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RECOVERING THE HAMILTONIAN FROM SPECTRAL DATA

C. HÉRIVEAUX AND T. PAUL

Abstract. We show that the contributions to the Gutzwiller formula with
observables associated to the iterates of a given elliptic non-degenerate periodic
trajectory γ and to certain families of observables localized near γ determine
the quantum Hamiltonian in a formal neighborhood of the trajectory γ, that

is, the full Taylor expansion of its total symbol near γ. We also treat the
“bottom of a well” case both for general and Schrödinger operators, and give
some analog classical results.
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1. Introduction and main results

It is well known that spectral properties of semiclassical Hamiltonians and dy-
namical properties of their principal symbols are linked. Even when there is
no precise information “eigenvalue by eigenvalue” of the spectrum, the so-called
Gutzwiller trace formula provides information on averages of the spectrum at scale
of the Planck constant �. More precisely, let H(x, �Dx) be a self-adjoint semiclassi-
cal elliptic pseudodifferential operator on a compact manifold X of dimension n+1,
whose symbol H(x, ξ) is proper (as a map from T ∗X into R). Let E be a regular
value of H and γ a non-degenerate periodic trajectory of primitive period Tγ lying
on the energy surface H = E.

Consider the Gutzwiller trace (see [11])

(1.1) Tr

(
ψr

(
H(x, �Dx)− E

�

))
=
∑
i

ψr

(
Ei(�)− E

�

)
,

where for r ∈ Z∗, ψr is a C∞ function whose Fourier transform is compactly
supported with support in a small enough neighborhood of rTγ and is identically
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7240 C. HÉRIVEAUX AND T. PAUL

one in a still smaller neighborhood containing rTγ . As shown in [14], [15] (1.1) has
an asymptotic expansion

(1.2) ei
Sγ
�

+π
2 σγ

∞∑
k=0

ark�
k.

In [8] it was shown how to compute the terms of this expansion to all orders in
terms of a microlocal Birkhoff canonical form for H in a formal neighborhood of
γ. Following earlier results by Zelditch [19, 20] and Guillemin [7] in the context of
the high part of the spectrum of the Laplacian, it was also proved in [8] that the
family of constants (ark)(k,r)∈N×Z∗ determines the microlocal (and hence, a fortiori,
the classical) Birkhoff canonical form for H in a formal neighborhood of γ; see also
[12] for another proof based on trace formulas for monodromy operators.

In the case of the bottom of a well, the determination of the Birkhoff form by
the low part of the spectrum has been shown in [9]. When it is known in addition
that H(x, �Dx) is a Schrödinger operator −�2Δ + V , it has been shown that the
low part of the spectrum determines the Taylor expansion of the potential V when
this one is even in all variables [10] or in dimension one under generic assumptions
[4], and the potential itself in one dimension under generic assumptions [3]. But
in the general case the Gutzwiller formula will determine only the normal form of
the Hamiltonian, that is to say H(x, �Dx) only modulo unitary operators, and its
principal symbol only modulo symplectomorphisms. Of course it cannot determine
more, as the spectrum, and a fortiori the trace, is insensitive to unitary conjugation.

The aim of this paper is to address the question of determining the true Hamil-
tonian from more precise spectral data, namely from the Gutzwiller trace formula
with observables.

Let us point out that, aside from the intrinsic interest (in particular for physical
purposes) of determining a true Hamiltonian and not only its symplectomorphically
(with unknown symplectomorphism in general) conjugated normal form, we will get
as a bi-product of our results the missing spectral information needed to complete
the Schrödinger case, discussed in the preceding paragraph and treated in [3,4,10].
Let us also remark that the original problem developed by M. Kac in “Can one
hear the shape of a drum?” [13] also involves the true Hamiltonian through the
boundary of the domain on which the Laplacian acts.

It is well known that, for any pseudodifferential operator O(x, �Dx) of symbol
O(x, ξ), there is a result equivalent to (1.2) for the quantity
(1.3)

Tr

(
O(x, �Dx)ψr

(
H(x, �Dx)− E

�

))
=
∑
i

〈ϕj , O(x, �Dx)ϕj〉ψr

(
E − Ei

�

)
(here ϕj is meant as the eigenvector of eigenvalue Ej and ψr is as before) under
the form of an asymptotic expansion of the form

(1.4) ei
Sγ
�

+π
2 σγ

∞∑
k=0

ark(O)�k,

where ark are distributions supported on γ.
We will show in the present paper that the knowledge of the coefficients ark(O) for

O belonging to some family of observables localized near γ is enough to determine
the full Taylor expansion of the total symbol of H(x, �Dx) near γ, in other words
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RECOVERING HAMILTONIANS 7241

H(x, �Dx) microlocally in a formal neighborhood of γ, when γ is non-degenerate
elliptic (including the case where γ is reduced to a point (bottom of a well)).

Let us first remark that, besides the fact that not all observables will be needed
to conclude, the formula (1.3) gives access only to diagonal matrix elements of ob-
servables between eigenvectors and not to the full knowledge of them. Nevertheless
the asymptotics of (1.3) surprisingly determine the full Taylor expansion of the
symbol of the Hamiltonian.

Let us also remark that the trace formula with any observable microlocalized
in a small enough neighborhood of γ determines obviously its primitive period
Tγ . We will assume that any multiple of Tγ is isolated in the set of the periods
of all the periodic trajectories on the same energy shell (let us remark that in
case this condition is not fulfilled, our results remain valid by taking observables
microlocalized in a neighborhood of the non-degenerate elliptic γ). Moreover it
is known ([6, 7]) that the coefficients of the trace formula determine the Poincaré
angles modulo 2πZ and we prove in Appendix B that, in the case where γ is not
reduced to one point, any realization of the Poincaré angles as real numbers leads
to a different Birkhoff normal form but gives an explicit symplectomorphism that
conjugates one to another: hence, our reconstruction of the “true” Hamiltonian is
independent of the choice of the realization. We also show that in the “bottom of
a well” case, the θi’s are determined by the spectrum.

Therefore the only knowledge we will require will be the fact that there exists a
geometric periodic trajectory γ, possibly of dimension zero, which is elliptic non-
degenerate (see the definition below) and whose set of periods is isolated in the set
of periods of the same energy shell.

We will be concerned with three cases:

(1) γ is a curve;
(2) the general “bottom of a well” case (γ reduced to a point);
(3) the “bottom of a well” case when the Hamiltonian is a Schrödinger operator.

Our results will also be of three different kinds:

a. The knowledge of the coefficients of the trace formula for (1), or of some of
the diagonal matrix elements (expectation values) between eigenvectors of
the Hamiltonian for (2),(3), for a family of observables satisfying some alge-
braic properties on γ determine some Fermi coordinates (see the definition
below). It is the content of Theorems 1.3, 1.9, 1.13.

b. The knowledge of the coefficients of the trace formula for (1), or of some of
the diagonal matrix elements (expectation values) between eigenvectors of
the Hamiltonian for (2), (3), for another family of observables, expressed on
any (not necessarily the one determined by a.) Fermi system of coordinates,
determines the full Taylor expansion of the total symbol of the Hamiltonian
expressed on these Fermi coordinates (Theorems 1.4, 1.10, 1.14).

c. The combination of the two preceding cases, where the family of observ-
ables defined in a. drives the knowledge of the full Hamiltonian. More
precisely, the knowledge of the quantities expressed in a. determines a fam-
ily of observables, which is precisely the one defined in b. expressed in the
Fermi system determined in a., the trace coefficients or some of the diag-
onal matrix elements of which determine the full Taylor expansion of the
Hamiltonian on a determined system of coordinates (Corollaries 1.5, 1.11,
1.15).
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7242 C. HÉRIVEAUX AND T. PAUL

Finally we obtain analog classical results as a byproduct of the quantum results
in Section 4.

Definition 1.1. A periodic trajectory of the Hamiltonian flow generated byH(x, ξ)
is said to be non-degenerate elliptic if its linearized Poincaré map has eigenvalues
(e±iθi)1≤i≤n, θj ∈ R, and the rotation angles θi (1 ≤ i ≤ n) and π are independent
over Q.

Definition 1.2 (Fermi coordinates). We will denote by “Fermi coordinates” any
system of local coordinates of T ∗M near γ, (x, t, ξ, τ ) ∈ T ∗(Rn × S1), such that
γ = {x = ξ = τ = 0} and on which the principal symbol Hp of H(x, �Dx) can be
written for any chosen realization of the Poincaré angles θi ∈ R as:

(1.5) Hp(x, t, ξ, τ ) = H0(x, t, ξ, τ ) +H2,

where

(1.6) H0(x, t, ξ, τ ) = E +

n∑
i=1

θi
x2
i + ξ2i
2

+ τ

and

(1.7) H2 = O
(
(x2 + ξ2 + |τ |) 3

2

)
.

The existence of such local coordinates, guaranteed by the Weinstein tubular
neighborhood theorem ([18]), was proved in [7, 8, 19] under the hypothesis of non-
degeneracy mentioned earlier. However the construction of Fermi coordinates in-
volves the knowledge of the quadratic part of Hp in a neighborhood of γ. Our first
result shows that a system of Fermi coordinates can be determined by γ only at the
classical level and some quantum spectral quantities (constructed out of a system
of local coordinates near γ and some quantum spectral quantities).

Theorem 1.3. Let P k
p , k = 0, 1, . . . , 2n2 + n, p ∈ Z, be any pseudodifferential op-

erators whose respective principal symbols Pk
p satisfy

P0
p (x, t, ξ, τ ) = e−2iπptτ and

Pk
p (x, t, ξ, τ ) = e−2iπptRk(x, ξ), k = 1, . . . , 2n2 + n,

(1.8)

in a local symplectic system of coordinates (x, t, ξ, τ ) ∈ T ∗(Rn × S1) such that
γ = {x = ξ = τ = 0}, with the property that Rk(0) = ∇Rk(0) = 0 and the
Hessians d2Rk(0) are linearly independent.

An example of such symbols is given by the family

(1.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q1

ijp(x, t, ξ, τ ) = e−2iπptxiξj ,

Q2
ijp(x, t, ξ, τ ) = e−2iπptxixj ,

Q3
ijp(x, t, ξ, τ ) = e−2iπptξiξj ,

Qp(x, t, ξ, τ ) = e−2iπptτ.

Then the knowledge of the coefficients (al1(P
k
p ))0≤k≤2n2+n,p∈Z in (1.3)-(1.4) deter-

mines (in a constructive way) an explicit system of Fermi coordinates near γ.

Theorem 1.4. Let γ be a non-degenerate elliptic periodic trajectory of the Hamil-
tonian flow generated by the principal symbol Hp of H(x, �Dx) on the energy shell
H−1

p (E), and let (x, t, ξ, τ ) ∈ Rn×S1×Rn+1 be a system of Fermi coordinates near
γ.
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RECOVERING HAMILTONIANS 7243

For (m,n, p) ∈ N2n ×Z, let Omnp, Op be any pseudodifferential operators whose
total Weyl symbols (in this system of coordinates) Omnp, Op satisfy

(1.10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Omnp(x, t, ξ, τ ) = e−i2πpt

n∏
j=1

(
xj+iξj√

2

)mj
(

xj−iξj√
2

)nj

+
∑

2l+N=|m|+|n|+1

O(�l(x2 + ξ2 + |τ |)N
2 ),

Op(x, t, ξ, τ ) = e−i2πptτ +
∑

2l+N=3

O(�l
(
x2 + ξ2 + |τ |

)N
2 )

in a neighborhood of γ. Then the knowledge of the coefficients alk(Omnp) and alk(Oq)
in (1.3)-(1.4) for k ≤ N and m,n, p, q satisfying

(1) |m|+ |n| ≤ N ,
(2) ∀j = 1, . . . , n, mj = 0 or nj = 0,
(3) p ∈ Z, q ∈ Z∗,

determines the Taylor expansion near γ up to order M1 in (x, ξ) and M2 in τ ,
of the total Weyl symbol, in this system of Fermi coordinates, of H(x, �Dx) up to
order l in � at the condition that 2l +M1 + 2M2 ≤ N .

Concatenating the two preceding results we get the coordinate free statement:

Corollary 1.5. Let P k
p be as in Theorem 1.3. Then the knowledge of the co-

efficients al1(Q
k
ijp), a

l
1(Qp) for p ∈ Z, l ∈ Z, 1 ≤ i, j ≤ n, k ∈ {1, 2, 3} determine

observables Omnp, Oq out of which the coefficients alk(Omnp) and alk(Oq), for k ≤ N
and m,n, p, q satisfying conditions (1), (2), (3) in Theorem 1.4, determine modulo
a function vanishing to infinite order on γ the full symbol of H(x, �Dx) in a deter-
mined system of local coordinates near γ.

Remark 1.6. It is easy to see that condition (2) implies that the number of ob-
servables in the transverse to γ directions (for each Fourier coefficient in t) needed
for determining H(x, �Dx) up to order N is a polynomial function of N of degree
n − 1, while the number of all polynomial functions in (x, ξ, τ ) of order N is a
polynomial in N of higher degree 2n. The fact that not all observables are needed
can be understood by the fact that we know that the Hamiltonian we are looking
for is conjugated to the normal form by a unitary operator and not by any operator
(see the discussion after Theorem 2.1). At the classical level this is a trace of the
fact that we are looking for a symplectomorphism, and not any diffeomorphism (see
Section 4).

Remark 1.7. The asymptotic expansion of the trace (1.3) involves only the microlo-
calization of H(x, �Dx) in a formal neighborhood of γ. Therefore there is no hope
to recover from spectral data more precise information than the Taylor expansion
of its symbol near γ. The rest of the symbol concerns spectral data of order �∞.

Let us now consider the case where γ is reduced to one point, namely the “bottom
of a well” case. Let us assume that the principal symbol Hp of H(x, �Dx) has a
global non-degenerate minimum at z0 ∈ T ∗M, and let d2Hp(z0) be the Hessian of
H at z0. Let us define the matrix Ω defined by d2Hp(z0)(·, ·) =: ωz0(·,Ω−1·) where
ωz0(·, ·) is the canonical symplectic form of T ∗M at z0. The eigenvalues of Ω are
purely imaginary; let us denote them by ±iθj with θj > 0, j = 1, . . . , n. Let us
assume moreover that θj , j = 1, . . . , n, are rationally independent.
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7244 C. HÉRIVEAUX AND T. PAUL

Definition 1.8. By extension of Definition 1.2, we will also denote by Fermi co-
ordinates any system of Darboux coordinates (x, ξ) ∈ T ∗Rn centered at z0 such
that:

(1.11) Hp(x, ξ) = Hp(z0) +

n∑
i=1

θi
x2
i + ξ2i
2

+ O((x, ξ)3).

The existence of such local coordinates will be proved in Section 3, once again
by using the knowledge of the quadratic part of Hp near z0. Our next result shows
that one can explicitly construct Fermi coordinates out of the knowledge of some
quantum spectral quantities.

Theorem 1.9. Let P k, k = 1, . . . , 2n2 + n, be any pseudodifferential operators
whose principal symbols Pk are such that Pk(z0) = ∇Pk(z0) = 0 and the Hes-
sians d2Pk(z0) are linearly independent. An example of such symbols is given
by the family

(1.12)

⎧⎪⎨⎪⎩
Q1

ij(x, ξ) = xiξj ,

Q2
ij(x, ξ) = xixj ,

Q3
ij(x, ξ) = ξiξj ,

1 ≤ i, j ≤ n, k ∈ {1, 2, 3}, in any system (x, ξ) ∈ T ∗Rn of Darboux coordinates
centered at z0.

Then, for any ε = ε(�) > 0, � = o(ε(�)) (e.g. ε = �1−η, η > 0), the knowledge
of the spectrum of H(x, �Dx) in [Hp(z0), Hp(z0) + ε] and the diagonal matrix ele-
ments of P k between the corresponding eigenvectors of H(x, �Dx) determines (in a
constructive way) an explicit system of Fermi coordinates.

Theorem 1.10. For (m,n) ∈ N2n, let Omn be any pseudodifferential operator
whose total Weyl symbol Omn satisfies

Omn(x, ξ) =

n∏
j=1

(
xj + iξj√

2

)mj
(
xj − iξj√

2

)nj

+
∑

2l+N=
|m|+|n|+1

O
(
�l
(
x2 + ξ2

)N
2

)(1.13)

in a neighborhood of z0 and in a system (x, ξ) ∈ T ∗Rn of Fermi coordinates centered
at z0.

Then the knowledge of the spectrum of H(x, �Dx) in [Hp(z0), Hp(z0) + ε] with
�1−α = O(ε) for some α > 0, and the diagonal matrix elements of Omn between
the corresponding eigenvectors of H(x, �Dx), for:

(1) |m|+ |n| ≤ N ,
(2) ∀j = 1, . . . , n, mj = 0 or nj = 0,

determines the Taylor expansion up to order N of the full symbol of H(x, �Dx) at
z0 in the coordinates (x, ξ).

Corollary 1.11. The diagonal matrix elements of the operators P k as in Theorem
1.9 determine observables Omn whose diagonal matrix elements as in Theorem 1.10
determine, modulo a function vanishing to infinite order at z0, the full symbol of
H(x, �Dx), in a determined system of local coordinates near z0.
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RECOVERING HAMILTONIANS 7245

Remark 1.12. Although we will not prove it here, let us remark that Theorem 1.10
(and also Theorem 1.4) is also valid in the framework of quantization of Kählerian
manifolds.

In the case where H(x, �Dx) is a Schrödinger operator −�2Δ + V , it is known
[10] that the (actually classical) normal form determines the Taylor expansion of
the potential in the case where the latter is invariant, for each i = 1, . . . , n, by the
symmetry xi → −xi. The same result holds without the symmetry assumption in
the case n = 1, with assumption V ′′′(0) 
= 0, as has been shown in [4].

Now let H = −�2Δ + V be a Schrödinger operator and let q0 be a global
non-degenerate minimum of V . Let us assume that the square-roots (θi)1≤i≤n

of the eigenvalues of d2V (q0) are linearly independent over the rationals. In that
precise case, we will denote by Fermi coordinates any system of Darboux coordinates
(x, ξ) ∈ T ∗Rn, in which the (principal or total, both notions are equivalent here)
symbol H of our Schrödinger operator can be written as

(1.14) H(x, ξ) = V (q0) +

n∑
i=1

θi
x2
i + ξ2i
2

+R(x),

where R(x) = O(x3). The existence of such local coordinates will also be proved in
Section 3, and Theorem 1.13 below proves that one can explicitly construct Fermi
coordinates out of any system of local coordinates centered at q0.

Theorem 1.14 shows that the matrix elements of only a finite number of ob-
servables are necessary to recover the full Taylor expansion of the potential in the
general case.

Theorem 1.13. Let P k, k = 1, . . . , n(n+1)
2 , be any pseudodifferential operators

whose principal symbols are potentials Pk such that Pk(q0) = ∇Pk(q0) = 0 and
the Hessians d2Pk(q0) are linearly independent (an example of such potentials
is the family Q2

ij(x) = xixj in a local system of coordinates centered at q0).
Then, for any ε = ε(�) > 0, � = o(ε), the knowledge of the spectrum of H(x, �Dx)

in [V (q0), V (q0) + ε] and the diagonal matrix elements of P k, k = 1, . . . , n
2+n
2 ,

between the corresponding eigenvectors of H(x, �Dx) determines (in a constructive
way) an explicit system of Fermi coordinates.

Theorem 1.14. Let (x, ξ) ∈ T ∗Rn be a system of Fermi coordinates centered at
(q0, 0).

Then the knowledge of the spectrum of H(x, �Dx) in [V (q0), V (q0) + ε] with
�1−α = O(ε) for some α > 0, and the diagonal matrix elements of the 2n − 1
observables Om0, m = (m1, . . . ,mn) ∈ {0, 1}n \ {0}, defined in Theorem 1.10,
between the corresponding eigenvectors of H(x, �Dx) determines the full Taylor
expansion of V at q0 in the coordinates x.

Corollary 1.15. The diagonal matrix elements of the operators P k as in Theorem
1.13 determine 2n − 1 observables Om0 whose diagonal matrix elements as in The-
orem 1.14 determine the potential V up to a function vanishing to infinite order at
q0.

Remark 1.16. Note that since we are dealing with observables localized near the
bottoms of the wells, the hypothesis that z0 in Theorems 1.9 and 1.10 and q0 in
Theorems 1.13 and 1.14 are global minima can be released and the corresponding
results can be formulated in a straightforward way.
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7246 C. HÉRIVEAUX AND T. PAUL

The proof of Theorem 1.4 relies on two results having their own interest per se:
Proposition 2.13 which shows that the coefficients of the trace formula determine
the matrix elements 〈ϕj , O(x, �Dx)ϕj〉, where ϕj are the eigenvectors of the normal
form of the Hamiltonian, and Proposition 2.14 which states that the knowledge
of the matrix elements of the conjugation of a given known self-adjoint operator by
a unitary one determines, in a certain sense, the latter.

As a byproduct of Proposition 2.14 we obtain also a purely classical result,
somehow an analog of it: the averages on Birkhoff angles associated to Birkhoff co-
ordinates of the same classical observables than the ones in Theorem 1.4 determine
the Taylor expansion of the (true) Hamiltonian. This is the content of Theorem
4.2 below.

The paper is organized as follows. Section 2 is devoted to the proof of Theorems
1.4, 1.10, and 1.14. In Section 3, we give an explicit construction of some Fermi
coordinates out of any system of local coordinates in both the periodic and “bottom
of the well” case: this is the content of Theorems 1.3, 1.9, and 1.13. In Section 4
we show the classical equivalent of our quantum formulation.

Through the whole paper, [[l,m]], l < m, will stand for the set of integers
{l, . . . ,m} and we we will assume, without loss of generality, that the period of γ
is equal to 1.

2. Recovering the Hamiltonian in some given Fermi coordinates

Let us start this section by observing that, by microlocalization near γ, it is
enough, in order to prove Theorem 1.4, to prove Theorem 2.1 below, which is
nothing but the same statement expressed in a local Fermi system of coordinates.

The proof of Theorem 2.1 will need a construction of the quantum Birkoff normal
form, given in Subsection 2.1. The rest of the proof is then a consequence of
Proposition 2.13 (Subsection 2.2) and Proposition 2.14 (Subsection 2.3). Subsection
2.4 contains the proof of the analogs of Theorem 1.4 when γ is reduced to a single
point, both in the general and “Schrödinger” cases (Theorems 1.10 and 1.14).

Theorem 2.1. Let H(x, �Dx) be a self-adjoint semiclassical elliptic pseudodiffer-
ential operator on L2(Rn × S1). Let (x, t, ξ, τ ) ∈ T ∗(Rn × S1) be the canonical
symplectic coordinates and let us assume that γ = S1 = {x = ξ = τ = 0} is a non-
degenerate elliptic periodic orbit of the Hamiltonian flow generated by the principal
symbol Hp of H(x, �Dx) on the energy shell H−1

p (E).
Let us assume moreover that Hp can be written in these coordinates as

(2.1) Hp(x, t, ξ, τ ) = H0(x, t, ξ, τ ) +H2,

where

(2.2) H2 = O
(
(x2 + ξ2 + |τ |) 3

2

)
and H0 is equal to

(2.3) H0(x, t, ξ, τ ) = E +

n∑
i=1

θi
x2
i + ξ2i
2

+ τ.

Licensed to University of Oxford. Prepared on Tue Aug 21 19:07:21 EDT 2018 for download from IP 129.67.246.57.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RECOVERING HAMILTONIANS 7247

For (m,n, p) ∈ N2n × Z, let Omnp, Op be any pseudodifferential operators whose
total Weyl symbols Omnp, Op satisfy

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Omnp(x, t, ξ, τ ) = e−i2πpt
n∏

j=1

(
xj+iξj√

2

)mj
(

xj−iξj√
2

)nj

+
∑

2l+N=|m|+|n|+1

O(�l
(
x2 + ξ2 + |τ |

)N
2 ),

Op(x, t, ξ, τ ) = e−i2πptτ +
∑

2l+N=3

O(�l
(
x2 + ξ2 + |τ |

)N
2 )

in a neighborhood of γ. Then the knowledge of the coefficients alk(Omnp) and alk(Oq)
in (1.3)-(1.4) for k ≤ N and m,n, p, q satisfying

(1) |m|+ |n| ≤ N ,
(2) ∀j = 1, . . . , n, mj = 0 or nj = 0,
(3) p ∈ Z, q ∈ Z∗,

determines the Taylor expansion near γ of the full symbol (in the system of coordi-
nates (x, t, ξ, τ )) of H(x, �Dx) up to order N .

The proof of Theorem 2.1 will be divided into three steps: first, we will prove
in Proposition 2.2 the existence of the quantum Birkhoff normal form in a form
convenient for our computations, especially concerning the discussion of orders. In
Proposition 2.13, we will show that the trace formula with any observable O deter-
mines the matrix elements of O in the eigenbasis of the Hamiltonian. Finally, in
Proposition 2.14, we will show that these matrix elements (associated to the family
of operators defined in Theorem 2.1) determineH(x, �Dx) in a formal neighborhood
of x = ξ = τ = 0, which will lead to Theorem 2.1.

Let us first fix some notation and standard results. For i ∈ [[1, n]] := {1, . . . , n},
we define the following operators on L2(Rn × S1):

• ai =
1√
2
(xi + �∂xi

),

• a∗i = 1√
2
(xi − �∂xi

),

• Dt = −i�∂t,
• Pi :=

1
2

(
−�∂2

xi
+ x2

i

)
= a∗i ai +

�

2 .

For μ ∈ Nn, ν ∈ Z we will denote by |μ, ν〉 the common eigenvectors of P1, . . . , Pn

and Dt:

(2.5) Pi|μ, ν〉 = (μi +
1

2
)�|μ, ν〉 and Dt|μ, ν〉 = 2π�ν|μ, ν〉.

These vectors are explicitly constructed as follows:

(2.6) |0, 0〉(x, t) := 1

(π�)
n
4
e

−x2

2� , |μ, ν〉(x, t) := ei2πνt
n∏

i=1

1√
μi!�|μ|

a∗μi

i |0, 0〉(x, t).

We will also need the notation

(2.7) |μ〉(x) := |μ, 0〉(x, 0).
Wewill not need the explicit expressions of |μ, ν〉(x, t) and |μ〉(x) in terms of rescaled
Hermite functions, but rather use the following identities:

(2.8)

⎧⎪⎨⎪⎩
ai|μ, ν〉 =

√
μi�|μ1, . . . , μi−1, μi − 1, μi+1, . . . , μn, ν〉,

a∗i |μ, ν〉 =
√
(μi + 1)�|μ1, . . . , μi−1, μi + 1, μi+1, . . . , μn, ν〉,

[ai, a
∗
j ] = δij�, [ai, aj ] = 0.
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7248 C. HÉRIVEAUX AND T. PAUL

We shall write |μ| :=
n∑

i=1

μi, zi =
xi+iξi√

2
, pi =

x2
i+ξ2i
2 and denote by OpW (f) the

pseudodifferential operator whose total Weyl symbol is f . We have

(2.9) OpW (zi) = ai, OpW (z̄i) = a∗i , OpW (ziz̄i) = Pi, and OpW (τ ) = Dt.

Finally, we will denote by a, a∗ or P the n-tuple of operators ai, a
∗
i , Pi, i ∈ [[1, n]],

and denote for j the n-tuple of nonnegative integers Xj =
n∏

i=1

Xji
i .

2.1. Construction of the quantum Birkhoff normal form. Our construction
of the normal form, inspired by [8], is the content of the following proposition.

Proposition 2.2. Let H(x, �Dx) be a self-adjoint semiclassical elliptic pseudodif-
ferential operator on L2(Rn × S1), whose principal symbol is

(2.10) Hp(x, t, ξ, τ ) = H0(p, τ ) +H2,

where H0(p, τ ) =
n∑

i=1

θipi + τ and H2 vanishes to the third order on x = ξ = τ = 0.

Then for any N ≥ 3, there exists a self-adjoint semiclassical elliptic pseudodif-

ferential operator W̃≤N and a smooth function h(p1, . . . , pn, τ, �) satisfying microlo-
cally in a neighborhood of x = ξ = τ = 0 the following statement:

∀M > 0, ∃CN = CN (M) > 0, ∀(μ, ν, �) ∈ Nn × Z× [0, 1[, |μ�|+ |ν�| < M,∣∣∣∣∣∣∣∣(e iW̃≤N
� He

−iW̃≤N
� − h(P1, . . . , Pn, Dt, �)

)
|μ, ν〉

∣∣∣∣∣∣∣∣ ≤ CN (|μ�|+ |ν�|)
N+1

2 .
(2.11)

The operators W̃≤N can be computed recursively in the form

(2.12) W̃≤N = W≤N + (D2
t +

n∑
i=1

Pi)
N+1,

where

(2.13)

⎧⎪⎨⎪⎩
W≤N =

∑
3≤q≤N

Wq,

Wq :=
∑

2p+|j|+|k|+2m=q

αpjkm(t)�pOpW (zj z̄k)Dm
t

with αpjkm smooth and Wq symmetric.

Remark 2.3 (Important convention). We are only interested in recovering the
Hamiltonian in a formal neighborhood of γ: every asymptotic expansion is meant
microlocally and we will be rewriting equations such as (2.11) simply as:
(2.14)∣∣∣∣∣∣∣∣(e iW̃≤N

� He
−iW̃≤N

� − h(P1, . . . , Pn, Dt, �)

)
|μ, ν〉

∣∣∣∣∣∣∣∣ = O
(
|μ�|+ |ν�|)

N+1
2

)
.

By abuse of notation, we will identify the same way any operator with its version
microlocalized near γ.

Remark 2.4. We introduce W̃≤N in order to gain ellipticity and self-adjointness as
was done in Lemma 4.5 of [8].
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The proof of Proposition 2.2 will need several preliminaries:

Definition 2.5. We will say that a pseudodifferential operator A on L2(Rn × S1)
is “polynomial of order r ∈ N” (PO(r)) if there exists αpjkm ∈ C∞(S1,C) such that

(2.15) A =
∑

2p+|j|+|k|+2m=r

αpjkm(t)�pOpW (zj z̄k)Dm
t .

These operators have the following properties.

Proposition 2.6. Let A be a pseudodifferential operator on L2(Rn × S1). Then
there exists a family of operators Ar, r ∈ N, such that for any r ∈ N, Ar is PO(r)
and

(2.16) ∀N ∈ N,

∥∥∥∥∥
(
A−

N∑
r=0

Ar

)
|μ, ν〉

∥∥∥∥∥ = O
(
(|μ�|+ |ν�|)

N+1
2

)
.

Let us define a notion of suitable asymptotic equivalence.

Definition 2.7. Let us introduce for any operator A the notation 
A�r and 
A�≤N

which represent respectively the terms of order r and of order smaller than or equal
to N in the expansion (2.16).

If A and B are two operators, we will write A ∼ B if 
A�r = 
B�r for any r ∈ N.
Also, if (An)n∈N is a family of operators, we will write

(2.17) A ∼
+∞∑
n=0

An

if, for any N ∈ N, 
An�≤N is zero for n sufficiently large and the finite sum

(2.18)

+∞∑
n=0


An�≤N = 
A�≤N .

Proof of Proposition 2.6. Let a be the total Weyl symbol of A. Let us define the
family (αpjkm)(p,m,j,k)∈N2×(Nn)2 of functions on S1 by the Taylor expansion of a
near z = z̄ = τ = � = 0, for any N ∈ N:
(2.19)

a(z, t, z̄, τ, �) =

N∑
r=0

∑
2p+|j|+|k|
+2m=r

αpjkm(t)�pzj z̄kτm +

N+1
2∑

p=0

O
(
�p(|z|2 + |τ |)

N+1
2 −p

)
.

For any r ∈ N, let us note that (z, t, z̄, τ, �) �→
∑

2p+|j|+|k|+2m=r

αpjkm(t)�pzj z̄kτm is

the total symbol of a pseudodifferential operator Ar, which is PO(r). And by (2.5),
(2.9), and (2.19) (see [8]):

∀N ∈ N,

∥∥∥∥∥
(
A−

N∑
r=0

Ar

)
|μ, ν〉

∥∥∥∥∥ =

N+1
2∑

p=0

�pO
(
(|μ�|+ |ν�|)

N+1
2 −p

)
= O

(
(|μ�|+ |ν�|)

N+1
2

)
.

(2.20)

This concludes the proof. �
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7250 C. HÉRIVEAUX AND T. PAUL

The following lemma will be crucial for our computations.

Lemma 2.8. Let F and G be PO(r) and PO(r′) respectively. Then [F,G]
i� is

PO(r + r′ − 2).

Proof. The proof of Lemma 2.8 will be a direct consequence of the two following
lemmas, whose proofs will be given at the end of this proof.

Lemma 2.9. Any monomial operator of order r, that is, of the form
α(t)�pb1 . . . blD

m
t , where:

• for j ∈ [[1, l]], bj ∈ {a1, a∗1, . . . , an, a∗n},
• 2p+ l + 2m = r,

is PO(r).

Lemma 2.10. If F and G are monomials of order r and r′ respectively, then [F,G]
i�

is PO(r + r′ − 2).

Indeed, any PO(r) is a finite sum of monomials of the same order, hence if F

and G are PO(r) and PO(r′) respectively, then [F,G]
i� is a finite sum of quantities

of type [F̃ ,G̃]
i� , where F̃ and G̃ are monomials of order r and r′ respectively. Any of

those quantities are PO(r + r′ − 2) by Lemmas 2.9 and 2.10, and a finite sum of
PO(r + r′ − 2) is PO(r + r′ − 2). Lemma 2.8 is proved. �

Let us now prove Lemmas 2.9 and 2.10.

Proof of Lemma 2.9. Since for any i, j ∈ [[1, n]], i 
= j, ai and a∗i commute with
both aj and a∗j , it is sufficient to prove that any ordered product b1 . . . bl, where
l ≥ 1 and bj ∈ {a1, a∗1} for any j ∈ [[1, l]], is PO(r). For any such ordered product,
let us introduce the integer k(b1 . . . bl) = �{m ∈ [[1, l]], bm = a∗1}.

We will proceed by induction on l. Let us define for any positive integer l the
following assertion:

(Al) “Any ordered product b1 . . . bl, where bj ∈ {a1, a∗1} for any j ∈ [[1, l]],

is the sum of the operator OpW (zl−k
1 z̄k1 ) (where k = k(b1 . . . bl)) and of a linear

combination of the operators �pOpW (zj1z̄
m
1 ) with p ≥ 1, 2p + j + m = l, and

j −m = l − 2k.”
If l = 1, there is nothing to prove since a1 = OpW (z1) and a∗1 = OpW (z̄1). If

l = 2, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a21 = OpW (z21),

a∗21 = OpW (z̄21),

a1a
∗
1 = P1 +

�

2 = OpW (z1z̄1) +
�

2 ,

a∗1a1 = OpW (z1z̄1)− �

2 ,

and therefore the assertion is proved for l = 2.
Now, let l be a positive integer, and let us assume (Ak) up to order k = l. Let

B = b1 . . . bl+1 be an ordered product, where bj ∈ {a1, a∗1} for any j ∈ [[1, l+1]]. If

bj = bj+1 for any j ∈ [[1, l]], then B = OpW (zl+1
1 ) or B = OpW (z̄l+1

1 ). Otherwise,
one can assume that b1 = a1, and that j0 = max{j ∈ [[1, l + 1]], bj = a1} satisfies

1 ≤ j0 ≤ l. Then, we have [aj01 , a∗1] = j0�a
j0−1
1 , so that:

(2.21)

b1 . . . bl+1 = aj01 a∗1bj0+2 . . . bl+1 = a∗1a
j0
1 bj0+2 . . . bl+1 + �j0a

j0−1
1 bj0+2 . . . bl+1.
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Therefore, if one sets k := k(b1 . . . bl+1), since
(
l+1
k

)
=
(
l
k

)
+
(

l
k−1

)
:(

l + 1

k

)
b1 . . . bl+1 =

(
l

k

)
aj01 a∗1bj0+2 . . . bl+1 +

(
l

k − 1

)
a∗1a

j0
1 bj0+2 . . . bl+1

+ �

(
l

k − 1

)
j0a

j0−1
1 bj0+2 . . . bl+1.

(2.22)

(Al−1) gives us that aj0−1
1 bj0+2 . . . bl+1 is a linear combination of the operators

�pOpW (zj1 z̄
m
1 ) with 2p+ j +m = l − 1 and j −m = l + 1− 2k.

Let us now observe that
(
l+1
k

)
OpW (zl+1−kz̄k) is a sum of

(
l+1
k

)
ordered mono-

mials, which we divide into two parts: the
(
l
k

)
ordered monomials whose first term

is a1, whose sum forms precisely
(
l
k

)
a1OpW (zl−kz̄k), and the

(
l

k−1

)
others, whose

sum forms
(

l
k−1

)
a∗1OpW (zl+1−kz̄k−1). More precisely:

(2.23)(
l + 1

k

)
OpW (zl+1−kz̄k) =

(
l

k

)
a1OpW (zl−kz̄k) +

(
l

k − 1

)
a∗1OpW (zl+1−kz̄k−1)

so that (Al), for ordered products aj0−1
1 a∗1bj0+2 . . . bl+1 and aj01 bj0+2 . . . bl+1, gives

us, by equation that
(
l+1
k

)
b1 . . . bl+1 is the sum of(

l

k

)
a1OpW (zl−kz̄k) +

(
l

k − 1

)
a∗1OpW (zl+1−kz̄k−1) =

(
l + 1

k

)
OpW (zl+1−kz̄k)

and a linear combination of the operators �pOpW (zj1z̄
m
1 ) with p ≥ 1, 2p+ j +m =

l + 1, and j −m = l + 1− 2k �

Proof of Lemma 2.10. It is sufficient to remark that if F and G are of the form:

F = α(t)b1 . . . blD
m
t and G = β(t)b′1 . . . b

′
l′D

m′

t ,

where:

• α and β are smooth,
• l + 2m = r, l′ + 2m′ = r′,
• for j ∈ [[1, l]], for j′ ∈ [[1, l′]], bj , b

′
j′ ∈ {a1, a∗1},

then [F,G]
i� is a finite sum of monomials of order r + r′ − 2 since, by Lemma 2.9,

each of them is PO(r + r′ − 2). With those assumptions on F and G, we get:

[F,G]

i�
=
[α(t)b1 . . . blD

m
t , β(t)b′1 . . . b

′
l′D

m′

t ]

i�

=α(t)β(t)
[b1 . . . bl, b

′
1 . . . b

′
l′ ]

i�
Dm+m′

t + α(t)b1 . . . bl
[Dm

t , β(t)]

i�
b′1 . . . b

′
l′D

m′

t

−β(t)b′1 . . . b
′
l′
[Dm′

t , α(t)]

i�
b1 . . . blD

m
t .

(2.24)

Therefore it is sufficient to prove that
[b1...bl,b

′
1...b

′
l′ ]

i� ,
[Dm

t ,β(t)]
i� , and

[Dm′
t ,α(t)]
i� are

respectively: PO(l + l′ − 2), PO(2m − 2), and PO(2m′ − 2) (with the convention
that a PO(j) with j < 0 is 0). For the two last, it is quite obvious, since:

(2.25)
[Dm

t , β(t)]

i�
=

m−1∑
k=0

(
m

k

)
(i�)m−k−1β(m−k)(t)Dk

t .
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7252 C. HÉRIVEAUX AND T. PAUL

Now, for j ∈ [[1, l′]], let us set εj = 1 if b′j = a∗1 and εj = −1 otherwise. Since
[a1, a

∗
1] = �, we get

b1 . . . blb
′
1 . . . b

′
l′ = b′1b1 . . . blb

′
2 . . . b

′
l′ +

ε1 + 1

2
�

l∑
k=1

bk=a1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′

+
ε1 − 1

2
�

l∑
j=1

bk=a∗
1

b1 . . . bk−1bk+1 . . . blb
′
2 . . . b

′
l′ .

Hence by induction on j ∈ [[1, l′]]:

[b1 . . . bl, b
′
1 . . . b

′
l′ ]

i�
=− i

l′∑
j=1

εj + 1

2

l∑
k=1

bk=a1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′

− i

l′∑
j=1

εj − 1

2

l∑
k=1

bk=a∗
1

b′1 . . . b
′
j−1b1 . . . bk−1bk+1 . . . blb

′
j+1 . . . b

′
l′ .

(2.26)

The right-hand side of (2.26) is a finite sum of monomials of order l+ l′ − 2, hence
it is PO(l + l′ − 2) by Lemma 2.9, and Lemma 2.10 is proved. �

Proposition 2.11. Let G be PO(r). Then there exist F , PO(r), and G1 =
G1(P1, . . . , Pn, Dt, �) such that:

(2.27)
[H0(P,Dt), F ]

i�
= G+G1.

Moreover, F is symmetric if G is symmetric, G1 = 0 if r is odd, and G1 is a
homogeneous polynomial function of total order r

2 if r is even.

Remark 2.12. If F =
∑

2p+|j|+|k|+2m=r

αpjkm(t)�pOpW (zj z̄k)Dm
t , one can choose

(2.28)

∫
S1

αpjjm(t)dt = 0.

Indeed, any OpW (zj z̄j)Dm
t commutes with H0(P,Dt, �). It is the choice we will

make through this article.

Proof of Proposition 2.11. Let us first assume that G is a monomial of order r:
G = β(t)b1 . . . blD

m
t , where:

• α is smooth,
• l + 2m = r,
• for j ∈ [[1, l]], bj ∈ {a1, a∗1, . . . , an, a∗n},
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and let us look for F of the form: F = α(t)b1 . . . blD
m
t . We have

[H0, F ]

i�
=
[H0, α(t)b1 . . . blD

m
t ]

i�

=α(t)

n∑
s=1

θs
[Ps, b1 . . . bl]

i�
Dm

t +
[Dt, α(t)]

i�
b1 . . . blD

m
t

=α(t)
n∑

s=1

θs
[Ps, b1 . . . bl]

i�
Dm

t + α′(t)b1 . . . blD
m
t .

(2.29)

If we set ks = �{m ∈ [[1, l]], bm = a∗s} and js = �{m ∈ [[1, l]], bm = as} for
s ∈ [[1, n]], we deduce from (2.26) that

(2.30)
[Ps, b1 . . . bl]

i�
= i(js − ks)b1 . . . bl.

Hence,

(2.31)
[H0, F ]

i�
= i

n∑
s=1

θs(js − ks)α(t)b1 . . . blD
m
t + α′(t)b1 . . . blD

m
t ,

where [H0,F ]
i� = G admits a solution if there exists α such that

(2.32) i

n∑
s=1

θs(js − ks)α(t) + α′(t) = β(t).

If (cp(α))p∈Z and (cp(β))p∈Z are the Fourier coefficients of α and β, it is sufficient
that, for p ∈ Z, cp(α) is a solution of:

(2.33) i

(
n∑

s=1

θs(js − ks) + 2πp

)
cp(α) = cp(β)

and

(2.34) cp(α) =
p→+∞

O

(
1

|p|∞

)
.

If the n-tuples j and k are different, the non-degeneracy condition on the θi’s

together with the fact that cp(β) =
p→+∞

O
(

1
|p|∞

)
(because β is smooth) gives the

existence of cp(α), satisfying (2.33) and (2.34).
If r is odd, j and k cannot be equal, hence Proposition 2.11 is proved in this

case (r odd and G monomial).
If r is even and j = k, there exists a family (cp(α))p∈Z∗ satisfying (2.33) and

(2.34). Hence, if α is the smooth function with Fourier coefficients cp(α) for p 
= 0
and c0(α) = 0, we get

(2.35)
[H0, F ]

i�
= G+ c0(β)b1 . . . blD

m
t .

From the proof of Lemma 2.9, we know that c0(β)b1 . . . blD
m
t can be reordered as

the sum: G1(P,Dt, �) := c0(β)
∑

2p+2|k|=l

ap,k�
pP kDm

t . Therefore, Proposition 2.11

is proved in the case where r is even and G is monomial.
The general case is easily deduced from the case where G is monomial, since G

is a finite sum of monomials of the same order. Also, the form of F allows us to
conclude immediately that F is symmetric if G is so. �
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Now we have everything we need for the proof by induction of Proposition 2.2.

Proof of Proposition 2.2. Microlocally near x = ξ = τ = 0, H(x, �Dx) satisfies, in
the sense of Definition 2.7,

(2.36) H := H(x, �Dx) ∼ H0(P1, . . . , Pn, Dt) +
∑
q≥3

Hq, Hq := 
H(x, �Dx)�q.

Let us set W≤2 = 0 and construct (Wq)q≥3 and (Hq)q≥3 by induction such that:

• for q ≥ 3, Wq is PO(q) and Hq is zero if q is odd, a homogeneous polynomial
function of total order q

2 if q is even, and
• for any q ≥ 3:

i

�
[Wq, H0] +Hq +

⎢⎢⎢⎣ i

�
[W≤q−1, H −H0] +

∑
l≥2

il

�ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H]

⎥⎥⎥⎦
q

= Hq(P,Dt, �).

The existence of such a family is guaranteed by Proposition 2.11.

Let us set, for any N ≥ 3, W̃≤N :=
N∑
q=3

Wq + (|Dt|2 +
n∑

i=1

Pi)
N+1

2 . As H2q is a

homogeneous polynomial function of total order q for any q ≥ 2, we can choose, by
Borel’s lemma, a smooth function h such that, for any N ≥ 2 and in a neighborhood
of p = τ = 0:

(2.37)

∣∣∣∣∣h(p, τ, �)−H0(p, τ )−
N∑
q=2

H2q(p, τ, �)

∣∣∣∣∣ = O
(
(|p|+ |τ |+ |�|)N+1

)
.

We have, for any N ≥ 3:

e
iW̃≤N

� He
−iW̃≤N

� ∼ H +
i

�
[W̃≤N , H] +

∑
l≥2

il

�ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H]

∼ H +
i

�
[W≤N , H0] +

i

�
[W≤N , H −H0]

+
∑
l≥2

il

�ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H] +

i

�
[W̃≤N −W≤N , H].

Since Wq is PO(q) and H0 is PO(2) for any q ≤ N , Lemma 2.8 gives us that

(2.38)

⌊
i

�
[W≤N , H0]

⌋
q

=
i

�
[Wq, H0].

Since the expansion of H − H0 in PO(r) contains no term of order less than or
equal to 2, Lemma 2.8 also gives for q ≤ N :

(2.39)

⌊
i

�
[W≤N , H −H0]

⌋
q

= 
 i
�
[W≤q−1, H −H0]�q.

Lemma 2.8 finally gives us that since the expansion of H(x, �Dx) in PO(r) contains

no term of order less than or equal to 1 and the expansion of W̃≤N contains no

Licensed to University of Oxford. Prepared on Tue Aug 21 19:07:21 EDT 2018 for download from IP 129.67.246.57.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RECOVERING HAMILTONIANS 7255

term of order less than or equal to 2 for q ≤ N :

(2.40)

⎢⎢⎢⎢⎣∑
l≥2

il

�ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , H]

⎥⎥⎥⎥⎦
q

=

⎢⎢⎢⎣∑
l≥2

il

�ll!
[

l times︷ ︸︸ ︷
W≤q−1, . . . ,W≤q−1, H]

⎥⎥⎥⎦
q

,

and since the expansion of W̃≤N − W≤N contains no term of order less than or
equal to N + 1:

(2.41) 
 i
�
[W̃≤N −W≤N , H]�q = 0.

Therefore for any q ≤ N :

(2.42)

⌊
e

iW̃≤N
� He

−iW̃≤N
�

⌋
q

= Hq(P,Dt, �) = 
h(P,Dt, �)�q .

Finally Proposition 2.6 gives us:

(2.43)

∣∣∣∣∣∣∣∣(e iW̃≤N
� He

−iW̃≤N
� − h(P,Dt, �)

)
|μ, ν〉

∣∣∣∣∣∣∣∣ = O
(
|μ�|+ |ν�|)

N+1
2

)
,

which concludes the proof. �

2.2. Recovering the matrix elements from the trace formula. The next
result is the first inverse result needed for the proof of Theorem 2.1.

Proposition 2.13. Let O be a pseudodifferential operator whose principal symbol
vanishes on γ.

(1) There exists a smooth function f vanishing at (0, 0, 0) such that for any
N ≥ 3:

(2.44) 〈μ, ν|e
iW̃≤N

� Oe
−iW̃≤N

� |μ, ν〉 = f

(
(μ+

1

2
)�, 2πν�, �

)
+O

(
(|μ�|+ |ν�|)N

2

)
.

Moreover let φl be a Schwartz function for any integer l whose Fourier
transform is compactly supported in (l − 1, l + 1), and let (alj(O))l≥0 be
provided by the trace formula (1.4). Then

(2) The Taylor expansion of f up to order N is entirely determined by the
family (alj(O)), 0 ≤ j ≤ N , l ∈ N.

Proof. Let us first prove point (1). Let us consider a monomial G = α(t)b1 . . . blD
m
t ,

where:

• α is smooth,
• l + 2m = r,
• for j ∈ [[1, l]], bj ∈ {a1, a∗1, . . . , an, a∗n}.

Let us set ki = �{m ∈ [[1, l]], bm = a∗i } and ji = �{m ∈ [[1, l]], bm = ai} for
i ∈ [[1, n]].

If j 
= k or α /∈ C, then 〈μ, ν|G|μ, ν〉 = 0 for any (μ, ν) ∈ Nn × Z. If now j = k
and α ∈ C, then there exist complex numbers αl (0 ≤ li ≤ ji for i ∈ [[1, n]]), such
that:

(2.45) G =
∑

0≤li≤ji

αl�
|l|P j1−l1

1 . . . P jn−ln
n Dm

t , α0 = α.
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7256 C. HÉRIVEAUX AND T. PAUL

Therefore for any (μ, ν) ∈ Nn × Z:

(2.46) 〈μ, ν|G|μ, ν〉 =
∑

0≤li≤ji

αl�
|l|
((

μ+
1

2

)
�

)j−l

(2πν�)m.

Hence, if G is PO(r), then for any (μ, ν) ∈ Nn × Z:

• 〈μ, ν|G|μ, ν〉 = 0 if r is odd.
• If r is even, there exists a homogeneous polynomial function g of order r

2
such that

(2.47) 〈μ, ν|G|μ, ν〉 = g

(
(μ+

1

2
)�, 2πν�, �

)
.

By Proposition 2.6 and Borel’s lemma, we get that for any operator A there
exists a function g such that for any (μ, ν) ∈ Nn × Z:

(2.48) 〈μ, ν|A|μ, ν〉 = g

(
(μ+

1

2
)�, 2πν�, �

)
+O ((|μ�|+ |ν�|)∞) .

Hence, the only point which remains to be proved is that the function f in point
(1) does not depend on N . It is therefore sufficient to prove that for any q ≤ N −1,

(2.49)

⌊
e

iW̃≤N
� Oe

−iW̃≤N
�

⌋
q

=

⌊
e

iW̃≤q+1
� Oe

−iW̃≤q+1
�

⌋
q

.

But (2.49) is a direct consequence of Lemma 2.8. Indeed,

(2.50) e
iW̃≤N

� Oe
−iW̃≤N

� ∼ O +
∑
l≥1

il

�ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]

and since the principal symbol of O vanishes on γ, Lemma 2.8 gives us for any l ≥ 1
and any q ≤ N − 1:

(2.51)

⎢⎢⎢⎢⎣ il

�ll!
[

l times︷ ︸︸ ︷
W̃≤N , . . . , W̃≤N , O]

⎥⎥⎥⎥⎦
q

=

⎢⎢⎢⎢⎣ il

�ll!
[

l times︷ ︸︸ ︷
W̃≤q+1, . . . , W̃≤q+1, O]

⎥⎥⎥⎥⎦
q

.

Let us now move on to the proof of point (2). Since φ̂l is supported near a single
period of the flow, one can microlocalize the trace formula with observables near γ:
(2.52)

2πTr

(
Oφl

(
H − E

�

))
= Tr

(
O

∫
R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit
H−E

� dt

)
+O(�∞),

where ρ ∈ C∞
0 (R) is compactly supported and ρ = 1 in a neighborhood of p = τ = 0.

Therefore we can conjugate (2.52) by the microlocally unitary operator e
iW̃≤N

� :

2πTr

(
Oφl

(
H − E

�

))

= Tr

⎛⎝e
iW̃≤N

� Oe
−iW̃≤N

�

∫
R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit
e

iW̃≤N
� He

−iW̃≤N
� −E

� dt

⎞⎠
+O(�∞).
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Thanks to Proposition 2.2, we can lighten the r.h.s. for any (μ, ν) ∈ Nn × Z:

∫
R

φ̂l(t)ρ(P1 + · · ·+ Pn + |ζ|)eit
e

iW̃≤N
� He

−iW̃≤N
� −E

� dt|μ, ν〉

=

(∫
R

φ̂l(t)ρ
(
(|μ|+ n

2
+ |2πν|)�

)
eit

h((μ+1
2
)�,ν�,�)−E+O(|μ�|+|ν�|)

N+1
2 )

� dt

)
|μ, ν〉.

(2.53)

As φ̂l is smooth and compactly supported, together with the non-degeneracy
condition on the θi’s, we can assure that if we choose a sufficiently small support
for ρ, we have for any η > 0:(∫

R

φ̂l(t)ρ
(
(|μ|+ n

2
+ |2πν|)�

)
eit

h((μ+1
2
)�,ν�,�)−E+O(|μ�|+|ν�|)

N+1
2 )

� dt

)
|μ, ν〉

=

(∫
R

φ̂l(t)ρ
(
(|μ|+ n

2
+ |2πν|)�η

)
eit

h((μ+1
2
)�,ν�,�)−E+O(|μ�|+|ν�|)

N+1
2 )

� dt

)
|μ, ν〉

+O(�∞).

Hence, choosing η < 1
2 :

2πTr

(
Oφl

(
H − E

�

))
+O(�∞)

=
∑
μ,ν

〈μ, ν|e
iW̃≤N

� Oe
−iW̃≤N

� |μ, ν〉 ×
∫
R

φ̂l(t)ρ
(
(|μ|+ n

2
+ |ν|)�η

)
eit(2πν+θ.(μ+ 1

2 ))

. . . exp

⎛⎝ it

�

∑
1≤q≤N−2

Hq

(
(μ+

1

2
)�, ν�, �

)
+O

(
(|μ|+ |ν|)N+1

2 �
N−1

2

)⎞⎠ dt

=
∑
μ,ν

∫
R

φ̂l(t)ρ
(
(|μ|+ n

2
+ |2πν|)�η

)
eit(2πν+θ.(μ+ 1

2 )+
H2(0,0,�)

�
)

×

⎛⎝1 +

N−1
2∑

i≥1

�iQi(μ+
1

2
, ν, t)

⎞⎠
×

N+1
2∑

p≥1

∑
|k|+m≤p

bk,m,p−|k|−m(μ+
1

2
)k(2πν)m�pdt+O(�

N+1
2 ),

where for any i ≤ N−1
2 , Qi is a determined polynomial function of degree in(

μ+ 1
2 , ν

)
less than or equal to i + 1, which depends on the Hq’s and the Tay-

lor expansion of exp, and the bk,m,s ((k,m, s) ∈ Nn+2\{0}) come from the Taylor
expansion at (0, 0, 0) of the function f defined in the first point of Proposition 2.13,
i.e. for any N ≥ 1:

(2.54) f(x, y, z) =
∑

1≤|k|+m+s≤N

bk,m,sx
kymzs +O

(
(|x|+ |y|+ |z|)N+1

)
.
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Now, let us set:

(2.55) ∀t ∈ R∗, ∀α ∈ (R\2π
t
Z)n, g(t, α) :=

ei
t
2 (α1+···+αn)

n∏
i=1

(1− eitαi)
.

By the non-degeneracy condition on the θi’s, g is well defined on the compact

support of φ̂l around a single period, which is precisely l.
Therefore we get from the Poisson formula and the Riemann-Lebesgue lemma

that the quantity Xp(l) below can be computed recursively on p ≤ N+1
2 from the

alj(O), j = 0, . . . , p:

Xp(l) =
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i

∂

∂t

)m
(
φ̂l(t)

(
−i

t

)k
∂kg

∂αk
(t, α)

)]
(l, θ)

=
∑

|k|+m≤p

bk,m,p−|k|−m

[(
−i

∂

∂t

)m(
−i

∂

t∂α

)k

g

]
(l, θ)

(2.56)

since φ̂l is identically 1 around l.

Now, let us set xi(t, α) = ei
tαi
2 for any i ∈ [[1, n]], any t ∈ R, and any α ∈

(R\ 2π
t Z)n, and also define the holomorphic function h on C\{−1, 1} by h(z) = z

1−z2

for z ∈ C\{−1, 1}. We have for any k ∈ Nn:

(2.57)

(
−i

∂

t∂α

)k

g =
n∏

i=1

(
−i

∂

t∂αi

)ki

(h ◦ xi).

For any i ∈ [[1, n]], an easy induction on ki ∈ N leads to the following, since

h(z) = 1
2

(
1

1−z − 1
1+z

)
for any z ∈ C\{−1, 1} and −i ∂xi

t∂αi
= 1

2xi:

(2.58)

(
−i

∂

t∂αi

)ki

(h ◦ xi) =
ki!

2ki+1

(
xi

(1− xi)ki+1
+

xi

(1 + xi)ki+1

)
.

Now, since −i∂xi

∂t = αi

2 xi, an induction on si ∈ N shows that(
−i

∂

∂t

)si (
−i

∂

t∂αi

)ki

(h ◦ xi)

=
(ki + si)!α

si
i

2ki+si+1

(
xi

(1− xi)ki+si+1
+

xi

(1 + xi)ki+si+1

)
.

(2.59)

Let us now introduce for any n-tuple s such that |s| = m, the multinomial coefficient(
m

s

)
=

m!

s1! . . . sn!
.

We have

(2.60)

(
−i

∂

∂t

)m(
−i

∂

t∂α

)k

g =
∑

|s|=m

(
m

s

) n∏
i=1

(
−i

∂

∂t

)si (
−i

∂

t∂αi

)ki

(h ◦ xi).

Let us use Kronecker’s theorem, whose hypothesis is precisely the non-degeneracy
condition on the θi’s: for any n-tuple (x1, . . . , xn) ∈ Sn1 , one can find a sequence of
integers (lp)p∈Z, such that:

∀j ∈ [[1, n]], xj(lp, θ) −→
p→+∞

xj .
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Therefore, setting

(2.61) u(k,m) =
∑

|s|=m

(
m

s

) n∏
i=1

(ki + si)!θ
si
i

2ki+si+1

(
xi

(1− xi)ki+si+1
+

xi

(1 + xi)ki+si+1

)
for any (x1, . . . , xn) ∈ (S1\{−1, 1})n and (k,m) ∈ Nn+1, we have that (2.56),
(2.59), and (2.60) together with Kronecker’s theorem allows us to conclude that
Xp :=

∑
|k|+m≤p

bk,m,p−|k|−mu(k,m) is determined by the alj(O), j = 0, . . . , p.

Hence, the only thing which remains to be proved is that, if one chooses xi tend-
ing to 1 in a way convenient to us, the |u(k,m)|’s will be neglectable in comparison
to each other. More precisely, let xi tend to 1 in such a way that

(2.62) ∀i ∈ [[1, n− 1]], |1− xi| = o (|1− xi+1|p) .

We have that s1 = m gives the leading order in (2.61) and therefore

(2.63) (1− x1)
mu(k,m) ∼ C

n∏
i=1

1

(1− xi)ki+1

for some C > 0. Hence, if one sets m̃ = (m, 0, . . . , 0), then

(2.64) u(k,m) = o
(
u(k′,m′)

)
if k + m̃ < k′ + m̃′,

where < is the lexicographical order on Nn. Therefore, for any p ∈ N and (k,m) ∈
Nn+1 such that |k0|+m0 ≤ p, the following quantity can be recursively determined
from Xp:

(2.65) Xk0,m0
=

∑
k′+m̃′=k+m̃

bk,m,p−|k|−mu(k,m).

Reversing for example the roles of i = 1 and i = 2 in (2.62), and observing that

k2 + m 
= k′2 + m′ if k + m̃ = k′ + m̃′ and (k,m) 
= (k′,m′), one determines
bk,m,p−|k|−m from (2.65) recursively on m. Finally, each bk,m,s with |k|+m+s ≤ N

is determined by the alj(O), with j = 0, . . . , N and l ∈ N and the point (2) is proved,
which ends the proof of Proposition 2.13. �

2.3. Recovering the Hamiltonian from matrix elements. In order to finish
the proof of Theorem 2.1 we will show how the knowledge of the diagonal ma-
trix elements of a given known self-adjoint operator conjugated by a unitary one
determines the latter (in the framework of asymptotic expansion).

Let W̃≤N be as in Proposition 2.2 and let Omnp, Op be as in Theorem 2.1. By
Proposition 2.13, there exist smooth functions fmnp and fp vanishing at (0, 0, 0) if
(m,n) 
= (0, 0) such that for any N ≥ 3:
(2.66)

〈μ, ν|e
iW̃≤N

� Omnpe
−iW̃≤N

� |μ, ν〉 = fmnp

(
(μ+

1

2
)�, 2πν�, �

)
+O

(
(|μ�|+ |ν�|)N

2

)
and
(2.67)

〈μ, ν|e
iW̃≤N

� Ope
−iW̃≤N

� |μ, ν〉 = fp

(
(μ+

1

2
)�, 2πν�, �

)
+O

(
(|μ�|+ |ν�|)N

2

)
.
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Proposition 2.14. The Taylor expansions, at the origin, of the functions fmnp,
fq up to order N − 1, N ≥ 3, for (m,n, p, q) ∈ N2n × Z2 satisfying conditions

(1) 0 < |m|+ |n| ≤ N ,
(2) ∀j = 1, . . . , n, mj = 0 or nj = 0,
(3) p ∈ Z, q ∈ Z∗,

determine completely W≤N .

Proof of Proposition 2.14. Let us write

WN =
∑

2l+|j|+|k|+2s=N

αljks(t)�
lOpW (zj z̄k)Ds

t

:=
∑

2l+|j|+|k|+2s=N

∑
d∈Z

αljksd�
lei2πdtOpW (zj z̄k)Ds

t ,
(2.68)

where every αljjs0 is chosen to be zero by the convention of Remark 2.12.
Since W2 = 0 we can proceed by induction on N ≥ 3: let’s assume W≤N−1 is

already determined. Let (m,n, p, q) ∈ N2n × Z× Z∗ be such that

(2.69) 0 < |m|+ |n| ≤ N, ∀i ∈ [[1, n]], mini = 0.

Let us also state the following lemma, whose proof will be given after the end of
the present proof.

Lemma 2.15. Let (j, k, s, d) ∈ N2n+1×Z, such that |j|+ |k|+2s = N . If j+m =
k + n, then

(2.70)
〈μ, ν|[ei2πptOpW (zj z̄k)Ds

t , Omnp]|μ, ν〉 = −�gjks
((
μ+ 1

2

)
�, ν�

)
+O

(
�2(|μ�|+ |ν�|)N+|m|+|n|

2 −2 + �(|μ�|+ |ν�|)N+|m|+|n|−1
2

)
,

where

gjks

((
μ+

1

2

)
�, ν�

)
= (2πν�)s(μ�)max(j,k)

(
n∑

i=1

kimi − jini

μi�
+

ps

ν�

)
and max(j, k) = (max(ji, ki))1≤i≤n. If j +m 
= k + n or d 
= p, then

〈μ, ν|[ei2πdtOpW (zj z̄k)Ds
t , Omnp]|μ, ν〉 =O

(
�2(|μ�|+ |ν�|)

N+|m|+|n|
2 −2

)
+O

(
�(|μ�|+ |ν�|)

N+|m|+|n|−1
2

)
.

(2.71)

We also have, if j = k:

〈μ, ν|[ei2πqtOpW (zj z̄k)Ds
t , Oq]|μ, ν〉 = −2π�q(1 + s) ((μ+ 1/2) �)

j
(ν�)s

+O
(
�2(|μ�|+ |ν�|)

N−2
2 + �(|μ�|+ |ν�|)

N+1
2

)
,

(2.72)

and if j 
= k or d 
= q:

〈μ, ν|[ei2πdtOpW (zj z̄k)Ds
t , Oq]|μ, ν〉 = O

(
�2(|μ�|+ |ν�|)N−2

2

)
+O

(
�(|μ�|+ |ν�|)

N+1
2

)
.

(2.73)

By equation (2.66), the Taylor expansion of function fmnp up to order N − 1
determines modulo O

(
(|μ�| + |ν�|)N

)
:

(2.74) 〈μ, ν|e
iW̃≤2N

� Omnpe
−iW̃≤2N

� |μ, ν〉 − 〈μ, ν|Omnp|μ, ν〉.
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Since W̃≤2N is a sum of polynomial operators of order greater than 3, we get from
Lemma 2.8 that
(2.75)

∑
l≥2

il

�ll!
〈μ, ν|[

l times︷ ︸︸ ︷
W̃≤2N , . . . , W̃≤2N , Omnp]|μ, ν〉 = O

(
(|μ�|+ |ν�|)

N+|m|+|n|−1
2

)
.

Hence, using the notation of Lemma 2.15, (2.74) is equal, modulo known terms and

O
(
(|μ�|+ |ν�|)N+|m|+|n|−1

2

)
+O

(
�(|μ�|+ |ν�|)N+|m|+|n|

2 −2
)
, to

(2.76)
∑

|j|+|k|+2s=N+1
j+m=k+n

iα0jkspgjks

((
μ+

1

2

)
�, ν�

)
.

Let us define the set Γ = {(j, k, s) ∈ N2n+1 | |j|+ |k|+ 2s = N, j +m = k + n}
and let us choose μ1(�), . . . , μn(�), ν(�) such that, as � tends to 0,

(2.77) ν
N−2
N−1 � μ1 � · · · � μn � ν � �−

1
3 .

Let us also define i0 := min{i ∈ [[1, n]],mi 
= ni} (it exists since (m,n) 
= (0, 0)
and mini = 0 for any i ∈ [[1, n]]). Let us also remark that ji0ni0 − ki0mi0 never
vanishes on Γ. We have by (2.77) that, for (j, k, s) ∈ Γ,

(2.78) gjks

((
μ+

1

2

)
�, ν�

)
∼

�→0

ji0ni0 − ki0mi0

μi0�
(2πν�)s

n∏
i=1

(μi�)
max(ji,ki).

Let us now define a strict total order ≺ on Γ by

(2.79)
(j, k, s) ≺ (j′, k′, s′)

�
(max(j1, k1), . . . ,max(jn, kn), s) < (max(j′1, k

′
1), . . . ,max(j′n, k

′
n), s

′),

where < is the lexicographical order on Nn+1. ≺ is asymmetric since the sign of
mi − ni determines whether max(ji, ki) is equal to ji or ki for i ∈ [[1, n]]. (2.77)
and (2.78) give that

(2.80) (j, k, s) ≺ (j′, k′, s′) ⇒ gjks

((
μ+

1

2

)
�, ν�

)
�
�→0

gj′k′s′

((
μ+

1

2

)
�, ν�

)
and for any (j, k, s) ∈ Γ:

O
(
(|μ�|+ |ν�|)

N+|m|+|n|−1
2

)
+O

(
�(|μ�|+ |ν�|)

N+|m|+|n|
2 −2

)
� gjks

((
μ+

1

2

)
�, ν�

)
.

Therefore, the Taylor expansion up to order N − 1 of the functions fmnp deter-
mines the coefficients (α0jksp)|j|+|k|+2s=N,j+m=k+n by induction on (Γ, <).

Let (m,n, p) run over all the possible values in N2n×Z while satisfying condition
(2.69). We claim that one can determine every function α0jks with |j|+|k|+2s = N
and j 
= k. Indeed, for any (j, k, s) ∈ N2n+1 such that |j|+ |k|+2s = N and j 
= k,
let us choose for any i ∈ [[1, n]]:

(2.81) ni = max(ji − ki, 0) and mi = max(ki − ji, 0);
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7262 C. HÉRIVEAUX AND T. PAUL

then j +m = k + n and (m,n) 
= (0, 0) while for any i ∈ [[1, n]], mi = 0 or ni = 0.
Finally,

|m|+ |n| =
n∑

i=1

|ji − ki| ≤ |j|+ |k| ≤ N.

Let us remark that condition j 
= k is always satisfied if N is odd and |j|+ |k|+
2s = N . If N is even, the Taylor expansion up to order N

2 of the function fq deter-

mines modulo known terms and O
(
(|μ�|+ |ν�|)N+2

2

)
+O

(
�(|μ�|+ |ν�|)N−2

2

)
:

(2.82)
∑

2|j|+2s=N

iα0jjsq2πq(1 + s) ((μ+ 1/2) �)j (ν�)s.

Let us choose μ1(�), . . . , μn(�), ν(�) such that, as � tends to 0,

(2.83) ν
N−2
N � μ1 � · · · � μn � ν � �−

1
2 .

We have, for any (j, s, q) such that 2|j|+ 2s = N :

O
(
(|μ�|+ |ν�|)

N+2
2

)
+O

(
�(|μ�|+ |ν�|)

N−2
2

)
� ((μ+ 1/2) �)j (ν�)s.

Thus, every α0jjsq is determined by induction on the set {2|j| + 2s = N} ordered
by the lexicographical order. Hence, letting q run over Z∗, we finally determine
every α0jksd with |j|+ |k|+2s = N and d 
= 0 if j = k, hence the principal symbol
of WN .

Let us now choose 1 ≤ l0 < N
2 and assume that we already determined the

functions αljks with 2l+ |j|+ |k|+2s = N and l < l0. Let (m,n, p, q) ∈ N2n×Z×Z∗

be such that

(2.84) 0 < |m|+ |n| ≤ N − 2l0, ∀i ∈ [[1, n]], mini = 0.

The Taylor expansion of fmnp up to order N − 1 − l0 determines modulo known

terms O
(
(|μ�|+ |ν�|)N+|m|+|n|−1

2

)
+O

(
�l0+1(|μ�|+ |ν�|)

N−2l0+|m|+|n|
2 −2

)
:

∑
2l0+|j|+|k|+2s=N

j+m=k+n

iαl0jksp�
l0gjks

((
μ+

1

2

)
�, ν�

)
.

Let us choose μ1(�), . . . , μn(�), ν(�) such that, as � tends to 0:

(2.85) ν
N−l0−2
N−l0−1 � μ1 � · · · � μn � ν � �

− 1
2l0+3 .

Then for any (j, k, s) such that 2l0 + |j| + |k| + 2s = N and j + m = k + n,

we have: O
(
(|μ�|+ |ν�|)N+|m|+|n|−1

2

)
+ O

(
�l0+1(|μ�|+ |ν�|)

N−2l0+|m|+|n|
2 −2

)
�

�l0gjks
((
μ+ 1

2

)
�, ν�

)
. Therefore, every αl0jksp with 2l0 + |j| + |k| + 2s = N and

j + m = k + n is determined just like before. Letting (m,n, p) run over all the
possible values in N2n×Z while satisfying (2.84), we determined every αl0jksp with

2l0 + |j|+ |k| + 2s = N − 1 and j 
= k. The Taylor expansion of fq up to order N
2

determines the remaining αl0jjsq, and, finally, every function αl0jks where (j, k, s)
satisfies 2l0 + |j|+ |k|+ 2s = N − 1, which concludes our proof by induction. �
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Proof of Lemma 2.15. The principal symbol of 1
i� [e

i2πdtOpW zj z̄kDs
t , Omnp] is

σjkds(z, t, z̄, τ ) =
{
ei2πdtzj z̄kτ s,Omnp

}
=
{
ei2πdtzj z̄kτ s, e−i2πptzmz̄n

}
+O

(
(|z|2 + τ )

|m|+|n|+N−1
2

)
.

(2.86)

Hence,

σjkds(z, t, z̄, τ ) =− i
n∑

i=1

∂

∂zi
(ei2πdtzj z̄kτ s)

∂

∂z̄i
(e−i2πptzmz̄n)

+ i

n∑
i=1

∂

∂z̄i
(ei2πdtzj z̄kτ s)

∂

∂zi
(e−i2πptzmz̄n)

− ∂

∂τ
(ei2πdtzj z̄kτ s)

∂

∂t
(e−i2πptzmz̄n)

+O
(
(|z|2 + τ )

|m|+|n|+N−1
2

)
=− iei2π(d−p)tzj+mz̄k+nτ s

(
n∑

i=1

jini − kimi

ziz̄i
− 2πps

τ

)
+O

(
(|z|2 + τ )

|m|+|n|+N−1
2

)
.

(2.87)

Let us remark that if j + m = k + n, then j + m = k + n = max(j, k). Let
us also remark that if jini − kimi 
= 0, then ji + mi 
= 0 and ki + ni 
= 0.
Therefore, the last line in (2.87) can be reduced to a polynomial expression mod-

ulo O
(
(|z|2 + τ )

|m|+|n|+N−1
2

)
. 1

�
[ei2πdtOpW zj z̄kDs

t , Omnp] has the same princi-

pal symbol as the polynomial operator obtained when replacing each zi by ai,
z̄i by a∗i , and τ by Dt in this polynomial expression. Since the expansion in

PO 1
�
[ei2πdtOpW zj z̄kDs

t , Omnp] starts at order N + |m| + |n| − 2, we can hence
conclude that the asymptotic expansions (2.70) and (2.71) are verified.

Now, the principal symbol of 1
i� [e

i2πdtOpW zj z̄kDs
t , Oq] is

σ̃jkds(z, t, z̄, τ ) =
{
ei2πdtzj z̄kτ s,Oq

}
=
{
ei2πdtzj z̄kτ s, e−i2πqtτ

}
=

∂

∂t
(ei2πdtzj z̄kτ s)

∂

∂τ
(e−i2πqtτ )

− ∂

∂τ
(ei2πdtzj z̄kτ s)

∂

∂t
(e−i2πqtτ )

=i2π(d+ sq)ei2π(d−q)tzj z̄kτ s

(2.88)

modulo O
(
(|z|2 + τ )

N+1
2

)
. Hence, (2.72) and (2.73) are verified just as before. �

Theorem 2.1 is, as has already been said, a direct consequence of Propositions
2.13 and 2.14.

2.4. “Bottom of a well”. In this subsection, we treat the “bottom of a well”
analogs of Theorem 1.4, namely Theorems 1.10 and 1.14. The proof of Theorem
1.10 is a line-by-line analog of the proof of Proposition 2.14: we omit it here.
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7264 C. HÉRIVEAUX AND T. PAUL

However, Theorem 1.14, which needs fewer assumptions in the particular case of a
Schrödinger operator, deserves a proper proof.

Proof of Theorem 1.14. In a system of Fermi coordinates, the (principal and total)
symbol of our Schrödinger operator can be written as

(2.89) H(x, ξ) = V (q0) +
n∑

i=1

θi
x2
i + ξ2i
2

+R(x), R(x) = O(x3).

Let H0(x, ξ) =
n∑

i=1

θi
x2
i+ξ2i
2 . Let us state the following lemma, which is a classical

analog of Proposition 2.11 (we therefore omit its proof) and uses the hypothesis of
rational independence of the θi’s.

Lemma 2.16. Let G ∈ C∞(T ∗(Rn),R) be a homogeneous polynomial of degree
k ≥ 3. There exists a unique couple of functions G1 ∈ C∞(Rn,R) and F ∈
C∞(T ∗(Rn),R) such that

(2.90) ∀(x, ξ) ∈ T ∗(Rn), {H0, F}(x, ξ) = G(x, ξ)−G1(p)

and F is polynomial with no diagonal term when written as a function of (z, z̄) ( i.e.
of the form zlz̄l).

Moreover:

(1) F is a homogeneous polynomial of degree k and is entirely determined by
the extradiagonal terms of G, i.e. of the form zlz̄m (l 
= m) with z =

(x+ iξ)/
√
2.

(2) G1 is a homogeneous polynomial of degree k
2 if k is even, zero otherwise.

Moreover, G1(zz̄) is equal to the sum of the diagonal terms of G.

Just as in the proof of Proposition 2.2, one shows recursively, using Lemma 2.16,
the existence of a family of real numbers (αlm)l,m∈N such that if the functions
(FN )N≥3 are defined for N ≥ 3 by

(2.91) FN (z, z̄) =
∑

|l|+|m|=N

αlmzlz̄m,

then there exist homogeneous polynomials Hi ∈ C∞(Rn,R) of degree i satisfying,
for N ≥ 3:

(2.92) H ◦ expχF≤N
(x, ξ) =


N
2 �∑

i=1

Hi(p) +O((x, ξ)N+1).

Here p = p(x, ξ) = (
x2
i+ξ2i
2 )1≤i≤n, F≤N =

N∑
k=1

Fk, and χF≤N
is the vector field

(2.93) χF≤N
=

n∑
i=1

∂F≤N

∂ξi

∂

∂xi
− ∂F≤N

∂xi

∂

∂ξi
.

+∞∑
i=1

Hi (well defined modulo a flat function) is the classical Birkhoff normal form

of H.
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Let us define ak = 1
k!

∂|k|R
∂xk (0) for k ∈ Nn and |k| ≥ 3. We observe that, for

k ∈ Nn:

xk =

(
z + z̄√

2

)k

=
1

√
2
|k|

∑
(l,m)∈N

n

l+m=k

n∏
j=1

(
kj
mj

)
zlz̄m.(2.94)

Let us also define K = {k ∈ Nn, |k| ≥ 3} \ 2Nn. By Lemma 2.16, there exists a
unique homogeneous polynomial of degree |k| ≥ 3 with no diagonal terms, such
that:

(2.95) {H0, Ik}(x, ξ) =

⎧⎨⎩
xk if k ∈ K,

xk − 1√
2
|k|

n∏
j=1

( kj

kj/2

)
|z|k if k ∈ 2Nn.

Functions (FN )N≥3 and (Hi)i≥1 are constructed recursively as follows: letN ≥ 2

and assume that we have already constructed F3, . . . , FN (F2 = 0) andH1, . . . , H

N

2 �

(H1(p) =
n∑

i=1

θipi). Let us set

(2.96) GN+1(x, ξ) = H ◦ expχF≤N
(x, ξ)−


N
2 �∑

i=1

Hi(p) +O(‖(x, ξ)‖N+1)

and define FN+1 and, if N is odd, H
N+1

2 by Lemma 2.16:

(2.97) {H0, FN+1}(x, ξ) =
{

GN+1(x, ξ) if N is even,

GN+1(x, ξ)−H
N+1

2 (p) if N is odd.

We remark that, in our case, (x, ξ) �→ GN+1(x, ξ)−
∑

|k|=N+1

akx
k is a sum of terms

that depend only on F≤N , (Hi)1≤i≤
N
2 �, and (ak)|k|≤N . Therefore, we get by

induction that the function(s)
(2.98)

FN+1 −
∑

|k|=N+1

akIk and, when N is odd, H
N+1

2 (p)−
∑

|l|=N+1
2

a2l
2|l|

n∏
j=1

(
2lj
lj

)
pl

depend only on (ak)|k|≤N .

Now, let us define, for k ∈ Nn, (lk,mk) ∈ N2n by their components: for i ∈
[[1, n]], (lk)i = 
ki

2 �, (mk)i = ki − 
ki

2 �. k �→ (lk,mk) is a bijective correspondence
between K and the set Λ defined by:

(2.99) Λ = {(l,m) ∈ N2n | m− l ∈ {0, 1}n \ {0}, |l|+ |m| ≥ 3}.

Moreover, for k ∈ K, Ik is entirely determined by (2.95) and is equal in z, z̄
coordinates to:

(2.100) Ik(z, z̄) =
1

√
2
|k|

∑
(l,m)∈N

n

l+m=k

n∏
j=1

(
kj

mj

)
θ.(l −m)

zlz̄m.
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7266 C. HÉRIVEAUX AND T. PAUL

Therefore, if k ∈ K, |k| = N + 1, we get by (2.98) that

(2.101) αlkmk
− ak

√
2
|k|

n∏
j=1

( kj


kj/2�
)

θ.(lk −mk)

depends only on (ak)|k|≤N .

Now if k ∈ 2Nn and |k| = N + 1, and if we write H
N+1

2 (p) =
∑

|l|=N+1
2

blp
l, then

we get by (2.98) that

(2.102) bk/2 −
ak

√
2
|k|

n∏
j=1

(
kj
kj/2

)
depends only on (ak)|k|≤N .

Therefore we get by (2.101) and (2.102) that the family (ak)|k|=N+1 can be
determined from the terms of order N + 1 in the Taylor expansion of the classical
Birkhoff normal form, the family (αlkmk

)|k|=N+1, and the family (ak)|k|≤N .
So we just proved, by induction, that for any N ≥ 3, (ak)|k|≤N is determined by

the Taylor expansion of the classical Birkhoff normal form up to order N and the
family (αlm)(l,m)∈Λ,|l|+|m|≤N .

As shown in [9, 10], the Taylor expansion of the classical Birkhoff normal form
is determined by the spectrum of H(x, �Dx) in [V (q0), V (q0) + ε], ε > 0. In fact
it is obvious that one can take ε in the �-dependent form given in Theorem 1.14
(and Theorem 1.10) since the proof goes along the trace formula argument, and
eigenvalues above this value of ε give an �∞ contribution to the trace formula.

Moreover we have for N ≥ 2 and m ∈ {0, 1}n \ {0}

Om0 ◦ expχF≤N+1
(x, ξ) = Om0(x, ξ) + {F≤N+1,Om0}(x, ξ) +O((x, ξ)N+|m|)

= zm −
∑

(l,k)∈Λ
|l|+|k|=N+1

k−l=m

αlk|z|2l
n∑

i=1

kimi + · · ·+O((x, ξ)N+|m|),

where . . . stands for extradiagonal terms and terms which depend only on
(αlk)(l,k)∈Λ,|l|+|m|≤N . Therefore, the diagonal matrix elements of an observable
Om0 are equal, modulo terms depending only on (αlk)(l,k)∈Λ,|l|+|k|≤N , to

(2.103)
∑

(l,k)∈Λ
|l|+|k|≤N+1

k−l=m

αlk|μ�|l
n∑

i=1

kimi +O(�) +O(|μ�|
N+|m|

2 ).

This shows, as in the proof of Theorem 2.1, that the αlm, (l,m) ∈ Λ, are all
determined, so the full Taylor expansion of R, hence of V , near q0, is completely
determined. �

3. Explicit construction of Fermi coordinates

In this section we prove Theorems 1.3, 1.9, and 1.13, using Lemmas A.1, A.2,
and A.4 on linear and bilinear algebra. We start by the “bottom of a well”, toy
model for the periodic trajactory case.
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3.1. General “bottom of a well” case.

Proof of Theorem 1.9. Let (x, ξ) ∈ T ∗(Rn) be a system of Darboux coordinates
centered at z0. d2Hp(z0) is a positive bilinear form on Tz0(T

∗M), therefore, by
Lemma A.1, there exists a local change of variable φ, symplectic and linear in the
Darboux coordinates, such that

(3.1) Hp ◦ φ(x, ξ) = Hp(z0) +

n∑
i=1

θi
x2
i + ξ2i
2

+O(‖(x, ξ)‖3).

We will prove that the diagonal matrix elements of the family of pseudodif-
ferential operators P k in the system of eigenvectors corresponding to eigenvalues
of H(x, �Dx) in [Hp(z0), Hp(z0) + ε(�)] provide an explicit construction of such a
symplectomorphism φ (which is not unique).

We first start with the case where the family (Pk)1≤k≤2n2+n is realized by the
example (1.12).

Let S be the matrix of dφz0 in the basis ( ∂
∂x1

, ∂
∂ξ1

, . . . , ∂
∂xn

, ∂
∂ξn

). We have for

(i, j) ∈ [[1, n]]2 and s ∈ {1, 2, 3}:

Qs
i,j ◦ φ(x, ξ) =

(
n∑

k=1

Sis,2k−1xk + Sis,2kξk

)(
n∑

k=1

Sjs,2k−1xk + Sjs,2kξk

)

=

n∑
k,k′=1

Sis,2k−1Sjs,2k′−1xkxk′ +

n∑
k,k′=1

Sis,2kSjs,2k′−1ξkxk′

+
n∑

k,k′=1

Sis,2k−1Sjs,2k′xkξk′ +
n∑

k,k′=1

Sis,2kSjs,2kξkξk′

=

n∑
k=1

[Sis,2k−1Sjs,2k−1 + Sis,2kSjs,2k] zkz̄k +R,

(3.2)

where, for (i, j) ∈ [[1, n]]2,

is =

{
2i− 1 if s ∈ {1, 2},
2i if s = 3,

and js =

{
2j if s ∈ {1, 3},
2j − 1 if s = 2,

and R is a linear combination of terms of the form zkzk′ ((k, k′) ∈ [[1, n]]) and zkz̄k′

((k, k′) ∈ [[1, n]], k 
= k′).
Let Aφ be any Fourier integral operator implementing locally dφz0 and |μ〉 de-

fined by (2.7). The condition that A−1
φ |μ〉 belongs to the spectral interval defined

in Theorem 1.9 reads as |μ�| ≤ ε. We get from (3.2) that

(3.3) 〈μ|AφQ
s
i,jA

−1
φ |μ〉 =

n∑
k=1

[Sis,2k−1Sjs,2k−1 + Sis,2kSjs,2k]

(
μk +

1

2

)
�+O(�),

with the term O(�) coming from the subsymbols contribution (let us recall that we
are microlocalized in a bounded neighborhood of z0). Therefore (3.3) for |μ�| ≤ ε
with the condition � = 0(ε) determines the values of Si,2k−1Sj,2k−1 + Si,2kSj,2k for
(i, j) ∈ [[1, 2n]]2 and k ∈ [[1, n]].

As claimed by Lemma A.2, the preceding quantities are independent of the choice
of a symplectic matrix S satisfying (3.1). Since, as we already said, such a matrix S
is not unique, it is not possible to determine S out of the preceding matrix elements.
However, by Lemma A.2, the family (Si,2k−1Sj,2k−1+Si,2kSj,2k)(i,j)∈[[1,2n]]2,k∈[[1,n]]
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7268 C. HÉRIVEAUX AND T. PAUL

(determined by the preceding matrix elements) allows us to construct explicitly a
suitable matrix S, hence a suitable symplectomorphism φ.

This ends the proof in the case where the family (Pk)1≤k≤2n2+n is realized by
the example (1.12). Let us now consider the general case. The family of Hessian
matrices (d2Pk(z0))1≤k≤2n2+n forms a basis of the space of 2n × 2n symmetric
matrices. Hence, each d2Qs

i,j(z0) for (i, j) ∈ [[1, n]]2 and s ∈ {1, 2, 3} is a linear

combination of the matrices d2Pk(z0), 1 ≤ k ≤ 2n2+n. Since Pk(z0) = ∇Pk(z0) =
0, there exists a family (λk

ijs)(i,j,s,k)∈[[1,n]]2×{1,2,3}×[[1,2n2+n]] of complex numbers

such that for any (i, j, s) ∈ [[1, n]]2 × {1, 2, 3}:

(3.4) Qs
i,j(x, ξ) =

2n2+n∑
m=1

λk
ijsPk(x, ξ) +O(‖(x, ξ)‖3)

and therefore

(3.5) 〈μ|AφQ
s
i,jA

−1
φ |μ〉 =

2n2+n∑
k=1

λk
ijs〈μ|AφP

kA−1
φ |μ〉+O(�) +O(|μ�|2).

Hence, the family (Si,2k−1Sj,2k−1+Si,2kSj,2k)(i,j)∈[[1,2n]]2,k∈[[1,n]] is determined just
as before, and this ends the proof in the general case. �

3.2. The “Schrödinger case”.

Proof of Theorem 1.13. Let x ∈ Rn be any system of local coordinates centered
at q0 ∈ M, and let (x, ξ) ∈ T ∗(Rn) be the corresponding Darboux coordinates
centered at (q0, 0) ∈ T ∗M. Since d2V (q0) is a positive bilinear form on Tq0M,
there exists, by Lemma A.4, a local change of variable u, linear and orthogonal in
the Darboux coordinates, such that

(3.6) V ◦ u(x) = 1

2

n∑
i=1

θ2i x
2
i +O(x3),

where the θ2i ’s are the eigenvalues of d2V (q0).
Let us denote by U the matrix of duq0 written in the basis ( ∂

∂x1
, . . . , ∂

∂xn
), and

define a symplectomorphism φ locally by its expression in the Darboux coordinates:
φ(x, ξ) = (Ux,Uξ).

If φ0 is the symplectomorphism sending (x, ξ) to ( x1√
θ1
, . . . , xn√

θn
,
√
θ1ξ1, . . . ,

√
θiξn)

and H is the (principal and total) symbol of the considered Schrödinger operator,
then

(3.7) H ◦ φ ◦ φ0(x, ξ) = V (q0) +
n∑

i=1

θi
x2
i + ξ2i
2

+O(x3).

Just as in the proof of Theorem 1.9, the diagonal matrix elements of the family of
the pseudodifferential operators (Q2

ij)1≤i,j≤n in the system of eigenvectors corre-
sponding to eigenvalues of H(x, �Dx) in [V (q0), V (q0) + ε(�)] determine the family
(UikUjk)1≤i,j,k≤n. An orthogonal matrix U such that (3.7) is verified is not unique,
therefore it is not possible to determine the matrix U from the preceding diagonal
matrix elements. However, by Lemma A.4, the family (UikUjk)1≤i,j,k≤n does not
depend on the suitable matrix U (i.e. orthogonal and satisfying (3.7)), and as we
just saw it is determined by the preceding matrix elements. Therefore, one can
determine the absolute values of the coefficients of any suitable matrix U , and also,
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for any k ∈ [[1, n]], an index ik ∈ [[1, n]], such that Uikk 
= 0. The choice of the
sign of Uikk then determines the sign of every other coefficient of the kth column.
Therefore, one can determine the 2n suitable matrices, corresponding to n choices
of signs, as claimed by Lemma A.4. Choosing one of them determines (explicitly)
a suitable symplectomorphism φ. �

3.3. The periodic trajectory case.

Proof of Theorem 1.3. Let X,H(x, �Dx), E, γ be as in Theorem 1.3. We first recall
[7, 8, 18, 19] that there exists a (non-unique) symplectomorphism φ from a neigh-
borhood of S1 in T ∗(Rn × S1) in a neighborhood of γ in T ∗(X) such that

(3.8) Hp ◦ φ(x, t, ξ, τ ) = H0 +H2 and γ(t) = φ(0, t, 0, 0),

with H0 and H2 defined as in (1.6) and (1.7).
It is easy to check that, in a local system of coordinates (x′, ξ′, t′, τ ′) near γ such

that γ = {x′ = ξ′ = τ ′ = 0}, φ can be chosen in the following form:

(3.9) φ(x, t, ξ, τ ) = φS(x, t, ξ, τ ) = (S(t)(x, ξ), t, τ + qS(t, x, ξ)).

Here, for any t ∈ S1, S(t) is a linear symplectic change of variable (identified with
its matrix in our system of coordinates) and, in order for φS to be symplectic,
qS(t, ·, ·) is the quadratic form associated to the matrix

(3.10) M(t) = tS(t)JnṠ(t),

where Ṡ(t) = d
dtS(t) and Jn is the antisymmetric matrix

(
0 In

−In 0

)
.

For (i, j) ∈ [[1, n]]2, p ∈ Z, and s ∈ {1, 2, 3}, let AS be any Fourier integral
operator implementing φS . We have
(3.11)

〈μ, ν|ASP
k
p A

−1
S |μ, ν〉 =

n∑
k=1

cp
(
Sσ
is,2k−1S

σ
js,2k−1 + Sσ

is,2kS
σ
js,2k

)(
μk +

1

2

)
�+O(�),

where cp(·) maps a function to its pth Fourier coefficient, σ is the permutation
defined by (A.5), Sσ is defined by conjugation by the permutation matrix associated
to σ just as in (A.6), and where, for (i, j) ∈ [[1, n]]2,

is =

{
2i− 1 if s ∈ {1, 2},
2i if s = 3,

and js =

{
2j if s ∈ {1, 3},
2j − 1 if s = 2.

Now, just as in the proof of Proposition 2.13, the coefficients
(
al1(P

k
p )
)
l∈Z

de-

termine cp

(
Sσ
is,2k−1S

σ
js,2k−1 + Sσ

is,2kS
σ
js,2k

)
for any k ∈ [[1, n]]. Therefore, if the

coefficients al1(P
k
p ) are given for any l ∈ Z, (i, j) ∈ [[1, n]]2, p ∈ Z, and s ∈ {1, 2, 3},

then the functions

(3.12) Ai,j,k := Sσ
i,2k−1S

σ
j,2k−1 + Sσ

i,2kS
σ
j,2k

are determined for any (i, j) ∈ [[1, 2n]]2 and k ∈ [[1, n]].
An easy adaptation of the proof of Lemma A.2 shows that, once the set of func-

tions (Ai,j,k)(i,j)∈[[1,2n]]2,k∈[[1,n]] is given, one can construct explicitly a particular

smooth function S1 � t �→ S0(t) with values in the set of symplectic matrices,
such that equality (3.12) holds. We also get that any matrix Sσ such that equality
(3.12) holds is related to S0 by the equality Sσ = Sσ

0U , where t �→ U(t) is a smooth
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7270 C. HÉRIVEAUX AND T. PAUL

function that takes its values in the set of block diagonal matrices whose diagonal
blocks are 2-by-2 rotations.

Now let us consider this particular S0 and let U be any smooth function that
takes its values in the set of block diagonal matrices whose diagonal blocks are
2-by-2 rotations. Let us finally define S by the relation Sσ = Sσ

0U . Since for any
t ∈ S1, qS(t, ·, ·) is quadratic, we have

P0
p ◦ φS(x, t, ξ, τ ) = e−2iπptτ + e−2iπptqS(t, x, ξ)

= e−2iπptτ + e−2iπpt
n∑

k=1

(
∂2qS
∂x2

k

+
∂2qS
∂ξ2k

)
(t)zkz̄k +R,

(3.13)

where R is a linear combination of terms of the form e−2iπptzkzk′ ((k, k′) ∈ [[1, n]])
and e−2iπptzkz̄k′ ((k, k′) ∈ [[1, n]], k 
= k′).

Just as before, the coefficients
(
al1(P

0
p )
)
l,p∈Z

determine the family of functions

(of t only)
(

∂2qS
∂x2

k
+ ∂2qS

∂ξ2k

)
k∈[[1,n]]

.

Now, we get from equation (3.10) that, for k ∈ [[1, n]] and t ∈ S1:

∂2qS
∂x2

k

(t) +
∂2qS
∂ξ2k

(t) =

n∑
i=1

Ṡi+n,k(t)Si,k(t) + Ṡi+n,k+n(t)Si,k+n(t)

−
n∑

i=1

Ṡi,k(t)Si+n,k(t) + Ṡi,k+n(t)Si+n,k+n(t).

(3.14)

For k ∈ [[1, n]] and t ∈ S1, let us denote by Uk(t) =

(
cos θk(t) − sin θk(t)
sin θk(t) cos θk(t)

)
the

kth diagonal block of U(t). Then, for j ∈ [[1, 2n]], k ∈ [[1, n]], and t ∈ S1:

(3.15)

(
Sj,k(t)

Sj,k+n(t)

)
= tUk(t)

(
S0,j,k(t)

S0,j,k+n(t)

)
.

Therefore,

(3.16)

(
Ṡj,k(t)

Ṡj,k+n(t)

)
= tUk(t)

(
Ṡ0,j,k(t)

Ṡ0,j,k+n(t)

)
+ tU̇k(t)

(
S0,j,k(t)

S0,j,k+n(t)

)
.

Let us now observe that for k ∈ [[1, n]], and any t ∈ S1:

(3.17) U̇k(t)
tUk(t) =

(
0 −1
1 0

)
.

Therefore, since Uk(t) is an orthogonal matrix and S0(t) is a symplectic matrix for
any k ∈ [[1, n]] and t ∈ S1, we get from equations (3.16) and (3.17) that

(3.18)
∂2qS
∂x2

k

(t) +
∂2qS
∂ξ2k

(t) =
∂2qS0

∂x2
k

(t) +
∂2qS0

∂ξ2k
(t) + 2θ̇k(t).

Since the function t �→ ∂2qS
∂x2

k
(t) + ∂2qS

∂ξ2k
(t) has been determined above, and the func-

tion t �→ ∂2qS0

∂x2
k
(t) +

∂2qS0

∂ξ2k
(t) is entirely determined by the explicitly constructed

function t �→ S0, equation (3.18) then determines the function θ̇k. Therefore, the
function t �→ U(t), hence the function t �→ Sσ(t), is determined up to right mul-
tiplication by a constant block diagonal matrix U0 whose diagonal block matrices
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RECOVERING HAMILTONIANS 7271

are 2-by-2 rotations. It is now sufficient to observe that if two functions t �→ S1(t)
and t �→ S2(t) are related by the equation

(3.19) Sσ
2 = Sσ

1U0,

where U0 is a constant matrix, then

(3.20) φS2
= φS1

◦ φ
Uσ−1

0

and, if U0 is a constant block diagonal matrix whose diagonal block matrices are
2-by-2 rotations,

(3.21) H0 ◦ φ
Uσ−1

0
= H0.

Finally, the choice of U0 in the determination of t �→ S(t) does not change the
validity of equation (3.8) for φ = φS , and Theorem 1.3 is proved. �

4. Classical analogs

In this section we prove a classical result, analogous to our preceding quantum
results, and motivated by the following straightforward lemma.

Lemma 4.1. Let O be a polynomial operator on L2(Rn × S1) whose Weyl symbol,
expressed in polar and cylindrical coordinates, is the function O(A, τ, ϕ, τ ). Then

(4.1) 〈μ, ν|O|μ, ν〉 =
∫
Tn×S1

O(μ�, ν�, ϕ, t)dϕdt+O(�),

where xj + iξj =
√

Aje
iϕj for any j = 1, . . . , n.

We concatenate analogs of Theorems 1.3 and 1.4 in the following.

Theorem 4.2. Let γ be a non-degenerate elliptic periodic trajectory of the Hamil-
tonian flow generated by a proper smooth Hamiltonian function H. Let Pk

p be
functions satisfying

P0
p (x, t, ξ, τ ) = e−2iπptτ and

Pk
p (x, t, ξ, τ ) = e−2iπptRk(x, ξ), k = 1, . . . , 2n2 + n,

(4.2)

in a local symplectic system of coordinates (x, t, ξ, τ ) ∈ T ∗(Rn × S1) such that
γ = {x = ξ = τ = 0}, with the property that Rk(0) = ∇Rk(0) = 0 and the
Hessians d2Rk(0) are linearly independent.

Let Φ be the formal (unknown a priori) symplectomorphism which leads to the
Birkhoff normal form near γ and (A, τ, ϕ, t) the corresponding (formal and also
unknown a priori) action-angle coordinates such that γ = {A = τ = 0}. Let us
define near A = τ = 0 the “average” quantities

(4.3) Pk
p (A, τ ) :=

∫
Tn×S1

Pk
p ◦ Φ(A, τ, ϕ, t)dϕdt.

Then the knowledge of ∇Pk
p (0, 0) for k = 1, . . . , 2n2 + n determines (in a con-

structive way) an explicit system of Fermi coordinates near γ.
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7272 C. HÉRIVEAUX AND T. PAUL

Moreover, now let (x, t, ξ, τ ) ∈ T ∗(Rn × S1) be any system of Fermi coordinates
near γ and let Omnp, Op for (m,n, p) ∈ N2n × Z be functions satisfying in a
neighborhood of γ:
(4.4)⎧⎪⎨⎪⎩

Omnp(x, t, ξ, τ ) = e−i2πpt
n∏

j=1

(
xj+iξj√

2

)mj
(

xj−iξj√
2

)nj

+O
(
(|A|+ |τ |) |m|+|n|+1

2

)
,

Op(x, t, ξ, τ ) = e−i2πptτ +O
(
(|A|+ |τ |) 3

2

)
.

Then the knowledge of the Birkhoff normal form near γ and of the Taylor ex-
pansion at A = τ = 0 up to order N of Omnp, Oq, defined as in (4.3) for

(1) 0 < |m|+ |n| ≤ N ,
(2) ∀j = 1, . . . , n, mj = 0 or nj = 0,
(3) p ∈ Z, q ∈ Z∗,

determines the Taylor expansion of the “true” Hamiltonian H up to the same order
in the picked-up system of Fermi coordinates.

Proof. Let us first prove the second part of Theorem 4.2. Let (x, t, ξ, τ ) ∈
T ∗(Rn × S1) be a system of Fermi coordinates near γ. Let, for N ≥ 3, FN be
the principal symbol of WN . With the notation of Proposition 2.2 we write

(4.5) FN (z, t, z̄, τ ) =
∑

|j|+|k|+2s=N

α0jks(t)e
2iπptzj z̄kτ s.

Let F satisfy

(4.6) F ∼
+∞∑
N=3

FN .

With the notation of the proof of Proposition 2.2, we have

(4.7) H ◦ exp(χF )(x, t, ξ, τ ) ∼ h(p, τ, 0).

Let N ≥ 3, (m,n, p, q) ∈ N2n × Z× Z∗, and (j, k, s) ∈ N2n+1 satisfy:

(4.8) 0 < |m|+ |n| ≤ N, mini = 0 ∀i ∈ [[1, n]], |j|+ |k|+ 2s = N.

Then, as seen in the proof of Lemma 2.15, if σ1
jks and σ2

jks are the symbols of

{α0jks(t)e
2iπptzj z̄kτ s,Omnp} and {α0jks(t)e

2iπptzj z̄kτ s,Oq} respectively, we have,
if j +m = k + n,

∫
Tn×S1

σ1
jks(A, τ, ϕ, t)dϕdt =icp(α0jks)A

max(j,k)τ s

(
n∑

i=1

kimi − jini

Ai
+

2πps

τ

)
+O

(
(|A|+ |τ |)

N+|m|+|n|−1
2

)
(4.9)

and if j +m 
= k + n,

(4.10)

∫
Tn×S1

σ1
jks(A, τ, ϕ, t)dϕdt = O

(
(|A|+ |τ |)

N+|m|+|n|−1
2

)
.

We also have, if j = k,

(4.11)

∫
Tn×S1

σ2
jks(A, τ, ϕ, t)dϕdt = icq(α0jks)2πq(1+s)Ajτ s+O

(
(|A|+ |τ |)N+1

2

)
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and if j 
= k,

(4.12)

∫
Tn×S1

σ2
jks(A, τ, ϕ, t)dϕdt = O

(
(|A|+ |τ |)

N+1
2

)
.

Now, let us set F2 = 0 and assume that the function F≤N−1 has been de-

termined for some N ≥ 3. Then for l ≥ 2, {
l times︷ ︸︸ ︷

F≤N , {. . . , {F≤N ,Omnp}}} and

{
l times︷ ︸︸ ︷

F≤N , {. . . , {F≤N ,Oq}}} are determined modulo O
(
(|A|+ |τ |)N+|m|+|n|−1

2

)
and

O
(
(|A|+ |τ |)N+1

2

)
respectively.

Therefore, by equalities (4.9) and (4.10), Omnp(A, τ ) is equal, modulo

O
(
(|A|+ |τ |)N+|m|+|n|−1

2

)
and known terms, to

(4.13)
∑

|j|+|k|+2s=N
j=m=k+n

icp(α0jks)A
max(j,k)τ s

(
n∑

i=1

kimi − jini

Ai
+

2πps

τ

)

and by equalities (4.11) and (4.12), Oq(A, τ ) is equal, modulo known terms and

O
(
(|A|+ |τ |)N+1

2

)
, to

(4.14)
∑

2|j|+2s=N

icq(α0jjs)2πq(1 + s)Ajτ s.

Thus, just as in the proof of Proposition 2.14, let (m,n, p, q) ∈ N2n × Z × Z∗ run
over all possible values under condition (4.8). We determine every function α0jks,
|j| + |k| + 2s = N , hence FN , which concludes the proof of the second part of
Theorem 4.2.

The proof of the first part of the theorem follows the same strategy with respect
to Theorem 1.3 as the proof of the second part with respect to Proposition 2.14. �

The last result of this paper will be the classical analog of Theorems 1.10 and
1.14.

Let us recall [10] that in the case where H(x, ξ) = ξ2+V (x) the classical normal
form determines the Taylor expansion of the potential when the latter is invariant
by the symmetry xi → −xi for each i ∈ [[1, n]]. In the general case the Taylor
expansion of the averages, in the sense of (4.3), of a finite number of classical
observables are necessary to recover the full potential.

Let us assume H ∈ C∞(T ∗M,R) has a global minimum at z0 ∈ T ∗M, and
let d2Hp(z0) be the Hessian of H at z0. Let us define the matrix Ω defined by
d2Hp(z0)(·, ·) =: ωz0(·,Ω−1·), where ωz0(·, ·) is the canonical symplectic form of
T ∗M at z0. The eigenvalues of Ω being purely imaginary, we denote them by
±iθj with θj > 0, j ∈ [[1, n]]. Let us assume that θj , j ∈ [[1, n]], are rationally
independent.

Theorem 4.3. The statement of Theorem 4.2 remains valid verbatim by replacing
γ by z0 and ignoring the variables t, τ .
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7274 C. HÉRIVEAUX AND T. PAUL

Let us now enunciate the classical analog of Theorem 1.14 in the case of a
Schrödinger operator with potential V ∈ C∞(M,R):

Theorem 4.4. Let q0 be a global non-degenerate minimum of V on M. Let us
assume that the square roots of the eigenvalues of d2V (q0) are linearly independent
over the rationals.

Let Pk, k = 1, . . . , n(n+1)
2 , be smooth functions on M such that Pk(q0)=∇Pk(q0)

= 0 and the Hessians d2Pk(q0) are linearly independent (an example of such
potentials is the family Qij(x) = xixj in a local system of coordinates centered at
q0).

Then the knowledge of the Birkhoff normal form near q0 and of the Taylor ex-

pansion at A = 0 up to the (finite number of) “average” Pk(A) determines (in a
constructive way) an explicit system of Fermi coordinates.

Moreover, let (x, ξ) ∈ T ∗Rn be any system of Fermi coordinates centered at
(q0, 0) and let Om0 be defined in Theorem 1.14.

Then the knowledge of the Taylor expansion at A = 0 up to order N ≥ 3 of the
(finite number of) “average” quantities Om0 as in (4.3) together with the Birkhoff
normal form itself, determines the Taylor expansion up to order N of V at q0 in
the picked-up system of coordinates.

In line with the proof of Theorem 4.2 the proofs of Theorems 4.4 and 4.3 are
easy adaptations of the proofs of Theorems 1.14 and 1.10. We omit them here.

Appendix A. Lemmas on linear and bilinear algebra

Lemma A.1. Let q be a positive quadratic form on R2n. Then there exists a canon-
ical endomorphism φ on R2n, and an n-tuple of positive real numbers (λ1, . . . , λn),
defined as the imaginary part of the eigenvalues of the positive imaginary part of
the endomorphism defined by

(A.1) 〈·; a(·)〉q = ω(·, ·),
where 〈·; ·〉q is the scalar product associated to q and ω is the canonical symplectic
form on R2n, and such that:

(A.2) ∀(x, ξ) ∈ R2n, q(φ(x, ξ)) =

n∑
i=1

λi(x
2
i + ξ2i ).

Moreover, if the real numbers λ1, . . . , λn are pairwise different, and φ′ is an en-
domorphism of R2n, then φ′ is canonical and satisfies (A.2) if and only if there
exists an orthogonal isomorphism u on R2n whose restriction to the plane spanned
by ( ∂

∂xi
, ∂
∂ξi

) (for any i ∈ [[1, n]]) is a rotation, such that φ′ = φ ◦ u.
Proof of Lemma A.1. a is antisymmetric with respect to q, and therefore there
exists a q-orthonormal basis of R2n (u1, . . . , un, v1, . . . , vn) and an n-tuple of positive
real numbers (λ1, . . . , λn) such that, for j ∈ [[1, n]],

(A.3) λja(uj) = −vj and λja(vj) = uj .

Now let us set, for j ∈ [[1, n]],

(A.4) ũj =
√
λjuj and ṽj =

√
λjvj .

Then (ũ1, . . . , ũn, ṽ1, . . . , ṽn) is a q-orthogonal basis of R2n satisfying, for j ∈
[[1, n]], q(ũj) = λj and q(ṽj) = λj , and the preceding properties together with
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(A.1) imply that it is also a symplectic basis, which concludes the proof of the first
part of Lemma A.1.

To prove the second part of Lemma A.1, let us consider another symplectic and
orthogonal basis (u′

1, . . . , u
′
n, v

′
1, . . . , v

′
n), where, for j ∈ [[1, n]], the q-norm of u′

j

and v′j is λj . Then, by (A.2), for any j ∈ [[1, n]], a(u′
j) is orthogonal to any vector

of the basis but v′j and 〈v′j , a(u′
j)〉q = w(v′j , u

′
j) = −1, therefore λja(u

′
j) = −v′j and,

by the same argument, λja(v
′
j) = u′

j .
Therefore, the plane spanned by (uj , vj) and the plane spanned by (u′

j , v
′
j) are

both the kernel of a2+λ2
j (2-dimensional since we made the additional assumption

that the λi’s are pairwise different). Therefore, if φ and φ′ are the endomorphisms
which send the canonical basis of R2n to the basis (ũ1, . . . , ũn, ṽ1, . . . , ṽn) and the
basis (u′

1, . . . , u
′
n, v

′
1, . . . , v

′
n) respectively, then the restriction of φ−1◦φ′ to any plane

spanned by ( ∂
∂xi

, ∂
∂ξi

) (for any i ∈ [[1, n]]) is an orthogonal symplectomorphism from

the plane to itself, which is a rotation. �
Let σ be the permutation of [[1, 2n]] defined by:

(A.5) ∀i ∈ [[1, 2n]], σ(i) =

{
2i− 1 if i ≤ n,
2(i− n) if i ≥ n+ 1,

and let Mσ be the associated permutation matrix (i.e. for any (i, j) ∈ [[1, 2n]]2,
(Mσ)ij = δσ(i),j).

Now, let us set, for any matrix S ∈ M2n(R),

(A.6) Sσ = M−1
σ SMσ.

Let us also denote by LS,i,k for (i, k) ∈ [[1, 2n]]× [[1, n]] the vector of R2 defined

by LS,i,k =

(
(Sσ)i,2k−1

(Sσ)i,2k

)
∈ R2. Then, for (i, k) ∈ [[1, n]]2, si,k will be the matrix

of size 2 whose first line is tLS,2i−1,k and second line is tLS,2i,k.

Lemma A.2. Let A be a positive matrix of size 2n. Let S be the (non-empty by
Lemma A.1) set of symplectic matrices satisfying

(A.7) tSAS =

(
Dλ 0
0 Dλ

)
,

where Dλ is the diagonal matrix with (λ1, . . . , λn) an n-tuple of positive diagonal
elements, which we assume pairwise different. Then:

(1) The family (〈LS,i,k;LS,j,k〉)(i,j)∈[[1,2n]]2,k∈[[1,n]] is independent of matrix S ∈
S.

(2) Once the preceding invariants of S are given, one can construct explicitly a
particular matrix of S (hence all of them by Lemma A.1).

Proof of Lemma A.2. Let us first prove the first point. Let (S, T ) ∈ S2. By Lemma
A.1, there exist n matrices belonging to SO2(R) and denoted by O1, . . . , On, such
that:

(A.8) Tσ = Sσ

⎛⎜⎝ O1

. . .

On

⎞⎟⎠ =

⎛⎜⎝ s1,1O1 · · · s1,nOn

...
...

sn,1O1 · · · sn,nOn

⎞⎟⎠
and (A.8) is equivalent to:

(A.9) ∀(i, k) ∈ [[1, 2n]]× [[1, n]], LT,i,k = tOkLS,i,k.
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7276 C. HÉRIVEAUX AND T. PAUL

Hence (〈LS,i,k;LS,j,k〉)(i,j)∈[[1,2n]]2,k∈[[1,n]] does not depend on the matrix S ∈ S
and the first point of Lemma A.2 is proven.

Now, let S ∈ S, and let (aijk)(i,j)∈[[1,2n]]2,k∈[[1,n]] be the family defined by

(A.10) ∀(i, j) ∈ [[1, 2n]]2, ∀k ∈ [[1, n]], aijk = 〈LS,i,k;LS,j,k〉.
Let us assume that this family is given. Two vectors u and v of R2 are independent
if and only if: 〈u; v〉2 < 〈u;u〉〈v; v〉. Since the matrix S is invertible, one can choose,
for any k ∈ [[1, n]], a couple of indices (ik, jk) ∈ [[1, 2n]]2 such that

(A.11) a2ikjkk < aikikkajkjkk.

Let k ∈ [[1, n]] and let us choose a vector vikk, whose norm is
√
aikikk > 0. The

system of equations with unknown v ∈ R2,

(A.12)

{
〈vikk; v〉 = aikjkk,
〈v; v〉 = ajkjkk,

admits exactly two solutions (by (A.11)), denoted by v+jkk and v−jkk obtained from
one another by orthogonal symmetry Rk of axis the line spanned by vikk.

Let us set v−ikk = v+ikk = vikk. Since the families (v+ikk, v
+
jkk

) and (v−ikk, v
−
jkk

) are

two bases of R2, for any i ∈ [[1, 2n]] \ {ik, jk}, each one of the two systems

(A.13)

{
〈vikk; v〉 = aikik,
〈v+jkk; v〉 = ajkik,

and

{
〈vikk; v〉 = aikik,
〈v−jkk; v〉 = ajkik,

admits exactly one solution denoted respectively by v+ik and v−ik, and satisfying

relation v−ik = Rkv
+
ik.

We are now able to construct 2n matrices (TA)A∈P([[1,n]]) defined, for A ∈
P([[1, n]]), by

(A.14) ∀(i, k) ∈ [[1, 2n]]× [[1, n]], LTA,i,k =

{
v+ik if k ∈ A,
v−ik if else.

In order to prove the second point of Lemma A.2, it is sufficient to prove the
following assertions:

(1) There exists at least one set A ∈ P([[1, n]]), such that TA ∈ S.
(2) There is at most one set A ∈ P([[1, n]]), such that TA is symplectic.

Indeed, once those two assertions are proved, there will be exactly one set A ∈
P([[1, n]]) such that TA is symplectic, and it will be an element of S, constructed
from the values of the family (aijk)(i,j)∈[[1,2n]]2,k∈[[1,n]] only.

Let us prove the first assertion. Let Ok be the unique element of SO2(R) for any
k ∈ [[1, n]], such that LS,ik,k = Okvikk (where S is a particular matrix of S).

The system (A.12) is equivalent to

(A.15)

{
〈LS,ik,k;Okv〉 = aikjkk,
〈Okv;Okv〉 = ajkjkk,

which admits exactly two solutions: v+jkk and v−jkk. Hence, for any k ∈ [[1, n]]:

(A.16) LS,jk,k = Okv
+
jkk

or LS,jk,k = Okv
−
jkk

.

Let us define the set A by

(A.17) A = {k ∈ N |LS,jk,k = Okv
+
jkk

}.

Licensed to University of Oxford. Prepared on Tue Aug 21 19:07:21 EDT 2018 for download from IP 129.67.246.57.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RECOVERING HAMILTONIANS 7277

Since each system (A.13) admits a unique solution, we obtain

∀(i, k) ∈ [[1, 2n]]× [[1, n]], LS,i,k =

{
Okv

+
ik if k ∈ A,

Okv
−
ik if else,

= OkLTA,i,k,

(A.18)

that is,

(A.19) TA,σ = Sσ

⎛⎜⎝ O1

. . .

On

⎞⎟⎠
and TA ∈ S by Lemma A.1.

In order to prove the second assertion, let us use the following lemma.

Lemma A.3. For any symplectic matrix B of size 2n, we have

(A.20) ∀k ∈ [[1, n]],
n∑

i=1

det(bi,k) = 1.

If A1 and A2 are two parts of [[1, n]], we get from (A.14) and relation v−ik = Rkv
+
ik

that

(A.21) ∀(i, k) ∈ [[1, 2n]]× [[1, n]], LTA2
,i,k =

{
RkLTA1

,i,k if k ∈ A1ΔA2,
LTA1

,i,k if else,

where A1ΔA2 is the symmetric difference of A1 and A2: A1ΔA2 = (A1 \ A2) ∪
(A2 \A1). Hence,

(A.22) ∀k ∈ [[1, n]],
n∑

i=1

det ((tA2
)i,k) = εk

n∑
i=1

det ((tA1
)i,k) ,

where, for k ∈ [[1, n]], εk = −1 if k ∈ A1ΔA2, εk = 1 if else. Since A1ΔA2 = ∅ if
and only if A1 = A2, there exists at most one part A of [[1, n]] such TA is symplectic.
The second assertion, hence the second point of Lemma A.3, is proven. �

Proof of Lemma A.3. Since B is a symplectic matrix, the matrix Bσ satisfies

(A.23) tBσJσBσ = Jσ.

It is sufficient, for k ∈ [[1, n]], to read equality (A.23) at line 2k and column
2k − 1 to obtain:

(A.24)
n∑

i=1

det(bi,k) = 1.

�

Lemma A.4. Let A ∈ Mn(R) be a positive matrix whose eigenvalues are pairwise
different. Let D be a diagonal matrix, similar to A. Then there exist exactly 2n

orthogonal matrices conjugating A to D, and they are obtained one from another
by a possible change of the sign of each column.

Proof of Lemma A.4. As A is positive, there exists an orthogonal matrix Q1 such
that

(A.25) Q−1
1 AQ1 = tQ1AQ1 = D.
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7278 C. HÉRIVEAUX AND T. PAUL

Let Q2 ∈ GLn(R). Then Q2 is orthogonal and satisfies: Q−1
2 AQ2 = D if and only if

Q−1
2 Q1 is an orthogonal matrix which commutes to D, that is, because the diagonal

elements of D are pairwise different, if and only if Q−1
2 Q1 is an orthogonal diagonal

matrix. Finally, Q2 is orthogonal and satisfies: Q−1
2 AQ2 = D if and only if Q−1

2 Q1

is diagonal and its elements belong to {−1, 1}, that is, if Q2 is obtained from Q1

by a possible change of the sign of each column. �

Appendix B. Realizing the Poincaré angles

B.1. The periodic trajectory case. In this section we indicate how different
systems of Fermi coordinates and different Birkhoff normal forms exist for any
realization of the Poincaré angles as real numbers and we show how those normal
forms are linked to each other. Thus, our results are independent of this ambiguity.

Proposition B.1. Under the hypothesis of Theorem 1.4, the knowledge of the coef-
ficients of the trace formula determines the quantities eiθi , i = 1, . . . , n. Moreover,

let us denote by Bθ1,...,θn(x, ξ, τ ) = E +
n∑

i=1

θi
x2
i+ξ2i
2 + τ + O((x2 + ξ2 + |τ |)2) the

Birkhoff normal form of Hp associated to a given choice of angles θi. For k ∈ Zn,
let hk(x, ξ) =

∑
πki(x

2
i + ξ2i ) and let Φk be the symplectomorphism defined, with

the notation of (2.93), by

(B.1) Φk(x, ξ, t, τ ) =
(
exp(tχhk

)(x, ξ), t, τ + π
∑

ki(x
2
i + ξ2i )

)
.

Then Bθ1,...,θn ◦ Φk = Bθ1+2k1π,...,θn+2knπ.

Proof. The first part of the assertion belongs to Fried [6]. The fact that Φk is a
symplectomorphism can be checked directly. Moreover one sees immediatly that
it conjugates the quadratic in (x, ξ)/linear in the τ part of Bθ1,...,θn to the one of
Bθ1+2k1π,...,θn+2knπ. Moreover Bθ1,...,θn ◦Φk is a function of τ and x2

i + ξ2i only and
it is easy to verify that the algorithmic constructions of the two normal forms are
covariantly conjugated by Φk. Therefore, it is equal to Bθ1+2k1π,...,θn+2knπ. �

B.2. The “bottom of the well” case.

Proposition B.2. Under the hypotheses of Theorems 1.10 and 1.14, the knowledge
of the spectrum of H(x, �Dx) in [Hp(z0), Hp(z0) + ε], � = o(ε), determines the θi’s
up to permutation.

Proof. By the quantum normal Birkhoff form construction we know that the bottom

part of the spectrum is {Hp(z0)+
n∑

i=1

θi(μi+1/2)�+O(�2), |μ�| = O(ε)}. Therefore,

the bottom part of the spectrum determines the set Λ = {
n∑

i=1

θi(μi+1/2), μ ∈ Nn}.

Let us now assume that the θi’s are arranged in increasing order. θ1/2 is then equal
to the minimum of Λ. By induction, if θ1, . . . , θk are known for some k, 1 ≤ k < n,

let us define Λk = {
k∑

i=1

θi(μi + 1/2)}. Let us set λk+1 := minΛ∩Λc
k. We easily see

that θk+1 = 2λk+1 −
k∑

i=1

θi, which concludes the proof. �
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