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I Introduction
I did an internship at INRIA Sophia Antipolis in the SPLITS team with the aim of adding a new backend
to WebAssembly to the existing Bigloo Scheme compiler.

The code of this project can be found here: https://github.com/hgruniaux/bigloo-wasm.

I.1 Bigloo
Bigloo [1] is a compiler and interpreter for the Scheme language with its own sets of extensions:
classes, C interface, modules, threads, etc. It has been freely distributed since the 90s. Today, it contains
around 100,000 lines of Scheme code, and the runtime library contains around 70,000 lines of Scheme
and 20,000 lines of C code (without the GC).

It is a mature compiler that has many optimizations for dynamic functional languages like Scheme. It
is therefore a good target to compile ML and functional languages other than Scheme. For example, it
is used as a backend for the Hop Javascript-to-Scheme compiler.

The compiler has actually multiple backends – one classic that generates C code directly from the AST
and another one called SAW, which uses basic blocks as the intermediate representation and generates
C and JVM bytecode [2], [3]. The WASM backend of this internship is based on this second SAW
backend because it is more recent and has the most optimizations (like basic block versioning) and
because its basic block structure makes it easier.

I.2 WebAssembly
WebAssembly, often shortened to WASM, is a new technology that allows high performance code
execution inside web browsers. It is intended to provide a better alternative to asm.js and JavaScript
as a target for native code (like C or Rust).

Since its introduction, WebAssembly has been implemented in all major web browsers. A fairly mature
ecosystem is beginning to emerge. Thanks to the Emscripten project and LLVM, it is possible to compile
C, C++ and Rust code (and part of their ecosystem) into WASM. It has also been used to port game
engines such as Unreal Engine and Unity to the web.
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WebAssembly takes the form of a typed bytecode which is executed by a stack-based virtual machine.
The bytecode is statically typed and verified by the assembler and the virtual machine before execution.
When required for ensuring safety, runtime checks are automatically injected by the implementations.
Most of the provided instructions are based on real hardware instructions: arithmetic on 32/64-bits
integers (types i32 and i64) or on IEEE-754 32/64-bits floating points (types f32 and f64). More
complex operations like trigonometrics functions are not present in the specification. Programs have
access to a linear memory, which can be seen as an array of bytes. This also includes the concept of
local variables that act as pseudo-registers for temporary values inside functions.

Recently, the existence and maturity of certain extensions have increased interest in compiling dy-
namic and functional languages into WASM. For instance, it is now possible to guarantee optimization
of terminal recursive calls and a garbage collector integrated into the language and functions as first-
order values are now supported.

I.2.1 Special case of using WebAssembly outside of Web
Although the name suggests otherwise, WebAssembly can be used outside of a web browser. In partic-
ular, there are several implementations of the standalone WebAssembly virtual machine. These include
Wasmer (https://wasmer.io/), Wasmtime (https://wasmtime.dev/), and the reference interpreter.

However, WebAssembly’s world-isolating philosophy somewhat limits its use cases. By default, WASM
code cannot communicate with the outside world. In particular, its memory is isolated. Currently, the
only standardised way to interact with the operating system is through the WebAssembly System
Interface (WASI) specification. This only offers a limited set of functions for manipulating the file
system and sockets, and retrieving program arguments and environment variables.

There is no mechanism for dynamic linking or calling external code (without using JavaScript). It is
also impossible to open an external program, map regions of memory, and so on. In other words,
neither WebAssembly nor WASI offers sufficient functionality to perfectly implement the POSIX layer
or the Win32 API. This makes complete interaction with the OS impossible.

For these reasons, and because of the lack of a standard WASM library, we have decided to support
WASM only in a JavaScript environment (web browsers, NodeJS, Deno, etc.), as a first step.

I.3 Scheme
Scheme is a dynamically typed and functional language based on Lisp. There are several implemen-
tations of it: Bigloo (on which I worked on), Gambit, GNU Guile, Racket, etc.

In recent years, there have been some efforts to compile Scheme and its environment for WebAssembly.
There are projects to implement a Scheme to WASM compiler, such as Google’s Schism (now aban-
doned). Or to implement a backend on an existing compiler, such as Hoot (based on GNU Guile).

It is also possible to reuse the existing backends of current Scheme compilers like the C backend of
Bigloo, and then compile the C code to WebAssembly. This last step is already well known with projects
like Emscripten (a C/C++ compiler to WASM) [4]. This possibility was explored by Igalia [5]. However,
Emscripten is intended to compile C-like code, so does not use the last proposals of WASM for dynamic
and functional languages. This has two effects: the optimizer doesn’t have access to certain high-level
information, and the runtime must embed a complete implementation of a GC (which can be heavy).

The aim of this internship is to explore the possibility of directly generating WASM code in Bigloo
using the latest specification proposals and perhaps compare our results with Guile Hoot, or with
similar projects for other languages, such as Wasocaml [6] or the Glasgow Haskell Compiler (GHC). It
will be also interesting to compare it to the Igalia project (compilation of the C output to WASM using
Emscripten) [5].
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II Representation of types
II.1 Common types
Because of the full polymorphism of Scheme, most values are boxed and allocated by the garbage
collector. Generally, to represent such values and avoid too many allocations, we use techniques like
pointer tagging (the technique used in the C backend by Bigloo) or NaN tagging. However, these
techniques cannot be used in WASM. The GC reference type available in WASM is an opaque pointer,
with no bit manipulation allowed. The GC proposal only supports two kinds of values: structures and
arrays.

This happened to be sufficient because the WASM implementation may optimize it and choose an
efficient representation. Second, Bigloo uses a custom dialect of Scheme that allows typing and the
compiler uses these types to use unboxed representations of objects as much as possible [7].

To represent any boxed value, which corresponds to the Scheme type obj, we initially used the WASM
type anyref (see Figure 1 for the hierarchy of GC types). However, we were faced with a problem in
implementing reference equality efficiently (function eq? in Scheme) as the ref.eq instruction expects
values of type eqref. A paper from Wasocaml [6] showed us that eqref can be used directly in source
code (the GC proposal is not always clear) and is sufficient to represent any boxed type. Thus, we used
eqref to represent the Scheme obj type.

anyref

eqref

structs arrays

Figure 1: Hierarchy of GC types in WASM (arrow is subtyping)

For primitive types (integers, reals, etc.) that must be boxed, we introduce a structure with a single field
of the primitive type. But because the type system of WASM is based on structural equivalence, two
Scheme primitive types that are based on the same WASM primitive type (like bint64 and buint64 that
are both based on the WASM i64 type) will be considered the same. This is not desired, as ref.is will
then be incorrect in regard to the Scheme semantics. To avoid that, we enclose these problematic types
inside a WASM rec group. See Code 1 for an example of boxed Scheme types implemented in WASM.

4 of 16



1 ;; A boxed 64-bit integer (signed or unsigned)
2 (rec (type $bint (struct (field i64))))
3 ;; A boxed IEEE-754 64-bits floating-point
4 (rec (type $real (struct (field f64))))
5 ;; A byte string (no encoding specified in Scheme, but generally UTF-8)
6 ;; Strings are mutable, thus the 'mut' keyword
7 (rec (type $bstring (array (mut i8))))
8 ;; Pairs which are just couples of Scheme obj (eqref in WASM)
9 (rec (type $pair (struct (field $car eqref) (field $cdr eqref))))

Code 1: Representation of some Scheme boxed types

Another interesting case is the implementation of special constants in Scheme. This includes the two
booleans #t (true) and #f (false), #unspecified, etc. They are represented using the WASM i31ref
type, which is a non-allocated reference that stores the data in its first 31-bits. This avoids GC
allocations. However, in practice, this doesn’t matter much, as special constants are created once at
the start of the program and are accessed using globals after that. Still, using i31ref avoided some
linker problems that duplicated their global definition and therefore created multiple instances of #t
(so it was possible that true ≠ true).

It was not possible to use i31ref to represent Scheme integers, as Bigloo had no type for small integers.
Most of the integer types of Bigloo expect at least 32-bits. However, i31ref could be used to implement
boxed characters or boxed 8/16-bit integers, but this is not done in the current implementation.

II.2 Strings literals
The implementation of strings literals requires special attention. They are represented as globals of
type bstring (GC array of bytes). To initialize the arrays, we need to store the actual string data.
Usually, this is done using data segments, which are also supported in WASM. However, in the current
version of the GC proposal, there are some limitations in the use of data segments to initialize arrays.
The instruction array.new_data used for that is not considered constant and, therefore, cannot be
used in globals initialization. So, we need to explicitly initialize them at program startup in the Bigloo
auto-generated constant initialization functions. The general pattern is shown in Code 2.

1 ;; Declaration in the module preamble.
2 (data $my-data-section "my string data")
3 ;; Instruction 'array.new_data' not allowed in a global declaration.
4 (global $my-string-constant (ref null $bstring) (ref.null none))
5

6 ;; In the constant initialization module function:
7 ;; This is called at module import or at the start of the program.
8 (func $my-module-initialize-constants
9   (; ... ;)

10   (global.set $my-string-constant
11     (array.new_data $bstring $my-data-section
12       (i32.const 0 (; offset in data section ;))
13       (i32.const 14 (; string length ;))))
14   (; ... ;))

Code 2: Handling of strings

Requiring string literals to be initialized (which is not the case in the C and JVM backends) may cause
some initialization problems. For example, if two modules have cyclic dependencies, what module
should we initialize first? If we choose an incorrect order, we may call a function that uses uninitialized
data. This use case appears in the runtime library but it is carefully handled. However, with the
introduction of uninitialized string literals, the previous cases can be now erroneous. In the future,
some work must be done to fix these problems.
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Another possibility is to use the array.new_fixed instruction, which takes the array data inline. This
instruction is considered constant and can therefore be used in global initializations. However, the
syntax is really verbose. See, for example, the code required for the ASCII string “Hey”:

1 (array.new_fixed 3 (i32.const 0x48) (i32.const 0x65) (i32.const 0x79))

This makes the code less readable, but also takes up more space. The last part is quite important,
as the textual form of array.new_fixed is really heavyweight, and actually we use the textual form
as an intermediate representation of WASM for linking purposes. Another problem arises from the
constraints imposed by current implementations. For example, WASM engines embedded in browsers
impose a maximum size of 10000 for arrays created with array.new_fixed.

II.3 Mutually dependent classes
In Bigloo Scheme, it is possible to create classes. They can inherit from another classes (simple
inheritance), and their fields can reference other classes instances or any Scheme value. In WASM, we
represent them using GC structures and the WASM subtyping:

1 ;; Scheme code
2 (class parent
3   (x::obj))
4 (class child::parent
5   (y::obj))

1 ;; Generated WASM code
2 (type $parent (sub 
3   (struct 
4     (field $x eqref))))
5 (type $child (sub $parent 
6   (struct 
7     ;; we must repeat parent fields
8     (field $x eqref) 
9     (field $y eqref))))

WASM imposes two constraints:
• Parent types must be defined before children types.
• Types in fields references must be defined before references.

We consider the dependency graph of classes where a class A is connected to a class B if either A
inherits from B or A has field of type B. Then, if we have no cycles in this graph WASM constraints
are easy to satisfy, we only need to emit the WASM types in a topological order.

However, if there is a cycle, e.g. if there is mutually dependent classes (such as in Figure 2), then we
must work harder. WASM has a simple solution for mutually dependent types: rec clauses. However,
this causes problems at linking stage if not used correctly.

Foo

Bar

Quxinherits

Baz

Figure 2: Example of dependency graph of mutually dependent classes
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Indeed, the type system of WASM is iso-recursive and its based on structural equivalence. As a
consequence, in the following two codes, type A on the left-hand side is not the same as the one on the
right-hand side even if they have the same name. This is because the rec clause is not the same on the
two codes, thus the children types are not equivalent because their parent rec clause is not equivalent.
So, we can not emit all classes found in a module inside a rec clause. As modules do not have access
to the same set of classes and will generate different rec clauses when using different imports. Then
at link stage, the class types will not be considered the same from two different modules and will not
be merged (either link time errors because functions do not have the correct signature, or function
duplication). To solve this problem, we need to be sure to always generate the same rec clauses.

1 (rec
2   (type (sub (struct $A))))

Types for module Foo

1 (rec
2   (type (sub (struct $A)))
3   (type (sub (struct $B))))

Types for module Bar
Code 3: The types $A in Foo and Bar are not equivalent.

To always generate the same rec clauses, we generate rec clauses only for classes in elementary cycles
in the dependency graph. That way, we are sure that the generated rec clauses are always minimal
and unique. In Bigloo, we use the following algorithm:

1 Compute the dependency graph of classes used in the module.
2 for each strongly connected component of the graph
3 for each elementary cycle of the SCC
4 Merge all classes inside the cycle into a WASM rec clause.
5 Also merges the vertices in the dependency graph.

The dependency graph does not contain any cycle now.
6 Emits the class types and rec clauses in WASM in a topological order of the dependency graph.

On the Figure 2 case, the algorithm gives the WASM code shown in Code 6.

1 ;; All WASM constraints are respected. Struct fields are omitted.
2 (type $Qux (sub (struct $Qux (; ... ;))))
3 (rec
4   (type $Foo (sub $Qux (struct (; ... ;))))
5   (type $Bar (sub (struct (; ... ;))))
6   (type $Baz (sub (struct (; ... ;)))))

Code 6: Example of generated WASM for Figure 2 case

Recently, the above algorithm (or similar) was proposed to be merged into WebAssembly/binaryen (a
toolchain for WebAssembly). See the pull request #6832, “Add a pass for minimizing recursion groups”.
If this PR is merged, then the implementation inside Bigloo may be removed.
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III Control flow in WebAssembly
Unlike low-level assembler, control flow is more limited in WebAssembly. It is mainly based on the
notion of block and loop and the br, br_if and br_table instructions. Branching instructions can
only be nested in block/loops and can only jumps (conditionally or not) to one of the parent block/
loop. That is, it only supports structured control flow. In particular, the absence of a goto instruction
to an arbitrary address in the bytecode complicates the compilation process. The Code 7 shows the
different WASM control flow instructions.

1 ;; Semantic of blocks
2 (block $block-label
3   (; code... ;)
4   (br $block-label) ;; Jumps to <TARGET BLOCK>, like a 'break' in C
5   (; code... ;))
6 ;; <TARGET BLOCK>
7

8 ;; Semantic of loops
9 (loop $loop-label

10   ;; <TARGET LOOP>
11   (; code... ;)
12   (br $loop-label) ;; Jumps to <TARGET LOOP>, like a 'continue' in C
13   (; code... ;))
14   
15 ;; Same as 'br' but conditionally on the top value in the stack.
16 (br_if $some-loop-or-block-label) 
17 ;; We can also implement something like a 'jump table'. Otherwise, same
18 ;; semantics and constraints as `br`.
19 (br_table $label1 $label2 (; ... ;) $default-label (; Jump index here ;))
20

21 ;; There is also a high level conditional structure.
22 (if (; condition ;)
23   (then (; code ;))
24   (else (; code ;)))
25

26 ;; Some extras
27 (return)
28 (unreachable)
29 ;; ...

Code 7: Example of control flow in WASM

The WASM backend for bigloo is based on the SAW backend [2], [3], which is based around the notion
of basic blocks. Generally, basic blocks are translated into assembler using arbitrary gotos. Thus, we
need to somewhat emulate gotos or translate them into a WASM friendly structured control flow.

As a first solution, we could emulate merely gotos by introducing a local variable label that store the
ID of the current basic block, and then jump to the basic block code using a switch (using the br_table
instruction), see Code 8.
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1 ;; Function entry point
2 (local $label i32)
3 (local.set $label (i32.const 0))
4 (loop $dispatcher
5   (block $bb_n
6     (...
7       (block $bb_0
8         (br_table $bb_0 ... $bb_n (local.get $label))
9       )

10       ;; Code for basic block 0...
11       ;; Jump to basic block 3 (for example)
12       (local.set $label (i32.const 3))
13       (br $dispatcher)
14     )
15     ;; Other basic blocks...
16   )
17   ;; Code for basic block n...
18   ;; Jump to basic block 0
19   (local.set $label (i32.const 0))
20   (br $dispatcher)
21 )

Code 8: The dispatcher pattern to emulate gotos.

Unfortunately, avoiding the native control flow instructions of WASM and using the dispatcher pattern
makes the code slower and less readable. Moreover, emulating gotos also destroys the CFG of the
final generated WASM code (see Figure 3). As a consequence, the WASM assembler cannot correctly
construct the dominator tree and thus prove that each local non-nullable reference is defined before
its uses, which is required by the specification (see Code 9 for example). So, if using the dispatcher
pattern, we must mark all local references into the GC as possibly null, even if Bigloo can guarantee
that it is not possible. This penalises performance, as null pointer tests must be introduced at runtime.

1 (local $label i31)
2 (local $ptr (ref $bstring))
3 (local.set $label (i32.const 0))
4 (loop $dispatcher
5   (block $bb1
6     (block $bb0
7       (br_table $bb0 $bb1 (local.get $label)))
8     ;; Basic block 0
9     (local.set $ptr (some function that creates a bstring))

10   ;; Basic block 1
11   ;; ERROR: $ptr may be null, use not dominated by a def.
12   (drop (local.get $ptr))))

Code 9: Problematic code when using the dispatcher pattern
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BB0

BB1

CFG before dispatcher pattern.
BB0 dominates BB1.

Dispatcher

BB0 BB1

CFG after dispatcher pattern
BB0 do not dominates BB1.

Figure 3: Impact of the dispatcher pattern on the CFG

As the problem is not new, extensive research has been conducted and fortunately several solutions or
improvements have been proposed. B. S. Baker described an algorithm to transform the control flow
into a program using if-then-else, loop, while, break and continue statements in 1977 [8]. Similarly
in 2011, A. Zakai proposed a new algorithm called Relooper that uses a heuristic to reconstruct some
high-level control flow structures in LLVM when compiling to Javascript [4]. In Bigloo, we used an
algorithm based on dominator trees and reverse postorder numbers that is deviced by N. Ramsay [9].
His implementation is clear and adapted to functional programming languages.

In all cases, these algorithms only work for a reducible control flow graph. The edges of a reducible
graph split into two distinct sets such that:
• Its forward edges form a directed acyclic graph, with all nodes reachable from the entry node.
• For all back edges (A, B), node B dominates node A.

If needed, a preliminary work could be done to convert an irreducible CFG to a reducible one (possibly
duplicating some basic nodes, [9] has a section dedicated to it).

However, in the case of Scheme, most CFGs are reducible. Indeed, Scheme has no construction for
arbitrary gotos, and, in this internship, we don’t support call/cc. However, non-reducible CFGs are
sometimes produced:
• due to certain optimizations (such as basic block versioning in Bigloo), or
• due to regular expression compilation (see regular-grammar in Bigloo Scheme).

In such case, we must resort to use the dispatcher pattern for these functions. Later iterations of this
implementation should convert the irreducible CFG to a reducible one to take full advantage of this
optimization.
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IV Implementation of the runtime library
One of the major parts of this internship was to port the Scheme standard library to WASM. Hopefully,
most of it was written in Scheme and could be compiled to WASM with the new backend. But some
other parts were written directly in C or Java, depending on the target language. These parts needed
to be rewritten either in pure Scheme when possible, or in WASM.

Unlike C or Java, WASM is an assembly language, and writing complex control flow or algorithms is
not a realistic option. Implementing the runtime functions would be a bug-prone and time-consuming
job that would result in thousands of lines of handwritten WebAssembly code. That’s why we opted
for rewriting some parts in Scheme so that other backends can also benefit in the future.

The dependence to JavaScript also helped implementing more complex features like regexes and date
and time management.

IV.1 Interfacing with JavaScript
WebAssembly offers the possibility of importing external functions (defined by other WASM modules
or in JavaScript). In this section, we show how Bigloo interfaces with JavaScript to implement simple
IOs. The JavaScript part is shown in Code 10, whereas the WASM code is shown in Code 11.

JavaScript cannot directly interact with the WASM GC. However, Bigloo strings are implemented as
arrays of bytes allocated in the GC. So JavaScript can’t directly create, manipulate, or access Scheme
strings. To do so, we need to go through an intermediate data structure, which is the linear memory.
To pass a string to JavaScript, we need to perform the following steps:
• Copy the Scheme string to the WASM linear memory at some fixed address.
• Call the JS function with the memory address and the string length.
• The JS function stores the new string into the memory address at the specified address and returns

the string length.
• Then Scheme creates a new GC byte array and loads the data from the memory at the correct memory

address.

These steps impact the performance, so we need to avoid passing character strings between the two
worlds. In general, we should minimize back-and-forth between JavaScript and Scheme WASM. It
can be costly to make conversations between the different representations and to call functions from
different worlds.

1 function read_file(fd, offset, length) {
2   if (fd < 0)
3     throw WebAssembly.RuntimeError("invalid file descriptor");
4

5   // Treat the WASM memory as a byte array.
6   const memory = new Uint8Array(
7     // The WASM memory buffer
8     instance.exports.memory.buffer, 
9     offset, 

10     length);
11     
12   // We use the NodeJS fs sync API which writes directly
13   // to the specified byte buffer (in our case, the WASM memory).
14   const readBytes = readSync(fd, memory);
15   return readBytes;
16 }

Code 10: JavaScript implementation of read_file
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1 (import "js" "read_file" (func $js_read_file (param i32 i32 i32) (result i32)))
2 (func $myfunction (result (ref $bstring))
3   (local $nbread i32)
4   ;; Call the JS function.
5   (local.set $nbread (call $js_read_file 
6     (i32.const 0) ;; File descriptor (0 = stdin)
7     (i32.const 128) ;; Memory address where the result is stored 
8     (i32.const 10))) ;; Number of bytes to read
9   ;; We need to load the bytes from the linear memory into a

10   ;; GC array of bytes which is our representation for Scheme strings.
11   (call $load_string
12     (i32.const 128)
13     (local.get $nbread)))

Code 11: WASM code using the JS function read_file

The real code is more complex. We need to take care of runtime errors, disparities between the different
JavaScript implementations, encoding issues, etc.

As a first step, we wanted our WASM to be executed by NodeJS and Deno, two JavaScript runtime
environments outside the Web that are cross-platforms. These two environments supports the POSIX
API and can communicate with the OS. They are perfect to initially port the C runtime as they have all
the required features. But, NodeJS and Deno, even though they are mostly compatible, have some weird
difference in their API. For example, their handling of readSync function that emulates the POSIX
read syscall but synchronously (by default NodeJS and Deno are highly asynchronous). Indeed, the
behavior is not the same on the POSIX file descriptor 0 that corresponds to stdin. On NodeJS, calling
this function with stdin descriptor results in an error (EAGAIN POSIX error) whereas on Deno this is
fully supported. So, our runtime implementation must have a special case for stdin on NodeJS.

There are also problems with the way string encodings are managed. In Scheme, strings are just array
of bytes like in C. The encoding is implicit, and depends on the underlying environment (in particular
the C environment and locale). To keep compatibility with the C backend, programs must keep the
same behavior. Therefore, when converting a Scheme string to a JavaScript string (required to access
the filesystem API for example), we need to carefully decode the string with the correct encoding.
Actually, in our implementation, the current encoding is a global variable that can be configured by
the user.

IV.2 Small WASI example
As we said at the beginning, because WASI is not yet mature and complete enough, we have decided
to use the JavaScript environment. Even if this means a dependency on Web browsers or JavaScript
runtime environments.

However, to access the file system, WASI can already be used although, depending on the implemen-
tation, it may only be possible to access an isolated sandbox file system. An example of its use is given
in this section in the following code:

1 (import "wasi_snapshot_preview1" "fd_write" 
2   (func $wasi_fd_read (param i32 i32 i32 i32) (result i32)))
3

4 (func $write_file (param $str (ref $bstring))
5   (i32.store (i32.const 0) (i32.const 8))
6   (i32.store (i32.const 4) (array.len (local.get $str)))
7   
8   (; Copy $str content into memory at address 8 ;)
9   ;; ...

10
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11   ;; Ignore return code, we omit error handling.
12   (drop
13     (call $wasi_fd_read
14       (i32.const 1) ;; file handle
15       (i32.const 0) ;; mem address of iovec array
16       (i32.const 4) ;; mem address of buffer length
17       (i32.const 0) ;; mem address of the count of written bytes
18     )))

We have used the WASI fd_write function that emulates the POSIX writev syscall. The semantics
of the functions are not clearly stated in the specification and seems to rely on the POSIX function
semantics. So we expect file handle 1 to define stdout, likewise we expect the string encoding to be
one that POSIX wants.

In the early experiments, I found the WASI documentation to be hideous and not clear at all. For
example, the signature of the fd_write as in the specification is provided below. There is no real
explanation how to translate it to the WASM way. There are specification on the binary layout of the
used structures, but not how the array is passed in arguments in WASM.

fd_write(fd: fd, iovs: ciovec_array) -> Result<size, errno>
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V Benchmarks
Due to lack of time and various technical problems I can not include relevant benchmarks at the
moment. Currently, preliminary tests inform of a slowdown of a factor of 4 for WASM-generated
code compared to Bigloo-generated C code (for the computation of naive recursive fibonacci). I am
investigating to improve or confirm these results. I hope to be able to provide better and more complete
results for the oral presentation.

There is two sets of benchmark for Scheme that we could use. One from Gambit and one from Bigloo
(see bglstone).

Figure 4: Results of benchmarks

The fib benchmark is 10 iterations of fib(40) using the naive recursive implementation. The tak
benchmark is 100 iterations of tak(30, 22, 12). The handwritten C and Bigloo/C implementations
are compiled using GCC 11.4 with -O3. The JS and Bigloo/WASM implementations are executed using
NodeJS 22.2. The Bigloo/C and Bigloo/WASM were both compiled using -Obench. For the Scheme code,
we used the unboxed operations available in Bigloo (+fx, <fx etc.). The benchmarks were executed on
a Intel i5-1240P 2.112GHz with 16 cores under Ubuntu 22.04.4 LTS on Windows 10 x86_64.

We observe that the C implementations and the Bigloo/C compilations gives the same performance.
Whereas, the Bigloo/WASM has a slowdown of a factor of 2 to 4 compared to the C implementation.
The handwritten JavaScript implementations are slower in these benchmarks as compared to C and
Bigloo Scheme because they have no type information.
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VI Conclusion
VI.1 Is WASM mature enough?
WebAssembly is a recent technology, first introduced in 2015. The proposals about garbage collection,
exceptions, tail calls, and typed function references are even more recent. They are not yet officially
part of the WebAssembly specification, but their inclusion is planned for version 2.

These proposals are supported by Google Chrome and Firefox. However, Apple Safari does not yet
support garbage collection or tail calls. Likewise, many tools around WebAssembly still lack support
for these proposals or have gained support in very recent versions. As an example, during my work
on the Bigloo backend, I have found bugs in Binaryen (see issues #6655, #6708, #6738, and #6739),
a toolchain for WebAssembly, used in particular by LLVM, Clang, and Rust. But also in Deno, a JS
runtime based on V8 (see issue #24990).

Standalone implementations of WebAssembly, such as wasmtime or wasmer, also do not yet support
the garbage collector proposal, even if it is planned. And the code generated by wasmedge (a ahead-
of-time compiler for WASM) for our generated WASM code crashed at execution (free pointer error,
… but we are only using the GC, so probably an error in wasmedge).

As a conclusion, it appears that WebAssembly with the above-mentioned proposals (required by
Bigloo and for efficient implementation of dynamic and function languages) is still experimental.
Its support is not complete, either in the tools or the virtual machine implementations. But we can
hope for improvements in this area. The Wasocaml [6] and Guile Hoot [10] projects are also vectors
for improvement and proof of the potential of these proposals and WASM.

VI.2 The future of Bigloo WASM
The implementation of the WASM backend is not yet complete. Some library functions are still missing.
In addition, Scheme features such as call/cc are missing (but they are not required for compiling
JavaScript using the Hop compiler).

There are still many Scheme programs that can not be compiled with the new backend. In particular,
the test suite of Bigloo can not be yet executed. Further fixes must be implemented to complete this
work, but, the biggest part has been accomplished. Generally, the problem is an unsupported type, or
a missing instruction, and in most cases can be solved in no time. Ideally, we should aim to be able to
fully compile the testsuite and the benchmarks in the future.

There are also probably still opportunities for optimization in the generated code. For example, caching
the boxed values of small integers or improve errors implementation. The way strings are handled
can maybe also be improved. Irreducible control flow graphs are not yet handled and use the naive
dispatcher pattern. These are just a few ideas among many.
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