experimental
• Many bugs in toolchains (binaryen, Deno)
• Multiple crashes with Chrome Devtools and NodeJS

• No WASM runtime and not enough libraries
• No standardized ABI between languages for WASM
• https://github.com/hgruniaux/bigloo-wasm

	Introduction
	Representation of types
	Control flow in WebAssembly
	Interfacing with JavaScript
	Conclusion

