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M. Alain Connes Collège de France/IHES directeur
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Je tiens à remercier tout les membres du projet Algèbres d’opérateur pour
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plus particulièrement Alexandre, Fathi, Jérémy et Martin pour l’excellente am-
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Enfin, un immense merci à mes parents qui m’ont soutenu et aidé de maintes
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Des topos à la géométrie non commutative par l’étude des espaces
de Hilbert internes

Résumé : Cette thèse est consacrée à l’étude de relations entre la géométrie
non commutative et la théorie des topos, comme deux modèles de topologie
généralisée. L’outil principal que nous utilisons est l’étude des champs continus
d’espaces de Hilbert sur un topos, définis par l’utilisation de la logique interne
du topos. En considérant les algèbres d’opérateurs bornés sur de tels champs on
obtient des C∗-algèbres associées au topos.
Dans le chapitre 1 nous étudions cette relation par l’intermédiaire des quantales
et dans le cas des topos atomiques. Dans ce cas, la relation avec les algèbres
d’opérateurs peut-être décrite explicitement et cela procure un modèle simple
des phénomènes qui apparaissent.
Le chapitre 2 définit une notion de théorie de la mesure sur les topos et la
relie à la théorie des W ∗-algèbres, c’est à dire à la théorie de la mesure non
commutative. Inspirés par les résultats du chapitre 1 nous définissons une notion
de mesure invariante qui apparait comme analogue à la notion de trace. La
classification de ces mesures fait apparaitre un R>0-fibré principal canonique sur
tout topos booléen intégrable localement séparé, qui est l’analogue de l’évolution
temporelle des W ∗-algèbres (ceci est précisé à la fin du chapitre 2).
Dans le chapitre 3, nous définissons et étudions les notions d’espaces métriques
et d’espaces de Banach ”localiques”. Notre motivation est de pouvoir généraliser
les techniques que nous utilisons pour les topos à des groupoides topologiques ou
localiques, ainsi que d’obtenir une extension de la dualitée de Gelfand construc-
tive conjecturée par C.J.Mulvey et B.Banachewski. Nous prouvons aussi que
dans un topos satisfaisant une certaine condition généralisant la paracompa-
cité, la notion d’espace de Banach localique est équivalente à la notion usuelle
d’espace de Banach.
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From toposes to non-commutative geometry through the study of
internal Hilbert spaces

Abstract: The goal of this thesis is to study some relations between non-
commutative geometry and topos theory, both being seen as generalizations
of topological spaces. The main tool we are using is the study of continuous
bundles of Hilbert spaces over a topos which are defined as Hilbert spaces in
the internal logic of the topos. By looking at the algebras of bounded operators
over such Hilbert spaces one can associate C∗-algebras to a topos.
In chapter 1 we study this relation through the use of quantales, and in the case
of atomic toposes. For such toposes the relation with operator algebras can be
described explicitely, and this provides an interesting toy-model for the case of
more general toposes.
In chapter 2 we focus on measure theoretic aspects. We define a notion of
generalized measure class over a topos, and this notion appears to be closely
related to the theory of W ∗-algebras. Inspired by the results of chapter 1 we
define a notion of invariant measure, which appears to be analogous to the
notion of trace on a W ∗-algebra. The classification of such measures gives rise to
a canonical R>0-principal bundle on every integrable locally separated boolean
topos, which is the analogue of the modular time evolution of W ∗-algebras (this
analogy is made precise at the end of the chapter).
In chapter 3, we define and study a notion of localic metric spaces and localic
Banach spaces. The motivations for such notions are that they allow one to
generalize the techniques used on toposes in this thesis to topological and lo-
calic groupoids, and that they allows to obtain an extension of the constructive
Gelfand duality as conjectured by C.J.Mulvey and B.Banachewski. We also
prove that over a topos satisfying a certain technical condition analogous to
paracompactness, the notion of localic Banach space is equivalent to the usual
notion of Banach space.
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Introduction

Les topos et les C∗-algèbres sont deux sortes d’objets qui généralisent la no-
tion d’espaces topologiques à des situations où les idées classiques de la topo-
logie ne s’appliquent plus. Il s’avère que ces deux notions affichent certaines
similarités assez profondes. Tout d’abord, il existe une longue liste d’exemples
d’objets géométriques généralisés auxquels on sait associer aussi bien un topos
qu’une C∗-algèbre, notamment : tous les groupes discrets, certains groupes lo-
calement compacts, les tores non commutatifs et plus généralement l’espace des
feuilles d’un feuilletage, les graphes, l’espace des pavages de Penrose et plus
généralement une large classe de groupöıdes topologiques.

En plus de ces nombreux exemples, où l’on dispose explicitement d’un topos et
d’une algèbre d’opérateurs décrivant tous deux une même situation géométrique,
il existe des exemples de problèmes pour lesquels à la fois les topos et les
algèbres d’opérateurs jouent un rôle, mais de deux façons qui ne semblent pas
faciles à relier. Le premier exemple auquel nous pensons est celui de la phy-
sique théorique et plus précisément le problème de la gravitation quantique. Les
algèbres d’opérateurs sont clairement des objets pertinents pour étudier la phy-
sique quantique et ses généralisations, il existe même un modèle de gravitation
quantique complètement basé sur les algèbres d’opérateurs (voir [13], [14], voir
aussi la première partie de [18]). D’un autre côté, les topos ont aussi été pro-
posés comme des objets dignes d’intérêt pour la physique théorique moderne et
la gravitation quantique (voir [31], [24]).
Le deuxième exemple auquel nous pensons est celui de la théorie des nombres.
Certaines algèbres d’opérateurs appelées systèmes de Bost-Connes (introduit
dans [9] et généralisé dans [30]) s’avèrent être connectées à des problèmes pro-
fonds de théorie des nombres, notamment l’hypothèse de Riemann (voir [17])
ainsi que la théorie du corps de classe explicite (voir aussi les chaptire 2,3 et 4 de
[18]). De leurs cotés, les topos ont originellement été introduits dans le but expli-
cite de prouver les conjectures de Weil, qui incluent la version en caractéristique
p de l’hypothèse de Riemann. Dans les deux cas, il serait très profitable de mieux
comprendre la relation entre l’approche par les algèbres d’opérateurs et celle par
la théorie des topos.

Un autre point commun entre ces deux théories est qu’elles ont toutes les deux
affiché la capacité à réconcilier le discret et le continu. En effet, dans la concep-
tion usuelle qu’une variable réelle est une fonction d’un ensemble X à valeurs
dans R vérifiant certaines conditions de régularité, il est impossible d’avoir de
façon intéressante une variable discrète et une variable continue définies simul-
tanément (c’est à dire sur le même ensemble X). Maintenant, du point de vue
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de la physique quantique et de la géométrie non commutative une variable réelle
est un opérateur autoadjoint sur un espace de Hilbert. Dans ce contexte il est
tout à fait possible d’avoir sur un même espace de Hilbert une variable discrète
et une variable continue, même si, en général, elles ne vont pas commuter. Par
exemple, sur l’espace de Hilbert H = L2(R/Z) les opérateurs de multiplication
par une fonction continue sur R/Z donnent lieu à des opérateurs � continus � ,
alors que l’opérateur (non borné) d2/dx2 a un spectre discret, et peut (dans la
base des fonctions exp(inx)) s’écrire comme un opérateur de multiplication par
une fonction à valeurs discrètes. D’une façon similaire, la théorie des topos a
aussi cette capacité de réunir des objets discrets et continus. En effet, la théorie
des topos permet de mettre simultanément dans une même catégorie naturelle
des objets continus comme les espaces topologiques et des objets fondamentale-
ment discrets comme des petites catégories ou des variétés algébriques sur des
corps finis. Pour citer Grothendieck (de [29, 2.13]) :

Ce ”lit à deux places” est apparu (comme par un coup de baguette
magique. . . ) avec l’idée du topos. Cette idée englobe, dans une intui-
tion topologique commune, aussi bien les traditionnels espaces (topo-
logiques), incarnant le monde de la grandeur continue, que les (soi-
disant) ”espaces” (ou ”variétés”) des géomètres algébristes abstraits
impénitents, ainsi que d’innombrables autres types de structures,
qui jusque là avaient semblé rivées irrémédiablement au ”monde
arithmétique” des agrégats ”discontinus” ou ”discrets”.

D’un point de vue très optimiste, on peut espérer obtenir une forme de dua-
lité de Gelfand non-commutative entre une classe de topos et certaines algèbres
d’opérateurs éventuellement équipées de structures supplémentaires. Même sans
une telle dualité il y a de très nombreux outils et de nombreuses constructions
disponibles dans chacune des deux théories qui pourraient être extrêmement
profitables à l’autre si l’on savait comment les transporter. D’un coté les to-
pos disposent d’excellentes théories (co)homologiques et homotopiques et sont
connectés de façon très profonde à la logique aussi bien par leur logique in-
terne que par les théories géométriques qu’ils classifient. Et de l’autre coté, les
algèbres d’opérateurs sont reliées à l’analyse fonctionnelle et au formalisme de
la physique quantique et l’on dispose de nombreux outils puissants comme la
K-théorie, la (co)homologie cyclique et de Hochschild, la théorie modulaire des
algèbres de von Neumann, etc... Enfin même si topos et C∗-algèbres peuvent
tous les deux être construits à partir de groupöıdes, il existe d’autres procédés
qui permettent de les obtenir et qui eux ne sont pas reliés : par exemple un topos
peut être obtenu à partir de n’importe quelle petite catégorie, ou comme un to-
pos classifiant et les C∗-algèbres peuvent s’obtenir par extension ou déformation
d’algèbres d’opérateurs déjà connues.

Il nous faut enfin observer qu’une relation entre ces deux formes de géométrie
est nécessairement subtile. En effet, considérons quelques instants le cas de la
dualité de Fourier, ou plus généralement de la dualité de Pontryagin. Du point
de vue des algèbres d’opérateurs, si G est un groupe abélien discret (ou plus
généralement localement compact) alors la C∗-algèbre du groupe G est iso-
morphe à l’algèbre des fonctions continues sur l’espace X sous-jacent au groupe
dual de G et l’algèbre de von Neumann du groupe est isomorphe à l’algèbre
L∞(X,µ) où µ est la mesure de Haar de X.
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Cela signifie que, du point de vue des algèbres d’opérateurs, on identifie le
groupe G (vu comme groupöıde à un seul objet) avec l’espace topologique X
des caractères de G. Du point de vue de la théorie des topos, ces deux objets sont
différents, et même assez difficiles à relier. Ainsi, d’une certaine façon, la théorie
des algèbres d’opérateurs prise seule semble oublier certaines informations sur
la géométrie à cause de ces isomorphismes de Fourier. Mais d’un autre coté, ces
isomorphismes sont des outils très efficaces pour étudier ces algèbres de groupe
d’un point de vue plus analytique.
La philosophie générale que nous voulons retirer de cet exemple est que la théorie
des topos reste plus proche de la géométrie et est plus descriptive, alors que les
C∗-algèbres sont plus proches de l’analyse et plus efficaces pour produire des
invariants non triviaux, et plus spécifiquement des invariants numériques.

Enfin, le meilleur outil que nous ayons pour comprendre la relation qui relie
ces deux théories est le fait qu’il est possible de définir (en utilisant la logique
interne) une bonne notion de champ continu d’espaces de Hilbert ou de C∗-
algèbres, ou de modules hilbertiens sur un topos. De plus si H est un champ
continu d’espaces de Hilbert sur un topos (ou plus généralement un champ de
modules hilbertiens sur un champ de C∗-algèbres) alors l’algèbre des opérateurs
globalement bornés sur H est une C∗-algèbre qui contient beaucoup d’infor-
mations sur le topos et qui respectivement peut être étudiée en utilisant la
géométrie et la logique du topos. C’est pourquoi l’enjeu principal de cette thèse
sera l’étude de ces champs continus sous diverses hypothèses géométriques sur
les topos concernés. Enfin, comme les champs continus sont parfois trop restric-
tifs, on définira aussi une notion de champ mesurable que l’on étudiera.

Contexte et notion de base

1) Topos

Il nous faudra distinguer deux sortes de topos : les topos élémentaires (ou topos
de Lawvere) et les topos de Grothendieck, les topos de Grothendieck étant un
cas particulier de topos élémentaires.

Un topos élémentaire est par définition une catégorie qui admet des limites
finies et des � objets des parties � , c’est à dire une construction universelle
qui correspond à la construction de l’ensemble P(X) des sous-ensembles d’un
ensemble X dans la catégorie des ensembles. Cette notion a été introduite par
Lawvere et Tierney dans [48] et [69]. La définition que nous avons donnée ici
est une forme simplifiée (plus moderne) de la définition originale de Lawvere.

Il est démontré que, dans un certain sens, tout topos élémentaire peut se pen-
ser comme un modèle de la théorie des ensembles sans l’axiome du choix, ni
l’axiome de l’infini (assurant l’existence d’un ensemble des entiers naturels), et
dans lequel le principe du tiers exclu (qui assure que toute proposition est soit
vraie soit fausse) peut ne pas être valide. Cette interprétation de la théorie des
ensembles dans un topos est appelée la logique interne du topos et est utilisée
constamment dans cette thèse. En fait nous travaillerons toujours implicitement
dans un topos élémentaire S dont les objets sont appelés � ensembles � . Nous
supposerons toujours que S a un objet des entiers naturels (c’est à dire satisfait
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l’axiome de l’infini) mais nous ne supposerons en général pas que sa logique
satisfait l’axiome du choix ou le principe du tiers exclu sauf de façon occasion-
nelle et mentionnée précisément (par exemple, on utilisera l’axiome des choix
dépendants pour la preuve du théorème principal de la section 5 du chapitre 3 et
on utilisera constamment le principe du tiers exclu dans le chapitre 2). En par-
ticulier nous travaillons dans le cadre des mathématiques intuitionnistes 1. Pour
une brève introduction au fonctionnement de cette logique interne, on pourra se
référer à [6], le livre [50], donne aussi une présentation beaucoup plus détaillée
avec de nombreux exemples et applications.

Les topos de Grothendieck sont un type particulier de topos élémentaires définis
et étudiés par Grothendieck et ses collaborateurs en vue d’applications à la
géométrie algébrique avant l’invention des topos élémentaires. Ils peuvent être
définis comme les topos élémentaires qui sont des catégories présentables (au
sens de [7, 5.2]) ou de façon équivalente qui ont toutes les limites inductives
et un ensemble de générateurs. Ce sont aussi les catégories équivalentes à la
catégorie des faisceaux sur un site (il s’agit de leur définition orignal dans [21]).
En particulier, les topos de Grothendieck satisfont toujours l’axiome de l’infini.

La bonne notion de morphisme entre topos de Grothendieck est la notion de
�morphisme géométrique � . Un morphisme géométrique entre deux topos cor-
respond à une paire de foncteurs adjoints (f∗, f∗) avec f∗ dans le sens du
morphisme et f∗ qui commute aux limites projectives finies (en plus des li-
mites inductives quelconques). Cette notion fait des topos (de Grothendieck)
une 2-catégorie, les 2-morphismes étant les transformations naturelles entre les
foncteurs f∗. Le foncteur qui envoie un espace topologique sur sa catégorie de
faisceaux d’ensembles, et les applications continues sur les foncteurs image in-
verse et image directe de faisceaux, plonge quasiment 2 pleinement fidèlement la
catégorie des espaces topologiques dans la catégorie des topos. C’est ainsi qu’on
voit les topos comme une généralisation de la notion d’espace topologique.

Une application très importante de la logique interne est que si l’on construit
la théorie des topos de façon constructivement valide (ce qui ne pose pas de
problème), on peut parler de topos de Grothendieck à l’intérieur d’un topos
de Grothendieck fixé T . Il s’avère que la notion de topos de Grothendieck à
l’intérieur de T (on dira un T -topos) est équivalente à la notion de topos de
Grothendieck équipé d’un morphisme géométrique vers T . En particulier, à
chaque fois que l’on veut étudier un morphisme géométrique f : E → T , on peut
se ramener à l’étude d’un T -topos E en utilisant la logique de T . En particulier,
n’importe quelle propriété raisonnable d’un topos donnera immédiatement une
propriété relative pour les morphismes géométriques (par exemple, la notion
� compact � pour les topos donne la notion � propre � pour les morphismes).

2) Algèbre d’opérateurs

1. ou constructives. Pour ce qui nous concerne, constructif et intuitionniste sont synonymes
et signifient � valide dans un topos élémentaire � .

2. Il faut se restreindre à une certaines classe d’espace topologique, appelé les espaces
topologiques sobres, qui inclue tous les espaces topologiques séparés, mais aussi par exemple
tout les espaces topologiques sous jacents à des schémas.
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Une C∗-algèbre (complexe) est une C-algèbre de Banach équipée d’une involu-
tion anti-linéaire ∗ telle que (ab)∗ = b∗a∗ et ‖x∗x‖ = ‖x‖2. Les deux résultats
principaux pour comprendre l’importance de cette définition sont les suivants :

• Les C∗-algèbres sont exactement les sous algèbres fermées et stables par
adjonction de l’algèbre B(H). Où B(H) désigne l’algèbre des opérateurs
bornés d’un espace de Hilbert H.

• Les C∗-algèbres commutatives sont exactement les algèbres C0(X) des
fonctions continues qui tendent vers 0 à l’infini sur un espace topolo-
gique localement compact X. De plus il y a une correspondance entre
les morphismes de C∗-algèbres commutatives et les applications propres
entre les espaces localement compacts correspondants. Cette équivalence
de catégorie est appelée la dualité de Gelfand.

Grâce à cette dualité de Gelfand, on peut penser à une C∗-algèbre générale
comme à un espace topologique localement compact � non-commutatif � . On
peut consulter [23] pour une introduction à la théorie des C∗-algèbres. Comme
nous l’avons mentionné plus haut, de nombreux outils de la topologie clas-
sique ont pu être généralisés à cette topologie non commutative, de nombreux
exemples sont présentés dans [16].

Les algèbres de von Neumann (voir [22]) sont des C∗-algèbres particulières qui ne
sont pas juste fermées en norme dans B(H) mais aussi fermées pour la topologie
de la convergence faible. Elle peuvent aussi être caractérisées comme les C∗-
algèbres qui admettent un pré-dual en tant qu’espace de Banach (voir [64]), ou
encore comme les C∗-algèbres telles que l’ensemble des éléments positifs admet
tous les supremums filtrants et qui possède suffisamment de formes linéaires
positives qui préservent ces supremums (voir [66, III.3.16]).

Les algèbres de von Neumann abéliennes sont de la forme L∞(X), c’est à dire
l’algèbre des fonctions mesurables bornées presque partout sur un espace mesuré
X, modulo les fonctions nulles presque partout. De ce point de vue, la théorie
des algèbres de von Neumann s’interprète comme de la théorie de la mesure non-
commutative. Comme dans le cas topologique, de nombreux outils de la théorie
de la mesure classique ont été généralisés au cas non commutatif, mais la théorie
non-commutative possède une particularité supplémentaire : quand on fixe un
poids normal semi-fini sur une algèbre de von Neumann A (l’analogue d’une
mesure localement finie) il apparâıt de façon canonique une évolution temporelle
de A, c’est à dire un morphisme de R dans le groupe des automorphismes de
A. Cette construction est due à Tomita, et a été popularisée par Takesaki (dans
[65]), enfin A.Connes a démontré que, modulo les automorphismes intérieurs de
l’algèbre, l’évolution temporelle ne dépend pas du choix du poids semi-fini et est
complètement déterminée par l’algèbre elle même (voir [15]). Bien sûr, pour une
algèbre commutative cette évolution est triviale, et pour l’algèbre B(H) elle est
intérieure (et donc triviale au sens de la propriété d’unicité), mais il existe une
grande classe d’algèbres (les facteurs de type III) pour lesquelles cette évolution
est réellement non triviale et a donné lieu à des invariants fondamentaux de ces
algèbres. Une introduction à la théorie de cette évolution temporelle peut-être
trouvée dans [67].

3) Théorie constructive des algèbres d’opérateurs
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Une partie de l’analyse fonctionnelle et de la théorie des algèbres d’opérateurs a
été développée constructivement (donc sur des topos) par Mulvey, Banachewski
et plusieurs autres mathématiciens dans une série d’articles incluant [12] [57],
[60],[3],[4].
Avant de donner une définition constructive de ce qu’est une C∗-algèbre qui
peut être intéressante à utiliser dans un topos, il nous faut donner la définition
constructive de ce qu’est un nombre réel ou complexe. En mathématique clas-
sique, il existe de très nombreuses définitions du corps des nombres réels qui sont
toutes équivalentes, mais quand on passe aux mathématiques intuitionnistes ces
définitions ne sont plus équivalentes. L’ingrédient clé dont nous aurons de toute
façon besoin est l’axiome de l’infini pour pouvoir parler de l’ensemble N des
nombres entiers, il est ensuite très simple de construire Q à partir de N. Il
s’avère que, même sans supposer le tiers exclu, les relations usuelles sur Q sont
décidables, c’est à dire par exemple que pour tout couple de nombres rationnels
q et q′ on a q < q′ ou q = q′ ou q > q′. Dans un topos de Grothendieck les
objets correspondants à l’interprétation de N et Q sont simplement les faisceaux
localement constants égaux à N et Q.
La définition de R basée sur les suites de Cauchy est à éviter en l’absence
de l’axiome du choix dénombrable. La construction basée sur les coupures de
Dedekind marche relativement bien au niveau des propriétés d’ensemble or-
donné mais a de nombreux défauts au niveau de sa structure algébrique : les
constructions par coupures supérieures et inférieures donnent des ensembles or-
donnés différents appelés respectivement réels semi-continus supérieurement et
inférieurement. Dans les deux cas, on ne peut pas définir convenablement l’op-
posé d’un nombre réel ni multiplier des nombres qui ne sont pas positifs. Ainsi
les réels semi-continus (supérieurement ou inférieurement) ne forment pas des
anneaux ni même des groupes additifs. Ils forment des monöıdes additifs et
l’on peut multiplier les éléments positifs entre eux. Malgré cela ils ont leur
intérêt et leur interprétation est relativement facile à comprendre, par exemple
sur un espace topologique il s’agit des faisceaux des fonctions semi-continues
supérieurement et inférieurement.
La bonne définition des nombres réels est celle basée sur les coupures de Dede-
kind bilatères. Il y a en réalité (au moins) deux façons de définir ce qu’est une
coupure bilatère qui ne sont pas constructivement équivalentes et qui donnent à
nouveau deux définitions possibles des nombres réels : les réels de Mac-Neville et
les réels de Dedekind (ou encore les réel continus). Nous n’utiliserons que les réels
de Dedekind (ou réel continus) et nous les appellerons simplement � réels � .
L’ensemble des nombres réels ainsi défini n’est pas un corps au sens où l’on n’a
pas � x = 0 � ou � x est inversible � en général, mais c’est un anneau local
et la négation de � x est inversible � est bien � x = 0 � (le contraire n’étant
en général pas valide). Dans le topos des faisceaux sur un espace topologique,
le faisceau des réels de Dedekind est le faisceau des fonctions continues sur X
(à valeurs dans R). L’ensemble des nombres réels est inclu à la fois dans l’en-
semble des réels semi-continus supérieurement et inférieurement et correspond
à chaque fois exactement à l’ensemble des éléments qui admettent un opposé. Il
est important de noter que contrairement aux ensembles des réels semi-continus
il n’est pas vrai en général que tout sous ensemble borné des nombres réels
admet une borne supérieure (en effet, un supremum d’une famille de fonctions
continues peut ne pas être continu).
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Il est aussi possible de définir les nombres réels continus comme étant la complétion
(métrique) de Q, mais il faut utiliser une complétion par filtres de Cauchy plutôt
que par suites de Cauchy (comme dans [10, II.3]).

Une fois que les nombres réels sont définis, la définition des nombres complexes
ne pose aucun problème : C est simplement défini comme R[X]/(X2 + 1). Il
n’est pas tout à fait exact que C est algébriquement clos, mais la raison est
essentiellement que C n’est pas un corps, en effet, C est toujours séparablement
clos au sens où tout polynôme qui a un discriminant inversible peut se factoriser
en produit de polynômes de degré un.

Il y a deux définitions possibles des espaces de Banach : on peut soit demander
que la norme d’un élément soit un nombre réel continu, soit que ce soit un
nombre réel semi continu supérieurement. L’idée sous-jacente à cette deuxième
version est que dans la plupart des mathématiques il n’est pas nécessaire de
minorer la norme d’un élément mais plutôt de la majorer. La deuxième version
étant plus générale c’est celle que nous choisirons, et un espace de Banach dont la
norme est continue sera dit continu. Par exemple l’algèbre de tous les opérateurs
sur un espace de Hilbert a en général une norme semi-continue (car il faut
prendre une borne supérieure pour définir la norme et que celle ci peut ne pas
exister si on reste parmi les réels continus) alors que la sous-algèbre fermée des
opérateurs compacts possède une norme continue (car les opérateurs de rang fini
ont une norme continue et qu’ils sont denses parmi les opérateurs compacts).
La complétude ne doit bien sûr pas être définie par les suites de Cauchy, mais
peut être définie de façon équivalente par filtres de Cauchy ou approximations
de Cauchy.

Il s’avère que la plus grande partie de la théorie des C∗-algèbres se développe
relativement bien dans ce cadre constructif, on peut même obtenir une version
constructive de la dualité de Gelfand (il faut pour cela remplacer la notion
d’espace topologique compact par la notion de locale compacte complètement
régulière). Ce résultat est dû à C.J.Mulvey et B.Banachewski ([4]) das le cas
des topos de Grothendieck et ensuite adapté par T.Coquand ([20]) dans un
cadre complètement constructif (et donc valide dans un topos élémentaire). Nous
avons rassemblé ici quelques exemples de différences entre la théorie des algèbres
d’opérateurs classique et la théorie constructive :

• Comme mentionné plus haut, C n’est plus un corps en mathématique
constructive. En fait la plupart des propriétés de C qui ne sont pas des
propriétés générales des C∗-algèbres commutatives ne sont plus valides
constructivement. Par exemple il n’y a en général pas de projection or-
thogonale sur un sous espace fermé d’un espace de Hilbert.

• Dans le même esprit, les endomorphismes bornés d’un espace de Hilbert
n’ont en général pas d’adjoint. On appelle opérateurs les endomorphismes
qui ont un adjoint. Bien entendu, il est suffisant de supposer le principe
du tiers exclu pour avoir l’existence d’adjoint.

• Il n’est pas non plus raisonnable d’espérer pouvoir représenter n’importe
quelle C∗-algèbre comme une sous algèbre fermée de B(H) car ce résultat
utilise le théorème de Hahn-Banach de façon essentielle. En revanche il
est toujours possible de représenter n’importe quelle C∗-algèbre comme
une C∗-algèbre fermée dans l’algèbre des opérateurs sur un C-module
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hilbertien pour C une C∗-algèbre commutative. Ce résultat est aussi basé
sur la construction GNS, mais appliquée à l’état universel (à valeurs dans
C(X) ou X est l’espace 3 des états) plutôt qu’à un état construit par le
théorème de Hahn Banach.

• Il ne semble pas possible de donner une bonne définition constructive
d’algèbre de von Neumann, ou plus précisément, toute les définitions
classiquement équivalentes ne sont plus équivalentes en mathématique
constructive et aucune ne se détache réellement. La raison derrière cela est
que toute la théorie des algèbres de von Neumann repose sur la construc-
tion de projections et que sans le tiers exclu il est très difficile, voire
impossible de construire suffisamment de projections.

Quand ces définitions sont interprétées dans la logique du topos des faisceaux
sur un espace topologique raisonnable (paracompact) on retrouve les notions
classiques de champs continus. Si l’on considère des espaces de Banach avec
une norme continue on trouve des champs comme ceux de [23, 10.1.2(iii)], si
en revanche on s’autorise des espaces de Banach avec une norme semi-continue,
on obtient la notion plus générale de champs de [36]. De même les C∗-algèbres
internes et les espaces de Hilbert internes sont la même chose que des champs
continus de C∗-algèbres et d’espaces de Hilbert ( Voir [12] and [58]). De plus si
X est un espace topologique localement compact, un espace de Hilbert du topos
des faisceaux sur X est la même chose qu’un C0(X)-module hilbertien.

Enfin si A est une algèbre de von Neumann abélienne, alors on peut considérer
le topos T des faisceaux sur l’algèbre Booléenne complète des projections de A.
Les espaces de Hilbert de T correspondent exactement aux W ∗ modules sur A,
dont on sait qu’ils correspondent aux représentations normales de A, et, sous
des conditions de dénombrabilité, aux champs mesurables d’espaces de Hilbert
sur l’espace mesuré correspondant.

Si T est un topos et H un espace de Hilbert dans la logique de T (on plus
généralement un module hilbertien sur une C∗-algèbre de T ), alors l’algèbre
des opérateurs globalement bornés de H est une C∗-algèbre au sens usuel.
Cette construction donne une façon naturelle d’attacher des C∗-algèbres, ou
plus généralement des C∗-catégories, à un topos. Malheureusement, ces algèbres
sont en général trop grosses pour être intéressantes et toute la difficulté consiste
à sélectionner une sous-algèbre plus intéressante (et parfois aussi à choisir un
espace de Hilbert intéressant dans le topos).

4) Locales et groupöıdes localiques

Un topos de Grothendieck est dit localique si les sous objets de l’objet terminal
forment une famille génératrice, ou de façon équivalente si il peut être définie
par un site dont la petite catégorie sous-jacente est équivalente à un ensemble
ordonné. L’exemple principale de topos localique est le topos des faisceaux sur
un espace topologique, en fait tout topos localique qui admet suffisamment de
points (c’est à dire de morphismes géométriques ayant pour source le topos des
ensembles) est de cette forme. Plus généralement, il existe une notion � d’espace

3. � espace � voulant bien sûr dire � locale �
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topologique (éventuellement) sans point� appelé locale telle que la catégorie des
topos localiques est équivalente à la catégorie des locales. Les locales sont définies
par le treillis de leurs ouverts, qui est un ensemble ordonné vérifiant certaines
propriétés faisant de lui un cadre 4. Une locale est un objet extrêmement proche
d’un espace topologique : une locale ayant assez de points est la même chose
qu’un espace topologique sobre, et même les locales sans points gardent un com-
portement très géométrique et méritent toujours le nom d’espace. En revanche
d’un point de vue plus global, la catégorie des locales a un comportement as-
sez différent de la catégorie des espaces topologiques, notamment le produit de
deux espaces topologiques calculé dans la catégorie des espaces topologique et
celui calculé dans la catégorie des locales peuvent être distincts, en particulier
un groupe topologique n’est pas forcement encore un groupe dans la catégorie
des locales (si le groupe est localement compact il n’y a aucun problème) et
par exemple un sous groupe localique d’un groupe localique est toujours fermé,
ainsi Q muni de la topologie induite par celle de R ne peut pas être un groupe
localique.

On peut trouver une introduction à la théorie des locales et des cadres dans
les deux premiers chapitres de [8], ou dans la partie C de [44]. On peut aussi
consulter le livre récent [62] entièrement consacré à leur étude (mais dans un
contexte non constructif) ainsi que les deux excellents articles d’introduction de
P.T.Johnstone.

Pour un topos (de Grothendieck) général T , il y a un topos localique universel
L, qu’on appelle la réflexion localique de T équipé d’un morphisme géométrique
de T dans L. Le treillis des ouverts de L est exactement le treillis des sous objets
de l’objet terminal de T .

À un groupöıde topologique ou localique on peut associer la catégorie des fais-
ceaux équivariants, c’est à dire des faisceaux sur l’espace des unités munis d’une
action (continue) des morphismes. Il s’avère que cette catégorie est un topos
de Grothendieck. A.Joyal et M.Tierney ont démontré dans [45] que tout topos
de Grothendieck peut se réaliser comme le topos des faisceaux équivariants sur
un groupöıde localique ouvert (c’est à dire un groupöıde localique dont les ap-
plications structurales sont des applications ouvertes). De plus, dans [52], [53]
et [11], I.Moerdijk et M.Bunge ont démontré que si on définit les morphismes
entre groupöıdes localiques ouverts comme étant les bi-fibrés principaux (pour
la topologie des surjections ouvertes) alors :

• La construction de la catégorie des faisceaux équivariants définit un fonc-
teur de la catégorie des groupöıdes vers la catégorie des topos de Gro-
thendieck.

• La construction de Joyal et Tierney définit un unique groupöıde à iso-
morphisme près dans cette catégorie de groupöıdes, c’est à dire à une
notion d’équivalence faible de groupöıdes près.

• Cette construction définit un foncteur des topos vers les groupöıdes qui
est l’adjoint à droite du foncteur topos des faisceaux équivariants.

• Ces foncteurs identifient les topos de Grothendieck avec une sous catégorie
(pleine) réflexive de la catégorie des groupöıdes localiques ouverts.

4. � frame � en anglais, la traduction par cadre n’étant pas particulièrement standard
dans ce contexte.
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De plus cette catégorie des groupöıdes (avec les bi-fibrés principaux comme mor-
phismes) peut-être vue comme une sous catégorie (pleine) de la catégorie des
champs sur la catégorie des locales équipée de la topologie dont les recouvre-
ments sont les surjections ouvertes (voir aussi [11]).

Comme les C∗-algèbres peuvent aussi être construites à partir de groupöıdes
topologiques, ces résultats montrent un autre moyen de relier les C∗-algèbres
et les topos. Mais ce lien n’est pas vraiment disjoint du précédent, si un topos
T correspond à un groupöıde localement compact, il est en général possible
de voir l’algèbre réduite (voir l’algèbre maximale du groupöıde) comme des
sous-algèbres naturelles d’opérateurs de certains espaces de Hilbert de T . La
question de choisir et de construire un système de Haar sur le groupöıde est
essentiellement traduite en la question de construire un espace de Hilbert sur le
topos, cette dernière question étant souvent plus simple si on la traite du point
de vue de la logique interne du topos.

Principaux résultats de cette thèse

Cette thèse ce décompose en trois développements relativement indépendants
(bien que le second soit très fortement inspiré des résultats du premier).

I) Toposes, quantales and C∗-algebras in the atomic case

Dans ce chapitre, nous avons commencé par présenter une équivalence (déjà bien
connue) entre la notion de topos de Grothendieck et les objets appelés quantales
de Grothendieck (qui sont des cas particuliers de quantales modulaires). Nous
avons amélioré certain aspects de cette équivalence, notamment avec le théorème
3.6.3 et son corollaire 3.6.9. Les quantales de Grothendieck sont intéressantes
pour nous pour au moins deux raisons : tout d’abord, elle sont essentiellement
ce que nous avons envie d’appeler des � algèbres d’opérateurs en caractéristique
1� et donc sont formellement assez proches des algèbres d’opérateurs classiques,
et ensuite il est très naturel (à la vue de certains exemples) de penser qu’on
pourra associer une C∗-algèbre à un topos comme algèbre de convolution de
fonctions � sur la quantale � . (voir 3.8 pour plus de détails sur ce deuxième
point).

Dans la dernière section de l’article nous nous concentrons complètement sur
les cas des topos atomiques et des quantales atomiques qui leur correspondent,
cela correspond essentiellement au cas où il n’y a plus aucune topologie non
discrète qui intervient, mais uniquement des problèmes de nature combinatoire.
Dans cette situation, nous somme capables de produire une relativement bonne
description du lien entre topos et algèbres d’opérateurs par l’intermédiaire des
quantales. Nous montrons tout d’abord que les quantales modulaires corres-
pondent naturellement à une notion très naturelle d’hypergroupöıde et que les
topos de Grothendieck correspondent à un cas particulier d’hypergroupöıdes
que nous qualifions de � semi-simples � .

Nous montrons ensuite que la convolution de fonctions sur le quantale est bien
définie si et seulement si certaines conditions de finitude (formulées aussi bien
en terme du topos que de l’hypergroupöıde) sont satisfaites, et que sous ces
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conditions on obtient une bonne C∗-algèbre avec une sous algèbre arithmétique
et une évolution temporelle modulaire décrite explicitement.
Nous montrons finalement que ces conditions de finitudes sont équivalentes à
une condition géométrique sur le topos : le fait que le topos est localement
séparé. De plus, sous cette condition l’évolution temporelle d’une algèbre de
von Neumann correspondante est décrite par un Q∗+ fibré principal sur le topos
défini de façon complètement canonique.

L’exemple principal de cette situation est le topos des actions continues d’un
groupe localique pro-discret (ou plus généralement une somme disjointe de tels
exemples). Les conditions de finitude sont alors équivalentes à la locale compa-
cité du groupe et l’algèbre qui apparâıt est simplement une algèbre de Hecke de
doubles classes. Il s’avère que, si l’on suppose l’axiome du choix, tout exemple
de topos satisfaisant ces conditions est de cette forme. Cela dit, le travail que
nous avons fait ici est valide constructivement et peut donc être appliqué dans
des topos sans l’axiome du choix et donc à d’autres formes d’exemples. Enfin
les méthodes utilisées ici pour traiter ces exemples (n’utilisant pas le groupe
localement compact sous-jacent) devraient se généraliser à d’autres sortes de
topos.

Nous pensons à ce travail sur les topos atomiques comme un exemple très simple
qui servira à nous guider vers une compréhension de phénomènes plus généraux,
comme ceux traités dans la partie suivante.

II) Measure theory over toposes

Cet article développe essentiellement deux idées :

La première idée est que, par analogie avec la théorie de la mesure classique
et plus précisément la théorie de la mesure sur les locales, on peut définir un
champ mesurable (par exemple un champ mesurable d’espaces de Hilbert) sur
un topos T comme étant un objet (un espace de Hilbert) vivant dans un autre
topos B qui est Booléen (sa logique satisfait le principe du tiers exclu) et équipé
d’un morphisme géométrique injectif vers T . Par exemple, si l’on dispose d’un
champ continu sur T (c’est à dire d’un objet vivant dans T ) on peut prendre
son image inverse qui est un objet de B et cela revient à oublier la structure de
champ continu pour ne garder que celle de champ mesurable. Un tel topos B
est appelé une classe de mesure généralisée sur T .

Nous montrons qu’une classe de mesure généralisée admet une image directe par
un morphisme géométrique (par exemple on peut définir la masse de Dirac en un
point du topos de cette façon et cela correspondra au topos des actions continues
du groupe localique des automorphismes de ce point), et que si le topos Booléen
satisfait certaines conditions d’existence de mesure (on dit qu’il est mesurable,
ou encore que la classe de mesure correspondante est effective) alors la catégorie
des espaces de Hilbert sur ce topos est une W ∗ catégorie avec un ensemble de
générateurs et donc la catégorie des représentations normales d’une certaine
algèbre de von Neumann attachée à ce topos (définie à équivalence de Morita
près).
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Une classe de mesure généralisée sur un espace topologique localement compact
X est la même chose qu’une C∗-algèbre monotone fermée A qui contient C0(X)
comme une sous algèbre dense au sens où C0(X) n’est contenu dans aucune
sous-algèbre monotone fermée stricte de A. La classe de mesure généralisée
correspondante est alors effective si et seulement si A est en fait une algèbre de
von Neumann. En particulier pour tout espace topologique localement compact
il existe une plus grande classe de mesure généralisée effective (correspondant à
l’algèbre de von Neumann enveloppante) mais les classes de mesure généralisée
quelconques ne forment pas forcement un ensemble et peuvent ne pas avoir
d’élément maximal. La situation est la même quand X est une locale, (il existe
une plus grande classe de mesure généralisée effective) mais nous ignorons si
c’est encore le cas pour un topos de Grothendieck arbitraire.

La deuxième idée développée ici est que la construction du Q∗+ fibré principal
faite pour les topos atomiques localement séparés du premier développement
peut être adaptée à un topos Booléen (donc à une classe de mesure généralisée
quelconque sur un topos), la condition pertinente étant encore que le topos
(booléen) soit localement séparé (et mesurable). Dans cette situation, cette
construction produit un R∗+ fibré principal qui peut s’interpréter comme le fibré
des mesures localement finies à support maximal (qui est un fibré principal à
cause du théorème de Radon-Nikodym). À partir de là il y a trois possibilités :

• Soit le topos est séparé, dans ce cas le fibré est trivial pour des raisons
complètement explicites. C’est l’analogue 5 des algèbres de von Neumann
de type I .

• Soit le topos est juste localement séparé, mais le fibré est tout de même
trivial, dans ce cas une section globale du fibré donne lieu à une mesure
� invariante � qui permet de définir la masse de n’importe quel objet
du topos (qui est un nombre réel) d’une façon naturelle, ou encore de
construire une trace sur l’algèbre de von Neumann des endomorphismes
de certains espaces de Hilbert du topos.

• Soit le fibré principal est non trivial, et dans ce cas il donne une évolution
temporelle modulaire des espace de Hilbert du topos qui est explicitement
reliée à l’évolution temporelle modulaire des algèbres de von Neumann.

Cette décomposition est très similaire à la décomposition en type des facteurs
de von Neumann, et la conclusion générale est que, comme les espaces non
commutatifs, les topos aussi ont leur propre dynamique canonique au niveau de
la théorie de mesure.

III) Localic Banach spaces

Comme nous l’avons mentionné plus haut, les topos sont des cas particuliers
de groupöıdes localiques, on appelle ces groupöıdes des groupöıdes étales com-
plets 6. Le groupöıde obtenu par l’action d’un groupe localique sur un point est
étale complet essentiellement si le groupe est pro-discret (ce n’est pas tout à
fait vrai, ou au moins il faut être plus précis sur la définition de pro-discret,
mai c’est une bonne approximation à avoir en tête). En particulier, les groupes

5. Il s’avère, même si cela n’a pas été inclus dans l’article que dans ce cas toute algèbre de
von Neumann endomorphisme d’un espace de Hilbert sur le topos est de type I.

6. Tout les groupöıdes étales sont étales complets, mais la réciproque n’est pas vraie.
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connexes localement compacts (qui sont alors aussi des groupes localiques) ne
correspondent pas à des topos.

Du point de vue de la théorie des algèbres d’opérateurs, ceci est une faiblesse de
la théorie des topos. En effet, ces groupes, ou plus précisément leurs C∗-algèbres
de groupe, ont des propriétés aussi bonnes que celle des groupes discrets, et on
aimerait pouvoir étudier aussi de tels exemples dans le formalisme de la théorie
des topos. Plus généralement on aimerait pouvoir parler d’espace de Hilbert et
de C∗-algèbre pas seulement au dessus d’un topos mais aussi au-dessus d’un
groupöıde localique.

Le problème pour faire cela est que si on l’on veut une bonne définition (notam-
ment qui soit invariante par équivalence de groupöıdes) de tels objets il faut et il
suffit que la notion d’espace de Hilbert qu’on utilise ait la propriété de descente
par les surjections ouvertes, et il s’avère que ce n’est pas le cas. Pour remédier
à cette difficulté nous définissons une généralisation de la notion d’espace de
Banach : les espaces de Banach localiques, dont l’espace vectoriel sous-jacent
n’est plus un ensemble mais une locale. Nous développons la théorie de tels ob-
jets de façon systématique et nous prouvons qu’ils sont effectivement la solution
optimale au problème de descente mentionné.

Nous prouvons aussi, que la dualité de Gelfand constructive peut s’entendre en
une dualité entre C∗-algèbres localiques et locales compacts régulières comme
cela avait été conjecturé par Mulvey et Banachewski dans [4].

Pour finir, nous prouvons un théorème de spatialité montrant que 7 au dessus
d’un espace topologique paracompact, ou plus généralement d’une classe de
topos satisfaisant une condition technique qui généralise la paracompacité (plus
précisément l’existence de partitions de l’unité), il n’y a aucune différence entre
espaces de Banach localiques et espaces de Banach ordinaires. En particulier,
au dessus d’un groupöıde localique paracompact (et en supposant l’axiome du
choix dans le topos de base) les champs d’espaces de Banach classiques sont
bien définis sans difficulté supplémentaire.

Autres développements possibles

Vers une dualité de Gelfand non abélienne ?

À n’importe quel topos T on peut associer sa catégorie de T -espaces de Hilbert.
C’est une C∗-catégorie munie d’une structure monöıdale symétrique. Si p est
un point de T , alors p∗ induit une représentation de cette C∗-catégorie compa-
tible à la structure monöıdale et vérifiant une condition de � normalité � . Il
semble que pour une certaine classe de topos (qui doit encore être déterminée
précisément) T peut se reconstruire comme le topos classifiant de la théorie des
représentations de sa C∗-catégorie vérifiant ces conditions. Cette classe devrait
notamment inclure les topos Booléens localement séparés, ce cas particulier
précis étant un travail en cours.

Le cas des topos séparés compacts.

7. En supposant l’axiome du choix dans le topos de base.
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Dans les deux premiers chapitres, les conditions de séparation et de séparation
locale ont joué un rôle essentiel. Des idées similaires montrent que ces conditions
devraient aussi pouvoir être utilisées pour des topos non booléens. Une applica-
tion interne de construction similaire à celle faite dans le premier développement
combinée avec le bon comportement des champs continus sur des locales séparés
compacts devrait permettre d’obtenir une très bonne description de la catégorie
des C∗-algèbres et des modules hilbertiens au dessus d’un topos séparé compact
localement décidable (les conditions précises à mettre sur le topos n’étant pas
encore complètement bien comprises). En particulier, nous essayons de montrer
que pour un tel topos T , la catégorie des C-modules hilbertiens de T (pour
n’importe quelle C∗-algèbre C du topos) est équivalente à la catégorie des mo-
dules hilbertiens sur une C∗-algèbre C o T . Si nous parvenons à faire cela, on
pourra ensuite essayer d’appliquer cette construction pour définir C o T quand
T est juste localement de la forme précédente (en particulier, juste localement
séparé). Ceci est aussi un travail en cours.

Thermodynamique des topos.

Si on en reste au cas des topos booléens dans l’étude de l’évolution tempo-
relle il est impossible d’aller plus loin et d’étudier par exemple les états KMS
quand la température varie, car ceux ci correspondent à différentes classes de
mesure généralisées et donc à différents topos booléens. Ainsi il serait intéressant
d’étendre la définition de mesure invariante à des topos non booléens et d’essayer
d’obtenir une bonne théorie des états KMS pour les topos. Dans ce but, l’étude
du cas des topos de pré-faisceaux sur une petite catégorie simplifiable à gauche
devrait être très intéressante. En effet, ces topos sont relativement simples du
point de vue géométrique (ce sont des groupöıdes étales avec un espace d’unités
qui est le spectre d’un ensemble ordonné), leurs classes de mesures généralisées
sont toujours localement séparées, et ils contiennent de nombreux exemples dont
la thermodynamique a été beaucoup étudiée (les algèbres de graphes, le système
BC etc...).

K-théorie relative à un topos et conjecture de Baum-Connes.

Il semble possible d’étendre la définition de Kasparov de KK-theorie équivariante
d’une paire de C∗-algèbres munie d’une action d’un groupe G à une paire de C∗-
algèbres vivant dans un même topos 8 T , pour définir un groupe KKT (A,B) qui
satisferait un analogue de la propriété universelle de la KK-théorie équivariante
(énoncée et démontrée pour les groupes localement compacts dans [68]).
De plus, en observant qu’un espace topologique X équipé d’une action d’un
groupe G est un G espace propre et compact si et seulement si le topos X/G
des faisceaux G-équivariants sur X est séparés et compacts on devrait pouvoir
utiliser les résultats sur les topos séparé compact pour donner une interprétation
dans ce contexte de la conjecture de Baum-Connes.
La version la plus générale de cette conjecture que nous pourrions énoncer dans
ce cadre est fausse (les contre exemples donnés par N.Higson, V.Lafforgue et
G.Skandalis dans [35] sont aussi valides dans ce cadre), mais de nombreux cas
sont déjà démontrés : par exemple le cas des groupes avec la propriété de Haa-
gerup est dû à Higson et Kasparov dans [34], et un grand nombre d’autres cas

8. Ou peut-être plus généralement, au dessus d’un même groupe localique.
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incluant tous les groupes de Lie simples et les groupes hyperboliques ont été
obtenue par V.Lafforgue (voir [47]).
Nous espérons que les preuves de ces cas particuliers pourront s’interpréter dans
le formalisme de la théorie des topos.
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Introduction

Toposes and C∗-algebras are two notions which generalize the concept of topo-
logical space to more general situations where usual topology is no longer of
help. They appear to have several deep similarities. First of all, there is a
long list of examples of “generalized geometric objects” to which one can asso-
ciate both a C∗-algebra and a topos. This list includes discrete groups, some
locally compact groups, the non commutative tori, the space of leaves of folia-
tions, graphs, the space of Penrose tilings, and more generally a large class of
topological groupoids.

In addition to this list of examples where one has each time both a C∗-algebra
and a topos describing a same geometric situation, there are examples of prob-
lems where both toposes and C∗-algebras play a role but in ways that are not
easy to relate. In theoretical physics for example, and more precisely on the
issue of quantum gravity, operator algebras are clearly relevant objects to study
quantum theory and its generalizations, there is even a model of quantum grav-
ity completely based on operator algebras (see [13], [14], see also the first part
of [18]). Toposes have also been proposed more recently as possible object of
interest in the formulation of quantum gravity (see [31] and [24]).
Also, in number theory, the so called Bost-Connes systems (first introduced
in [9] and generalized in [30]) are C∗-algebras which appear to be connected to
deep number theoretic problems, notably, the Riemann hypothesis (see [17]) and
explicit class field theory (see also chapter 2,3 and 4 of [18]). On the other hand,
toposes have been introduced explicitly in order to prove the Weil conjectures,
including the analogue in characteristic p of the Riemann Hypothesis. In both
cases it would be interesting to have a better understanding of the relation
between topos theoretic and C∗-algebraic approaches.

Also the two theories have independently shown their ability to reconcile the
continuum and the discrete. Indeed, in the purely classical conception that a
real “variable” should be a function from a set X to R with some regularity
conditions, it is impossible to have, in an interesting way, a discrete and a
continuous variable defined simultaneously (that is one the same set X). Now,
from the point of view of quantum mechanics and of non commutative geometry,
a variable is an operator A acting on some Hilbert space H and satisfying
A = A∗ if one deals with a real variable. In this context one can have on
the same Hilbert space continuous and discrete variables (although they will
generally not commute). For example on the space H = L2(R/Z) multiplication
by continuous functions on the circle give operators on H corresponding to
continuous variables, whereas the (unbounded) operator d2/dx2 has a discrete
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spectrum, and can be written (in the basis given by functions exp(inx) ) as
multiplication by a function with discrete values. Similarly, toposes also have
this ability to unite continuous and discrete objects. They put together in the
same natural category continuous objects like topological spaces, and extremely
discrete objects like algebraic varieties over finite fields or small categories. To
quote Grothendieck (from [29, 2.13]):

Ce ”lit à deux places” est apparu (comme par un coup de baguette
magique. . . ) avec l’idée du topos. Cette idée englobe, dans une
intuition topologique commune, aussi bien les traditionnels espaces
(topologiques), incarnant le monde de la grandeur continue, que les
(soi-disant) ”espaces” (ou ”variétés”) des géomètres algébristes ab-
straits impénitents, ainsi que d’innombrables autres types de struc-
tures, qui jusque là avaient semblé rivées irrémédiablement au ”monde
arithmétique” des agrégats ”discontinus” ou ”discrets”.

From a very optimistic point of view, one can hope for a form of non-commutative
Gelfand duality between a class of toposes and certain C∗-algebras eventually
equipped with additional structures. Even without such a duality there are a lot
of tools and constructions on each side that could benefit the other if one were
able to transport them. On one hand, toposes have a really nice (co)homology
theory and homotopy theory, and are deeply connected to logic both through
their internal logic and through the geometric theory they classify. On the other
hand, C∗-algebras are connected to functional analysis and to the formalism of
quantum physics and one also disposes of a lot of powerful tools to study them,
like K-theory, cyclic and Hochschild (co)homology, the modular theory of von
Neumann algebras, etc... Moreover, even if C∗-algebras and toposes can both
be constructed out of groupoids, there are also other processes that can be used
to construct them, for example a topos can be obtained from any small category
or as a classifying topos, and C∗-algebras can be constructed by deformations
or by extensions of previously known C∗-algebras.

We also need to observe that a relation between these two forms of geometry
is necessarily subtle. Specifically, consider the case of the Fourier isomorphisms
and more generally of Pontrjagin duality. If G is a discrete abelian group (or
more generally an abelian locally compact group) then from the point of view
of operator algebras, the convolution algebra of G is isomorphic to the algebra
of continuous functions on the dual group X of G, and similarly the von Neu-
mann algebra of the group is isomorphic to the von Neumann algebra L∞(X,µ)
where µ is the Haar measure of X. This means that from the point of view of
operator algebras one identifies the group G (acting on a one point space) and
the topological space X of characters of G. From the topos perspective these
two objects are different, and relatively unrelated. Hence, in some sense, C∗-
algebras alone seem to forget some information about the geometry because of
this Fourier isomorphism. But one the other hand, the existence of this isomor-
phism is an extremely powerful tool in order to study these objects from a more
analytic point of view. The general philosophy that we will remember from this
case, is that topos theory seems to stay closer to geometry and be more “de-
scriptive” than C∗-algebras whereas C∗-algebra theory is closer to analysis and
more efficient to provide non trivial invariants and especially numerical ones.
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Finally, one of the best tools we have at our disposal to understand the relation
between toposes and C∗-algebras, is the fact that it is possible (using internal
logic) to define a good notion of continuous bundle of Hilbert spaces or C∗-
algebras or Hilbert modules over a topos. Moreover, if H is a continuous bundle
of Hilbert spaces (or of Hilbert modules over some continuous bundle of C∗-
algebras) then the algebra of bounded operators on H is a C∗-algebra which
contains a lot of information about the topos, and can be studied using the
geometric and logical structure of the topos. This is why the major concern of
this thesis is the study of some properties of these continuous fields of operator
algebraic structures over toposes, under various geometric assumptions on the
concerned toposes. Also, as continuous fields may fail to exist on certain toposes,
or maybe too rigid we will define and study a notion of measurable field.

Context and basic notion

1) Toposes

We need to distinguish two sorts of toposes, the elementary toposes (or Lawvere
toposes) and the Grothendieck toposes, Grothendieck toposes being a special
case of elementary toposes.

An elementary topos is a category which admits finite limits and power-objects,
i.e. a universal construction corresponding to the construction of the set P(X)
of subsets of a given set X. This notion has been introduced by Lawvere and
Tierney, see [48] and [69], the definition has been simplified afterwards.

It has been proved that, in some sense, any elementary topos can be considered
as a model of usual set theory, without the axiom of choice, the axiom of infinity
(asserting that the set of all natural numbers exists), and in which the law
of excluded middle (the assertion that for any proposition P one has either
P or the negation of P ) may not hold. This interpretation of set theoretical
constructions is called the “internal logic” of the topos and is used constantly in
all our work, in fact we are always implicitly assuming that we are are working
internally in some elementary topos S whose objects are called “sets”. We will
generally assume that S has a natural number object (i.e. satisfies the axiom of
infinity), but only occasionally assume that the base topos satisfies additional
axioms, like the law of excluded middle in chapter 3 or the axiom of dependent
choice in section 5 of chapter 4. In particular, unless explicitly stated otherwise
we generally work in the framework of intuitionist 9 mathematics. For a brief
introduction of how internal logic works, one can consult [6] and for a more
detailed one with a lot of examples see [50].

Grothendieck toposes form a particular class of well behaved elementary toposes,
which has been defined and studied prior to elementary toposes by Grothendieck
and his collaborators for the purpose of algebraic geometry. They can be defined
as elementary toposes which are presentable categories (as in [7, 5.2]), or which
have all inductive limits and a small set of generators. They can equivalently be
defined as categories equivalent to a category of sheaves over a site (this is their

9. Or “constructive”, for our concern, intuitionist and constructive will be synonym and
will mean “topos valid”
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original definition in [21]). In particular, Grothendieck toposes always satisfy
the internal axiom of infinity.

The good notion of morphism between Grothendieck toposes is the notion of “ge-
ometric morphism”. A geometric morphism between two toposes corresponds to
a pair of adjoint functors (f∗,f∗) with f∗ in the same direction as the morphism,
and f∗ which commutes to finite limits. This turns toposes into a 2-category,
with the 2-morphisms being the natural transformations between the f∗ func-
tors. The functor which sends a topological space to its topos of sheaves, and
continuous maps to the functor of pullback and pushforward of sheaves, embeds
almost 10 fully faithfully the category of topological spaces into the category
of toposes. It is in this sense that toposes are a generalization of topological
spaces.

An extremely important application of internal logic, is that if one studies topos
theory constructively (which is not a problem) one can talk about Grothendieck
toposes internally in some fixed topos T . It appears, that these are exactly
equivalent to Grothendieck toposes endowed with a geometric morphism E → T .
Hence every time one has such a geometric morphism, one can bring its study
to the study of E “internally” in T . In particular, any reasonable property
of toposes automatically has a relative version for geometric morphisms (for
example, the notion “compact” for toposes gives the relative notion “proper”
for geometric morphisms).

2) Operator algebras

A (complex) C∗-algebra is a Banach algebra over C, endowed with an anti-linear
involution ∗ such that (ab)∗ = b∗a∗ and ‖x∗x‖ = ‖x‖2. The two main results to
understand the importance of this definition, are:

• C∗-algebras are exactly the closed sub-algebras of the algebra B(H)
which are stable by adjunction (the adjunction being the ∗ operation)
where B(H) stands for the algebra of bounded endomorphisms of a
Hilbert space H.

• Commutative C∗-algebras are exactly the algebras C0(X) of continuous
functions which tend to zero at infinity over a (Hausdorff) locally compact
topological space X, with the involution given by the complex conjuga-
tion. Moreover morphisms of involutive algebras correspond exactly to
pre composition by continuous proper maps. This result is known as the
Gelfand duality.

Because of the Gelfand duality, one can think of general C∗-algebras as gener-
alized “non-commutative” locally compact topological spaces. One can consult
[23] for an introduction to the theory of C∗-algebra. As mentioned earlier, a
lot of tools from topology and geometry have been generalised to this non-
commutative context, a lot of examples of this can be found in [16].

Von Neumann algebras (see [22]), are particular C∗-algebras, which are not just
closed in B(H) for the norm but also for one of the weaker topology on B(H)

10. One has to restrict to a certain class of topological spaces, called “sober” topological
spaces which include all Hausdorff topological spaces, and all underlying topological spaces of
schemes.
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(for example, for the topology of simple convergence of operators). It has been
shown that von Neumann algebras can be characterized as C∗-algebras which
are, as Banach spaces, the dual of some other Banach space (see [64]), or as
those which have arbitrary directed supremum of positive elements and enough
positive linear functionals which commute to directed supremum of positive
elements (see [66, III.3.16]).

Abelian von Neumann algebras are of the form L∞(X), i.e. the algebra of
all bounded measurable functions on a measured space X modulo functions
which are zero almost every where. Hence the theory of general von Neumann
algebras can be thought of as non commutative measure theory. As in the
topological case, a lot of usual constructions and tools of usual measure theory
can be extended to the non-commutative case. But non-commutative measure
theory comes with an additional feature: when one puts a semi-finite weight
(the analogue of a locally finite measure) on a von Neumann algebra A, there
is, attached to it, a canonical “time evolution of A”, i.e. a morphism from R to
the group of automorphism of A. This construction is originally due to Tomita,
has been popularized by Takesaki (in [65]), and Connes proved that in fact,
up to inner automorphisms the time evolution does not depend on the weight
and is completely canonically attached to the algebra (see [15]). Of course for
a commutative algebra this evolution is trivial and for B(H) it is inner (hence
trivial in the sense of the uniqueness property). But there is a large class of
algebras (type III von Neumann algebra) for which this time evolution is really
non trivial and has lead to interesting invariants of these algebras. Another
introduction to the theory of this time evolution can be found in [67].

3) Constructive operator algebra theory

A part of functional analysis and of the theory of operator algebras has been de-
veloped in a constructive context (hence over toposes) by Mulvey, Banachewski
and other people in a series of papers including [12] [57], [60],[3],[4].
Before giving a constructive definition of C∗-algebras that could be interpreted
in a topos, one needs to define constructively what is a real (or complex) number.
In classical mathematics, there are a lot of equivalent ways to define the field
of real numbers, but these different methods are no longer equivalent in an
intuitionist context. First of all one needs to have the axiom of infinity in order
to define N and Q. It appears that even if one does not assume the law of
excluded middle, the usual relations on N and Q are all decidable, this means
that for example, for all pairs (q, q′) of rationals one has either q < q′,q = q′ or
q > q′. In a Grothendieck topos, the objects corresponding to the interpretation
of N and Q are simply the locally constant sheaves with values N and Q.
The definition of R involving Cauchy sequences has to be avoided in the absence
of the axiom of (dependent) choice. The construction involving usual Dedekind
cuts works relatively well at the level of ordered sets, but has several hiccups:
the constructions by upper and lower Dedekind cuts give two different (non
isomorphic as ordered sets) sets of reals called respectively the upper and lower
semi-continuous real numbers. In both cases one has trouble with defining
the opposite of a number, or more generally multiplication by non positive
elements. Lower or upper semi-continuous real numbers do not form rings, or
even additive groups. They form ordered additive monoids, and one can define
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the multiplication of two positive elements. Despite of this they will be of
interest, and they are easy to understand: for example on a topological space,
they correspond to the sheaves of upper and lower semi continuous functions
with value in R.
The good definition of real number is done using two sided Dedekind cuts.
There are actually (at least) two ways of giving the definition of a two sided
Dedekind cut which are not constructively equivalent and which give again two
different notions of real numbers called Macneille real numbers and Dedekind (or
continuous) real numbers. We will use only Dedekind/continuous real numbers
and call them simply “real numbers”. The set of Dedekind real numbers is not
a field in the sense that we do not have “x = 0 or x is invertible” in general, but
it is a (local) ring, and the negation of “x is invertible” is “x = 0” (the opposite
does not necessary hold). On a topological space, the sheaf of Dedekind real
numbers corresponds to the sheaf of continuous real valued functions. The set
of real numbers is included both in the set of lower and upper real numbers, and
in both cases corresponds exactly to the set of elements which have an opposite.
One should note that, contrary to the case of upper and lower real numbers it
is not true in the set of (continuous) real numbers that every bounded set has a
supremum. For more information about this various definition of real numbers
see [44, D4.7].

It is also possible to define the set of Dedekind real numbers as a completion
of Q, but one has to use a completion by Cauchy filters instead of Cauchy
sequences (as in [10, II.3]).

Once we define real numbers, the definition of complex numbers does not pose
any problem: C is simply defined as R[X]/(X2 + 1). It is not completely exact
that C is still algebraically closed, but the problem is essentially that it is not a
field, and it is still true that C is separably closed, that is if a polynomial with
coefficient in C has an invertible discriminant then it can be factored.

There are two possible definitions of Banach spaces: one can either ask the norm
of an element to be a continuous real number, or an upper semi-continuous real
number, corresponding to the idea that in most of mathematics one only needs
to give upper bounds on norms of certain elements (and we do not need lower
bound). The second case is more general, and Banach spaces are in general as-
sumed to have a norm with value in upper semi-continuous real numbers, Banach
spaces whose norm takes value in continuous real numbers are generally called
continuous Banach spaces. For example the set of all bounded operators over a
Hilbert space is in general not a continuous Banach space, but the closed sub
algebra of compact operators is a continuous Banach space (because it is defined
as the closure of the set of finite rank operators and finite rank operators have
continuous norm). Completeness should not be defined by Cauchy sequences,
but can be defined equivalently by Cauchy filters or Cauchy approximations.

It appears that most of the theory of C∗-algebras can be developed relatively
well, one has even been able to give a constructive version of the Gelfand duality
(one has to replace compact topological spaces by compact completely regular
locales). It is due in the first place to Mulvey and Banachewski [4] in the case
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of Grothendieck toposes, and to T.Coquand in [20] in the more general frame-
work of constructive mathematics (hence also inside elementary toposes). Some
examples of differences between constructive and classical operator algebras are
listed here:

• As mentioned earlier, C is no longer a field, in fact most of the properties
of C which are not true for general commutative algebras no longer hold.
For example it is not true that there is an orthogonal projection over a
closed subspace of an Hilbert space. This should be related to the fact
that there is in general no orthogonal projection over a closed sub module
of a C(X)-Hilbert module.

• In the same spirit, bounded endomorphisms of Hilbert spaces have in
general no adjoint. One calls operators the endomorphisms which have
an adjoint. It is enough to assume the law of excluded middle to avoid
this issue.

• One cannot hope to represent an arbitrary C∗-algebra as a sub-algebra
of B(H) for H a Hilbert space, because the proof of this result uses the
Hahn Banach theorem in an essential way. But it is still possible to
represent any C∗-algebra as a closed involutive sub C∗-algebra of B(H)
for H an Hilbert module over a commutative C∗-algebra C(X). This also
uses the GNS construction, but applied to the “universal state” (which
takes value in C(X), for X the space 11 of states of the algebra) instead
of a particular well chosen state.

• It does not seem possible to give a good definition of von Neumann
algebras without the law of excluded middle (or more precisely, all the
classically equivalent definitions will no longer be equivalent). The reason
for this is that without the law of excluded middle there is no way of
constructing projections in general, and that projections are one the most
essential tools of basic von Neumann algebra theory.

Finally, this internal theory of operator algebras corresponds to well known
objects, at least when interpreted over a paracompact topological space: an
internal Banach space corresponds to a Banach bundle whose sections are as-
sumed to have a continuous norm as in [23, 10.1.2(iii)], or a semi-continuous
norm as in [36] depending on whether the internal Banach space is continuous
or not. Similarly internal C∗-algebras and Hilbert spaces correspond to contin-
uous fields of C∗-algebras and Hilbert spaces (See [12] and [58]). Also, if X is
a locally compact topological space, Hilbert spaces in Sh(X) are equivalent to
Hilbert modules over C0(X).

Moreover, if A is an abelian von Neumann algebra, one can consider the topos T
of sheaves over the complete boolean algebra of projections of A. Hilbert spaces
in T correspond to W ∗ modules over A, which are known to correspond to nor-
mal representations of A, and under some countability condition to measurable
fields of Hilbert spaces over the corresponding measured space.

Finally, if T is a topos and H an Hilbert space in the logic of T (or more
generally an Hilbert module over some C∗-algebra in T ), then, the algebra of
(globally) bounded operators on H defines a C∗-algebra in the base topos. This

11. “Space” has to be interpreted as “locale” here.
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construction gives a natural way to associate C∗-algebras, or more generally C∗-
categories to toposes. Unfortunately, these algebras are generally a little too big
to be really interesting: all the difficulty lies in selecting interesting (smaller)
classes of operators which will give interesting C∗-algebras (and sometimes also
in constructing a nice Hilbert space over T ).

4) Locales and localic groupoids

A localic topos is a Grothendieck topos that is generated by subobjects of its
terminal object, or equivalently that can be defined by a site whose underlying
category is a pre ordered set. The key example of localic toposes is the category
of sheaves over a topological space. The category of localic toposes is equivalent
to the category of “locales”. Locales can be defined by certain ordered sets called
frames and interpreted as the lattice of their of open subsets (more precisely,
the category of locales is the opposite of the category of frames). A locale is
essentially the same thing as a topological space but may fail to have “points”
(i.e. geometric morphisms from the topos of sets to them). A locale having
enough points is the same thing as a sober topological space. Despite this,
the category of locales is generally a little better behaved than the category of
topological spaces. For example as the product of locales is in general different
from the product of topological spaces, the notion of localic group (or groupoid)
is different from the notion of topological group (or groupoid) and one has that
any localic subgroup of a localic group is closed ! In particular, Q endowed with
the topology induced by the topology of R is not a localic group. This difference
disappears in the case of locally compact groups.

An introduction to the theory of frames and locales can be found in the first two
chapters of [8], in the part C of [44]. There is also a recent book ([62]) entirely
devoted to them (but in a non-constructive framework). The reader can also
consult the two excellent survey papers of P.T.Johnstone on the subject: [41],
[40].

For an arbitrary topos T there is a universal localic topos L, called the localic
reflection of T equipped with a geometric morphism from T to L. The frame
of “open subsets” of L can be obtained as the set of subobjects of the terminal
object of T .

To a localic or topological groupoid one can associate a category of equivariant
sheaves on it. It appears that this category is a topos. A.Joyal and M.Tierney
proved in [45] that every Grothendieck topos can be realized as the category of
sheaves over an open localic groupoid (i.e. a localic groupoid whose structure
maps are open maps). Moreover, in [52],[53] and [11] I.Moerdijk and M.Bunge
showed that if one defines morphisms of open localic groupoids as being principal
bi-bundles (for the topology of open surjections), then:
• The construction of the category of equivariant sheaves defines a functor

from groupoids to Grothendieck toposes.
• The construction of Joyal and Tierney defines a unique groupoid up to

isomorphism in this category of groupoids, i.e. up to some notion of
equivalence.
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• This defines a functor from toposes to groupoids which is a right adjoint
to the functor of equivariant sheaves.

• This turns Grothendieck toposes into a full reflexive sub-category of the
category of open localic groupoids.

This category of groupoids with principal bi-bundles as morphisms can also be
seen as the full subcategory of the category of stacks on the site of locales with
the topology whose covering are open surjections (see also [11]).

As C∗-algebras can be constructed out of locally compact groupoids, these re-
sults show another path to relate toposes and C∗-algebras. It is in fact close to
the previous one: If a topos T corresponds to a locally compact groupoid, it is
generally possible to see ‘the’ reduced C∗-algebra attached to this groupoid as
a sub algebra of endomorphisms of some Hilbert space over T . The question
of choosing and constructing a Haar system on the groupoid in order to define
the algebra translates into choosing and constructing a suitable Hilbert space
in the topos, which is in general an easier question if one considers it from the
point of view of internal logic.

Main results of this thesis

This thesis decomposes into three relatively independent parts.

I) Toposes, quantales and C∗-algebras in the atomic case

In this article, we start by reviewing the (already known) equivalence between
Grothendieck toposes and ordered theoretic objects called Grothendieck quan-
tales (a particular case of modular quantales). We improved some aspects of
this equivalence, especially with theorem 3.6.3 and corollary 3.6.9. Grothendieck
quantales are interesting for our concern for two different reasons: first, they
look a lot like something that one wants to call “characteristic one operator
algebras” hence they should be at least formally closer to operator algebra, and
secondly it seems reasonable to think that operator algebras attached to a topos
will arise as convolution algebras of functions “on the quantale” (see 3.8 for more
detail on this second point).

We then completely focus on the case of “atomic toposes” and “atomic quan-
tales”, where essentially, there is no longer any non discrete topology involved.
And in this case we are able to provide a relatively complete description of
the relation between toposes and C∗-algebras through the use quantales. We
first show that atomic modular quantales correspond exactly to a natural no-
tion of hypergroupoid, and atomic Grothendieck quantales to a special case of
hypergroupoids that we call semi-simple hypergroupoids.

We then show that the convolution of functions on the quantale is well defined
if and only if some explicit finiteness conditions (stated both in terms of the
topos and in terms of the hypergroupoid) are satisfied and that in this situation
one gets a nice C∗-algebra with an arithmetic sub-algebra and a modular time
evolution explicitly described.

We also show that these finiteness conditions are equivalent to a geometric
condition: the fact that the topos is locally separated, and that under this
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assumption the time evolution of the corresponding von Neumann algebra is
defined by a Q∗+ principal bundle on the topos which is completely canonical.

The main example of this situation is the topos of continuous actions of a pro-
discrete localic group (or more generally a disjoint sum of such toposes). The
finiteness condition corresponds to the local compactness of the group and the
algebra arising is a Hecke algebra of double co-sets with respect to certain open
subgroups (corresponding to a base of atoms that we can chose). It appears
that, assuming the axiom of choice, every (connected) example satisfying the
finiteness condition is of this form. All this work is constructively valid and can
hence be applied internally to other toposes where other sorts of examples can
exist. Also the methods we have used here are meant to be generalized to other
topos theoretic situations.

We think of this case of atomic toposes as a “toy model” that will lead us
towards the understanding of more general phenomena.

II) Measure theory over toposes

This paper is devoted to two main ideas:

The first idea is that, by analogy with usual measure theory, one can define a
measurable field of something (like a measurable field of Hilbert spaces) over
a topos T as being an object (an Hilbert space) living in a boolean topos B
endowed with an injective geometric morphism to T . For example, if one has
a continuous field on T one can “forget” that it is a continuous field and keep
only the structure of measurable field by pulling it back to B. Such a topos B
is called a generalized measure class on T .

We show that generalized measure classes can be pushed-forward (in particular,
to any point p of the topos one can attach the Dirac mass at this point, which
corresponds to the topos of continuous actions of the localic group of automor-
phisms of p). And that if the boolean topos satisfies some condition of existence
of measures (one says that B is measurable, or that the generalized measure
class is effective) then the category of measurable fields of Hilbert spaces is a
complete W ∗ category with a small set of generators, hence the category of
modules over a von Neumann algebra.

A generalized measure class over a locally compact topological space X is the
same thing as a monotone complete C∗-algebra A which contains C0(X) as a
dense sub-algebra in the sense that there is no proper monotone complete sub-
algebra of A which contains C0(X). The generalized measure class is effective if
and only if A is a von Neumann algebra. In particular, for each locally compact
topological space there is a largest effective generalized measure class on X
corresponding to the enveloping von Neumann algebra, but the family of all
generalized measure class on X may not be a proper set, and may not have a
maximal element. The situation is the same if X is any locale (there is largest
effective generalized measure class) but we do not know if it is also the case
when X is a general topos.
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The second idea of this paper, is that the construction of the canonical Q∗+
bundle over locally separated atomic toposes done in the first article can be
carried out in boolean toposes, again under the assumption that the topos is
locally separated (and satisfying the measurability condition). This produces a
canonical R∗+ bundle which can be interpreted as the bundle of locally finite well
supported measures, and is a principal bundle exactly because of the Radon-
Nikodym theorem. One then has three possible situations:

• If the topos is not just locally separated, but actually separated, the
bundle is trivial for completely explicit reasons. This is analogue of the
case of type I von Neumann algebras 12.

• If the topos is not separated, but the bundle is trivial, then a global
section of the bundle gives an “Invariant measure” that allows one to
measure the “mass” of any object of the topos (which is a real number)
in a natural way, and to define a trace on the von Neumann algebra of
endomorphisms of certain internal Hilbert spaces.

• If the bundle is non trivial then it gives a natural “modular time evo-
lution” of Hilbert spaces over the (boolean) topos, related to the usual
modular time evolution of von Neumann algebras.

This is really similar to the type decomposition of von Neumann factors. The
general conclusion is that as for non-commutative spaces, measure theory over
toposes has its own canonical dynamic.

III) Localic Banach spaces

As mentioned earlier, toposes correspond to particular localic groupoids, called
etale complete groupoids. The groupoid obtained from by the action of a localic
group G over a point is etale complete essentially if the group is “pro-discrete”
(this is not exactly true, or at least one has to be careful with the definition
of pro-discrete, but this is still a good picture to keep in mind). In particular,
connected locally compact topological groups (they are also localic groups) do
not corresponds to toposes.

From the point of view of operator algebras this is a clear weakness of topos
theory. Indeed, these groups are known to have as good operator algebraic
properties as discrete groups, and one would like to be able to handle them in
the topos theoretic formalism. More generally one would like to be able to talk
about Hilbert spaces and C∗-algebras not only over toposes but also over (open)
localic groupoids.

There is one problem in order to have a nice definition (invariant by equivalence
of groupoids) of such objects. It is essentially the notion of Banach space (as
well a Hilbert space, and C∗-algebra) does not descend along open surjections
(see the section 2.6 of this chapter). In order to fix this problem we define a
generalization: the notion of localic Banach spaces, which are Banach spaces
whose underlying vector spaces are no longer sets but are locales. We develop
the theory of such objects in a systematical way, and we prove that they indeed
provide the optimal solution to the problem of descent mentioned earlier, and

12. Although it has not been included in the paper, it is true that an algebra of endomor-
phisms of an Hilbert space over a separated boolean topos is always a type I AW ∗ algebra.
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hence give a good definition of fields of Banach spaces over an open localic
groupoid.

We also prove that one has an extended Gelfand duality between localic C∗-
algebras and compact regular locales as conjectured by Mulvey and Banachewski
in [4].

Finally, we prove a spatiality theorem showing that 13, over a paracompact
topological space, or more generally over a class of toposes satisfying some
technical condition generalizing paracompactness, there is no difference between
localic Banach spaces and usual Banach spaces. Hence for “paracompact” localic
groupoids (and assuming the axiom of dependent choice in the base topos) usual
fields of Banach spaces will be well defined without any additional difficulties.

This last result is inspired from a theorem of Douady and Dal Soglio-Hérault
(which can be found in the appendix of [25]) which states that over a paracom-
pact topological space every Banach bundle has enough continuous sections,
where ”Banach Bundle” is a notion which is extremly close to our notion of lo-
calic Banach space interpreted in the topos of sheaves over a topological space.
The proof by Douady and Dal Soglio-Hérault is based on the construction of
”ε-continuous section”, which rougly are discontinuous sections whose disconti-
nuities are ε-small. Such sections do not make sense in a purely topos theoretic
context (they are discontinuous) but we have been able to replace them by the
notion of section of the sheaf of positive ε-small open sublocales, such a section
corresponding to a tubular neighborhood of a ε-continuous section.

Future possible developments

A Non abelian monoidal Gelfand duality ?

To any topos T one can associate its category of internal Hilbert spaces. It is
a C∗-category endowed with a symmetric monoidal structure. If p is any point
of T , then p induces a monoidal representation of this category satisfying some
normality condition. It seems that for a large class of locally separated toposes
it is possible to reconstruct the topos from its C∗-category as a classifying topos
of “normal” monoidal representations of the C∗-category (the term normal has
to be defined properly). This large class includes boolean locally separated
toposes, and this precise case is a work in progress.

Locally compact separated toposes

In chapter I and II, the condition of separation and local separation appears to
play a major role. A similar idea seems to show that these properties can also
be used outside the realm of boolean toposes. An internal application of results
similar to those of chapter I, combined with the good behavior of continuous
fields over locally compact topological spaces, should give an extremely good
description of the category of C∗-algebras and their Hilbert modules over an
arbitrary separated locally compact locally decidable topos T . In particular, we

13. assuming the axiom of dependant choice in the base topos
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are currently trying to prove that for any C∗-algebra C over such a topos, there
exists a C∗-algebra CoT in the base topos such that the category of C-Hilbert
module in T is equivalent to the category of C o T Hilbert modules. Once this
is achieved, one can try to apply this to define C o T in the case where T is
just locally of the previous form. One can also try to extend the non-abelian
Gelfand duality of the previous paragraph to toposes of this form. This is a
work in progress .

Thermodynamics of toposes.

If we stick to boolean toposes in the study of the time evolution it is not possible
to go further and to study KMS states at different temperatures, because these
correspond to different generalized measure classes, hence to different boolean
toposes. Hence it should be interesting to try to extend the notion of invariant
measure to a non boolean topos and to try to obtain a nice theory of KMS
states for toposes. In order to do so a good example to study would be the case
of toposes of pre-sheaves over a left cancellative small category. These have the
advantage to be relatively easy to describe at a geometric level (they correspond
to etale groupoids, and their space of units is the spectrum of an ordered set).
They include all graph algebras, and the BC-systems whose thermodynamics
has been extensively studied. Also, all their generalized measure classes satisfy
the local separability conditions.

K-theory relative to a topos and the Baum-Connes conjecture.

It seems possible to extend the definition of Kasparov equivariant KK-theory of a
pair of C∗-algebras with an action of a group G, to a pair of C∗-algebras living
in a same topos 14 T , defining a group KKT (A,B) following an analogue of
the universal property of equivariant KK-theory (stated and proved for locally
compact groups in [68]).
Also, observing that a topological space X endowed with an action of a group G
is a proper compact G set if and only if the topos X/G is compact and separated,
one should be able to use the results about locally compact separated toposes
(of the second possible development) to generalize the definition of the Baum-
Connes assembly map to this topos theoretic context, and formulate a topos
theoretic analogue of the Baum-Connes conjecture.
The most general form of the Baum-Connes conjecture we can state is known
to be false (counter example has been given by Higson, Laforgue and Skandalis
in [35]), hence one cannot hope that this version of the conjecture will be true
in general, but a lot of cases of the conjecture are known to be true, for example
the Baum-Connes conjectures with coefficient has been proved for group with
the Haagerup property by Higson and Kasparov in [34], and a large number of
cases (all simple Lie group, Hyperbolic groups etc...) have been obtained by
V.Lafforgue see [47]. Our hope is that the proof of these particular cases might
be interpretable in the topos theoretic context.

14. Or maybe more generally of a couple of localic C∗-algebras over a same open localic
groupoids.
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Notations, conventions and
preliminaries

In all this thesis, we work internally in a base topos S which is an elementary
topos with a natural number object N. Objects of S are called sets. All other
toposes we will be toposes endowed with a geometric morphisms to S and we will
assume that they are bounded over S, or equivalently that they are Grothendieck
topos over S, i.e. categories of S valued sheaves on a Grothendieck site internal
to S. We will not assume that the logic of S satisfies the axiom of choice
or the law of excluded middle, except in chapter 2 where the base topos S is
assumed to be boolean and in the last section of chapter 3 where we will at
some point assume that it satisfies the axiom of dependant choice (it will be
indicated clearly).
Most of the basic notions of topos theory can be found in [49], for the others we
will give precise references in [44].
In all this thesis we will use the following notations and conventions:

• If C is a category (or a topos) then |C| denotes the set (or the class) of
objects of C. The symbol C denotes the set (or class) of all maps, and we
will equivalently use the notation C(a, b), hom(a, b) or homC(a, b) for the
set of morphisms from a to b.

• The letters T and E will always denotes a topos over S.
• ΩT denotes the sub-object classifier of the topos T , 1T denotes its ter-

minal object and if X ∈ |T | then P(X) stand for the power object of X
(isomorphic to ΩT

X), and Sub(X) for the set of sub-objects of X, i.e.
the set of global sections of P(X).

• N, Z and Q denote respectively the set of non negative integers, integers
and rational numbers of the base topos. We recall that even if we do not
assume the law of excluded middle in the base topos it is true that for
all pair of rational number a and b one has a = b or a < b or a > b.

• NT , ZT and QT denote the sheaves of natural numbers, integers and
rational numbers in the topos T . As we restrict ourselves to toposes en-
dowed with a geometric topos to the base topos they are simply p∗(N),p∗(Z)
and p∗(Q) where p is the canonical geometric morphism from T to the
base topos S.

• RT denotes the sheaf of continuous real numbers, i.e. two sided Dedekind
cuts (see [44, D4.7]). In a Grothendieck topos, it can be described ex-
ternally by the following properties: for any X ∈ |T |, hom(X,RT ) is the
set of continuous functions from the underlying locale of X( whose frame
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of opens is Sub(X)) to the space of real numbers 15. We also denote by
R the object of coninuous real number of the base topos.

• CT denotes the object of T of (continuous) complex number, i.e. Ri.
• R and C denotes the object of continuous real and complex number of

the base topos. In chapter 3 it will also denote the formal locales of real
and complex numbers in the base topos.

•
−−→
R∞+ denotes the set of positive lower semi-continuous real numbers (pos-
sibly infinite). In presence of the law of excluded middle it is the set

R+∪{∞}. In a topos it is the sheaf defined by the fact that hom(X,
−−→
R∞+ )

is the set of functions from the locale Sub(X) to R+ ∪ {∞} 16 endowed
with the topology where the (a,∞] are a basis of open sets, i.e. it is the
set of lower semi-continuous functions (possibly infinite) on the locale

Sub(X). Internally,
−−→
R∞+ is defined as the set of P ⊂ QT such that if

q < 0 then q ∈ P , and q ∈ P ⇔ ∃q′ ∈ P, q < q′. See [44, D4.7].
• A proposition (internal to a topos) is said to be decidable if it is comple-

mented (i.e. such that P ∨¬P holds). An object is said to have decidable
equality, or to be decidable, if its diagonal embedding X → X×X is com-
plemented.

• A set (or an object X ∈ |T |) is said to be inhabited if it satisfies (inter-
nally) ∃x ∈ X (which in constructive mathematics is stronger than the
assertion that X is not empty). For an object of a topos it is equivalent
to the fact that the canonical map X → 1T is an epimorphism.

• A set X (or an object of a topos T ) will be said to be finite if it is
(internally) Kuratowski finite, i.e. if internally ∃n ∈ N, x1, . . . , xn ∈ X
such that for all x ∈ X ∃i, x = xi. On can consult [44, D4.5] for the
theory of Kuratowski finite sets.
Roughly, a quotient of a finite set is finite, but the proof that a subset
of a finite set is finite requires the subset to be complemented and may
fail in full generality. If a set X is finite and has decidable equality, then
there exists n ∈ N such that X is isomorphic (internally 17) to {1, . . . , n},
and a subset of X is finite if and only if it is complemented.

• If X ∈ |T | is an object of a topos, we denote by T/X the slice category
whose objects are object of T endowed with an arrow to X and whose
arrows are commutative triangles. It is a topos, and it play the role of
the etale space of X.

• A sub-quotient of an object X ∈ |T | is a quotient of a sub-object of X
(or equivalently, but less naturally, a sub-object of a quotient).

• An object B ∈ |T | is said to be a bound of T if any object of T can be
written as a sub-quotient of an arbitrary co-product of copies of B (see
[44, B3.1.7]). Equivalently B is a bound of T if Sub(B) is a generating
family of T , i.e. Sub(B), seen as a full subcategory of T and endowed with
the restriction of the canonical topology of T , forms a site of definition
for T . This means essentially that B is big enough to generate T , for
example: in the topos G− Set of sets endowed with an action of a group

15. In a non-boolean context, the “space of or real numbers” has to be interpreted as “the
formal locale of real numbers”.

16. Here we have assumed the law of excluded middle in the topos of sets in order to simplify
the notation.

17. As the isomorphism is not canonical, it might not lift to a global isomorphism if we are
working internally in a topos.
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G, an object X is a bound if and only if the map G→ Aut(X) is injective.
A topos is the topos of sheaves over a locale if and only if 1T is a bound
(see [44, definition A4.6.1 and theorem C1.4.6]). When a topos is given by
a site, the simplest way to obtain a bound is to choose an object which
contains a copy of each representable objects (for example, the direct
sum of all the representable objects, see [44, B3.1.8(b)]). Existence of
a bound, together with the existence of enough (co)limits, characterize
Grothendieck toposes among elementary toposes (see [44, C2.2.8]).

• When one has a product E1 × · · · ×En of objects of any kind (generally
locales) we will denote by πi the projection onto Ei, by πi,j the projection
onto Ei×Ej , etc... We generally do not specify the domain of definition
and we hope that it will be clear from the context. For example one has:
π1 ◦ πi,j = πi and π2 ◦ πi,j = πj because in these formulas π1 and π2

denote the two projections from Ei×Ej to Ei and Ej respectively. This
will be used essentially in chapter 3.
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Chapter 1

Toposes, quantales and
C∗-algebras, the atomic
case.

1 Introduction

In some sense, quantales are a third kind of generalized spaces which appears to
be related both to operator algebras and to toposes. In operator algebra they
have been introduced by C.J.Mulvey (or more precisely named, see [59] and
[38]) in an attempt to formalize the notion of “quantum topology” studied by
R.Giles and H.Kummer in [28] and C.A.Akemann in [1]. In topos theory they
arise in the description of the category of sup-lattices of a given topos studied
in [45] and, because of the results in [33] (see also the first part of the present
chapter of this thesis) they completely describe a topos in the sense that a topos
endowed with a bound is essentially the same thing as a special kind of quantale,
called a “Grothendieck quantale”.
The types of quantales appearing in operator algebra and in topos theory have
extremely different properties: the Grothendieck quantales are quantales of re-
lations on a bound of a topos, and behave like the quantale of relations on a set,
in particular they are distributive and modular. On the other side, quantales
appearing in operator algebra are in general not modular but correspond to
particular subquantales of the quantale of projections in a Hilbert space, hence
deserving the name “quantum” in a more precise manner. These differences
exclude a straightforward comparison of the theories of Grothendieck toposes
and of operator algebras through the associated quantales, and show that the
relation between the two theories is necessarily more involved. We nevertheless
use the Grothendieck quantale associated to a topos as a starting point and
show that under suitable hypothesis a Grothendieck quantale can be used to
construct a convolution C∗-algebra attached to a topos.

We would also like to stress out that modular quantales and Grothendieck quan-
tales are extremely good candidates to be thought of as characteristic one opera-
tor algebras. First there are several formal similitudes: the fact that sup-lattices
enriched categories are a form of “characteristic one additive categories”, the
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presence and the important role of the ∗ involution, and other more specific
points like the fact that the initial and terminal support of a are given by a∗a
and aa∗. Secondly, Grothendieck quantales (and conjecturally modular quan-
tales) are interpreted as quantales of relations on objects of topos (see 2.4.5
and 2.7.1), i.e. as characteristic one matrix algebras. Hence results of sec-
tions 3 underline the fact that there is a close relation between topos theory
and non-commutative geometry in characteristic one. It might be interesting
to make this relation more precise, for example by giving an interpretation of
the distributivity (Q3) and the modularity (Q9) conditions of 2.1.1 in term of
characteristic one semirings.

In section 2 we focus on the relation between Grothendieck quantales and
Grothendieck toposes. Most results of the section 2.1 to 2.5 are already well
known and present in [63] or [33]. The only originality of our approach is that
we give a direct proof that the category of sup-lattices of a topos is the category
of modules over a quantale of relations, and then we use this to describe the
objects of the topos in terms of this quantale, the previous approach (mainly
[63]) generally works in the other direction. In 2.1 we review the basic theory of
sup-lattices internal to a topos. In 2.3 the basic theory of sup-lattices enriched
category and we give a characterization of the sup-lattice enriched categories of
modules over a unital quantale. In 2.4 we explain the correspondence between
Grothendieck toposes and Grothendieck quantales, and give a description of a
topos attached to the quantale Q in terms of a notion of Q-set completely simi-
lar to the notion of L-set when L is a frame. Section 2.5 produces a description
of the topos attached to a quantale as a classifying topos making the previous
correspondence functorial.
The main new contribution of section 2 is in 2.6 and consists of a description of
the locales internal to a topos in terms of “modular actions” of the corresponding
quantale on classical locales, as well as more generally a description of bi-linear
maps between sup-lattices in terms of the corresponding Q-modules.
In 2.8 we explain why attaching a Grothendieck quantale to a topos is an inter-
esting step towards the construction of C∗-algebras.

In section 3 we focus on the case of an atomic topos, showing that in this case
the attached Grothendieck quantale corresponds to a “hypergroupoid”. Under
some reasonable finiteness assumptions there is indeed a “Hypergroupoid C∗-
algebra” attached to that quantale in the way sketched in 2.8. This C∗-algebra
comes in two forms: a reduced algebra and a maximal algebra; in both cases
it comes with a natural and explicit time evolution attached through Tomita
theory to a “regular” representation, and with a generating Z sub-algebra with
interesting combinatorial properties. We also characterize in section 3.7 the
atomic toposes for which the construction is possible as the locally decidable
locally separated toposes. We also show that in this situation the time evolution
is canonical and described by a principal Q∗+ bundle. The main example of this
situation are the well-known double-cosets algebras.
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2 Toposes, quantales and sup-lattices

2.1 Introduction

2.1.1. Let X be any object of a topos T , and denote by Rel(X) the set of
relations on X, i.e. the set Sub(X × X) of sub-objects of X × X. Then Q =
Rel(X) is endowed with several structures:

(Q1) The inclusion of subobjects gives an order relation on Q.

(Q2) Q has arbitrary supremums for this order relation. We will denote the
supremum of a family by

∨
i∈I ai, supremums are also called unions 1.

Moreover the existence of supremum implies the existence of infimums
denoted

∧
and sometime called intersections.

(Q3) Finite infimums distribute over arbitrary supremums: a∧
∨
i bi =

∨
i(a∧

bi).

(Q4) There is an associative composition law on Q defined internally by RP =
{(x, y)|∃z ∈ X,xRz and zPy}.

(Q5) The composition law is order preserving and distribute over supremum.

(Q6) The diagonal subobject of X provide an element 1 ∈ Q which is a unit
for the composition law.

(Q7) There is an order preserving involution: R 7→ R∗ = {(y, x)|xRy} of Q.

(Q8) For all P,R ∈ Q one has: (PR)∗ = R∗P ∗.

(Q9) For all P,R, T ∈ Q one has P ∧RT 6 R(R∗P ∧ T ).

If we assume additionally that X is a bound of T , then one has additionally:

(Q10) There exist two families (vi)i∈I , (ui)i∈I of elements ofQ such that: ∀i, uiu∗i 6
1, viv

∗
i 6 1 and > =

∨
i viu

∗
i . where > denotes the top element of Q.

Some of these points deserve a proof and a few comments.
• (Q9) is called the modular law. It is easy to prove using internal logic:

Let (a, b) ∈ (P ∧ RT ). One has: (a, b) ∈ P and there exists c ∈ X such
that (a, c) ∈ R and (c, b) ∈ T . Hence (a, c) ∈ R and (c, b) ∈ (R∗P ∧T ) so
(a, b) ∈ R(R∗P ∧ T ). As this proof uses only intuitionist logic, it is valid
in any topos.

• (Q3) is sometimes also called the modular law, which gives rise to a
conflict of terminologies. We will prefer the term distributivity law for
(Q3).

• (Q10) expresses the fact that, as X is a bound of T , X ×X has to be a
sub-quotient of a co-product of an I-indexed family of copies of X.
Indeed, in this situation, there is a family (ui, vi)i∈I of partial functions
from X to X ×X. A partial function f from X to X can be represented
by its graph: the relation R such that (yRx) if and only if f(x) is defined
and y = f(x). A relation R on X is the graph of a partial function if
and only if RR∗ 6 1. So one has two families of relations on X, also
denoted (ui) and (vi), such that for all i, uiu

∗
i 6 1 and viv

∗
i 6 1. The

relation
∨
i viu

∗
i is the union of the image of X in X×X by all the partial

maps (vi, ui). So the relation
∨
i viu

∗
i = > expresses the fact that the

corresponding map is onto.

1. because they corresponds to internal union
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2.1.2. In all this chapter, X will denote an object of a topos T , and when we
assume that X is a bound we will call it B instead in order to be clear on which
result assume that X is a bound and which does not.

2.1.3. Definition : A Set satisfying (Q1) and (Q2) is a sup-lattice. A Set
satisfying (Q1), (Q2), (Q4) and (Q5) is called a quantale, (unital if it also
satisfies (Q6)). We will call a modular quantale, a quantale satisfying all the
axioms from (Q1) to (Q9), and a Grothendieck quantale one satisfying all the
axioms from (Q1) to (Q10).

The term quantale is due to C.J. Mulvey in [59]. The name Grothendieck
quantale has been given by H.Heymans and I.Stubbe in [32] and [33]. For the
term “modular quantale”, our terminology differs slightly from previous work
(like [33]), where the axiom (Q3) is not included in the definition of a modular
quantale. The main reasons for our choice of terminology is simply that we
only want to consider quantales that arise as relations on objects in a topos and
hence satisfy the axiom (Q3). Also, we think it is more natural to assume a
compatibility between intersection and supremum (given by (Q3)) as soon as
we assume both a compatibility between intersection and the composition law
(given by (Q9)) and a compatibility between the composition law and supremum
(given by (Q5)).

2.1.4. The main result relating toposes to quantales (which should probably
be attributed to P.J.Freyd and A.Scedrov in [26]), is the fact that if T is a
topos and B is a bound of T then T can be completely reconstructed from the
Grothendieck quantale Q = Rel(B), and that every Grothendieck quantale can
be written (essentially uniquely) in the form Rel(B) for a bound B of a topos
T .
This result (at least its first part, the second part being a little harder) can
actually be proven directly using the following construction:

Definition : If Q is a Grothendieck quantale, we will denote by Site(Q) the
site whose objects are the q ∈ Q such that q 6 1 and whose morphisms are given
by:

hom(q, q′) = {f ∈ Q|1 ∧ f∗f = q and ff∗ 6 q′}.

The composition is given by f ◦ g = fg. The identity morphism of q is q itself 2.
And a Sieve J on an object q is covering if:∨

q′∈Q,q′61

f∈J(q′)

ff∗ = q

The fact that for any Grothendieck quantale Site(Q) is indeed a site is not
straightforward. Apparently 3 it can be checked directly, but this proof is quite

2. The modular law imply that if q 6 1 then q2 = q.
3. We checked it, but unfortunately, it does not seems that a proof of this kind had ever

been published.
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long and is not necessary because one has a more abstract proof, using the
following easier proposition, and theorem 2.4.5.

Proposition : If Q = Rel(B), for a bound B of a topos T , then Site(Q) is the
site of subobjects of B. In particular, it is a site of definition for T .

Proof :
We use the same kind of argument as the proof that Q satisfies (Q10).
As 1 ∈ Q = Sub(B × B) corresponds to the diagonal sub-object of B × B,
an element q ∈ Q such that q 6 1 corresponds to a unique sub-object of B.
Let q and q′ be two sub-objects of B, and f ∈ Q = Rel(B) satisfying the two
conditions 1∧f∗f = q and ff∗ 6 q′. The first condition asserts (internally) that
element x ∈ B such that (∃y , yfx) are exactly the elements of q, and the second
condition asserts that if yfx and y′fx then y = y′ and y ∈ q′. This is exactly
the conditions that characterizes the graph of a function from q to q′, hence
homSite(Q)(q, q

′) is indeed isomorphic to homT (q, q′) and as the composition of
relations extends the composition of functions this correspondence is indeed an
equivalence of categories.
It only remains to check that the topology of Site(Q) is indeed the canonical
topology of the topos, but for any collection of map fi : qi → q, the sub-object
fif
∗
i 6 q is exactly the image of fi in q and hence the condition that:∨

i

fif
∗
i = q

simply asserts that the family is jointly surjective. �

One of our goal is to provide a way to reconstruct T from Q without using
sites.

2.2 The category sl(T ) of sup-lattices

In this subsection we recall the definition and basic properties of the categories
of sup-lattices of a topos as it is studied in [45]. We will not give any proofs,
but most of them are straightforward and they all can be found in [45].

2.2.1. A sup-lattice is an ordered set which admit arbitrary supremum, a mor-
phism of sup-lattices is an order preserving function which preserve supremum.

Definition : We will denote by sl(T ) the category of sup-lattices internal to T .
And by sl the category of sup-lattices internal to the base topos S.

In all of this sub-section, we will proves result for sl = sl(S), but as S is an
arbitrary topos one can apply everything internally to T and deduce the same
result for sl(T ).
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2.2.2. Although we use the term “sup”-latices, it is a classical fact of ordered set
theory that if every subset admits a supremum then every subset also admits
an infimum, and hence a sup-lattice is the same thing as an inf-lattice. The
term “sup” is here to denote the fact that we are considering sup-preserving
morphisms (which are different from inf-preserving morphisms).
This duality has a consequence on the category sl: it is endowed with an in-
volutive contravariant functor, that we will denote by ( )∗. Indeed if S is a
sup-lattice then if we define S∗ as being S endowed with the reverse order re-
lation it is again a sup-lattice, and if f is a morphism then we denote by f∗

its right adjoint (it always exists because f commutes to supremum) which is
a morphism of sup-lattices for the opposite order relations. One has f∗∗ = f
because of the reversing of the order relations, and hence ∗ is an involutive
anti-equivalence of categories.

This involution allows to compute colimits in the category of sup-lattices: in-
deed one can easily check that the category sl has all limits and that they are
computed at the level of the underlying set. As ( )∗ transforms co-limits into
limits, sl also have all co-limits.

2.2.3. If X is a set, then P(X) = ΩT
X (the power object of X) is a free sup-

lattice generated by X, i.e.:

homT (X,S) = homsl(P(X), S)

This adjunction formula turns P into a functor from sets to sl that sends a map
f : X → Y to the direct image map P(f) : P(X)→ P(Y ).

2.2.4. Knowing how to construct a free sup-lattice (using P) and a quotient of
sup-lattice (using the involution ∗), one can construct sup-lattices by “generators
and relations”. More precisely, if I is a set, and R is a family of couples of subsets
(r1, r2) of I, interpreted as relation of the form:∨

x∈r1

x 6
∨
y∈r2

y

then the sup-lattice presented by the set of generators I and the set of relations
R identifies with:

{V ⊆ I|∀(r1, r2) ∈ R, (r2 ⊆ V )⇒ (r1 ⊆ V )}

2.2.5. If S and S′ are sup-lattices, then the set of sup-lattice morphisms between
S and S′ is again a sup-lattice, for the point-wise ordering, with supremum
computed point-wise. This sup-lattice is denoted by [S, S′].

These internal hom objects come with a monoidal structure given by the uni-
versal property:
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hom(M ⊗N,P ) ' hom(M, [N,P ])

Equivalently, the morphisms from M ⊗N to P , are the functions from M ×N
to P which are morphisms of sup-lattices in each variable (when fixing the other
variable). We will call such maps bilinear maps from M ×N to P . The explicit
construction of the tensor product is conducted exactly as for modules over
a ring by a construction by generators (the (m ⊗ n) for m,n ∈ M × N) and
relations expressing the notion of bi-linear map.

2.2.6. In addition of being a closed monoidal category endowed with an involu-
tion, the category sl also satisfies the following interesting properties.

ΩT ⊗N = N

[ΩT , N ] = N

M∗ = [M,ΩT
∗]

(M ⊗N)∗ = [M,N∗]

In particular, even if we will not use this concept here, this means that sl (en-
dowed with all these structures) is a ∗-autonomous category in the sense of [5],
with ΩT

∗ as dualizing object.

2.2.7. Let T and E be two toposes, and f a geometric morphism from T to
E . Let also S be a sup-lattice in T , then f∗(S) is a sup-lattice in E : indeed
(working internally in E) if P is a subset of f∗(S) then by adjunction there is a
map from f∗(P ) to S, we can consider the supremum s of the image of this map.
As s is a uniquely defined element, it is a global section of S, i.e. an element of
f∗(S). From here one can check that s is also a supremum for P . This defines
a functor f∗ : sl(T ) → sl(E). We also note that f∗ preserves bi-linear maps
between sup-lattices.

In the other direction, if S is a sup-lattice in E then f∗(S) is in general just a
pre-ordered set in T , but one can construct a completion, denoted by f#(S).
In order to do so, we chose any presentation by generators and relations of S
(for example, taking all elements and all relations), and then we define f#(S)
by generators and relations using the pullback of the system of generators and
relations chosen for S. At first sight, it is not clear that this definition of f#(S)
does not depend of the presentation of S, but one can prove an adjunction
formula:

homsl(T )(f
#(S), T ) ' homsl(E)(S, f∗(T ))

which is natural in T . This implies that f#(S) does not depend on the presenta-
tion of S, that it is functorial in S and that f# is a left adjoint of f∗. We will use
the same technique in the proof of the third point 2 of proposition 2.3.3. This
result can actually be seen as a special case of the first two points of proposition
2.3.3 applied internally in E to the category C = sl(T ) with B = ΩT .
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2.3 Categories enriched over sl

2.3.1. Thanks to the monoidal structure on sl one can talk about sl-enriched
categories. Precisely, a sl-enriched category C is a category such that morphism
sets are endowed with an order relation which turns them into sup-lattices and
composition into a bi-linear map.

Here are the two main examples of sl-enriched categories we want to consider:

Proposition : Let T be a Grothendieck topos, then sl(T ) is a sl enriched
category.

Proof :
If S and S′ are two objects of sl(T ) and p denotes the structural geometric
morphism from T to the topos of sets, then

hom(S, S′) = p∗([S, S
′])

which is a sup-lattice thanks to 2.2.7. The composition is a bi-linear map because
it is given (through an application of p∗) by an internal bi-linear map:

[S, S′]× [S′, S′′]→ [S, S′′].

�

A (unital) quantale, as defined in 2.1.3, is exactly a monoid object of sl, i.e. it
is a sup-lattice endowed with the structure of a (unital) monoid such that the
composition law is bi-linear. A right (or left) module over a unital quantale Q,
is a sup-lattice S endowed with a right (or left) action of the underlying monoid
of Q such that the corresponding map S ×Q→ S is bi-linear.
The category of right modules over Q (with Q-linear morphisms) is denoted
by ModQ, this is the other important example of sl-enriched category we will
consider.

If one thinks of the supremum of a family of elements as a form of addition, a
sup-lattice enriched category is really close to being an additive category (maybe
something we would like to call a “locally complete characteristic one additive
category” as our addition is characterized by the property that x + x = x ).
The following two results are in this spirit.

2.3.2. From the technique of computation of co-limits in sl explained in 2.2.2
one can see that the co-product of a family of objects in sl is isomorphic to the
product of the same family. This is actually a general well known 4 result:

Proposition : Let C be a sl-enriched category, let (Ai)i∈I be a family of objects
of C and A be an object of C, then the following three conditions are equivalent:

1. A is the co-product of the family (Ai).

4. it appears, for example, under a slightly different form in [26, 2.214 and 2.223].
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2. A is the product of the family (Ai).

3. There are two families of morphisms fi : Ai → A and pi : A → Ai such
that supi fi ◦ pi = IdA and for all i, j ∈ I:

pj ◦ fi = sup{f : Ai → Aj |i = j and f = IdAi} 5

Moreover, in this situation, the morphisms fi and pi given in 3. are the natural
morphisms asserting that A is the (co)-product of the Ai.

Proof :
Passing from C to Cop preserves property 3. and exchanges properties 1. and 2.,
hence it is enough to show that 2. and 3. are equivalent.
We will start by showing that 3.⇒ 2..
We assume 3. holds, in particular A is already endowed with maps (pi) from
A to Ai for each i, we have to show that A and the (pi) are universal for this
property.
Let X ∈ C be any object and assume we have a collection of map hi : X → Ai.
Let h = supi(fi ◦ hi) : X → A. Then for every i:

pi ◦ h = sup
j
pi ◦ fj ◦ hj = sup

j
sup{f ◦ hj |i = j and f = IdMi

} = hi.

We also have to show that this map is unique: let h′ be any other map from X
to A such that for every i, pi ◦ h′ = hi. Then:

h = sup fi ◦ hi = (sup fi ◦ pi) ◦ h′ = h′.

Assume now that A is the product of the Ai. The maps pi are the structural
maps, the maps fi are uniquely defined morphisms (using the universal property
of the product) by the formula given for pj ◦ fi. Hence the formula for pj ◦ fi
holds by definition, and the equality supi fi ◦ pi = IdA because of the relation

pj ◦ sup
i
fi ◦ pi = pj

(obtained by the same computation as in the first part of the proof) and the
uniqueness in the universal property of the product.
�

This proposition has interesting consequences: First, any sl-enriched functor will
automatically preserve each product and each co-product (because 3. is clearly
preserved by any sl-enriched functor).
Additionally, one can describe the morphisms between two co-products (or prod-
ucts) by something which looks like (infinite) matrix calculus. More precisely,
a morphism f from

∐
j∈J Aj to

∐
i∈I Bi is the same thing as a morphism from∐

j∈J Aj to
∏
i∈I Bi, hence it is given by the datum of a morphism fi,j : Aj → Bi

for each i and each j.
The composition with a g :

∐
i∈I Bi →

∐
k∈K Ck, is:

5. If we assume the law of excluded middle, or more specifically that the set of indices I
has a decidable equality, then this formula reduces to the more classical: pi ◦ fi = IdAi and
pj ◦ fi = 0 if i 6= j
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g ◦ f =
∨
i∈I

gk,i ◦ fi, j

In the special case where all the Aj and Bi are isomorphic to a same object A,
then hom(A,A) = Q is a quantale and we will denote by MI,J(Q) the set of
morphisms from A(J) to A(I), which can be identified with QI×J .

2.3.3. The next result can be thought of as a sl-enriched form of the Mitchell
embedding theorem which asserts that every abelian category is a full sub-
category of a category of modules over a ring, but restricted to the case where
there are enough “projective” objects.

Proposition : Let C be a sl-enriched category, A an object of C and Q =
homC(A,A).

1. Q is a quantale for composition, and RA : X 7→ homC(A,X) induces a
functor from C to ModQ.

2. If C has all co-limits, then RA has a left adjoint denoted TA : Y 7→
Y ⊗Q A.

3. If in addition RA preserves co-equaliser, then TA is fully faithful.

4. If in addition C(A, ) reflects isomorphisms (i.e. if f is a map in C such
that C(A, f) is an isomorphism then f is an isomorphism), then RA and
TA realize an equivalence of categories between C and ModQ.

Proof :

1. As C is an sl enriched category, composition are bilinear, hence Q =
homC(A,A) is a quantale for composition, the action of Q on homC(A,X)
by pre-composition is also bi-linear, and for any morphism f : X → Y
the induced morphism from homC(A,X) to homC(A, Y ) is a Q-linear
morphism of sup-lattices.

2. Let X be a right Q module, then (in ModQ) one has a surjection p :∐
x∈X Q � X. Let f1, g1 : K ⇒

∐
x∈X Q be the kernel pair of p. Let

p2 :
∐
k∈K Q� K, and let f = f1 ◦ p2 and g = g1 ◦ p2.

X is the co-equaliser of the two Q linear maps (for the right action) f
and g :

∐
k∈K Q⇒

∐
x∈X Q, which correspond to elements of MX,K(Q).

Let A(X) =
∐
x∈X A and A(K) =

∐
k∈K A. Thanks to a remark done in

2.3.2, maps between A(K) and A(X) can also be identified with elements
of MX,K(Q), hence there are two maps corresponding to f and g from
A(K) to A(X). We define TA(X) to be the co-equaliser of these two maps.

One easily checks that for any B ∈ C, there is a canonical (functorial in
B) isomorphism Hom(TA(X), B) ' Hom(X,RA(B)) (they are the same
once we develop all the inductive limits involved) which implies both the
adjunction between TA and RA and the functoriality of TA.

3. As TA(X) is computed as the co-equalizer of two arrows f, g : AK ⇒ AX

such that the co-equalizer of RA(f), RA(g) is X, if RA commutes to co-
equalizer then one can deduce that RA(TA(X)) ' X which (thanks to
the adjunction) means that TA is fully faithful.
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4. We already know that X ' RA ◦ TA(X) (by the unit of the adjunc-
tion). Let cX : TA(RA(X)) → X be the co-unit of the adjunction then,
RA(cX) : RA(TA(RA(X))) → RA(X) is a retraction (by general prop-
erties of the unit and co-unit) of the unit of the adjunction valued in
RA(X) (i.e. the canonical map RA(X) → RA(TA(RA(X)))) but this
map is known to be an isomorphism, hence RA(cX) is an isomorphism
and since RA detects isomorphism, we proved that cX is an isomorphism.

�

The following theorem can then be seen as a corollary of the previous proposi-
tion.

2.3.4. Theorem : Let T be a Grothendieck topos, and B a bound of T . Then
homT (B, ) induces (one half of) an equivalence of categories from sl(T ) to
ModQ where Q is the quantale Rel(B).

This result is essentially the same as the theorem 5.2 of [63].

Proof :
We will prove that with C = sl(T ) and A = P(B), all the hypotheses of the four
points of the previous proposition are verified, and Q = Rel(B).
Note that:

homT (B,S) = homsl(T )(A,S).

• sl(T ) has all co-limits (and also all limits) because they can be computed
internally in T .

• RA commutes to co-equalizer because of the following formula:

RA(X) = homT (B,X) ' homT (B,X∗)∗

' homsl(T )(A,X
∗)∗ ' homsl(T )(X,A

∗)∗

And the last term clearly commutes to every inductive limit.
• Q is identified with Rel(B) through the isomorphism:

homsl(T )(P(B),P(B)) ' homT (B,P(B)) ' Sub(B ×B)

Internally, this corresponds to the map which sends a morphism f to the
relation y(Rf )x := “x ∈ f({y})”. The fact that composition of mor-
phisms coincides with the composition of relations is checked internally:

zRfRgx = (∃y, x ∈ f({y}) and y ∈ g({z})) = xRf◦gz.

• RA detects isomorphisms:
Let f : S → S′ such that RA(f) is an isomorphism. For any sub-object
U ⊆ B, every map t : U → S can be extended canonically to a map
t̃ : B → S by the (internal) formula:

t̃(x) = sup{y|x ∈ U and y = t(x)}
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If t is a map from B to S, we can restrict t to U and then extend t|U
into t̃, one then has the formula

t̃(x) = sup{y|x ∈ U and y = t(x)} = t.δU

where δU is the element of Q corresponding to the diagonal embedding of
U in B×B and the product is the natural right action of Q on hom(B,S).
Finally, as δ2

U = δU , hom(U, S) is identified with hom(B.S).δU .
As RA(f) is an isomorphism, all the maps hom(U, f) for every sub-object
U of B are isomorphisms, because they are retractions of the map RA(f).
The object B being a bound of T , the sub-objects of B form a generating
family and so f is an isomorphism.

�

2.4 Quantale Sets

In the previous section we showed that, for any Grothendieck topos T endowed
with a bound B, the quantale Q = Rel(B) already determines the category
sl(T ). We will now show that if we add 6 the operation ( )∗ on Q, then we can
give a complete description of T in terms of Q.

The theorems 2.4.3 and 2.4.5 are the main (previously known) results relating
Grothendieck toposes to Grothendieck quantales, they can be found explicitly
in [32] and [33] and under different forms in [26] and [63].

2.4.1. Our starting point will be the following lemmas:

Lemma : Let X be an object of T , and Y be a sub-quotient of X, then the
relation on X defined by

xRy = “ x and y both have an image in Y and these coincide ”

is symmetric (R∗ = R) and transitive (R2 6 R). This induces a correspondence
between sub-quotients of X and symmetric transitive relations on X (also called
partial equivalence relations).

Proof :
The symmetry and transitivity of the relation are clear. Moreover Y is fully de-
termined by R: it is the quotient of U = {x|xRx} by R (which is an equivalence
relation on U). Conversely, let R be any symmetric and transitive relation on
X. Let U = {x|xRx}, R induces an equivalence relation on U , and we have
xRy ⇒ xRx. Hence, xRy ⇔ (x ∈ U) ∧ (xRy) ∧ (y ∈ U), i.e. R is indeed the
relation induced by the sub-quotient U/R. �

6. Actually, because we know that Q is of the form Rel(B), the ∗ operation is fully deter-
mined by the underlying quantale. This comes from the property (Q10) together with this
lemma: the condition f = g∗ and gg∗ 6 1 is equivalent to the condition ∃u 6 1, uf = f ,
gu = g , gf 6 1 and u 6 fg . This lemma is proved using internal logic.
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2.4.2. Lemma : In the situation of the previous lemma, one actually has R2 =
R, and the map which sends a sub-object of Y to its pullback in X identifies
P(Y ) with R(P(X)) (where R denotes the endomorphism of sup-lattices of P(X)
corresponding to the relation R).

Proof :
Indeed, if (xRy) then (xRx) and (xRy) hence (xR2y), this proves that R 6 R2,
and hence R = R2. Let P be a subset of X, R(P ) = {x ∈ X|∃z ∈ P, xRz}. So
P = R(P ) if and only if P is included in U = {x|xRx} and saturated for the
equivalence relation induced by R on U . These are exactly the subsets which
are pullbacks of subsets of Y . �

2.4.3. Theorem : The category Rel(T ) whose objects are the objects of T and
morphisms from X to Y are sub-objects of Y ×X (the composition being given
by the composition of relations) is equivalent to the following category Proj(Q):

• The objects are the couples (I, P ) where I is a set, and P is a matrix in
MI,I(Q) such that P 2 = P and P ∗ = P where (P ∗)i,j = (Pj,i)

∗.
• The morphisms from (J, P ′) to (I, P ) are the matrices M ∈ MI,J(Q)

such that P.M = M and M.P ′ = M (the composition being the product
of matrices).

Under this equivalence, the opposite of a relation corresponds to the “trans-
conjugation” of a matrix: (M∗)i,j = (Mj,i)

∗.

Before proving this theorem we will need one more simple lemma, which is
actually the last point of the theorem:

Lemma : Let R be a sub-object of (
∐
i∈I B) × (

∐
j∈J B) corresponding to a

morphism R : P(B)I → P(B)J represented by a matrix: (Ri,j)i∈I,j∈J , then the
opposite relation corresponds to the trans-conjugate matrix (R∗)j,i = (Ri,j)

∗

Proof :
This can be checked internally: Since Ri,j corresponds to the intersection of R
with the inclusion (fi, fj) of B×B in (

∐
i∈I B)× (

∐
j∈J B), taking the opposite

relation will reverse Ri,j and exchange the indices. This concludes the proof of
the lemma. �

We now prove theorem 2.4.3:

Proof :
In order to prove the equivalence of Proj(Q) and Rel(T ), we will consider a
third category C, the full sub-category of sl(T ) of sup-lattices which are of the
form P(X) for X an object of T , and show that both Proj(Q) and Rel(T ) are
equivalent to C.

The association X → P(X) is (one half of) an equivalence from Rel(T ) to C.
Indeed, it is essentially surjective by definition of C, and we have already men-
tioned that morphisms between power objects are the same thing as relations,
so it is also fully faithful.
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The association (I, P )→ P (P(B)I) is (one half) of an equivalence from Proj(Q)
to C.
Indeed, as B is a bound of T , any object X of T is a sub-quotient of some∐
i∈I B, hence by lemmas 2.4.1 and 2.4.2 there is an endomorphism F of P(

∐
i∈I B) =

P(B)I such that F 2 = F , F ∗ = F , and P(X) = F (P(B)I). By the equivalence
of 2.3.4 (and also by 2.3.2), such an endomorphism corresponds exactly to a
matrix P such that (I, P ) is indeed an object of our category. So this functor
is full and well defined (at least on objects). Now a morphism from P ′(P(B)J)
to P (P(B)I) is exactly the data of a matrix M such that P.M = M and
M.P ′ = M . This concludes the proof of the equivalences. The last point of the
theorem being proved by the lemma.
�

2.4.4. Corollary : The topos T is equivalent to the (non full) subcategory of
Proj(Q), with all objects and with morphisms from (J, P ′) to (I, P ) only the
matrices M which satisfy the additional condition: such that MM∗ 6 P and
P ′ 6M∗M .

Proof :
These two additional conditions indeed characterize functional relations 7 among
arbitrary relations, and in a topos functional relations are in correspondence
with morphisms. �

2.4.5. Theorem : For every Grothendieck quantale Q, there exists a topos T
and a bound B of T such that Q = Rel(B).

Of course, from the previous theorem, such a topos is unique.

Proof :
One could use the construction of Site(Q) given in the introduction, but the
proof that this is indeed a site and that it gives back Q = Rel(B) is long and
not really illuminating. Instead, we will use results from the theory of allegories
(see [26], or [44, A.3]) which is closely connected to what we are doing here:
In the language of [26] a modular quantale Q is a one object locally complete
distributive allegory, and Proj(Q) is the systemic completion of Q. The result
[26, 2.434] proves that Proj(Q) is a power allegory and [26, 2.226] proves that
it has a unit. So in order to apply [26, 2.414] and conclude that Proj(Q) is
the category of relations on an elementary topos, we need to prove that it is
“tabular”. Using [26, 2.16(10)] it is enough to prove that 8 for each set X the
maximal matrix of MX,X(Q) can be written FG∗ for F,G ∈ MX,Y (Q) with

7. i.e. relations of the form {(f(x), x)} for f a (totally defined) function.
8. The reader should note that [26] uses a reverse composition order for morphisms in

category, whereas we use the standard composition order. This explains why the formula we
give is different from the one given in the reference.
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FF ∗ 6 IdX and GG∗ 6 IdY . But (Q10) is exactly the assertion that this is
true when X is a singleton, and the general case follows easily from (Q10) by
taking Y = X × I.

The elementary topos we obtain in this way has arbitrary co-products and is
bounded, hence it is a Grothendieck topos.

Finally, if B is the object of Proj(Q) represented by the set X = {∗} and P = 1,
then Rel(B) = Q and this concludes the proof. �

2.4.6. In the remainder of this section we just give a simpler description of the
category Proj(Q) in term of Q-Set inspired from the notion of L-sets, when L
is a locale (see for example [8, 2.8 and 2.9] or [44, C1.3]). Our aim is both
to provide a formalism suitable for computation and to show that Proj(Q) is
exactly a non-commutative generalization of L-set. We do not know if this
formulation has already been presented somewhere or not.

Definition :
• A Q-Set is a set X endowed with a function [ ≈ ] : X ×X → Q such

that:

(S1) ∀x, y ∈ X, [x ≈ y] = [y ≈ x]
∗
.

(S2) ∀x, y, z ∈ X, [x ≈ y] [y ≈ z] 6 [x ≈ z] .

• A Q-relation R from X to Y (two Q-sets) is a map:

Y ×X → Q
(y, x) 7→ [yRx]

such that:

(R1) [y ≈ y′] [y′Rx] 6 [yRx] with equality whenever y = y′

(R2) [yRx′] [x′ ≈ x] 6 [yRx] with equality whenever x = x′.

• A Q-function from X to Y is a Q-relation:

Y ×X → Q
(y, x) 7→ [y ≈ f(x)]

which (in addition to (R1) and (R2)) satisfies:

(F1) [y ≈ f(x)] [y′ ≈ f(x)]
∗ 6 [y ≈ y′]

(F2) [x ≈ x] 6
∨
y [y ≈ f(x)]

∗
[y ≈ f(x)]

• Q-relations and Q-functions can be composed by the formula:

[zRQx] =
∨
y

[zRy] [yQx]

[z ≈ f ◦ g(x)] =
∨
y

[z ≈ f(y)] [y ≈ g(x)]
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• The opposite of a Q-relation is given by:

[xR∗y] = [yRx]
∗

2.4.7. Proposition : Consider the following modification of the axioms:
(S2’) [x ≈ y] =

∨
t [x ≈ t] [t ≈ y].

(R1’)
∨
y′ [y ≈ y′] [y′Rx] = [yRx]

(R2’)
∨
x′ [yRx

′] [x′ ≈ x] = [yRx]
(F2’) [x ≈ x′] 6

∨
y [y ≈ f(x)]

∗
[y ≈ f(x′)]

Then assuming (S1) holds, (S2) and (S2′) are equivalent.
And assuming X and Y are Q-sets, (R1) is equivalent to (R1′), (R2) is equiva-
lent to (R2′) and assuming additionally (R2) then (F2) is equivalent to (F2′).

In particular Q-Sets are exactly the same as objects of Proj(Q), and Q-relations
and Q-functions correspond respectively to morphisms in Proj(Q), and mor-
phisms which are sent to functional relations by the equivalence of 2.4.3.

We will need the following lemma:

Lemma : In any Q-set, one has

[x ≈ y] [y ≈ y] = [x ≈ y]

[x ≈ x] [x ≈ y] = [x ≈ y]

Proof :
Indeed (for the second equality), for any q ∈ Q element of a modular quantale
one has:

q 6 (1.q ∧ q) 6 (1 ∧ qq∗)q 6 qq∗q

So:
[x ≈ y] 6 [x ≈ y] [y ≈ x] [x ≈ y] 6 [x ≈ x] [x ≈ y]

The reverse inequality being a consequence of (S2), one has the desired equality.
�

We now prove the proposition:

Proof :
• Clearly, (S2′) implies (S2). Assume that (S2) and (S1) hold, hence that
X is a Q-set. One can apply the lemma and one has:

[x ≈ y] 6
∨

[x ≈ t] [t ≈ y]

by taking t = x or t = y. The reverse inequality follows from (S2).

55



• (R1) ⇒ (R1′) is clear because of the equality case. Assuming (R1′) one
has immediately [y ≈ y′] [y′Rx] 6 [yRx]. So we just have to prove that
[y ≈ y] [yRx] = [yRx]. But:

[y ≈ y] [yRx] =
∨
y′

[y ≈ y] [y ≈ y′] [y′Rx] =
∨
y′

[y ≈ y′] [y′Rx] = [yRx]

The equivalence of (R2) and (R2′) is proved the same way.
• (F2) is a special case of (F2′). Assume (F2) then:

[x ≈ x′] = [x ≈ x] [x ≈ x′] 6
∨
y [y ≈ f(x)]

∗
[y ≈ f(x)] [x ≈ x′]

6
∨
y [y ≈ f(x)]

∗
[y ≈ f(x′)]

The fact that Q-Sets are exactly the same as objects of Proj(Q), and Q-relations
and Q-functions correspond respectively to morphisms in Proj(Q), and mor-
phisms which are sent to functional relations by the equivalence of 2.4.3 is now
immediate: If we replace the original axioms by this modified version, and if we
interpret [x ≈ y],[xRy] and [x ≈ f(y)] as matrix coefficients then the conditions
imposed on them are exactly those for being objects and morphisms of Proj(Q).
�

2.5 Relational representations of Grothendieck quantales

In the previous section we constructed a topos Q-Sets from a Grothendieck
quantale Q. In this section we describe the theory classified by this topos, that
is study the morphisms from an arbitrary topos T to the topos of Q-sets. This
also explains in which sense the equivalence between Grothendieck quantales
and Grothendieck toposes is functorial.

2.5.1. Definition : A morphism of modular quantales is a function f : Q→ Q′

between two modular quantales such that:
• f commutes to arbitrary supremum (in particular it preserves the smallest

elements)
• f commutes to finite intersections (in particular it preserves the top ele-

ment >).
• f is a morphism of unitary monoids (in particular it preserves 1).
• f commutes to the involution.

A Relational representation of a modular quantale Q is the datum of an inhabited
set X endowed with a modular quantale morphism π from Q to Rel(X). A
morphism of relational representations is a map from X to X ′ such that for
each q ∈ Q if (x, y) ∈ π(q) then (f(x), f(y)) ∈ π′(q) .
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2.5.2. Theorem : The topos of Q-sets classifies the relational representations
of Q, the universal representation being given by the action of Q on the bound
B (which corresponds to the Q-set {∗} with [∗ ≈ ∗] = 1). In other words, if
E is any topos then there is an equivalence of categories between the geometric
morphisms from E to Q-sets, and the relational representations of Q inside E.
And this equivalence is given by f 7→ f∗(B).

This theorem is essentially the same as theorem 2.9 of [63].

Proof :
As a bound, the object B has to be in particular inhabited, hence it is indeed
a relational representation. So any geometric morphism from E to Q-sets does
yield a relational representation of Q on f∗(B) and any natural transformation
gives a morphism of representations. So the functor mentioned in the theorem
indeed exists.

If f is a geometric morphism from E to Q-sets, then f∗ induces a sl-enriched
functor from Proj(Q) to Rel(E).
Because Proj(Q) is generated by B under co-product and splitting of projection,
and since by proposition 2.3.2 arbitrary co-products (as well as splitting of pro-
jection) are preserved by any sl-enriched functor, any relational representation
(X,π) of Q in a topos E extends in a uniquely defined sl-enriched functor from
Proj(Q) to Rel(E): one has to send the couple (I, P ) on π(P )

∐
i∈I X, and any

morphism in Proj(Q) is a matrix M which one has to send to the matrix “π(M)”
defining a relation in E .
Moreover if f and g are two geometric morphisms from E to Q-sets, then mor-
phisms between the relational representations they induce uniquely extend to
natural transformations between f∗ and g∗.
So we just have to prove that if (X,π) is a relational representation of Q, then
the induced functor v from Proj(Q) to Rel(E) comes from a geometric morphism
from E to Q-sets.

• As π commutes with ∗, so does v. Hence v preserves functional relations
and induces a functor from Q-sets to E .

• The terminal object of Q-sets is the quotient of B by its maximal relation,
and since π preserves the maximal relation, the terminal object of Q-sets
is sent to the quotient of X by its maximal relation, which is the terminal
object of E because X is inhabited. So v preserves the terminal object.

• Let

P X

Y S

f

g

be a pull back diagram in Q-sets, then P can be identified with the
relation f∗g on X×Y , indeed internally f∗g is the relation {(x, y|f(x) =
g(y)} hence it is the fiber product X ×S Y . So v preserves pullback. As
v preserves the terminal object, it preserves all limits.
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• In a topos, a collection of maps fi : Ai → A is a covering if and only
if 1A 6

∨
i∈I fif

∗
i as v preserves all the structures involved, v preserves

covering families.
All these properties together imply that v is indeed the f∗ functor of a geometric
morphism and conclude the proof.
�

2.6 Internally bi-linear maps between Q-modules

The category sl(T ) is endowed with a tensor product. In the case where
T = Sh(L) is the topos of sheaves on a frame L, one can see that through the
identification of sl(T ) with ModL this tensor product corresponds to the natural
tensor product over L, which as in the case of commutative algebras is defined by
the universal property: the maps from M⊗LN to P are the bi-linear morphisms
from M × L to P such that for all l ∈ L, f(m,n.l) = f(m.l, n) = f(m,n).l.
The main result of this section is that, in the general case, even if the ten-
sor product of two Q-modules can be difficult to compute explicitly, the set
BilT (M ×N,P ) of internal bilinear map from M ×N to P has a simple descrip-
tion in terms of the corresponding right Q-modules. This leads in particular
to a simple description of the category of internal locales of T in terms of a
Grothendieck quantale representing T . More precisely:

2.6.1. Definition : If A, B and C are three right modules over a Grothendieck
quantale Q, we say that a map f : A × B → C is Q-bilinear if it is a bi-linear
morphism of sup-lattices and if it satisfies the following three conditions:

1. f(aq, b) 6 f(a, bq∗)q

2. f(a, bq) 6 f(aq∗, b)q

3. f(a, b).q 6 f(aq, bq).

We will denote by BilQ(A×B,C) the set of Q-bilinear maps.

BilQ(A×B,C) is a sup-lattice for the pointwise ordering (with supremum com-
puted pointwise), and it is an sl-enriched functor in each of the three variables
(contravariant in the first two variables) with the functoriality given by compo-
sition.
The main result of this section (theorem 2.6.3) is that this functor is isomorphic
to the functor of internal bilinear maps.

2.6.2. Let M ,N and P be internal sup-lattices in T , let M̃ , Ñ and P̃ be the

corresponding right Q-modules (i.e. M̃ = homT (B,M)). Let f be a bilinear
morphism from M ×N to P .
Then one can define a map f̃ from M̃ × Ñ to P̃ by the (internal) formula:

f̃(m,n) := b 7→ f(m(b), n(b)) ∈ P
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With m and n elements of M̃ and Ñ , that is, maps from B to M and N , then
f̃(m,n) is indeed an element of P̃ = homT (B,P ).

Proposition : The map f̃ is a Q-bilinear morphism map in the sense of 2.6.1.
Moreover the construction f → f̃ defines a morphism of sl-enriched functors:

µ(M,N,P ) : BilT (M ×N,P )→ BilQ(M̃ × Ñ , P̃ )

Proof :
The (sup-lattice) bilinearity is immediate: supremum in M̃, Ñ and P̃ corre-
sponds to pointwise internal supremum hence the bilinearity of f̃ simply comes
from the internal bilinearity of f .
Recall that by definition one has internally for any m ∈ M̃ and q ∈ Q = Rel(B):

m.q(b) =
∨

(b′,b)∈q

m(b′).

All three properties defining Q-bilinearity are then easily checked internally:

1.
f̃(mq, n)(b) =

∨
(b′,b)∈q

f(m(b′), n(b))

Whereas:

f̃(m,nq∗)q(b) =
∨

(b′,b)∈q

f̃(m,nq∗)(b′) =
∨

(b′,b)∈q,(b′,b′′)∈q

f(m(b′), n(b′′))

So the first term corresponds to the restriction of the union to b = b′′ of
the second and is indeed smaller.

2. Same proof.

3. [
f̃(m,n)q

]
(b) =

∨
(b′,b)∈q

f(m(b′), n(b′))

Whereas

f̃(mq, nq)(b) = f(mq(b), nq(b)) =
∨

(b′,b)∈q,(b′′,b)∈q

f(m(b′′), n(b′))

So the first term corresponds to the restriction of the union to b′ = b′′ of
the second and is indeed smaller.

Also f 7→ f̃ commutes to supremum, because if one takes fi an (external) family

of internal bilinear maps, m ∈ M̃ and n ∈ Ñ then (internally) for any b ∈ B:(∨̃
i

fi

)
(m,n)(b) =

∨
i

fi(m(b), n(b)) =

(∨
i

f̃i(m,n)

)
(b)

And the functoriality is immediate: f̃(m, g(n)) := b 7→ f(m(b), g(n(b)) is in-
deed the map attached to f( , g( )) and g̃(f̃(m,n) := b 7→ g(f(m(b), n(b)) =

g̃ ◦ f(m,n).
�
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2.6.3. Theorem : The construction f 7→ f̃ from 2.6.2, defines an isomorphism
of sl enriched functors:

µ : BilT (M ×N,P ) ' BilQ(M̃ × Ñ , P̃ ).

The functoriality of the association and the fact that it commutes to supremum
have already been mentioned, so it only remains to prove that it is a bijection.
The proof of this theorem will be completed in 2.6.8 after proving a few lemmas.

2.6.4. Lemma : The association f 7→ f̃ of 2.6.2 is injective.

Proof :
Let f and g be two internal bi-linear maps from M ×N to P such that f̃ = g̃.
This means that for each map (m,n) : B →M ×N one has internally:

∀b ∈ B, f(m(b), n(b)) = g(m(b), n(b))

i.e.:

f ◦ (m,n) = g ◦ (m,n).

But we already explained in the last part of the proof of 2.3.4 that any map
from a sub-object U of B to a sup-lattice can be extended (canonically) to a
map on all of B. As B is a bound, maps from sub-objects of B can cover M×N
and by the extension arguments, maps from B cover M×N , so we can conclude
from the previous formula that f = g.
�

2.6.5. Lemma : Let h : Q × Q → P̃ ∈ BilQ(Q × Q, P̃ ) where Q is endowed
with its right action on itself. Then:

• Let c ∈ P̃ and a, b ∈ Q such that aa∗ 6 1, bb∗ 6 1. If one has c 6 h(a, b)
then for all x, y ∈ Q:

c(a∗x ∧ b∗y) 6 h(x, y)

• For all x, y one has:

h(x, y) =
∨

aa∗61,bb∗61

h(a, b)(a∗x ∧ b∗y)

Proof :
For the first point:
Let t = (a∗x ∧ b∗y) ∈ Q. Then one has:
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at 6 (aa∗x ∧ ab∗y) 6 aa∗x 6 x

bt 6 (ba∗x ∧ bb∗y) 6 bb∗y 6 y

So:
ct 6 h(a, b)t 6 h(at, bt) 6 h(x, y)

For the second point, let:

h′(x, y) =
∨

aa∗61,bb∗61

h(a, b)(a∗x ∧ b∗y).

Clearly, h′ is also in BilQ(Q×Q, P̃ ).
The first point shows that h′ 6 h. For the reverse inequality we will proceed in
several steps:

• If (xx∗ 6 1), (yy∗ 6 1). Let D(x) = 1 ∧ x∗x and D(y) = 1 ∧ y∗y. We
note that for elements smaller than 1, the involution is the identity and
composition and intersection coincide (these can be proved by applying
the modularity law, or by using theorem 2.4.5 as a black box and checking
it internally in the corresponding topos). So

xD(x) = x(1 ∧ x∗x) > (x ∧ x) = x

hence xD(x) = x and yD(y) = y also,

x∗x ∧ y∗y > D(x) ∧D(y) = D(x)D(y)

Aslo for any e 6 1:

h(xe, y) 6 h(x, ye)e 6 h(x, y)e 6 h(xe, ye) 6 h(xe, y)

hence
h(xe, y) = h(x, ye) = h(x, y)e

Finally:

h(x, y)(x∗x ∧ y∗y) > h(x, y)D(x)D(y) = h(xD(x), yD(y)) = h(x, y)

So h′(x, y) > h(x, y)
• We will now assume that x is arbitrary and y is simple. As Q is a

Grothendieck quantale, x can be written as a supremum of elements of
the form uv∗ with u and v simple. So, by bi-linearity of h, it is enough
to prove that h(x, y) 6 h′(x, y) when x is of the form uv∗. In this case:

h(uv∗, y) 6 h(u, yv)v∗ = h′(u, yv)v∗ 6 h′(uv∗, yvv∗) 6 h′(uv∗, y)

• If both x and y are now arbitrary, then the same technique allows ones
to conclude.

�
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2.6.6. Corollary : Theorem 2.6.3 holds whenever M = N = PB (ie. µ(P(B),P(B), T̃ )
is an isomorphism)

Proof :
Injectivity is known by lemma 2.6.4. So we just have to prove surjectivity. Let h
be any bi-linear map from Q×Q = M̃ × Ñ → P̃ satisfying our three conditions.
Then, by lemma 2.6.5, one has that:

h(x, y) =
∨

aa∗61,bb∗61

h(a, b)(a∗x ∧ b∗y).

One can see that maps of the form (x, y) 7→ t(ux ∧ vy) with u, v ∈ Q and t ∈ T̃
correspond to the internal bi-linear map which sends (p, q) ∈ P(B) × P(B) to
t(u(p) ∧ v(q) where u and v are seen as endomorphisms of P(B) and t as a
morphism from P(B) to T . Indeed if g(p, q) = t(u(p) ∧ v(q)) then

g̃(x, y) = t(ux(b) ∧ vy(b)) =
∨

(b′,b)∈(ux∧vy)

t(b′) = t(ux ∧ vy)

Hence h can be written as a supremum of maps coming from internal bi-linear
maps, but as f 7→ f̃ commutes to arbitrary supremum, this shows that h does
also come from a bilinear map. �

2.6.7. At this point, we have two possibilities. We can conclude by an argument
of extension by inductive limit, or use the following argument which we found
more convincing:

Proposition : Assume that µ(P(B),M, P ) is an isomorphism for some M and
P in sl(T ). Then µ(N,M,P ) is an isomorphism for any N in sl(T ).

Proof :
We already know that µ is injective. Hence it remains to show the surjectivity.
Let M and P be such that µ(P(B),M, P ) is an isomorphism. The internal
sup-lattice [M,P ] then corresponds to the right Q-module:

homT (B, [M,P ]) = homsl(T )(P(B), [M,P ]) = BilT (P(B)×M,P )

= BilQ(Q× M̃, P̃ )

where the action of Q on the last term is given by the left action of Q on itself.
Now let g ∈ BilQ(Ñ × M̃, P̃ ). For any n ∈ Ñ , the map:

gn : (q,m) 7→ g(nq,m)

is an element of BilQ(Q × M̃, P̃ ). The map (n 7→ gn) is a morphism of right
Q-modules and hence internally corresponds to a map f : N → [M,P ] which in
turn corresponds to a map f ∈ BilT (N ×M,P ). Finally f̃ = g because for any
n ∈ Ñ , (q,m) 7→ f̃(nq,m) is by construction of f̃ the map gn ∈ BilQ(Q× M̃, P̃ )

and hence f̃ agrees with g. This concludes the proof.
�
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2.6.8. We can now finish the proof of 2.6.3: by 2.6.6 we know that for any
T ∈ sl(T ), µ(P(B),P(B), T ) is an isomorphism. Hence by 2.6.7, µ(N,P(B), T )
is an isomorphism for each N and T , as one can freely exchange the first two
variables, µ(P(B), N, T ) is also an isomorphism, and a second application of
2.6.7 allows one to conclude.

2.6.9. Corollary : The category of internal locales of T (equivalently, the
category of toposes which are localic over T ) is equivalent to the category of
locales L endowed with a right action of Q such that:

• As a sup-lattice L is a right Q-module.
• One has the modularity condition:

∀m,n ∈ L,∀q ∈ Q,m ∧ nq 6 (mq∗ ∧ n)q

We will call such an action a modular action (the morphisms of this category
being the morphism of locales whose f∗ part is Q-equivariant).

Of course, the equivalence is given by the usual functor L 7→ homT (B,L).

Proof :
Let L be a locale in T then L̃ is indeed endowed with an operation ∧̃ which is
Q-bilinear. Also:

∧̃(m,n)(b) = m(b) ∧ n(b)

is the intersection of homT (B,L), hence L is indeed a locale and intersection is
indeed Q-bilinear.

Conversely, if L is a locale endowed with a modular action of Q, then the
operation ∧ is Q-bilinear (the second axiom comes from the symmetry, and
the third axiom because multiplication by q is order preserving). Hence L
corresponds to an internal sup-lattice L equipped with a bi-linear map m coming
from ∧. This bi-linear map has to be the intersection map of L because both m
and ∧L induce the same map when we externalise it by watching the morphisms
from B to L× L, and the proof of the injectivity of the externalisation process
done in 2.6.4 works without assuming that the map f is bilinear.
�

2.6.10. Also, from the description of BilT (M ×N,P ) it is possible to obtain an
explicit description of both the tensor product and the internal hom objects in
terms of the corresponding Q-modules: for the hom-object it has been done in
the proof of 2.6.7 and for the tensor product, the description of BilT (M ×N,P )

translates into a presentation by generators and relations of M̃ ⊗N . In order
to completely handle the monoidal structure of sl(T ) in terms of the category

of Q-modules it remains to understand what M̃∗ is.
An element of M̃∗ is a function from B to M∗, hence it is the same thing as a
function from B to M (i.e. an element of M̃) but with the reverse order relation,
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hence as a sup-lattice M̃∗ = M̃∗. A simple computation shows that q ∈ Q acts
on M̃∗ by the adjoint of the action of q∗ on M .

We also note that the notion of Q-bilinear map makes sense when Q is only a
modular quantale, and that one can define a “tensor product” M⊗QN universal
for Q-bilinear maps from M ×N . But in general this tensor product fails to be
associative.

2.7 Representations of modular quantales

2.7.1. Conjecture: Every modular quantale is of the form Rel(X) with X an
object of a topos.

2.7.2. Let Q be any modular quantale, we can try to consider the classifying
topos of the theory of relational representations of Q and hope that the quantale
of relations on the universal representation is isomorphic to Q. Unfortunately
this is not true in general as the following example shows:

Let n be any integer > 2, and G = Sn be the permutation group and consider the
Sn-setXn = {1, . . . , n} endowed with its natural action of Sn. The only relations
on Xn (in Sn-sets) are: ∅, 1,>,∆ where ∆ is the complementary relation of 1.
As n > 2 one has ∆2 = >. Let Q be the quantale of relations on Xn in Sn-
sets. It appears that Q does not depend on n. A relational representation of
Q (in a topos) is just an object S which has a decidable equality (the diagonal
sub-object is complemented) and at least three distinct elements. The universal
model U of this theory has more relations on it than just the four elements of
Q:
Indeed, let

P = {(x, y) ∈ U |∃x1, . . . , x4 ∈ U4 pairwise disjoint in U}.

then the pullback of P in the representation X3 is ∅ whereas the pullback of P
in the representation Xn for n > 3 is > hence P cannot be any of the objects
of Q in the universal representation.

2.8 Towards a convolution C∗-algebra attached to a quan-
tale

In the special case where the topos T is an étendue, ie the topos of equivariant
sheaves over an étale (localic) groupoid G = (G0, G1), the quantale associated
to the bound B such that the slice topos T/B is the locale G0 is the set of open
subsets of G1, and the composition law is given by the direct image of open
subsets in the composition law of G1.

With this fact and the usual construction of a C∗-algebra from a groupoid (see
[61] ) in mind it is natural to try to construct a C∗-algebra from a quantale by
defining a convolution product over a subset of continuous functions “over Q”
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(or over open subspaces of Q). Indeed we can view Q as a locale by forgetting
its composition law and involution, then use the involution to get an involution
on continuous functions and hope 9 that the composition law on Q will allow us
to construct a convolution product on continuous functions.

In order to perform this construction the general idea is the following: a con-
tinuous function on Q is the same thing as a function from X×X to the object
RT of real or CT of complex numbers. Hence it can be thought of, internally, as
an infinite matrix whose rows and columns are indexed by X, and we can use
the multiplication of matrices to define the convolution product. If the coeffi-
cients are all non-negative and we allow infinite coefficients the product should
be always defined. There are two difficulties that arise when we try to define
the matrix product internally:

• Matrix multiplication requires a summation indexed by the elements of
X. It cannot be done if we do not assume that X has a decidable equality.
The reason for this is that without this assumption, when we look at
partial sums f(x1)+· · ·+f(xn), for (x1, · · · , xn) elements of X we cannot
say whether the elements xi are distinct, hence we cannot assert that we
have not counted some value of f twice.

• The sum of an infinite number of terms will in full generality be defined
as the supremum of all the possible finite sums. In general the object
RT of continuous real numbers (i.e. two sided Dedekind cut) does not
always have supremum. In order to define a supremum we need to replace
the usual “continuous” real numbers by the lower semi-continuous real
numbers (one-sided Dedekind cut), so the result of the convolution will
in general be a lower semi-continuous function.

2.8.1. We now move to the precise definition:

Proposition : Let X be an object of a topos T with a decidable equality. Let

(internally) f and g be functions from X × X to
−−→
R∞+ . Then we can define a

function (f ∗ g) from X ×X to
−−→
R∞+ by the internal formula:

(f ∗ g)(x, x′) =
∑
x′′∈X

f(x, x′′)g(x′′, x′)

Of course this X indexed sum has to be interpreted as, for all q ∈ QT :

q < (f ∗ g)(x, x′)

if and only if: ∃n ∈ NT , x1, · · · , xn ∈ X such that:

∀i 6= j, xi 6= xj

and

q <

n∑
i=1

f(x, xi)g(xi, x
′)

9. This will not be the case in full generality.
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where q <

n∑
i=1

f(x, xi)g(xi, x
′) naturally means:

∃u1, · · · , un, v1, · · · vn ∈ QT , such that ui < f(x, x1), vi < g(xi, x
′) and q <∑n

i=1 uivi.

Proof :
All we have to do is check that the set L of q such that:

∃n ∈ NT , x1, · · · , xn ∈ X, such that ∀i 6= j, xi 6= xj and q <

n∑
i=1

f(x, xi)g(xi, x
′)

is indeed a positive one-sided Dedekind cut.
It is positive because, by taking n = 0 all negative q are in L. If q′ < q and
q ∈ X then clearly q′ ∈ X. If q ∈ L, then q <

∑
f(x, xi)g(xi, x

′) so there exists
q′ > q such that q′ <

∑
f(x, xi)g(xi, x

′) hence q′ ∈ L. This concludes the proof.
�

2.8.2. Proposition : The convolution product defined is associative and the
characteristic function of the unit of Q is a unit.

Proof :
This an immediate consequence of the fact that internally, the composition of
matrices is associative and that the identity matrix is a unit for the composition
of matrices. All we need is a constructive version of Fubini’s theorem for sums
(indexed by decidable sets) of positive lower semi-continuous real numbers. The
usual proof can easily been made constructive, or we can apply the general
Fubini’s theorem proved in [73]. �

This is interpreted externally as the construction of a convolution product on
the set of lower semi-continuous functions on the underlying space of Q. This
corresponds exactly to the construction of the convolution algebra of an étale
groupoid (see for example [61] 10 for this construction).
It should be possible to obtain something similar to the more general construc-
tion of the convolution algebra of a locally compact groupoid endowed with a
Haar system, by replacing the bound B by an internal space endowed with an
internal “measure” (a valuation to be more precise). This would require using
internal measure theory as developed in [72] and [73].

Of course, in full generality this kind of construction may fail to give anything
interesting: it may not restrict to an operation on continuous functions, or it
may even yield an everywhere infinite result. The rest of this chapter will give
a more precise picture of the situation in the special case where the underlying
topological space of Q is discrete.

10. In this reference, étale groupoids are called r-discrete groupoids.
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3 Atomic Quantales

3.1 Introduction

In this section we focus on a really special case of the theory explained in the
previous section: when the underlying space of the quantale Q (that is, the
space obtained by forgetting the product on Q and seeing it as a locale) is a
discrete topological space. This corresponds to the study of atomic toposes (see
[44, C.3.5] for the theory of atomic toposes).
In this situation, the convolution product constructed at the end of the previous
section is easier to understand, and among other things we will explain a simple
necessary and sufficient condition for this convolution product to be defined and
interesting on continuous functions. In this special case two additional features
appear: a canonical “time evolution” on the C∗-algebra obtained this way, and
we will observe that when the convolution product is well defined it restricts
into a product on finitely supported integer valued functions, which gives rise
to an algebra over Z with possibly interesting arithmetic and combinatorial
properties. This algebra can be interpreted as a subalgebra of the algebra of
endomorphisms of the free ZT modules of base B.

All the constructions will be made constructively, but at some point we will
need to take the assumption that the underlying space of Q is decidable.

3.2 Atomic quantales and atomic toposes

An object X of a topos is said to be an atom if Sub(X) ' Ω 11. A direct image
of an atom by a morphism is again an atom. A topos is said to be atomic if it
satisfies one of the following equivalent properties:

• The atoms form a generating family.
• For every object X ∈ |T |, Sub(X) is an atomic locale (i.e. of the form
P(S) for some set S).

• T is the topos of sheaves over an atomic site (i.e. a site such that the
covering sieves are exactly the inhabited sieves).

For details on the theory of atomic toposes one can consult [44, C3.5] 12.

3.2.1. Proposition : Let T be a topos and B be a bound of T , then the
following conditions are equivalent:

1. T is atomic over the base topos S.

2. Q = Rel(B) is (as a locale) atomic, i.e. its underlying poset is of the
form P(X) for some set X.

3. Z(Q) = Sub(B) = {q ∈ Q| 6 1} is atomic.

11. Assuming classical logic in the base topos, this means that X is non-empty and has no
non trivial sub-object.

12. This reference studies atomic geometric morphisms, but a geometric morphism f : E →
T is atomic if and only if E is atomic as a T -topos.
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Proof :
1.⇒ 2. is clear, because in an atomic topos all the lattices Sub(X) are atomic.
The implication 2.⇒ 3. is also clear. We will prove 3.⇒ 1.: Every object of T
can be covered by subobjects of B, so if every subobject of B can be covered
by atoms (which is the assumption in 3.) every object of T can be covered by
atoms and hence T is atomic. This concludes the proof. �

Of course, if T is an atomic topos and X is any object of T , then Rel(X) is an
atomic modular quantale.

3.2.2. The notion of atomic quantale will be closely related to the notion of
Hypergroupoid, which is a natural generalisation of the notion of canonical
hypergroup which can be found in [51] or [46].

Definition : A hypergroupoid G is the data of:
• A set E(G) of objects.
• For each e, e′ ∈ E(G) a set G(e, e′) of “arrows” from e to e′.
• For each g ∈ G(e1, e2) and h ∈ G(e2, e3) an inhabited set hg ⊆ G(e1, e3)

of “possible compositions”.
• And for each x ∈ G(e, e′) an element x∗ ∈ G(e′, e) called the inverse of
x.

With the following axioms:
(HG1) ∀e ∈ E(G),∃1e ∈ G(e, e), such that ∀x ∈ G(e′, e), 1ex = {x} and ∀x ∈

G(e, e′), x1e = {x}.
Such a 1e is unique and is also denoted by e.

(HG2) for all x, y, z three arrows such that the composition xy and yz are
defined, one has (xy)z = x(yz) where the product of an element x with a
set S is defined by xS =

∨
s∈S xs.

(HG3) if x ∈ yz then z ∈ y∗x and y ∈ xz∗.

We will adopt the convention that if g and g′ are two non-composable ar-
rows of a hypergroupoid then gg′ is defined to be the empty set. Or con-
structively that for two general arrow g and g′ of a hypergroupoid gg′ =
{u|g and g′ are composable and u ∈ gg′}.

3.2.3. Proposition : Let G be a hypergroupoid, and let X be the set of all
arrows:

X =
∐

e,e′∈E(G)

G(e, e′)

Then P(X) endowed with the following structure:

U∗ = {x∗, x ∈ U}

UV = {t|∃u ∈ U, v ∈ V, u, v are composable and t ∈ uv} =
∨
u∈U
v∈V

uv
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is a (atomic) modular quantale.

Proof :
P(X) is by definition an atomic locale. We check the remaining axioms:
• The associativity of the product: if g ∈ U(VW ) then ∃u ∈ U , f ∈ (VW )

such that g ∈ uf but b ∈ VW means that there exists v ∈ V , w ∈ W
such that f ∈ v.w. hence g ∈ u(vw) = (uv)w. So there exists an h ∈ (uv)
(in particular h ∈ UV ) such that g ∈ hw and, g ∈ (UV )W . The reverse
inclusion is exactly the same.

• The composition is clearly bi-linear because it is defined so that:

UV =
∨
u∈U
v∈V

{u}.{v}

• The Set 1 = {1e, e ∈ E(G)} is also clearly a unit for Q, because for any
u ∈ G(e, e′), {u}.{1e} = {u} and {u}{1e′′} = ∅ for any other e′′, hence
{u}1 = {u}, one obtains the general result by bi-linearity (and symmetry
for the fact that 1 is also a left unit).

• (UV )∗ = V ∗U∗: Let x ∈ V ∗U∗ i.e. x ∈ v∗u∗ for u and v respectively in U
and V . Then v∗ ∈ x.u, u ∈ x∗v∗, and finally x∗ ∈ uv, ie x ∈ (UV )∗. This
reasoning can be conducted backwards to obtain the reverse inequality.

• The modularity law:
Let x ∈ U ∧ VW then x ∈ U and x ∈ vw with v ∈ V , w ∈ W . We have
v ∈ xw∗ hence v ∈ (UW ∗ ∧ V ) and x ∈ (UW ∗ ∧ V )W .

�

3.2.4. Proposition : Conversely, any atomic modular quantale is of the form
P(X) where X is the set of arrows of a hypergroupoid.

Proof :
Let Q be an atomic modular quantale. So Q = P(X) for some set X.
Let E = {x ∈ X|x ∈ 1Q}. In order to simplify notations we will identify an
element of X with the corresponding singleton element in Q.
For any q ∈ X, as 1Qq = q there exists e ∈ E such that ex = x. Such an e is
unique because if e′x = x then e′ex = x. But as e′ and e are subobjects of 1 in
a modular quantale, one has ee′ = e ∧ e′ and in particular x = (e′ ∧ e)x. Hence
e′ ∧ e is inhabited and finally e = e′. Similarly, for each x ∈ Q there is a unique
e′ ∈ E such that xe′ = x.
Let:

G(e, e′) = {x ∈ X|xe = x and e′x = x}

We just show that X is the disjoint union of all the G(e, e′). If x ∈ G(e, e′)
then x∗ ∈ G(e′, e). Also, if a ∈ G(e, e′) and b ∈ G(e′, e′′) then ba ⊆ G(e, e′′),
indeed, if c ∈ ba then there exists a unit f ∈ E such that fc = c. In particular
c ∈ fba = fe′′ba = (f ∧ e′′)ba. Hence e′′ = f . The proof work exactly the same
for the other side.
We will prove that this is indeed a hypergroupoid structure:
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• Let a ∈ G(e, e′) and b ∈ G(e′, e′′). One has e′a = a and be′ = b. hence
e′ ∈ aa∗ and b ∈ baa∗ so ba is inhabited.

• if a ∈ G(e′, e) then ea = a and ae′ = a by definition.
• the associativity of the product comes from the associativity of the prod-

uct of the quantale and the fact that if there exists a ∈ uv for u, v ∈ X
then u and v are composable elements: this assert that the product of
the hypergroupoid is exactly the product of the quantale, and its asso-
ciativity follows by restriction to composable pairs of morphisms.

• If we assume that x ∈ yz then x = x ∧ yz 6 (xz∗ ∧ y)z hence y ∧ xz∗ is
inhabited so y ∈ xz∗.

Finally as we have proved already that multiplication in Q and in X are essen-
tially the same it is a routine check to prove that Q will be isomorphic to P(X)
as a modular quantale.
�

3.2.5. We have essentially proved that an atomic modular quantale is the same
thing as a hypergroupoid. If we define a morphism of hypergroupoid from G to
G′ to be a function f from E(G) to E(G′) and a collection of maps (all called f)
f : G(e, e′) → G′(f(e), f(e′)) such that f(1e) = 1f(e) and f(xy) ⊆ f(x)f(y) 13,
then one has:

Theorem : There is an anti-equivalence of categories between the category of
atomic modular quantales (with weakly unital morphisms) and the category of
hypergroupoids.

Here “weakly unital morphisms” of (atomic) modular quantales are those de-
fined in 2.5.1, except that we no longer assume them to preserve the unit, but
only to satisfy the weaker conditions 1 6 f(1).

Proof :
Let Q and Q′ be two atomic modular quantales and g : Q′ → Q a morphism
of modular quantales. By 3.2.4, Q and Q′ can be written Q′ = P(X ′) and
Q = P(X) where X ′ and X are the sets of all arrows of two hypergroupoids G
and G′. As g is in particular a morphism of locale, it induces a map f : X → X ′

characterized by the fact that for all x ∈ X, f(x) is the unique element of X ′

such that x ∈ g({f(x)}).
In particular, let c ∈ ab then ab ⊆ g(f(a))g(f(b)) hence c ∈ g(f(a)f(b)) ie
f(c) ∈ f(a)f(b). This proves that f(ab) ⊆ f(a)f(b). As 1 6 g(1), and 1 ∈ G
corresponds to E(G) ⊆ X, the map f acts on the unit set and preserves the
identity element. One also has x∗ ∈ g(f(x))∗ = g(f(x)∗) hence f(x)∗ = f(x∗)
and finally, if g ∈ G(e, e′) then e ∈ g∗g, e′ ∈ gg∗ and f(e) ∈ f(g)∗f(g), f(e′) ∈
f(g)f(g)∗ which proves that f(g) is an element of G(f(e), f(e′)) which concludes
the proof that f is a morphism of hypergroupoids.
Conversely, if f is a morphism of hypergroupoids, then as f(1e) ∈ f(g)f(g∗)
one can conclude that f(g∗) ∈ f(g)∗f(1e) = f(g)∗ hence f(g∗) = f(g)∗. One
can then define g = f−1 which is a frame homomorphism and compatible with
multiplication and involution, and 1 6 g(1) because each unit is sent by f to

13. Of course f(xy) denote the direct image by f of the set xy.
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a unit, hence it is a morphism of modular quantales. These two constructions
are clearly compatible with compositions and inverse from each other, hence,
together with propositions 3.2.3 and 3.2.4, this concludes the proof of the the-
orem.
�

3.2.6. Finally we investigate the case of Grothendieck quantale:

Proposition : Let Q be an atomic modular quantale, and G be the correspond-
ing hypergroup. The following conditions are equivalent:

1. Q is a Grothendieck quantale

2. for every arrow f in G there exists two arrows u and v such that f = uv∗

with uu∗ and vv∗ units.

Proof :
If Q is a Grothendieck quantale, then (by (Q10)) any element of Q can be
written as a supremum of elements of the form uv∗ with uu∗ 6 1 and vv∗ 6 1,
as Q is atomic we can write these u and v as union of atoms and hence any
elements of Q can be written as a supremum of elements of the form uv∗ where
uu∗ and vv∗ are units. In particular, any f ∈ G is an atom of Q, and hence
should be of the form uv∗.

Conversely, if G satisfies condition (2) then any element of Q can be written as
a union of its atoms, which are all of the form uv∗ with uu∗ and vv∗ units (and
hence 6 1).
�

Definition : An element f of a hypergroupoid such that ff∗ is a unit is called a
simple element. An element which can be written in the form fg∗ with f and g
simple is called a semi-simple element. A hypergroupoid satisfying the condition
of the proposition, i.e. such that every element is semi-simple, will be called a
semi-simple hypergroupoid.

Hence an atomic Grothendieck quantale is essentially the same thing as a semi-
simple hypergroupoid.
This terminology is borrowed to P.J.Freyd and A.Scedrov (in [26]) and has, as
far as we know, nothing to do with the notion of simplicity and semi-simplicity
in representation theory.
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3.3 Hypergroupoid algebra

3.3.1. In this section we consider an atomic topos T , an arbitrary object X,
the quantale Q of relations on X and the corresponding hypergroupoid G. We
assume that G (the set of all arrow of G) is decidable. This implies that X is a
decidable object, indeed:

Lemma : Let G be a decidable hypergroupoid, then its set of units is comple-
mented. And if G is associated to an object X of an atomic topos then X is
decidable.

Of course, if we assume the law of excluded middle in S this lemma is completely
useless.

Proof :
Let

∆c = {g ∈ G|∀e ∈ E(G), e 6= x}.
We will prove that ∆c is a complement of E(G). They are disjoint and for
every g ∈ G there exists a unique e such that eg = g. As G is decidable, either
g = e or g 6= e. If g = e then g ∈ E(G). If g 6= e then for all e′, one has
e′ = g ⇒ e′ = e because of the uniqueness of e, and hence e′ = g yields a
contradiction, so g ∈ ∆c.
In particular, as P(G) is isomorphic to Sub(X ×X), and as the diagonal sub-
object of X corresponds to the set of units of G, this proves that X is decidable.
�

In this situation, the convolution product defined in section 2.8 gives a convolu-

tion on functions on G with value in
−−→
R∞+ . We will give necessary and sufficient

conditions in order that the convolution product induces an interesting multi-
plication on some algebra.
As, in this situation, the convolution product depends on T and not only on G,
these conditions will be expressed in terms of the logic of T . In the next section
we will focus on the case of a semi-simple hypergroupoid, in this situation the
topos T will be canonically determined and it will be possible to reformulate
the definition given here more explicitly in terms of G.

3.3.2. We will need a few generalities about cardinals of sets in a constructive
setting in order to be able to give an internally valid proof of the main results
of this section.

Definition : Let X be a decidable set, then the cardinal of X is defined by:

|X| =

(∑
x∈X

1

)
∈
−−→
R∞+

We remind the reader that
−−→
R∞+ contains an element +∞. The following lemma

gives two properties that completely characterize the cardinal of a set.

Lemma :
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• For n ∈ N one has n 6 |X| if and only if there exists x1, · · ·xn pairwise
distinct elements of X.

• For q ∈ Q, q < |X| if and only if there exists an n ∈ N such that
q < n 6 |X|.

Proof :
Let q ∈ Q, such that q < |X|. By definition, there exists x1, . . . , xn ∈ X pairwise
distinct such that ∃q1, . . . , qn < 1 pairwise distinct with q <

∑
qi. This can be

rewritten as ∃x1, . . . , xn ∈ X such that q < n. This proves the second point of
the lemma assuming the first.
If there are n distinct elements in X, any q < n is also smaller than |X| hence
n 6 |X|. Conversely, if n 6 |X| then (n− 1

2 ) < |X|, so, by the first half of the
proof, there is an integer m with (n− 1

2 ) < m and x1, . . . xm distinct element in
X. As n 6 m one also has n distinct elements, this concludes the proof of the
first point of the lemma. �

Proposition : If X is a decidable set, the following conditions are equivalent:

1. X is finite.

2. |X| is an integer.

3. |X| is a (finite) continuous real number (ie an element of RT ).

For an example of a set X with |X| < ∞ but not satisfying these properties,
one can take any non-complemented sub-set of a finite (decidable) set.

Proof :
1. ⇒ 2. is clear because a finite decidable set is isomorphic to {1, . . . , n} (see
the notations and conventions section of the thesis) and hence as cardinal n.
2.⇒ 3. is also clear.
Assume 3., then there exist q, q′ such that |q − q′| < 1

2 and q < |X| < q′. There
exists an integer n such that q < n 6 |X| < q′, and x1, . . . , xn pairwise distinct
elements of X. Let x ∈ X then there are two possible cases: either x = xi for
some i, or x is distinct from all the other xi (this is proved recursively on n using
the decidability of X). But if x is distinct from all the xi then (n + 1) 6 |X|
and q 6 n < (n + 1) 6 q which yields a contradiction. So x = xi for some i,
and X is indeed finite.
�

We also note that the same argument yields the following result: If X is decid-
able, and we have a function p:X → N>0 such that

∑
x∈X p(x) is an integer,

then X is finite.

3.3.3. It might be useful at this point to recall our conventions. In order to have
the composition of functions and of relations in the usual order and to have a
nice “matrix like” composition of relation in the form x(R◦P )y := “∃t, xRt and
tPy” compatible with the convolution product of 2.8, we are lead to define a
relation R from X to Y when it is a subset of Y ×X, and to think of a function
f : X → Y as the relation {f(x), x)}. In particular, if g ∈ G(e, e′) is an arrow
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in a hypergroupoid G represented on an object X of a topos, then g will be
consider as a sub-object of e′ × e (and e′ and e as two sub-object of X).

3.3.4. Let g and g′ be two arrows in G, and [g],[g′] the characteristic functions
of the singletons {g} and {g′} the the convolution product ∗ of 2.8 can be
computed internally as:

([g] ∗ [g′])(x, y) =
∑
z∈X

[g](x, z)[g′](z, y) = |{z|xgz and zg′y}|

Definition : Let

(
g, g′

a

)
denote the evaluation at a of the function [g] ∗ [g′].

We also define for g ∈ G(e, e′),

|g|l =

(
g∗, g
e

)
|g|r =

(
g, g∗

e′

)

Proposition :

(
g, g′

a

)
, |g|l and |g|r can be computed internally using the

formulas:
For any u ∈ e the source unit of g:

|g|l = |{z|zgu}|.

For any v ∈ e′ the target unit of g:

|g|r = |{z|vgz}|

For any (x, y) ∈ a: (
g, g′

a

)
= |{t|xgt and tg′y}|

Proof :

The formula for

(
g, g′

a

)
is essentially its definition. The two other formulas

follow easily. The fact that each time the value internally does not depend on
any choice of (internal) elements is clear because the various possible choices all
belong to a same atom. �

One also mentions the two easy (but important) relations:

|g∗|l = |g|r,
(
g, g′

a

)
=

(
g′∗, g∗

a∗

)
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3.3.5. Here are some of the important combinatorial properties of these coeffi-
cients:

Theorem : For all pair g, g′ of composable arrows and all a ∈ gg′ one has:

1.

(
g, g′

a

)
|a|l =

(
g∗, a
g′

)
|g′|l

2.

(
g, g′

a

)
|a|r =

(
a, g′∗

g

)
|g|r

3. |g|l|g′|l =
∑
a∈gg′

(
g, g′

a

)
|a|l

Proof :
let e1,e2 and e3 be the units such that g′ ∈ G(e1, e2) and g ∈ G(e2, e3).
Let x ∈ e1 be arbitrary then let:

Xa = {(u, v)|ugv and vg′x and uax}

X = {(u, v)|ugv and vg′x} =
⊔
a∈gg′

Xa.

The cardinality of Xa can be computed in two different ways, on one side:

|Xa| =
∑

u s.t. uax

|{v|ugv and vg′x} =
∑

u s.t. uax

(
g, g′

a

)
= |a|l

(
g, g′

a

)
.

On the other side:

|Xa| =
∑

v s.t. vg′x

|{u|vg∗u and uax}| =
∑

v s.t. vg′x

(
g∗, a
g′

)
= |g′|l

(
g∗, a
g′

)
.

The equality of the two results gives (1.). The result (2.) is the dual (one can
use a similar proof or apply ∗ everywhere).
Similarly,

|X| =
∑

v s.t. vg′x

|{u|ugv}| =
∑
v,vg′x

|g|l = |g|l|g|r

Hence 3. comes from the fact that X is the disjoint union of the Xa.
�

3.3.6. Definition : Let X be an object of an atomic topos, and G the hyper-
groupoid corresponding to the atomic modular quantale Rel(X). We say that
(X,G) is locally finite if for all arrows g : e → e′ in G one has internally
∀x ∈ e, {y|ygx} is finite.
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Lemma : If (X,G) is locally finite, then for any two composable arrows a, b ∈ G
the set ab is finite.

This lemma holds without any decidability assumption on X or G, but the
hypothesis “composable” is necessary only if one does not assume that the set
of units is decidable.

Proof :
Let a : e′ → e and b : e′′ → e′ two composable arrows. Elements of ab are
exactly the arrows f : e′′ → e is the set of atoms of:

X0 = {(x, y) ∈ e× e′′|∃t ∈ e′, xat and tby}.

For each y ∈ e′′, the set of (x, t) such that xat and tby is finite because the set of
t such that tby is finite and for each t the set of x such that xat is also finite. In
particular, X0 can be seen as a finite object in the topos T/e′′ , and this implies
that the set of atoms of X0 (ie ab) is finite.
Indeed, the finiteness of X0 in T/e′′ implies that the map T/X0

→ T/e′′ is a proper
map 14. As e′′ is an atom, the topos T/e′′ is hyperconnected and hence compact.
In particular, by composition of proper maps, the topos T/X0

is compact. This
implies that the localic reflection of TX0 is also compact and this exactly means
that the set of atoms of X0 (i.e. ab ) is finite. �

3.3.7. Theorem : Let G be a decidable hypergroupoid represented in a topos
i.e. corresponding to the modular atomic quantale Rel(X) for some object X of
a topos. The following propositions are equivalent:

• (X,G) is locally finite.
• for all g ∈ G, g : e′ → e the value of [g] ∗ [g∗] at e is a finite continuous

real number.

• for all g, g′ ∈ G the set gg′ is a finite set and for all a ∈ gg′
(
g, g′

a

)
is a

finite integer.
Moreover in this situation, one has a formula of the form:

[g] ∗ [g′] =
∑
a∈gg′

(
g, g′

a

)
[a]

Proof :
If g is an arrow in G from e′ to e The value of [g] ∗ [g∗] at e is exactly the
internal value of the cardinal of {y|xgy} for any x ∈ e′, hence it is a continuous
real number if and only if this set is internally finite, and the first two conditions
are clearly equivalent.
The third condition clearly implies the second because the value of [g] ∗ [g∗] at

e is by definition

(
g, g∗

e

)
.

14. The notion of proper map is defined in section one of [55], in addition of this definition,
we use the propositions 1.4,2.1,2.4 and 2.5
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We assume the first two conditions. In particular the set {x|xgy} is a finite sub-
set of a decidable set and hence is complemented in X, hence {z|xgz and zg′y}
is finite as a complemented subset of a finite set.
This proves that the evaluation of [g] ∗ [g′] at every point is indeed a positive
integer (it is the cardinal of the previous set). The fact that gg′ is finite is
exactly the lemma of 3.3.6.
�

The situation described in this theorem is basically the best we can hope: one
gets a Z-algebra generated (as a group) by the symbols [g] for g ∈ G, the
multiplication being given by the third item of the previous theorem. We will
call this algebra AG.

Note that, as a set of functions on G, AG is exactly the set of finitely supported
functions on G with integral value, and our result is that this subset set is stable
by the convolution product of 2.8.

But conversely, if we want to have any interesting convolution structure – coming
from the construction done in 2.8 – on a set of functions on G with value in
continuous numbers, we need to have the second condition. This proves that the
locally finite hypothesis is exactly the good hypothesis for getting an interesting
convolution product in the atomic case.

3.4 Semi-simple Hypergroupoid algebra

In this section we assume that the object X is now a bound of T , and we call it
B following our conventions. The hypergroupoid G is now semi-simple, and T

is fully determined by G, so we should be able to express the value of

(
g, g′

a

)
in terms of the structure of G. We still assume that G is decidable.

3.4.1. Proposition : In a semi-simple decidable hypergroupoid one has:(
g, g′

a

)
= sup

a=xy∗
x,y simples

|g∗x ∧ g′y|

The sup in the proposition is taken in
−−→
R∞+ , this means in particular that the

coefficient is an integer if and only if the supremum is reached.

Proof :

Let q <

(
g, g′

a

)
. By lemma 3.3.2 and the observation in 3.3.4 that this coefficient

is an internal cardinal there exists (at least internally) an n such that q < n 6(
g, g′

a

)
. This means that internally for every (x, y) ∈ a, there exists (v1, . . . vn)

pairwise distinct in B such that for all i, (xgvi) and (vig
′y).
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This means that there is a surjection (x, y) : t � a and a collection of n maps
v1, . . . vn from t to B pairwise distinct 15, such that for all i, (x, vi) has value in
g and (vi, y) has value in g′.
If we choose any atom on B which maps to t, the composite is still a surjection
on a. Hence we can freely assume that t is a unit of G, and that x, y, v1, . . . vn
are arrows in G. The fact that (x, vi) takes values in g and that (vi, y) takes
values in g′ translate into vi ∈ g′y and x ∈ gvi, i.e. for all i from 1 to n,
vi ∈ g′y ∧ g∗x. Moreover as (x, y) is a surjection from t to a one has a = xy∗,
so:

q < n 6 sup
a=xy∗

|g′y ∧ g∗x|.

Conversely, if q < supa=xy∗ |g′y ∧ g∗x|, then for some x, y simple such that
a = xy∗,

q < n 6 |g′y ∧ g∗x|.

So there exist v1, . . . , vn pairwise distinct in g′y ∧ g∗x. If n > 0, this implies
that g, g′ is composable (if n = 0, then q is smaller than any cardinal). Let e
be the target of g and the source of g′.
In this situation, for any u ∈ e, v1(u) . . . vn(u) are n pairwise distinct elements

in {z|x(u)gz and zg′y(u)} and hence q < n 6

(
g, g′

a

)
.

And this concludes the proof. �

3.4.2. Proposition : An element g ∈ G is simple if and only if |g|l = 1.

Proof :
Let g ∈ G(e, e′). Internally one has by proposition 3.3.4:

∀x ∈ e, |g|l = |{z|zgx}|

Hence |g|l = 1 exactly means that for all x there exists a unique z such that
zgx which means that g is a partial function, i.e. a simple element. �

3.4.3. Proposition : Let G be a semi-simple decidable hypergroupoid, then
g ∈ G is left finite if and only if there exists a simple arrow u such that (g, u)
is composable, gu is finite and contains only simple elements. Moreover in this
case |g|l is the cardinal of the set (gu).

Proof :

15. As we will soon assume that t is an atom the precise meaning of “distinct” is not
important.
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Translating into an external result the internal formulation of the left finiteness
of g would actually give us exactly the statement of this theorem, but this
translation requires some work (essentially done in the proof 3.4.1) which can
be avoided by the use of the combinatorial identities we already proved.
Assume first that gu is finite and contains only simple elements {x1, . . . , xn}.
then by the formula 3. of 3.3.5 and replacing by 1 the left cardinal of simple
elements, one gets that:

|g|l =

n∑
i=1

(
g, u
xi

)

But one can see on the formula given in the proposition 3.3.4 that

(
g, u
xi

)
6

|u|l = 1, hence

(
g, u
xi

)
= 1 and |g|l = n which implies that g is left finite.

Conversely, assume that |g|l = n for some n. By 3.4.1 one has:

|g|l = sup
u simple

|gu|

In particular as (n − 1/2) < |g|l, there exists u simple such that |gu| = n. one
has then:

|g|l|u|l =
∑
x∈gu

(
g, u
x

)
|x|l

n =

n∑
i=1

(
g, u
xi

)
|xi|l

This implies first that all

(
g, u
xi

)
|xi|l have an opposite, hence they are all con-

tinuous numbers, and hence integers. Moreover as all the

(
g, u
xi

)
|xi|l are > 1

they have to be all equal to 1, hence all the xi are simple and this concludes the
proof.
�

3.5 The category of T -groups

In this section, we will show that in the locally finite case, the algebra AG we
obtained from theorem 3.3.7 can be seen as a particular subalgebra of endomor-
phisms of the free group ZX generated by X in the logic of T . This gives an
abstract interpretation of the algebra AG. We still assume that X is decidable.
We will also show that in the semi-simple case (when X = B is a bound) the
category of abelian groups of T embeds as a full subcategory of the category
of AG-modules, and that this embedding induces an equivalence between QT -
vector spaces in T and full AG ⊗Q-modules.
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3.5.1. Let E = ZX be the free group generated byX in T (E is a group object of
T ). we denote by (ex)x∈X the generators of E. In particular E⊗E = Z(X×X)
is the free group generated by X ×X, hence as X is assumed to be decidable
one can define a bi-linear map ∆ : E × E → ZT which sends (ex, ex′) to 1 if
x = x′ and to 0 if x 6= x′.
Let f be an endomorphism of E. One can associate to E the function of “matrix
elements” of f , ρ(f) : (x, x′) 7→ ∆(ex, f(ex′)) from X × X to Z. The map
ρ : f 7→ ρ(f) is injective, and one has internally of x ∈ X:

f(ex) =
∑
x′∈X

ρ(f)(x′, x)ex′

Also, ρ(f ◦ f ′) = ρ(f) ∗ ρ(f ′) for the convolution of functions on X ×X. So we
just have to understand the image of ρ:

Proposition : A function f from G to Z belongs to the image of ρ if and only
if it verifies the following two properties:

1. If f(g) 6= 0 then g is left finite.

2. For each unit e of G, there is at most a finite number of arrows g ∈ G
pointing to e such that f(g) is non zero.

In particular, property (1.) tells us that if we are not in the locally finite case,
then the algebra of group homomorphisms of E is in some sense ‘too small’.
Also, in the locally finite case, the algebra AG is identified with the sub-algebra
of endomorphisms of E such that f(g) is non zero only for a finite number of
g ∈ G.

Proof :
Internally, a function f : X ×X → ZT corresponds to a group homomorphism
if and only if (internally) for all x ∈ X there is only a finite set of x′ such that
f(x′, x) is non zero. Indeed, the corresponding group homomorphism has to
send ex to

∑
x′ f(x′, x).ex′ .

The cardinality of the set of x′ such that f(x′, x) is non zero defines a function
τ on X, whose value at any atom e of X (ie at any unit of G) is given by:

τ(e) =
∑

g∈G(e′,e),f(g) 6=0

|g|l

Indeed, for any x ∈ X the set of x′ such that f(x′, x) is non zero is partitioned by
the various g ∈ G(e′, e) such that (x′, x) ∈ g and each of this set has cardinality
|g|l (because the value of f(x′, x) only depends on the atom that contains it).
So τ(e) is an integer if and only if each of the |g|l are integers (this is condition
1.) and if they arise in finite number (this is condition 2.).
�

In the remainder of this chapter we assume that the representation of G in T
is locally finite (as defined in 3.3.6).
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3.5.2. Let F be any abelian group object of T . Then hom(E,F ) is a right
hom(E,E) module (where the hom denotes the internal group homomorphisms).
The units ofG act as family of disjoint projections on E, and hence on hom(E,F ).
Let:

F̃ =
⊕

e∈E(G)

Hom(E,F ).e

equivalently, F̃ is the subset of hom(E,F ) of elements x such that there exists
a finite set I of units such that x.eI = x where eI =

∑
e∈I e.

Proposition : For all abelian group F of T , F̃ is a full 16 right AG-module.
This gives a functor from group objects of T to full right AG-modules.
Also Ẽ is AG seen as a right AG-module.

Proof :
Clear from the observation that F̃ is the subset of hom(E,F ) of elements x such
that there exists a finite set I of units such that x.eI = x where eI =

∑
e∈I e ∈

AQ. And Ẽ identify with AQ thanks to 3.5.1 �

Actually, F̃ = hom(E,F ).AQ.

3.5.3. Assume that G is semi-simple and that X = B is a bound of T , hence,
the category of atoms of B and morphisms between them (i.e. the category of
units of G and simple arrows between them) endowed with the atomic topology
is a site of definition of T .
If F is an abelian group object of T then for each e atom of B, F (e) = F̃ .e and
the action of a simple arrow f from e to e′ is given by the action of [f ] on F̃ .
In particular, the sheaf corresponding to F is fully determined by F̃ and any
AQ-linear morphism from F̃ to F̃ ′ gives rise to a morphism of sheaves and one
can conclude that:

Lemma : When G is semi-simple (and locally finite) the functor from abelian
T -groups to AG-modules defined in 3.5.2 is fully faithful.

Unfortunately, if we start from a general AG-module we only get a pre-sheaf over
the site of units. In the general case, we have not found a characterization of the
AG-modules corresponding to T -group simpler than the definition of a sheaf.
But in the case where we assume that all the coefficients |g|l are invertible, then
the action of the [g] for non simple g will automatically turn our pre-sheaf into
a sheaf.

Proposition : (Still under the assumption that G is semi-simple and locally
finite) Let M be an AG-module such that for every g ∈ G the integer |g|l acts (by
multiplication) as a bijection on M . Then M comes from an abelian T -group.
In particular there is an equivalence of categories between QT -vector spaces and
full right AG ⊗Q-modules.

16. A module M over a (possibly non unitary) ring A is said to be full if the map A×M →M
is surjective.
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Proof :
We will check that under this assumption the pre-sheaf of M̃.e is actually a
sheaf for the atomic topology.
Let e be a unit of G, let f be any simple arrow starting at e. And let m ∈M.e
such that for any two simple arrows g, h targeting e such that fg = fh one has
mg = mh. We need to prove that there exists a unique n such that nf = m.
The uniqueness is easy: if m = n.f then m.f∗ = n.ff∗ = |f |rn so as |f |r is
invertible one has n = 1

|f |rm.f
∗.

Conversely, we will prove that n = 1
|f |rm.f

∗ provides a solution.

n.f =
1

|f |r
m.f∗f =

1

|f |r

∑
a∈f∗f

(
f∗, f
a

)
m.a

let a ∈ f∗f . Then a can be written in the form a = gh∗ with g and h simple.

gh∗ ∈ f∗f ⇒ f ∈ fgh∗ ⇒ fg ∈ fh

Hence one has fg = fh and by the assumption on m, m.h = m.g.
The relation m.g = m.h implies,

m.[g][h∗] = m.[h][h∗]

[h][h∗] = |h|r.[e]

By 3.3.5 one has:

[g][h∗] =
|h|r
|a|r

[a]

so m.[g][h∗] = m.[h][h∗] becomes:

m.a = |a|r.m

and we can conclude that:

n.f =
1

|f |r

∑
a∈f∗f

(
f∗, f
a

)
|a|rm = |f∗|rm = m

again by 3.3.5 and the fact that f is simple hence |f∗|r = |f |l = 1.
�

3.6 AG as a quantum dynamical system

In this section we construct the regular representation of AG. We show that
the C∗-algebra generated by AG comes with a canonical action of R. There is
also a regular representation of AG, attached to a KMS1 state and defining a
C∗-algebra C∗red(G) by completion.
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3.6.1. Let H be a real Hilbert space in T . Then

H̃ =
⊕

e∈E(G)

hom(e,H)

is an AG vector space. The internal scalar product on H gives rise to a scalar
product on each of the hom(e,H) and turns H̃ into a pre-Hilbert space.

Proposition : In the action of AG on H̃ one has:

[g]∗ =
|g|l
|g|r

[g∗]

And [g] has norm smaller than |g|l.

Proof :
Let g ∈ G, v ∈ hom(e,H) and v′ ∈ hom(e′,H).
If g is not an arrow from e to e′, then both 〈v, v′[g]〉 and 〈v[g∗], v′〉 are zero
(hence equal). If g is an arrow from e to e′, then for any x ∈ e one has:

〈v, v′[g]〉 (x) =

〈
v(x),

∑
y,ygx

v′(y)

〉
=
∑
y,ygx

〈v(x), v′(y)〉

But g is an atom of X×X, and 〈v(x), v′(y)〉 is a function on X×X so its value
does not depend on x,y as long as they belong to g. Hence, for any (x, y) ∈ g
one has:

〈v, v′[g]〉 = |g|l 〈v(x), v′(y)〉

Similarly:

〈v[g∗], v′〉 = |g|r 〈v(x), v′(y)〉

Finally:

〈v, v′[g]〉 =
|g|l
|g|r
〈v[g∗], v′〉

And the first result follows.
The second result follows from

〈v, v′[g]〉 = |g|l. 〈v(x), v′(y)〉 6 |g|l‖v‖‖v′‖.

As ‖v(x)‖ = ‖v‖.
�
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3.6.2. Definition : For g ∈ G, We will denote:

χ(g) =
|g|l
|g|r

One has:

χ(g∗) = χ(g)−1

[g]∗ = χ(g)[g∗]

and also the more surprising result:

Proposition : For any three arrows a, g, g′ of G such that a ∈ gg′:

χ(a) = χ(g)χ(g′)

Proof :
We will just need several applications of the first two points of theorem 3.3.5.

χ(a) =
|a|l
|a|r

=

|a|l
(
g, g′

a

)
|a|r

(
g, g′

a

) =
|g′|l
|g|r

(
g∗, a
g′

)
(
a, g′∗

g

)
but:

|g′|r
|g|l

(
g∗, a
g′

)
(
a, g′∗

g

) =

|g|l
(
g′, a∗

g∗

)
|g′|r

(
a∗, g
g′∗

) =

|g|l
(
a, g′∗

g

)
|g′∗|l

(
a∗, g
g′∗

) = 1

So we can conclude that:

χ(a) =
|g′|l
|g|r

(
g∗, a
g′

)
(
a, g′∗

g

) =
|g′|l
|g|r

|g|l
|g′|r

= χ(g)χ(g′)

�
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3.6.3. Definition : Let AG,Q be the algebra AG ⊗ Q. It is endowed with the
involution ∗ defined by 3.6.1, i.e.:

[g]∗ = χ(g)[g∗]

We also define the elements:

eg =
1

|g|l
[g] ∈ AG,Q

which are additive generators such that (eg)
∗ = eg∗ .

Proposition : If G is semi-simple and locally finite, the functor which sends
a T -Hilbert space H to the completion of H̃ is (one half of) an equivalence of
categories between the category of internal Hilbert spaces of T , and the full 17

right Hilbert ∗-representations of AG,Q.

Proof :
The proof is really similar to the case of QT -vector spaces done in 3.5.2 and
3.5.3. If we start from a T -vector space, we already proved that AG,Q acts on

H̃ by bounded morphisms and in a way compatible with the involution. So it
extends to a full Hilbert ∗ representation of AG,Q on the completion of H.

In the other direction, the sheaf of complex numbers on the site of units of G
is the constant sheaf. Hence if H is a Hilbert ∗ representation of AG,Q then
e → H[e] defines a pre-sheaf of CT -modules that we will denote by H. The
pre-sheaf H is a sheaf by 3.5.3.
For every simple arrow f : e→ e′ one has:

[f ].[f ]∗ = [f ][f∗]
1

|f |r
= [e′]

|f |r
|f |r

= [e′]

and the induced map H[e′]→ H[e] (i.e. the structural map of H) is an isometric
injection. This proves that the scalar product H[e] × H[e] → C is in fact a
morphism of sheaves H ×H → CT and hence this endows H with an internal
scalar product.
It remains to show that H is internally complete. Let H̃ be its completion, let
h ∈ H̃(e).
Then, by (internal) density of H in H̃, for every n ∈ N, there exists f : e′ → e,
and h′ ∈ H(e′) such that ‖h′ − h.f‖ < 1/n. But one can write:

‖h′[f ]∗ − h‖ < 1/n

and h′[f ]∗ ∈ H(e), hence h can be approximated by elements of H(e). As H(e)
is complete, this proves that h ∈ H(e) and hence that H is internally complete.
Finally this is an equivalence, because if we start from a full Hilbert ∗-representation
H of AG,Q then the construction we just made corresponds to that of 3.5.3 ap-
plied to H.AG,Q hence as we applied a completion at the end, we will get H
back because H.AG,Q is dense in H by assumption.
�

17. Here full, mean that H.AG,Q is dense in H.
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3.6.4. At this point we can either consider the closure of AG,C = AG ⊗ C in
a specific representation: the one corresponding to the internal Hilbert space
l2(B) of square summable functions on B, defining a C∗-algebra C∗red(G), or we
can take the universal C∗-algebra generated by AG,Q that we will denote by
C∗max(G).
Both these algebras come with a time evolution (σt)t∈R given by:

σt([g]) = χ(g)it[g]

This is a morphism of algebras because of 3.6.2.
Let e be an atom of B. Then one has a map e ↪→ B which gives rise to a map
e→ l2(B) and hence to a vector of the corresponding representation of C∗red(G)
that we will simply denote l2. An easy computation shows that the state on
C∗red induced by this vector is:

ηe([q]) =

{
1 if q = e
0 otherwise.

If the set of units of G is finite then the (renormalized) sum of all the ηe is a
state, in general we can define it without renormalization as a semi-finite weight
(it is finite on the algebra AG), we denote it by η.

Proposition : The GNS representation induced by η is the l2 representation,
and η verifies the KMS condition.

The KMS condition is what ensure that the time evolution we constructed on
C∗red is the modular time evolution of the von Neumann algebra obtained as the
weak closure of C∗red in the l2 representation with respect to the state/weight
η. More information about this can be found in the end of chapter 2, and the
reader can consult [67, Chapter VIII] for a detailed account of this theory.

Proof :
The first part is clear: the GNS representation induced by η is included in l2

and contains all the vectors corresponding to the e ∈ G (indeed, [e] gives rise to
this vector through the GNS construction). If it were a strict sub-representation
then it would correspond internally to a sub Hilbert space of l2(B) containing
all the basis vectors, which is impossible.
For the second part:

η([q]σi([q
′])) = χ(q′)−1η([q][q′])

If q′ 6= q∗ then both η([q][q′]) and η([q′][q]) are zero (because e ∈ qq′ ⇒ q′ = q∗).
If q′ = q∗ then

η([q]σi([q
′]) = χ(q)η([q][q∗]) = χ(q)

(
q, q∗

e

)
= χ(q)|q|r = |q|l = η([q′][q])

�
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3.7 The time evolution of an atomic locally separated topos.

In this subsection, we will first show that for a decidable bound B of an atomic
topos T , the hypergroupoid of atoms of B × B is locally finite if and only if
the slice topos T/B is separated (or Hausdorff) in the sense of [55]. Then we
will show that an atomic topos admits such a bound if and only if it is locally
decidable and “locally separated”, that is if there exists an inhabited object X
of T such that T/X is separated. And finally, that in this case the time evolution
constructed in 3.6 is completely canonical when seen as a family of functors on
the category of Hilbert space of T and is described by a canonical principal Q∗+
bundle χT : T → BQ∗+ attached to every locally separated locally decidable
atomic topos T .

3.7.1. A geometric morphism f : T → E is said to be proper if f∗(ΩT ) is a
compact locale internally in E , and is said to be separated if the diagonal map
T → T ×E T is proper. A topos is said to be compact (resp. separated) if the
geometric morphism from T to the base topos S is proper (resp. separated).
These notions have been introduced and studied by I.Moerdijk and C.C. Ver-
meulen in [55], they are also discussed in [44, C3.2 and C5.1].

We will say that a topos is locally separated if there exists an inhabited object
X of T such that the slice topos T/X is separated.

3.7.2. We start by the following proposition which relates finiteness conditions
to the separation property.

Proposition : An atomic locally decidable topos T is separated if and only if
every atom of T is internally finite, and the set of atoms of the terminal object
1T is decidable.

Also, the “only if” part holds without assuming that T is locally decidable.

Proof :
We start by assuming that T is separated, and that a ∈ |T | is an atom. Then
the topos T/a is hyperconnected 18 and hence proper. Proposition II.2.1(iv) of
[55] asserts that when one has a commutative diagrame:

T/a T

∗

g

h f

with h proper and f separated then g is proper. But the map T/a → T is proper
if and only if the discrete space a (internally in T ) is compact if and only if a is
finite.
Moreover, if T is separated, then its localic reflection is separated (see [55,
II.2.5]). As T is atomic its localic reflection is exactly the set of atoms of its

18. This mean that the locale p∗(ΩT/a ) whose open are subobjects of a is trivial, which is

the definition of the fact that a is an atom.
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terminal object endowed with the discrete topology, which (by [55, II.1.3(1)]) is
separated if and only if this set of atoms is decidable.

Conversely let T be an atomic topos whose atoms are internally finite and such
that the set of atoms of 1T is separated. In order to prove that T is separated,
one has to prove that both its localic reflection, and its hyperconnected map
to its localic reflection are separated (see [55, II.2.5]). As we have seen in the
previous part, the localic reflection is separated because the set of atoms of
the terminal object of T is decidable. Hence we are brought to prove (inter-
nally) that a hyperconnected atomic locally decidable topos with finite atom is
separated.
The commutative diagram:

T T × T

T

∆

Id π2

can be seen as a point ∆ of the topos T × T internally in T . As T × T is the
pullback of T by the canonical geometric morphism from T to the point, it will
still be a hyperconnected locally decidable atomic topos internally in T , and it
will still have a generating family of finite objects and hence all its atoms will
be finite internally in T .
Hence our problem is equivalent to prove (constructively) that if T is atomic
locally decidable and hyperconnected with a point p and that all the atoms of
T are finite then p is proper. But an atomic topos with a point is equivalent
to BG for G the localic group of automorphisms of the point, and the fact that
the atoms are finite means that all the G-transitive sets are finite, and as G has
been taken to be set of automorphisms of the point, this will imply that G is
compact:
Indeed, the localic monoid of endomorphisms M(G) = limG/U constructed in
[54] is compact by (localic) Tychonoff’s theorem, and separated because thanks
to the locale decidability one can restrict to the U such that G/U is decidable,
hence separated. In particular the point 1 is closed, and as G can be identified
with the subspace of M(G) ×M(G) of f, g such that fg = 1 which is a closed
subspace in a separated compact space, G is also compact.
Finally, the map 1→ BG is proper because its pullback along itself is the map
G → ∗ which we just showed to be proper, and the map ∗ → BG is always an
open surjection (for exemple by [44, C3.5.6(i)]) hence the fact that proper maps
descend along open surjections (see [44, C5.1.7]) allows us to conclude. �

3.7.3. Theorem : Let T be an atomic topos, and B a bound of T then the
semi-simple hypergroupoid attached to B is decidable and locally finite if and
only if B is decidable and T/B is separated.

Proof :
Let G be the hypergroupoid corresponding to B.
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Assume first that G is decidable and locally finite. Applying lemma 3.3.1 one
obtains that B is decidable, and hence that T is locally decidable. We will prove
that T/B is separated by applying 3.7.2. The set of atoms of B is finite because
it is the subset of units of G which is decidable. Let u be any atom of T/B , as B
is a bound of T , u can be covered by an atom b of B, hence one has two maps
b → u → b′ where b′ denote the image of u in B. The map b → b′ corresponds
to an arrow in G, hence as G is locally finite this map has internally finite fibre,
hence b is finite in T/b′ and hence also u as a quotient of b. As the set of atoms
of B is decidable, this concludes the proof.

Conversely, assume that B is decidable and that T/B is separated. We will
first prove that G is locally finite. Indeed, let g be any arrow in G, the set
{(x, y)|xgy} endowed with its map (x, y) 7→ x to B is an atom of T/B , hence it
is finite in T/B by proposition 3.7.2. This exactly means that ∀x ∈ B, {y|xgy}
is finite, i.e. that G is locally finite. By lemma 3.3.6 this also impllies that for
all pairs of composable arrows f, g in G the set fg is finite.

We will now prove that G is decidable. As T/B is separated, the set of atoms of
B, i.e. the set of units of G is decidable, and as B is decidable, the set of units
of G is complemented in G. For any two arrows f and g of G, by decidability of
the set of units, either they do not have the same source or target, in which case
f 6= g or they have the same source and target. In this second case, as the set
f∗g is finite its intersection with the set of units is also finite because the set of
units is complemented, and hence the intersection of f∗g with the set of units
is either empty or inhabited. If it is empty then f 6= g, if it is inhabited then
f = g by uniqueness of the inverse in an hypergroupoid. In any case, f = g or
f 6= g, which proves that G is decidable and this concludes the proof. �

3.7.4. Of course an atomic topos T admits a bound B which is decidable and
such that T/B is separated as in theorem 3.7.3 if and only if T is locally decidable
(each object is a quotient of a decidable object) and locally separated (there
exists an inhabited object X such that T/X is separated). Indeed, assuming
that T is locally decidable and locally separated, if B0 is any bound and X an
inhabited object such that T/X is separated then any decidable cover of B0×X
will be a bound with the expected properties.

3.7.5. The time evolution constructed in 2.4 can be seen as a family of functors
H → Ht for t ∈ R acting on the category of Hilbert spaces of T , corresponding
to the functor which sends a representation of C∗max(Q) to the representation
twisted by σt.
By the previous theorem we know that any atomic locally decidable locally
separated topos has such a time evolution. We will show that this time evolution
is canonical by giving a construction of it which does not depend on the choice
of the bound B.

To be more precise, let T be a locally decidable locally separated topos. We will
construct a QT principal bundle χT in T in the following way. The decidable
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atoms a of T such that T/a is separated form a generating family. Hence to
define an object of T it is enough to define a sheaf for the atomic topology on
the full subcategory of these atoms.

If f : a → a′ is map between two decidable atoms with T/a′ separated, a is a
finite decidable set internally in T/a′ , and its cardinal is (as a′ is an atom) an
externally defined natural number called the degree of f , and denoted deg(f).

We define:
hom(a, χT ) = Q∗+

and if f : a→ a′ is any map then it acts on Q∗+ by multiplication by its degree.
All these maps are bijective, hence it defines a sheaf. Also Q∗+ acts on χT by
multiplication turning it into a principal Q∗+ bundle.
We note in particular that if T is itself separated, then the terminal object of T
is among the atoms of the site we consider and hence hom(1, χT ) is inhabited
and hence χT is the trivial bundle. But saying that χT is trivial only means
that it is possible to construct a global section d of it, which will be a map
associating to any decidable atom a such that T/a is separated a finite rational
number d(a) such that if f : a → a′ is a map between two of these atoms then
d(a) = d(a′)deg(f).

3.7.6. Finally, the time evolution given by any bound can be described in terms
of this invariant χT . Indeed if H is an arbitrary Hilbert space on T , and we
choose an “admissible” bound B, then the effect of the time evolution on H can
be described by the fact that Ht is the same sheaf as H on the site of atoms of
B but with the action of a map f : e→ e′ twisted by χ(f)it = (degf)−it.
Hence if we see χT as a morphism from the topos T to the classifying space
BQ∗+ of principal Q∗+ bundles (i.e. the topos of Q∗+ sets), and if we call Et the
one dimensional Hilbert space in BQ∗+ defined by C with its usual Hilbert space
structure and endowed with action q.z = q−it(z) then the previous formula for
Ht can be rephrased as:

Ht = H⊗ χ∗T (Et)

where the tensor product is just the internal tensor product of Hilbert spaces
in T .

3.8 Examples

3.8.1. If G is a discrete group, T the topos of G-sets and B is G endowed
with its (left) action on itself, then the corresponding quantale is P(G), the
hypergroupoid is the group G, the integral algebra is Z[G], and the reduced and
maximal C∗-algebras are the usual reduced and maximal group C∗-algebras. In
this situation the time evolution is trivial.
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3.8.2. The best-known example of this situation is the case of double coset
algebras. Let G be a discrete group, and (Ki) a family of subgroups of G (one
can generalize to G a localic group and Ki open subgroups). Let Xi be the
G-set G/Ki. The topos of G-set is atomic and Rel(Xi, Xj) can be identified
with the subset of G stable by the action of Ki on the left and Kj one the right,
hence the atom of Rel(Xi, Xj) are exactly the (Ki,Kj) double-cosets. Under
this identification, the composition of a (Ki,Kj) cosets with a (Kj ,Kt) cosets
is the set of (Ki,Kt) cosets included in the product of their elements, and the

coefficients

(
g, g′

a

)
are exactly the usual coefficients involved in the definition of

the double coset modules and double coset algebras (hence we are in the locally
finite case if and only if one has the usual almost normality condition).

3.8.3. The previous example in particular gives back the BC-system constructed
in [9] with both its time evolution and its integral sub-algebra by considering

the topos of continuous actions of the group G = AfQ o Q∗+, where AfQ denote
the additive group of finite adele of Q, i.e. the restricted product of all p-adic
completions of Q, with the bound B = G/Ẑ.
Unfortunately, trying to replace Q by another number field in this construction
does not seem to give the “good” BC-system for number field constructed in
[30], and certainly not the good arithmetic subalgebra. Actually the variant of
the BC algebra associated to a number field K constructed in [2] corresponds to

the topos of continuous GK = (AfK) nK∗-sets with the bound B = GK/ÔK .

3.8.4. It appears that, when we assume the axiom of choice in the base topos,
every locally separated atomic topos is a disjoint sum of classifying toposes of
locally profinite groups. In particular the case of double cosets algebra (of a
locally pro-finite group) is essentially the only things one can obtain with this
theory. Indeed, one can see that a locally finite object of a separated connected
atomic topos is a coherent object, and hence that connected separated atomic
toposes are coherent toposes. And coherent toposes always have points by a
theorem of P.Deligne. In particular, assuming the axiom of choice, any atomic
locally separated topos has enough points, and an atomic topos with enough
points is a disjoint sum a classifying topos of localic groups. The assumption of
local separation finally imply that the groups involved are locally pro-finite.

But as the methods used in this article are constructive (and the argument used
in this last paragraph is not), one can find internally to other topos example of
toposes where this theory applies and which are not of this form. Moreover the
technique we have used here are meant to be generalized to other toposes, and
the main goal of this work was to provide a toy model in order to study more
general toposes.
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Chapter 2

Measure theory over
toposes

1 Introduction

In all this second chapter (except maybe during the introduction, 1 and 1.1),
and contrary to the rest of this thesis, the base topos S will always be assumed
to satisfy the law of excluded middle, but not necessarily the internal axiom of
choice. The main reason for this is that in this chapter we mostly focus on the
study of boolean toposes, hence it is natural to do it over a boolean base topos.
Also, most of the results presented here seem to require the law of excluded
middle in an essential way.

In subsection 1.1 we will briefly review, without proof, measure theory over
locales in order to motivate its generalization to toposes. We define the notion of
generalized measure class on a topos T as the data of a boolean topos B endowed
with an injective geometric morphism (where injective means a monomorphism
in the 2-category of toposes, not an inclusion of toposes) from B to T . A
Measurable field with respect to this generalized measure class is then defined
as an object in B. For example, a measurable field of Hilbert spaces over T is
an Hilbert space in the logic of B (we will call this a B-Hilbert space).

In section 2 we study some general properties of these measurable fields. In
general the category of Hilbert spaces over a boolean topos is something that
we may want to call a monotone closed C∗-category: bounded above directed
families of self-adjoint operators have supremum but this category might not
have normal representations in the category of Hilbert spaces. If such normal
representation exists, then it is a W ∗-category in the sense of [27]. We show
that this is the case for the category of B-Hilbert space, if and only if, for
every object X of B, or equivalently for every object X belonging to some fixed
generating family of B, the complete boolean algebra Sub(X) of subobjects of X
admit enough locally finite valuations. This equivalence is proved in subsection
2.1, and a boolean topos satisfying this condition is said to be integrable. In
subsection 2.2 we prove a simple injection/surjection factorisation theorem for
geometric morphisms from boolean toposes to arbitrary toposes showing that
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generalized measure classes can be pushed forward along geometric morphisms
and that any generalized measure class on a topos T can be described internally
in T as a sub-terminal boolean locale.

Von Neumann algebras (and alsoW ∗-categories) are well known to have a canon-
ical “modular” time evolution (see for example, [67]). The main result of this
chapter is to provide a geometric description of this time evolution in the case
of von Neumann algebras arising from a boolean locally separated topos T in
terms of a certain (canonical) R>0

T bundle over T analogous to the bundle of
locally positive well supported measure over a boolean locale (which is a bundle
exactly because of the Radon-Nikodym theorem).

More precisely, in section 3 we define a notion (relatively restrictive) of locally
finite well supported measure on a boolean topos, which we called invariant
measure because on the topos associated to an action of a group G over a
boolean locale such an invariant measure indeed corresponds to a G-invariant
measure. We prove (in 3.2.8) that such an invariant measure can only exists on
an integrable and locally separated topos.
For a separated integrable topos, invariant measures correspond exactly to lo-
cally finite well supported measure on the localic reflection (see 3.2.6 ). For a
more general integrable locally separated topos T , we will show that the exis-
tence of invariant measure is controlled by a “modular” R>0

T -principal bundle
over T denoted χ. Invariant measures on T correspond exactly to global sections
of χ, hence, if χ is trivial there exists invariant measures on T , and two such
measures differ by multiplication by a positive function on the localic reflection
of T . In particular, (if χ is trivial) invariant measures on T also correspond
to (locally finite well supported) measures on the localic reflection of T , but
this time in a non canonical way. Finally, if χ is non trivial then there is no
such invariant measure, but instead one can use χ to construct a canonical time
evolution of the the category of T -Hilbert spaces, given by tensorisation by a
one parameter family of line bundles over T associated to χ.

This gives a classification in types I, II and III of boolean integrable locally
separated toposes analogous (but not totally equivalent) to the classification in
type of von Neumann algebras: Type I corresponds to separated toposes, type
II to toposes which are not separated but which have a trivial modular bundle,
and type III to toposes which have a non trivial modular bundle.
Of course in full generality, one obtains that every boolean integrable locally
separated topos decomposes in a disjoint sum of a topos of each of the three
types by applying this disjunction internally in the localic reflection.

In the last subsection of this chapter, we consider T a boolean integrable locally
separated toposes, X an object of T such that T/X is separated and l2(X) the
Hilbert space of square summable sequences. In this situation, we show that
the modular time evolution of the von Neumann algebra A of globally bounded
endomorphisms of l2(X) is indeed the time evolution on A described by χ, and
that the integration of diagonal matrix elements against an invariant measure
on T gives rise to a trace on A.

The following table sum-up the dictionary between topos theory (in the left
column) and operator algebra (in the right column) that arise in this chapter.
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This is of course just a vague analogy that we have observed while developing this
theory, we do not claim that there is any sort of rigorous correspondence here.
In particular we think that this dictionary is meant to be made more precise in
the future, for example a work in progress (mentioned in the introduction under
the name “Non abelian monoidal Gelfand duality”) highly suggest that it can
be made a lot more precise if we take into account on the right hand side the
monoidal structures that arise from the internal tensor product of Hilbert space
and the compatibility to these structures.

Boolean topos (locally separated)
Monotone complete C∗-algebra (up

to morita equivalence)

Boolean integrable topos (locally
separated)

W ∗-algebra (up to morita
equivalence)

Localic reflection Center

Measure on an object Semi-finite normal weight

Measure on an object of mass 1 Normal state

Invariant measure Normal (semi-finite) trace

The modular bundle
The ∆ operator of the

Tomita-Takesaki construction

The family of line bundles (Ft)t∈R The modular time evolution

1.1 Review of measure theory on locales

In this subsection, we review the classical measure theory of locales in order
to motivate the definition given in the introduction for general toposes. The
measure theory of locales is slightly different from usual measure theory of σ-
algebras, but still very similar. The reader can also consult M.Jackson thesis [39]
which devoted to a topos theoretic presentation of measure theory and contains
a large part of what we will says in this subsection.

A measure on a locale L will be defined as a (completely continuous) valuation
on the frame O(L) of open sublocales of L. A valuation on a frame F is defined
as a function µ which associates to every element of the frame a positive real
number (possibly infinite) and which satisfy:

1. µ(∅) = 0

2. if a 6 b then µ(a) 6 µ(b).

3. µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).

4. For any directed set (Ai)i∈I of element of F one has supµ(Ai) = µ (
∨
Ai)

The fourth condition is sometimes weakened to only assuming this when Ai is
a countable family, by analogy with what is done in classical measure theory.
Such valuations will be called σ-continuous valuations. Here are several reasons
why we prefer completely continuous valuations to σ-continuous one:
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• In a constructive context – more precisely in the absence of the axiom
of countable and dependant choice – the notion of countability is poorly
behaved (for example, a countable union of finite sets may fail to be a
countable set).

• In the cases where we are able to deal properly with the notion of count-
ability, then a σ-continuous valuation on a frame F can be seen as a
completely continuous valuation on a frame F ′ which is generated by
the elements of F with the relations given by all the intersections and
the countable unions which hold in F . Hence, when they are well be-
haved, σ-countable valuations can be seen as a special case of completely
continuous valuations.

• In the context of classical measure theory, where the measures are defined
for every measurable subset – and not only on open subset – complete
continuity is a too strong condition which excludes all non trivial mea-
sures. But when we restrict to open subsets a lot of measures satisfy this
complete continuity condition. For example any measure on a Lindelöf
topological space or any inner regular measure satisfies this condition.

• A normal( semi-finite) weight on an abelian von Neumann algebra is the
same thing as a (locally finite) completely continuous valuation on the
frame of its projections.

In the all of this chapter, by valuation we will always mean completely continu-
ous valuation, and by a measure on a locale L we mean a completely continuous
valuation on the frame O(L).

A valuation on a frame F (or a measure on a locale X if F = O(X) ) will be
called locally finite if every element of F can be written as a union of elements
of finite measure, and finite if every element of F has a finite valuation.

Even assuming classical logic and the axiom of choice, the question of existence
of enough locally finite measures on a boolean locale is difficult. The notion of
complete boolean algebra is in general equivalent to the notion of commutative
monotone closed C∗-algebra (or to the notion of commutative AW -algebra):
to a commutative monotone closed C∗-algebra one can associate the complete
boolean algebra of its projections, and to a complete boolean algebra one as-
sociates the algebra of complex valued functions on the corresponding boolean
locale.
If A is a monotone closed C∗-algebra we can denote by NSp(A) the correspond-
ing boolean locale, we call it the normal spectrum of A because one can check
that NSp(A) classifies the theory of “normal characters of A” (which most of the
time does not have any models) and a locally finite measure on NSp(A) is the
same as a normal semi finite weight on A, hence there is enough such measures
if and only if A is a von Neumann algebra or equivalently if (in the terminology
of [66, Ch III.1]) the Stonean space associated to NSp(A), which is the usual
spectrum of A, is a hyperstonean space. A Boolean locale satisfying these prop-
erties will be called an integrable locale (the terminology “measurable” can also
be found).

For an example of non-integrable boolean locale, one can take the complete
boolean algebra of regular open subset (i.e. satisfying ¬¬U = U) of a compact
metric topological space with no isolated points. Any boolean locale over which
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some uncountable set in the base topos became countable in the topos of sheaves
also provide a counterexample.

For a measure µ on a boolean locale there is a smallest open sublocale S, called
the support of µ, such that µ is zero on the complement of S. A measure is said
to be well supported if its support is the maximal open sublocale. Assuming
the law of excluded middle, one easily checks that a measure is well supported if
and only if each non-empty open sublocale has a non-zero measure. Assuming
the axiom of choice, a Boolean locale is integrable if and only if it admits a well
supported locally finite measure.

A certain part of measure theory on locales can be developed constructively,
and even “geometrically”. This shows in particular that integration of a func-
tion with respect to a measure behaves well when pulled back along geometric
morphisms, or allows one to prove the continuity of certain integrals with pa-
rameters in a topos theoretic context. One can consult the work of S.Vickers
in [72] and [73] on constructive measure theory. We will use what S.Vickers
calls the “lower integral” which allows one to integrate a positive lower semi-
continuous function with respect to a (positive) measure which takes value in
lower semi-continuous reals.

Unfortunately, if we stick to intuitionist logic it is not possible – or at least
we do not know how to do it properly – to define any of the more advanced
constructions of measure theory, like the Hilbert space L2(X,µ) or the a von
Neumann algebra L∞(X,µ) associated to a locale X endowed with a measure
µ.
The main reason for this is that (in the case of L2) we want L2 to be a Hilbert
space containing the characteristic function of open sublocales (and even gen-
erated by them) and such that 〈IU , IV 〉 = µ(U ∧ V ) but the scalar product has
to be a continuous real number, whereas measure of open sublocales are semi-
continuous real numbers and asking them to be continuous generally implies the
law of excluded middle.

Assuming the law of excluded middle, if µ is locally finite, one can define
L2(X,µ) as mentioned earlier: it is the Hilbert space generated by symbols
IU for U ∈ O(X) of finite measure with the scalar product 〈IU , IV 〉 = µ(U ∧V ).
The formula MU (IV ) = IU∧V then defines a globally bounded operator MU

(of norm smaller than one) on L2(X,µ), and the family of all the MU gener-
ates a von Neumann algebra L∞(X,µ). This algebra contains the algebra of
continuous functions on X and actually all (upper or lower) semi-continuous
functions on X. It is also endowed with a semi-finite weight (also denoted µ)
which extends the integration of lower semi-continuous functions.
Moreover, there is an injective morphism of locales:

i : NSp(L∞(X,µ))→ X.

such that the measure onX is the pushforward of the measure onNSp(L∞(X,µ))
corresponding to this semi-finite weight. It appears that (assuming the law of
excluded middle) for any measure µ on a locale X there is a unique boolean
locale [X,µ] endowed with a well supported measure µ̃ and an injective map
i : [X,µ]→ X such that i∗µ̃ = µ.
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This boolean locale [X,µ] is the space on which are naturally defined objects on
X that are only well defined up to something µ-null. For example the elements
of the spaces Lp(X,µ) are defined as particular functions on [X,µ], and the
good notion of µ-measurable fields of Hilbert space over X is an Hilbert space
in the logic of [X,µ]: it corresponds exactly to the notion of L∞(X,µ) −W ∗
module, and hence it corresponds to the traditional notion of measurable field
under some countability assumption (as in [22, II.1]).

This is why, by analogy it is natural to define a generalized measure class on a
topos T as an equivalence class of boolean toposes B endowed with an injective
geometric morphism to T , and to say that something is measurable with respect
to this class if it exists in B. Proposition 2.2.3 shows that a generalized measure
class on a locale in this sense corresponds indeed to a class of boolean locale
endowed with an injection into our locale.

2 Measurable fields over a topos

2.1 Integrable toposes

For a locale L not every “generalized measure class” on L as defined earlier
indeed comes from some locally finite measure on L. A generalized measure
class on L is obtained as a supremum of generalized measure classes which
come from measures on L if and only if the corresponding boolean locale is
integrable.
The goal of this subsection is to define and study the notion of integrable boolean
topos generalizing the notion of integrable boolean locale.

2.1.1. Let T be a topos, and X be an object of T . We call measure on X

a valuation on Sub(X). If f : X → R+
T is a morphism from X to the object

of positive real numbers of T , then f corresponds externally to a continuous
function from the locale associated to the frame Sub(X) to the locale of real
numbers. In particular, if µ is a measure on X one can define:∫

X

fdµ Or

∫
x∈X

f(x)dµ

as the integral of this corresponding function with respect to µ.
If f is a complex function on X such that

∫
X
|f |dµ is finite, then one can also

define
∫
X
fdµ by decomposing f into the positive and negative part of both its

real and imaginary part.

2.1.2. We recall that if X is an object of a topos with a decidable equality, then
l2(X) denote the space a square sumable sequence of complex number indexed
by X. Equivalently, l2(X) is the Hilbert space generated by elements ex for
each x ∈ X such that 〈ex, ex′〉 = 1 if x = x′ and 0 otherwise.
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2.1.3. If T is a boolean topos, and µ is a measure on an object X ∈ T such that
µ(X) = 1 then for any operator h : l2(X)→ l2(X) which is globally bounded 1

then as: ∫
x∈X
| 〈ex, hex〉 | 6 ‖h‖∞µ(X)

one can define:

η(h) =

∫
x∈X
〈ex, hex〉 dµ

This defines an external normal state on the algebra of globally bounded endo-
morphisms of the T -Hilbert space l2(X).
Conversely, if η is any normal state on the algebra of globally bounded endo-
morphisms of l2(X) then one has a measure µ on X defined by the formula
µ(b) = η(1b), where b is a subobject of X and 1b is the endomorphism of
l2(X) corresponding to the multiplication by the characteristic function of b.
Of course, these two constructions are not inverse from each other but they
allow one to prove the following:

Proposition : Let X be an object of a boolean topos T then the following
conditions are equivalent:

• Sub(X) is an integrable boolean algebra.
• The C∗-algebra of globally bounded endomorphisms of the T -Hilbert space
l2(X) is a von Neumann algebra.

Proof :
Assume first that Sub(X) is integrable. We will prove that A = End(l2(X))
is a von Neumann algebra by showing that it is monotone closed 2 and admits
enough normal states (see [66, III.3.16]).
The fact that A is monotone closed comes from the fact that T is boolean.
Indeed assuming the law of excluded middle, the usual proof that B(H) is (in-
ternally) monotone closed for any Hilbert space applies and hence the supremum
of a net in A can be computed internally (the fact that an internal supremum
yields an external supremum is a general property for supremum in ordered
sets).
For the existence of enough normal states, if h is a positive globally bounded
self-adjoint operator on l2(X) such that for all normal state η associated to a
measure µ on X one has η(h) = 0 then the integral of the function 〈ex, hex〉
against any positive measure on X is zero (because of the relation between
measure and normal state) hence, if Sub(X) is integrable this implies that the
function 〈ex, hex〉 is zero on X and hence that h = 0 because h is positive.
Conversely, if End(l2(X)) is a von Neumann algebra and if b is a non zero
subobject of X then there exists a normal state η such that η(1b) > 0 hence
this will give a measure µ on X such that µ(b) > 0. �

1. that is it is internally bounded and its internal operator norm is bounded externally.
2. This mean that every bounded increasing net of normal operators of A has a supremum
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2.1.4. Definition : We will say that a boolean topos T is integrable if for every
object X of T , the complete boolean algebra Sub(X) is integrable.

One easily checks that if some boolean locale L admits a surjection from an
integrable boolean locale then L is integrable. Hence, if a boolean topos ad-
mits a generating family of objects X such that Sub(X) is integrable then it is
integrable.
One also has that:

Proposition : Let T be a boolean topos then the following conditions are equiv-
alent:

• T is integrable.
• The C∗-category H(T ) of T -Hilbert spaces is a W ∗-category.

Proof :
The first condition is an immediate consequence of the second condition by
proposition 2.1.3. We will assume the first condition and prove the second. As
H(T ) has bi-product, it is enough to prove that for every T -Hilbert space H,
the algebra of globally bounded endomorphisms of H is a von Neumann algebra.
Moreover, as in the proof of proposition 2.1.3, it is enough to prove that this
algebra admits enough normal states:
For any positive operator h : H → H of (external) norm ‖h‖∞ = 1, the func-
tion ‖h‖ on 1T has supremum one, and hence it is greater than 1/2 one some
subobject S ⊆ 1T . Internally, one has, S implies that ‖h‖ > 1/2 which in turn
implies that there exists x ∈ H of norm one such that 〈x, hx〉 > 1/2. Externally,
this means that there exists an object S′ covering S and a map from v : S′ → H
whose image is (internally) formed of norm one vectors such that 〈x, hx〉 > 1/2.
Let µ be any measure of mass one on S′ and define for f : H → H:

η(f) =

∫
x∈S′

〈v(x), fv(x)〉

This defines a normal state η on the algebra of globally bounded endomorphisms
of H (as in 2.1.3) and η(h) is greater than 1/2 because internally 〈v(x), hv(x)〉 >
1/2 for all x. �

2.1.5. Corollary : (At least assuming the axiom of choice in the base topos)
Let T be an integrable boolean topos, then there exists a von Neumann algebra A
(uniquely determined up to Morita equivalence of von Neumann algebras) such
that the category of T -Hilbert spaces is equivalent to the category of Hilbert A
modules.

The axiom of choice is in fact probably unnecessary. The only reason why we
need to assume it is that proposition 7.6 of [27] uses the axiom of choice. But
it seems possible to give a choice free version of this proposition based on a
slightly stronger notion of completeness for W ∗-categories.

Proof :
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As the category of T -Hilbert spaces has arbitrary orthogonal sums and splitting
of projections (they are computed internally) it is enough, by proposition 7.6 of
[27], to check that it has a generator in the sense of [27] 7.3.
We fix G a set of generators of T . Let E be the family of all (equivalences class
of) triples (H, g, f) where H is a T -Hilbert space, g is an element of G and f is
a map g → H such that internally the image of this map spans a dense subspace
of H. To an element (H, g, f) of E one can associate a continuous function on
g × g defined by (x, y)→ 〈f(x), f(y)〉, and if (H, g, f) and (H ′, g, f ′) define the
same function on g×g then they are isomorphic. In particular the (isomorphism
class of) elements of E form a set.
Now, for any f : A→ B an operator between two T -Hilbert spaces, there exists
g ∈ G and a map λ : g → A such that f ◦ λ 6= 0, the adherence of the span
of λ gives an element H of E and a map i from H to A such that f ◦ i 6= 0.
This proves that elements of E form a family of generators of H(T ), i.e. their
orthogonal sum is a generator of this W ∗-category. This concludes the proof.
�

Even if this von Neumann algebra is naturally attached to the topos T it is in
most case “too big” for example, if T is the classifying topos of a discrete group,
then H(T ) is the category of unitary representations of G and the associated
von Neumann algebra is the enveloping von Neumann algebra of the maximal
C∗-algebra of the group, which is an enormous algebra.
It seems that a more reasonable algebra to consider in practice is the algebra
of operators on a space l2(X) for X a separating bound of T . The results of
the last section suggest this algebra can be controlled by the geometry of T ,
whereas in general an algebra of operators on an arbitrary Hilbert space over a
topos T can have nothing in common with the geometry of T . For example, any
von Neumann algebra arises as the algebra of globally bounded endomorphisms
of some representation of a discrete group.

2.2 Booleanization of a topos

The goal of this section is essentially to prove proposition 2.2.3 which allows
one to understand internally in T what is a generalized measure class over T ,
to push-forward such generalized measure class along geometric morphisms and
more generally to provide a way to construct such classes.

2.2.1. The following result is trivial but will be extremely important:

Lemma : A map from a topos to a boolean topos is always an open map 3.

Proof :
Working internally in the target of the arrow it is enough to show that assuming
the law of excluded middle, for any topos T the canonical map to the point is
an open map, i.e. (by [44, C3.1.19]) that T can be defined by a site where each
cover is inhabited. Now thanks to the law of excluded middle, it is always the

3. See [44, C3.1] for the definition of open maps of locales and of toposes.
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case: it suffices to remove all the objects admitting an empty cover from a site
of definition of T . (this argument appears in [44] just before C3.1.20). �

In general the notion of surjection between toposes is not well behaved, but open
surjections are extremely well behaved, for example they are stable surjections
and effective descent morphisms (see [44, C5.1.5 and C5.1.6]). Hence for maps
targeting a boolean topos, surjectivity will be enough to have the nice properties
of open surjections.

2.2.2. As mentioned in the introduction:

Definition : A generalized class of measure over a topos T is the data of a
boolean topos B endowed with an injective map B → T modulo isomorphism of
T -topos. A generalized measure class is said to be integrable if the corresponding
boolean topos is integrable.

2.2.3. Proposition : Let f : B → T be a geometric morphism from a boolean
topos to an arbitrary topos, then it admits a unique factorisation in the form:

B � {B} ↪→ T

where {B} is also boolean, the first map is a surjection and the second map an
injection.
Moreover any injective map from a boolean topos B′ to T , i.e. any generalized
measure class on T corresponds internally in T to a generalized measure class
on the point 4, i.e. to a sub-terminal boolean locale.

Proof :
We will first prove the uniqueness of such a decomposition:
Let

B � B′ ↪→ T

be an eventual decomposition of f , then as B′ is boolean, the surjection B � B′
is an open surjection, and hence an effective descent morphism ([44] C5.1.6),
hence B′ can be identified (see [44] B.3.4.12) with the colimit of the following
truncated simplicial diagram

B ×B′ B ×B′ B B ×B′ B B
π1,2

π2,3

π1,3

π1

π2

∆

But as B′ → T is injective, fiber product over B′ are the same things as fiber
product over T (they satisfy the same universal property), hence this truncated

4. Which is no longer a boolean locale if the topos T is not boolean.
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simplicial diagram does not depend on B′ but only on B, T and the morphism
between them. This proves the uniqueness of the decomposition.
We will now prove the existence of such a decomposition, with additionally the
injective part which is internally a generalized measure class on the point:
Consider the hyperconnected/localic factorisation 5 of f : B � B1 → T . We
define {B} as a locale in T by giving (internally) its frame of open sublocales:
it is the smallest complete boolean subalgebra of O(B1), where by “complete
boolean subalgebra” we mean that the inclusion is a frame homomorphism, in
particular it contains the top and the bottom element.
The map i : {B} → ∗ is internally injective (as a map of locale) because if
one has two frame homomorphisms from O({B}) to another frame they have
to agree on a complete boolean subalgebra of O({B}) and as O({B}) has by
construction no non trivial such subalgebras, the two morphisms are in fact
equal. This implies that the corresponding (external) map i : {B} → T is also
injective (as a map of toposes), indeed, if one has two maps from an arbitrary
topos u, v : E ⇒ {B} such that i ◦ u = i ◦ v then internally in T , one also has
i◦u = i◦v, the two maps u, v factor into the localic reflection L of E , and hence
coincide (on L, and hence also on E) by the internal injectivity of i, and this
concludes the proof of the existence of the factorization.
The last part of the proposition follow immediately by applying the factorization
to B′ and using that the previous construction show that {B′} is localic over
T . �

2.2.4. The classes of measure on a topos are ordered by “inclusion” of subob-
jects: one says that E1 6 E2 if the injection of E1 into T factors into E2.

Proposition : let T be a topos and E ↪→ T be a generalized measure class on
T . There is a correspondence between generalized measure classes smaller than
E and subobjects of 1 in E.

Proof :
A generalized measure class smaller than E is the same thing as a generalized
measure class on E. But a generalized measure class on a boolean topos corre-
sponds internally to a generalized measure class on the point, which is internally
– because of the law of excluded middle – either empty or non-empty, in which
case it is an isomorphism. Externally it means that it is indeed a sub-terminal
object. �

2.2.5. In particular the generalized measure classes smaller than a given gener-
alized measure class form a set, and even a complete boolean algebra. In general
there might exist a proper class of generalized measure classes on a given topos.
In fact one easily obtains the equivalence of the following assertions for a topos
T :

5. See [44, A4.6]

102



• There exists a boolean topos B → T which is universal for map from
boolean topos to T .

• The class of generalized measure class on T is a set.
• There exists a maximal generalized measure class on T .

It is proved by simply observing that a universal boolean topos is the same thing
as a maximal generalized measure class. And it is well known that not every
topos (in fact not every locale) admits such a universal boolean reflection, see
[44, Remark C1.1.21].

2.2.6. We do not know at the present time if –as in the localic case – every topos
admits a maximal integrable generalized measure class, that is a generalized
measure classM such that any other generalized measure class on this topos is
integrable if and only if it is smaller than M.

3 Invariant measure and time evolution of boolean
toposes

The main goal of this section is roughly to generalise the results obtained in
chapter 1 about the time evolution and the modular principal bundle of locally
separated (locally decidable) atomic toposes to the more general framework
of boolean locally separated toposes. This will show that, as the theory of
von Neumann algebras, measure theory over topos has also its own canonical
dynamics. We will also show the relation between the two dynamics through
the use of the KMS condition (see 3.5.5).

3.1 Introduction and Invariant measures

In this subsection we will introduce the new key concept towards the construc-
tion of the dynamics of measure theory over toposes. It is the notion of “in-
variant measure” over a boolean topos. Our goal here is just to introduce and
motivate this definition, hence except the definition of an invariant measure it-
self, all the material covered in this introduction subsection is voluntarily vague
and many things are claimed without proof. Everything will be made more
precise and proved properly in the rest of the section.

In chapter 1 we showed that if T is a locally separated atomic topos 6 then there
is a canonical Q∗+ principal bundle δ on T which describes the time evolution
predicted by the modular theory of von Neumann algebras of an operator algebra
naturally attached to T .

Let us first recall the construction of this bundle δ:
One can prove that, for any pair of atoms a, b ∈ |T | such that T/a and T/b
are separated, and any map f : a → b, the map f has a finite degree, that is,

6. with enough decidable objects, but as we now assume the law of excluded middle in the
base topos this is automatic.
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there exists (externally) an integer n such that (internally) any element of b has
exactly n pre-images by f .
If T is locally separated then the atoms a of T such that T/a is separated form
a generating family, and hence they form a site of definition C of T . Objects of
C are the atoms such that T/a is separated, its morphisms are morphisms in T
and its topology is the restriction of the canonical topology of T which actually
coincides with the atomic topology of C. The bundle δ is then defined as a sheaf
on this site by:

• for any atom a such that T/a is separated, δ(a) = Q∗+.
• for any f : a→ b a map between two such atoms, f acts on δ(a) = δ(b) =
Q∗+ by multiplication by the degree of f .

And of course, the action of Q∗+ on this sheaf is the component wise multipli-
cation.

What does it mean for this Q∗+ bundle to be trivial ?
A principal bundle is trivial if and only if it has a global section, hence one
should try to understand what a global section of this bundle is. Working in
the site C, the terminal object is the constant sheaf equal to {∗}, hence a global
section of a sheaf F , is the data of the choice of an element of F(a) for each
a ∈ C such that these choices are compatible with the functoriality.
In the case of δ, a global section is hence the choice of a function which to each
atom a of T such that T/a is separated associates a positive rational number
µ(a), and if f : a→ b is a map then µ(a) = µ(b) deg(f).
When one has such a function µ then:
• It is natural to think of µ(a) as the “mass” of a, indeed, if b → a is an

an n-fold cover of b then the mass of b is exactly n times the mass of a.
• if w is an atom such that T/w is not separated, then w always admit

a cover by an atom a such that T/a is separated. The map f : a → w
must have an infinite degree, indeed, if it were not the case, T/w would be
separated (it is a consequence of proposition 4.7.2 of chapter 1). Hence in
order to preserve a form of relation µ(a) = deg(f)µ(w), it is reasonable
to define µ(w) = 0.

• Finally if X is an arbitrary object of T , it is reasonable to define:

µ(X) =
∑

a atom of X

µ(a)

This construction of a function which associates to every object of T a real num-
ber in [0,∞] satisfying some reasonable conditions with respect to morphisms
motivates the following definition:

3.1.1. Definition : Let T be a boolean topos. An invariant measure 7 on T is
a function which to every object X of T associates a real number µ(X) ∈ [0,∞]
such that:

(IM1) For each X ∈ T , the restriction of µ to sub-objects of X defines a locally
finite valuation on Sub(X).

7. It should probably be more correct to call this a “well supported locally finite invariant
measure”.
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(IM2) There exists a generating family of T of objects X on which the valuation
induces on Sub(X) is well supported.

(IM3) For each surjective arrow f : X � Y such that µ(X) < ∞, if we define
the function cf from X to [0, 1] by the internal formula 8:

cf (x) =
1

|{x′ ∈ X|f(x) = f(x′)}|
,

then:

µ(Y ) =

∫
X

cfdµ|Sub(X),

where the µ in dµ in fact denote the restriction of µ to Sub(X).

Note that the third condition implies that µ(X) = µ(Y ) when X and Y are
isomorphic.
One can check (but it will be a direct consequence of 3.3.3) that a global section
of δ is exactly the same as an invariant measure which associates a rational mass
to every atom. A general invariant measure corresponds to a section of the R>0

T
bundle δ′ constructed in the same way as δ but taking δ′(a) = R>0

T instead of
Q∗+. It corresponds internally to the “tensorisation” of δ by R>0

T over Q∗+.
Also, one notes that if µ is an invariant measure on a topos T , and X is an
object of T then µ induces an invariant measure denoted µX on T/X by defining
the mass of an object Y over X to be simply µ(Y ).

3.1.2. Example: We will see in 3.2.6 that an invariant measure on the topos of
sheaves on a boolean locale is the same thing as a measure on the locale.
Also, if G is a discrete group acting on a boolean locale X, then an invariant
measure on the topos ShG(X) of G-equivariant sheaves over X is the same
thing (in a not completely trivial way) as a G invariant well supported locally
finite measure on X. A direct proof of this at this point might be a little
long, but it is an immediate consequence of results of the section 3.3: as Sh(X)
is separated and etale over ShG(X), the sections of χ over the corresponding
object of ShG(X) are simply the well supported locally finite measures on X.
One easily deduces from this that the bundle χ is the sheaf of locally finite well
supported measures over X with the natural action of G and hence that a global
section of χ is exactly a locally finite well supported measure on X which is G
invariant.

3.2 Separated and locally separated boolean toposes

In this subsection we introduce the notion of separated and locally separated
toposes due to Moerdjik and Vermeulen in [55], and prove some results about
it in relation to the notion of invariant measure.
The main results are that invariant measures can only exist on locally separated
toposes (3.2.8) and that on a separated topos T they naturally correspond to
valuations on Sub(1T ) (3.2.6). The key lemma to prove these facts is that (over

8. Where | | denote the cardinal of a set.
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a boolean base topos) a hyperconnected separated topos is atomic with finite
atoms (3.2.4).

3.2.1. The following definitions are due to Moerdijk and Vermeulen (see [55])

Definition :
• A topos is said to be compact if its localic reflection is compact.
• A geometric morphism f : E → T is said to be proper if internally in T ,

the T -topos E is compact.
• A geometric morphism f : E → T is said to be separated if its diagonal

map ∆ : E → E ×T E is a proper map.
• A topos is said to be separated if its canonical geometric morphism to the

base topos is separated.

Being separated is a strong property, for example the topos of G-sets for a
discrete group G is separated if and only if G is finite.

3.2.2. Definition : An object X ∈ |T | is said to be separating if the slice topos
T/X is separated. A topos is said to be locally separated if it admits a separating
inhabited object.

As a slice of a separated topos (by a decidable object) is again separated, in
a boolean topos as soon as one has an arrow X → Y with Y separating, X is
again separating. In particular in a locally separated boolean topos every object
can be covered by a separating object.

3.2.3. In addition, the class of separating objects also enjoy another stability
property:

Lemma : Let f : X � Y be a surjection in T . Assume that X is separating
and that internally each fibre of f is finite, then Y is separating.

Proof :
The fact that f is a surjection with finite fibre exactly means that the induced
map T/X → T/Y is a proper surjection (indeed, internally in T/Y this means that
the object X → Y is inhabited and finite). The result then follows immediately
from [55, Prop II.2.1.(iii)], asserting that if f ◦ g is separated with g a proper
surjection then f is separated. �
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3.2.4. Proposition : Let T be a hyperconnected 9 separated topos. Then T is
atomic and all its atoms are (internally) finite.

Proof :
Let T be an hyperconnected topos. Let B be a non zero boolean locale endowed
with a geometric morphism to T . In the logic of B, the pullback of the topos
T is hyperconnected separated and has a point. Applied internally in B, the
theorem II.3.1 of [55] shows that the pullback of T is equivalent to the topos of
G-sets for G a compact localic groups in B. In particular the pullback of T is
atomic in the logic of B and as the map from B to the base topos is an open
surjection (because the base topos is boolean) it implies that T is atomic in the
base topos (by [44, C5.1.7]).
The finiteness of the atoms is proved in chapter 1, proposition 3.7.2.
�

Note that the first part of the result (that the topos is atomic) uses the law of
excluded middle in an essential way: the problem is that over a non boolean
base topos the topos of continuous G-sets for G an etale complete localic group
is in in general not atomic: it is atomic if and only if G is open as a locale
(because of [44, C3.5.14]).

3.2.5. The key technical point to deal with boolean separated toposes is to apply
3.2.4 internally into their localic reflection. Indeed, if T is a boolean separated
topos, and if L denotes its localic reflection (which is a boolean locale) then the
canonical map from T to L is hyperconnected and separated by [55, II.2.3 or
II.2.5], and as L is boolean one can apply 3.2.4 to see that this map is atomic
with (internally in L) finite atoms.

Definition : Let T be a boolean (separated) topos, we say that an object U of
T is a quasi-atom if it satisfies the following condition:
• There is a bijection between subobjects of U and subobjects of its image

[U ] in 1T . This bijection being induced by the pullback and direct image
along the canonical morphism from U to 1T .

• For each U there is (externally) an integer n, such that, internally, the
map from U to [U ] is (internally) a map of degree n.

The first condition alone is exactly the fact that U corresponds to an internal
atom of T defined over U ⊂ L. The second axiom is related to the fact that
atoms of separated toposes are finite.
One then has the following:

Proposition : Let T be a boolean separated topos, then every object T is covered
by subobjects which are quasi-atoms.

Proof :

9. This means that its localic reflection is the point, or that Sub(1T ) is isomorphic to Ω,
see [44, A4.6].
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As T is boolean, it suffices to prove that every non zero object X of T contains
a non-zero quasi-atom. Let [X] be the image of X in 1T . Internally in L, X
is an object of the L-topos T such that [X] implies that X is inhabited. As T
is, as an L topos, hyperconnected and separated 3.2.4 implies that T is atomic
with finite atoms. In particular, still internally in L, X contains a finite atom.
This means that [X] can be covered by subobjects V ⊂ 1T such that on each
subobject V one has a given internal atom of X, and, externally, this atom is
a subobject U of X whose image in 1T is V , whose subobjects identify with
subobjects of V and which is internally finite. As U internally has a cardinal
(which is a section of N>0 defined over V ) one can decompose V as a disjoint
sum over all positive integer of Vn such that the part of U over Vn is a quasi-
atom with degree n. As Vn has to be non zero for at least one n, the part of U
over this Vn gives a non-zero quasi-atom included in X. �

Note in particular that quasi-atoms are internally finite objects and that (be-
cause subobjects of quasi-atoms identify with subobjects of the terminal object)
a boolean separated topos is integrable if and only if its localic reflection is in-
tegrable.

3.2.6. Proposition : Let T be a boolean separated topos, then if µ is a well
supported locally finite measure on Sub(1T ), then:

µ̃(X) =

∫
1T

|X|dµ,

where |X| denote the internal cardinal of X which is a map in T from 1T to
N ∪ {∞}, is an invariant measure on T .
Moreover µ is the restriction of µ̃ to subobjects of 1T and every invariant mea-
sure on T is of the form µ̃ for some locally finite well supported valuation on
Sub(1T ).

Proof :
We will first show that µ̃ satisfies the three points (IM1)− (IM3) of the defi-
nition 3.1.1.

(IM1) One easily sees that µ̃ is a valuation on Sub(X) for anyX ∈ |T | essentially
because the cardinal is internally a valuation on X and that the integral
of an internal valuation is again a valuation (of course one needs to know
that for our definition of integral the integral is linear and commutes to
directed supremum of positive functions).

It remains to prove that this valuation is locally finite. But if one con-
siders a quasi-atom U of T (as in 3.2.5) such that µ([U ]) is finite, then
µ̃(U) = n.µ([U ]) with n the degree of U → [U ]. Hence µ̃(U) is finite and
as every object of T can be covered by such sub-objects it implies that
the restriction of µ̃ to any object is locally finite.

(IM2) The restriction of µ̃ to a quasi-atom U is exactly (through the iden-
tification of Sub(U) with Sub([U ])) the measure µ on [U ] times n. In
particular it is well supported as µ is well supported. As quasi-atoms
cover any object, they form a generating family.
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(IM3) Let f : X � Y be a surjection between two objects in T such that
µ̃(X) <∞. In particular, |X| has to be finite everywhere on L (because
µ is well supported) and hence, X and Y are internally finite. Let Yn be
internally defined by:

Yn = {y ∈ Y ||f−1(y)| = n}.

One has Y =
∐
n Yn. Let also Xn = f−1Yn, one has X =

∐
Xn.

One has internally |Xn| = n.|Yn| hence µ̃(Xn) = nµ̃(Yn), and cf is
constant equal to (1/n) over Xn. Hence:∫

X

cfdµ̃ =
∑
n

∫
Xn

1

n
dµ̃ =

∑
n

µ̃(Xn)

n
=
∑
n

µ̃(Yn) = ˜µ(Y )

which concludes the proof of this third point.

Now, if U ∈ Sub(1T ) then |U | is just the characteristic function of U hence
µ̃(U) = µ(U).
Finally, if ν is any invariant measure on T , let X ∈ |T | be any object of T
such that ν(X) < ∞, then let f be the function on L defined internally by
f = |X| ∈ N∪{∞}. For each n ∈ N∪{∞}, let Un the subobject of 1T on which
f = |X| = n. One has:

ν(X × Un)

n
= ν(Un)

And ν(U∞) = 0 because ν(X) <∞. Hence:

ν(S) =
∑

n∈N∪{∞}

ν(S × Un) =
∑

n∈N∪{∞}

ν(Un)

n
=

∫
fdν

As (from (IM1)) any object of T can be written as a union of objects X such
that ν(X) <∞ this formula holds for any object of T . Hence ν is of the form µ̃
for µ the restriction of ν on Sub(1T ). The valuation µ is well supported because
if µ(U) = 0 for some U ⊂ 1T then for any object S over U one has ν(S) = 0. If
U is non zero it will be in contradiction with (IM2). Hence µ is a locally finite
well supported valuation on Sub(1T ) and ν = µ̃. �

3.2.7. Lemma : Let T be a topos which is boolean, hyperconnected and has a
generating family of finite objects. Then T is atomic and separated.

Proof :
Let X be a finite object of T . As T is boolean every subobject of X is finite
and P(X) is also finite.
A finite object of T can only have a finite number of global sections, indeed as
1T has no non trivial subobject, two global sections of an object are either equal
or internally distinct, hence an infinite number of distinct global sections would
give internally an infinite number of distinct elements of X which is impossible
if X is finite.
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In particular, the set Sub(X) of global sections of P(X) is a finite boolean
algebra, hence it is atomic. This proves that T is atomic. As T is generated by
finite objects, every atom of T will be finite and hence by proposition 4.7.2 of
chapter 1 it is separated. �

3.2.8. Theorem : Let T be a boolean topos equipped with an invariant measure
µ in the sense of 3.1.1, then:

• T is a integrable topos.
• The measure induced by µ on a object X of topos is well supported if and

only if X is separating.
• The topos T is locally separated.

Proof :
The first point is immediate: by definition T as a generating family of objects
admitting well supported locally finite measures. Hence it has a generating
family of objects X such that Sub(X) is integrable, and as we noted in 2.1.4,
this proves that T is integrable. The third point is an immediate corollary of
the second: as T has a generating family of objects X on which the measure µ
is well supported it has a generating family of separating objects.
We now prove the point 2.. Let X ∈ |T | be a separating object of T . The
induced measure µX is a measure on the separated topos T/X hence by 3.2.6
the restriction of µ to Sub(X) is well supported.
Conversely, let X ∈ |T | such that µ is well supported on X. Let p : Y → X be
any object over X such that µ(Y ) < ∞. Let V = {x ∈ X|p−1(x) is infinite },
and let Y ′ = p−1(V ). As µ(Y ′) is finite one can apply (IM3) to f : Y ′ → V ,
it is a surjection, hence from the definition of V one has cf = 0, and hence
µ(V ) = 0. As µ is well supported on X this implies that V = 0, and hence each
fibre of p is finite: (Y, p) is a finite object of T/X , which is hence generated by
finite objects.
Let L be the localic reflection of T/X . One can apply 3.2.7 to T/X internally
in L: over L, T/X is hyperconnected boolean and still generated by finite ob-
jects, hence T/X → L is separated, as L is a boolean locale it is regular hence
separated, and hence T/X is separated, which concludes the proof.
�

3.3 The modular R>0
T principal bundle.

In the previous sub-section we proved that in order to admit an invariant mea-
sure a topos must at least be integrable and locally separated, and that when
it is separated its invariant measures are naturally parametrized by valuations
on its localic reflection. The next question is naturally “What are the invariant
measures on a Boolean integrable locally separated topos ?”.
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3.3.1. For this subsection, T will denote a boolean integrable locally separated
topos. If X is a separating object of T , we will denote by χ(X) the set of locally
finite well supported measures on X. Let f : X → Y be a map between two
separating objects of T and µ ∈ χ(Y ), by 3.2.6 this defines an invariant measure
µ̃ on T/Y and the restriction of µ̃ to Sub(X) is a locally finite well supported
measure, that we will denote by f∗µ. This turns χ into a functor on the full
category of separating objects.

Proposition : The functor χ defined this way on the full category of separating
objects is a sheaf for the restriction of the canonical topology of T .

Proof :
Let f : X � Y be a surjection between two separating objects. Let P = X×Y X
and π1, π2 the two maps from P to X. As P is defined over X it is also a
separating object. Let µ ∈ χ(X) such that π∗1µ = π∗2µ, in order to conclude
one needs to prove that µ = f∗ν for some uniquely defined ν ∈ χ(Y ), i.e. that
there exists a unique measure ν on Y such that the restriction to X of the
corresponding invariant measure on T/Y is µ.
Applying 3.2.5 to the object X of the separated topos T/Y , the object X can be
covered by quasi-atoms of TY . For any U ⊂ X a quasi-atom of T/Y of degree n,
any possible measure ν restricted to the image f!(U) of U is necessarily given by
(1/n)µ through the identification of Sub(U) with Sub(f!(U)). This proves that
the measure ν is unique, all we have to check is that it exists by proving that if
one chooses two quasi-atoms U and U ′ (of degree n and n′) of T/Y included in
X then the two possible values for ν they impose coincide on the intersection
of their image in Y .
Let V ⊂ f!(U) ∧ f!(U

′). As V is a subobject of both f!(U) and f!(U
′) there

exist two (uniquely defined) subobjects U1 ⊂ U and U ′1 ⊂ U ′ such that f!(U1) =
f!(U

′
1) = V .

Let T = U1 ×Y U ′1 ⊂ P . By the hypothesis on µ one has π∗1µ(T ) = π∗2µ(T ). As
f!(U1) = f!(U

′
1), the map π1 : T → X factors into U ′1 and has degree n as a map

from T to U ′1 hence:

π∗1µ(T ) = nµ(U ′1)

Similarly:
π∗2µ(T ) = n′µ(U1)

where n′ denotes the degree of the map U ′ → f!U
′.

Finally:

µ(U1)

n
=
µ(U ′1)

n′

i.e. the two possible definitions of ν(V ) agree and this concludes the proof. (of
course one still has to check that the measure ν constructed indeed satisfies
f∗ν = µ but it is immediate from its construction). �
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3.3.2. The previous proposition shows that, if T is integrable boolean and lo-
cally separated, there exists an object χ of T such that for each separating object
X, morphisms from X to χ identify with measures on X and the “pullback”
operation f∗µ defined for measures on separating objects corresponds simply to
the composition µ ◦ f (where µ denote the map with value in χ).

3.3.3. If we are given an invariant measure µ on T , then for each separating
object X of T there is a canonical measure µX on X and for any map between
two separating objects f : X → Y one has f∗µY = µX hence µ defines a global
section on χ.

Theorem : For any boolean integrable locally separated topos T this construc-
tion defines a bijection between invariant measures on T and global sections of
χ.

Proof :
Let m : 1 → χ be a global section of χ. If X is a separating object of T ,
then the map from X to χ constant equal to m defines a valuation mX on
Sub(X). All these mX are compatible in the sense that if f : X → Y is a map
between separating objects then f∗mY = mX . If Z is a general object of T
one defines Zs to be the biggest separating object included in Z, and we define
µ(Z) = mZs(Zs). We will now check that µ is indeed an invariant measure on
T :

(IM1) For any Z ∈ |T | and for any Z ′ ⊂ Z, one has Z ′s = Z ′ ∧ Zs hence
µ(Z ′) = mZs(Z

′ ∧ Zs). Hence µ restricted to Sub(Z) corresponds to the
valuation mZs on Zs and 0 on its complementary. Hence it is a locally
finite valuation.

(IM2) In particular, on any separating object X, the restriction of µ to Sub(X)
is mX . Hence it is a well supported measure.

(IM3) The third axiom holds almost by definition when all the objects involved
are separating, because of the relation f∗mY = mx. The general idea is
that the non separating objects do not change anything on any side of
the equality because the measure will be zero on them, and because a
separating object cannot be sent on a non-separating with a finite degree
because of 3.2.3.

More precisely, let Z and Z ′ be two objects of T with Z of finite measure,
and let f : Z � Z ′ be a surjection. One decomposes Z = Zs

∐
Zns and

Z ′ = Z ′s
∐
Z ′ns where Zns denotes the complementary of Zs in Z. One

then decomposes Zs and Zns in Zs = Zss
∐
Znss and Zns = Zsns

∐
Znsns

such that Zss and Zsns are mapped by f into Z ′s and that Znss and Znsns
are mapped into Z ′ns.

Zsns is mapped into Z ′s which is separating, hence Zsns is separating, and
as it is a subobject of Zns it has to be empty.

If cf (as in (IM3)) is non zero on some subset Y of Znss then the image
of Y by f is a separating object by lemma 3.2.3, and hence, as it is a
subobject of Z ′ns it has to be empty. Hence cf is zero on Znss .
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Finally: ∫
Z

cfdµ =

∫
Zs

cfdµ =

∫
Znss

cfdµ+

∫
Zss

cfdµ

But as cf is zero on Znss , the integral
∫
Znss

cfdµ is null. Hence:∫
Z

cfdµ =

∫
Zss

cfdµ

But if we denote f ′ the map Zss → Z ′s then f ′ is a surjection because Z ′s
is covered by the union of Zss and Zsns, this second term being empty.
Also, cf ′ is just the restriction of cf to Zss , and f ′ is a map between
separating objects hence (IM3) holds for it. Hence:∫

Z

cfdµ =

∫
Zss

cf ′dµ = µ(Z ′s) = µ(Z ′)

which concludes the proof that this associates an invariant measure to
any global section of χ.

Now the measure µ restricted to a separating object X is by definition the
measure mX , hence the global section of χ associated to µ is m. And conversely,
as any invariant measure µ is non zero only on the separating part of objects,
it is reconstructed from our previous construction applied to the corresponding
global section of χ. This proves that these two constructions are inverse from
each other. �

3.3.4. Let X be a separating object of T . We denote by LX the localic re-
flection of T/X , i.e. O(LX) = Sub(X). Each morphism µ from X to χ and

each morphism f from X to R>0
T corresponds to a well supported locally finite

measure µ on LX and a positive real valued function f on LX . The product fµ
is then again a well supported locally finite measure on L which in turns defines
a morphism from X to χ, also denoted fµ.
One can check that this product is functorial and hence it defines a product
R>0
T × χ→ χ.

Proposition : Let T be a boolean integrable locally separated topos. Then for
this action of R>0

T , the object χ is a R>0
T principal bundle on T .

Proof :
χ is inhabited because if X is a separating inhabited object of T any locally
finite well supported valuation on Sub(X) gives a morphism from X to χ. Such
a valuation exists assuming the axiom of choice because T is integrable, but
they also exist locally on X without assuming the axiom of choice, and this
local existence is enough.
Let a, b be two sections of χ on some object Y ∈ T , and let X be a separating
object over Y , then over X, there exists a real valued function f such that
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fa = b by the Radon-Nikodym theorem. Hence internally, ∀a, b ∈ χ∃f ∈ R>0

such that a = fb. Which proves that χ is a principal bundle. �

From 3.3.3 and 3.3.4 one deduces that if there exists an invariant measure µ on
a topos T then χ admits a global section and hence is isomorphic to the trivial
bundle, and in this case, once we fix a global section of χ, invariant measures on
T are parametrized by positive real valued functions on 1T (i.e. on the localic
reflection of T ). If on the contrary there is no invariant measure on T , then χ
is a non trivial R>0

T principal bundle and we will see in the next subsection that
it can be used to describe a modular “time evolution”.

3.3.5. χ will be called the modular principal bundle. For example, If G is
a locally profinite group, then the topos of G − set is boolean (even atomic)
locally separated (because if U is a compact open subgroup of G then G/U is
separating object). In this case χ is exactly R>0 endowed with action of G by
multiplication by the modular function δ : G→ R>0. In particular, χ is trivial
if and only if the group G is unimodular, and in this case the invariant measure
is given for any U subgroups of G by µ(G/U) = 1/ν(U) where ν denotes the
Haar measure of G.

3.3.6. We conclude this section by a lemma about the pullback of measures
between separating objects which will be useful later.

Lemma : Let f : X → Y be a map between two separating objects of a boolean
topos. Let µ be a well supported 10 measure on Y and let f∗µ be the pull back
of µ as in 3.3.1. Then, for any positive function h on X one has:

∫
x∈X

h(x)df∗µ =

∫
y∈Y

 ∑
x∈f−1(y)

h(x)

 dµ

If h is a function with value in C such that:∫
x∈X
|h(x)|df∗µ <∞

then the previous formula still holds.

Proof :
In the case of positive functions, the result holds by definition when h is the
characteristic function of some subset of X and the two sides are linear and
compatible with supremums in h. Hence it holds for arbitrary functions.
For a complex function the point is to apply the result separately to each of the
positive and negative part of the real and imaginary part of h. In order to do
so, one needs to check that each of this four terms is finite, but this is implied
by the condition of finiteness on the integral of |h|. �

10. If µ is not well supported one can always replace Y be the support of µ.
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3.4 Time evolution of Hilbert bundles.

3.4.1. From the modular principal bundle χ one can define the time evolution
of Hilbert spaces of T in the same way as we did in chapter 1.
Let Ft, for t ∈ R, be the sheaf defined as:

Ft = {f : χ→ C|∀α ∈ χ,∀r ∈ R>0, f(r.α) = r−itf(α)}
Ft is a C-vector space for the natural action of C and if a,b are two elements of
Ft then a(α)b(α) does not depend on α ∈ χ, indeed if α′ is another element of
χ, then α′ = r.α for r ∈ R>0 and

a(α′)b(α′) = ritr−ita(α)b(α) = a(α)b(α

Defining 〈a, b〉 as the value of a(α)b(α)(α) gives a scalar product on Ft. Fi-
nally, the internal choice of any α ∈ χ defines (by evaluation at α an isometric
isomorphism Ft → C. Hence:

Proposition : Ft is internally a one dimensional Hilbert space for each t ∈ R.

This means that externally the Ft are line bundles over T .

3.4.2. If f ∈ Ft and g ∈ Ft′ then their pointwise multiplication satisfies the
relation:

f(r.α)g(r.α) = r−i(t+t
′)f(α)g(α)

Hence this defines a map Ft ⊗ Ft′ → Ft+t′ . One easily checks that this map is
isometric and hence one has:

Proposition : The map f ⊗g → f.g induces a natural isomorphism Ft⊗Ft′ '
Ft+t′ .

3.4.3. The time evolution is then defined by: σt(H) = Ft ⊗H for H an Hilbert
space of T . Equivalently, one can define:

σtH = {f : χ→ H|∀α ∈ χ,∀r ∈ R>0, f(r.α) = r−itf(α)}
The σt are functors on the category of Hilbert spaces of T .

3.5 The algebra B(l2(X)).

3.5.1. In this subsection, X denotes a separating object of a boolean integrable
locally separated topos T . We also choose µ a locally finite well supported
measure on X, which corresponds to a morphism λ from X to χ.

We denote by l2(X) the Hilbert space internally defined as the set of square
summable X-indexed sequences, with (internally) its generator (ex) ∈ l2(X) for
each x ∈ X. We also denote by A = B(l2(X)) the (external) algebra of globally
bounded operators on l2(X). It is a von Neumann algebra (see 2.1.3).
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3.5.2. µ can be used to construct a normal locally finite weight on A, also
denoted µ defined by:

∀f ∈ A+, µ(f) =

∫
x∈X
〈x, fx〉 dµ

µ is locally finite because if V is a subset of finite measure of X, and if PV ∈ A
denotes the orthogonal projection on l2(V ) ⊂ l2(X) then PV fPV has measure
smaller than the measure of V times the norm of f . And letting V vary among
all finite measure subsets of X, PV fPV weakly converges to f .

3.5.3. λ can be used to construct an isomorphism φt : l2(X) ' σtl2(X).
Indeed, one can define (internally):

φt(ex) := α 7→
(

α

λ(x)

)−it
ex

where α/λ(x) denotes the unique element r of R>0 such that α = r.λ(x). Defined
this way φt(ex) indeed satisfies the relation φt(ex)(r.α) = r−itφt(ex), showing
that it is an element of σt(l

2(X)). Moreover the φt(ex) are of norm one and pair-
wise orthogonal, hence φt indeed defines an isometric map l2(X)→ σt(l

2(X)).
It satisfies in particular, φ0 = Id and σt(φt′)◦φt = φt+t′ hence σtφ−t constitutes
an inverse for φt showing that it is an isomorphism.

3.5.4. Finally, as l2(X) is “fixed” by the time evolution (as attested by the
isomorphism φt) one obtains an action of R directly on A, via:

∀a ∈ A, θt(a) = φ−1
t σt(a)φt

One easily checks that it is an action of R (either directly or from the following
proposition). This time evolution on A can be more explicitly described on the
matrix elements by:

Proposition : For a an element of A and x, y internal elements of X:

〈ey, θt(a)ex〉 =

(
λ(y)

λ(x)

)−it
〈ey, aex〉

With λ(y)
λ(x) denoting the unique element r(x, y) of R>0 such that r(x, y)λ(x) =

λ(y).

Proof :
One has by definition of θ and as the φt are isometric:

〈ey, θt(a)ex〉 = 〈φt(ey), σt(a)φt(ex)〉

But:

φt(ex) = α 7→
(

α

λ(x)

)−it
ex
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And similarly for y, hence:

〈φt(ey), σt(a)φt(ex)〉 =

〈(
α

λ(y)

)−it
ey,

(
α

λ(x)

)−it
aex

〉
=

(
λ(y)

λ(x)

)−it
〈ey, aex〉

�

3.5.5. Finally all these structures satisfy the modular, or Kubo-Martin-Schwinger,
condition:

Proposition : For each u ∈ A+ such that µ(u) is finite one has µ(θt(u)) =
µ(u).
Let u, v ∈ A such that µ(u∗u),µ(uu∗),µ(v∗v) and µ(vv∗) are all finite. Then
there exists a complex function Fu,v defined on {z ∈ C|Im(z) ∈ [−1, 0]} and
holomorphic on its interior such that for all real numbers t:

Fu,v(t) = µ(θt(u)v) Fu,v(t− i) = µ(vθt(u))

This proves that θt is indeed the modular group of automorphisms of the algebra
A, associated to the semi finite normal weight µ. See [67, Ch. VII]. Also, if χ is
trivial, and λ is chosen to be a constant function from X to χ, then the formula
3.5.4 shows that θt is the identity for all t and hence this result shows that µ is
a normal semi-finite trace on A.

Proof :
From the formula given in 3.5.4 one can see that θt left unchanged the diagonal
coefficients of u, and as µ is defined as the integral of the diagonal coefficients
one immediately has that µ(θt(u)) = µ(u).
Let, for any a ∈ A, the function ayx of matrix coefficients be defined internally
by ayx = 〈ey, aex〉 (it is a function on X × X). A general formal computation
gives that for a, b ∈ A:

µ(ab) =

∫
x∈X
〈ex, abex〉 dµ

=

∫
x∈X

〈
ex,
∑
y∈X

abyxey

〉
dµ

=

∫
x∈X

∑
y∈X

byxa
x
ydµ

=

∫
(x,y)∈X2

byxa
x
ydπ

∗
1µ

The last equality, corresponds to lemma 3.3.6, and holds only if byxa
x
y is a positive

function, or if the integral is finite when we replace byxa
x
y by |byxaxy |.

In particular, it holds when a, b are (u∗, u),(u, u∗),(v∗, v) or (v, v∗), and this to-
gether with the finiteness hypothesis on u and v shows that all the four integrals
of |ayx|2 and |byx|2 with respect to both dπ∗1µ and dπ∗2µ on X×X are finite. Also
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note that under the correspondence between measures on X ×X and functions
from X ×X to χ, the measure π∗1µ corresponds to the function (x, y) 7→ λ(x)
and π∗2µ to the function (x, y) 7→ λ(y). Hence one has:

π∗2µ =

(
λ(y)

λ(x)

)
π∗1µ (2.1)

For any complex number z such that Im(z) ∈ [−1, 0] one has:

∣∣∣∣∣
(
λ(y)

λ(x)

)iz
uxyv

y
x

∣∣∣∣∣ =

(
λ(y)

λ(x)

)−Im(z)

|uxy ||vyx|

6 |uxy |2 + |vyx|2 +

(
λ(y)

λ(x)

)
|uxy |2 +

(
λ(y)

λ(x)

)
|vyx|2 (2.2)

And the four terms on the right have a finite integral on X × X with respect
to π∗1µ (because of (2.1) for the last two), hence one can define the following
function Fu,v which is finite and continuous for Im(z) ∈ [−1, 0] and the previous
formal computation can be applied to it.

Fu,v(z) =

∫
(x,y)∈X×X

(
λ(y)

λ(x)

)iz
uxyv

y
xdπ

∗
1µ

Putting together the formal computation done for µ(ab) and the expression given
in 3.5.4 for the matrix coefficients of θt(a), one has for t real Fu,v(t) = µ(θt(u)v),
and using equation (2.1) one gets that:

Fu,v(t− i) =
∫

(x,y)∈X×X

(
λ(y)
λ(x)

)it
uxyv

y
x
λ(y)
λ(x)dπ

∗
1µ

=
∫

(x,y)∈X×X

(
λ(y)
λ(x)

)it
uxyv

y
xdπ

∗
2µ

=
∫

(y,x)∈X×X

(
λ(y)
λ(x)

)it
uxyv

y
xdπ

∗
1µ

= µ(vθt(u))

It remains to be proven that Fu,v is holomorphic. Let Vn be the subobject of

X×X on which the function λ(y)
λ(x) is between (1/n) and n. one has

⋃
Vn = X×X

and consider:

Fnu,v =

∫
(x,y)∈Vn

(
λ(y)

λ(x)

)iz
uxyv

y
xdπ

∗
1µ

The functions Fnu,v are holomorphic, and the inequality (2.2) shows that Fnu,v
converges to Fu,v uniformly in z on all its domain of definition, showing that
Fu,v is holomorphic on the interior of its domain.
�
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Chapter 3

Localic Banach space

1 Introduction

In [4], C.J.Mulvey and B.Banaschewski showed 1 that the usual Gelfand duality
between abelian C∗-algebras and compact (Hausdorff) topological spaces can
be extended into a “constructive” Gelfand duality between C∗-algebras and
compact completely regular locales. A locale (see 2.1) is almost the same as a
topological space, but may fail to have points. A locale which has enough points
is called a spatial locale and is the same thing as a (sober) topological space.
Assuming the axiom of choice, any locally compact locale has enough points;
hence the result of Mulvey and Banaschewski gives back the usual Gelfand
duality when assuming the axiom of choice. But the constructive version can
be applied to a broader context: internal application to topos of sheaves over
a topological space relates continuous fields of abelian C∗-algebra and proper
maps to the base space. This can also be applied to to more general toposes.

At the end of their proof of the constructive Gelfand duality, Mulvey and Ba-
naschewski suggested that “compact completely regular” is not the most natural
condition one would have expected. It would be nicer to weaken this condi-
tion into “compact regular” (which is the same as compact separated, see [44]
C3.2.10). Unfortunately, when a locale is not completely regular it might fail to
have continuous C-valued functions, and hence the associated C∗-algebra has
no reason to keep track of enough informations about X. They suggest that
their result should be extended into a duality between compact regular locales
and a notion of localic C∗-algebras yet to be defined. This is a natural idea
because when X is a compact regular locale, one can still define a locale [X,C]
of functions from X to C and complete regularity only concerns the existence
of points for this locale. The main goal of this chapter is to define this notion of
localic C∗-algebras (which we will call C∗-locales) and to prove this conjectured
duality.

Two other reasons for developing a theory of localic C∗-algebras and more gen-

1. To be more accurate, they only showed this result internally in Grothendieck toposes,
using at some points an external argument relying on the axiom of choice (the Barr covering
theorem). A completely internal and constructive proof has been given later by T.Coquand
and B.Spitters in [20].
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erally of localic Banach spaces (called Banach locales) are the following. In
[53] I.Moerdijk showed (using the result of A.Joyal and M.Tierney in [45]) that
Grothendieck toposes can be identified with a full subcategory of the 2-category
of localic groupoids (that is groupoids in the category of locale, morphisms be-
tween them being the localic principal bi-bundles, see [11] for more details). A
Banach space in the logic of the topos which corresponds to a localic groupoid
G1 ⇒ G0 is essentially a continuous field of Banach spaces B over G0 endowed
with a continuous action of G1 such that there are enough local sections of B
which have an open stabilizer. This hypothesis of open stabilizers is, from the
point of view of analysis and geometry, a little too restrictive and is related to
the requirement of existence of points. Hence one could expect that a good no-
tion of Banach locale could remove it. Also for the purpose of non-commutative
geometry one would like to be able to study equivariant bundle on general lo-
calic (topological) groupoids and not just those which correspond to toposes.
For example the groupoid defined by G0 being a point and G1 being a con-
nected locally compact topological group does not correspond to a topos but is
an important groupoid for non-commutative geometry. In order to define the
notion of Banach space over an arbitrary localic groupoid an important point is
that this notion should descend along open surjections (see 2.5). Unfortunately,
there is no such descent property for Banach spaces and C∗-algebras. However,
as locales descend along open (or proper) surjections and as the pullback of
Banach spaces is a pullback of the localic completion, we will be able to prove
that Banach locales and C∗-locales have this descent property, and form in fact
the “stackification” of the notion of Banach spaces and C∗-algebras, i.e. the
smallest generalization of the notion which have this descent property.

Section 2 reviews some well known facts and definitions, mostly about the theory
of locales, in order to fix the notation and prove some basic but important results
for the rest of the paper. In section 3 we will develop the theory of metric locales
in a constructive context (the classical theory is already known and can be found
for example in [62]). We also show how to construct a classifying locale [X,Y ]1
for metric maps between two complete metric locales, which was apparently not
known even in the classical case. In section 4 we apply the theory of section
3 in order to define Banach locales and C∗-locales and prove the announced
result, although most of the technical difficulties lie in section 3. Finally in
section 5 we prove a theorem asserting that for a large class of Grothendieck
toposes (satisfying some technical conditions), which includes all paracompact
topological spaces, there is no difference between Banach spaces and Banach
locales. As mentioned in the general introduction, this last result is a topos
theoretical adaptation of a theorem of Douady and Dal Soglio-Hérault asserting
that over a paracompact topological spaces every Banach-bundle has enough
continuous sections.

2 Notations and Preliminaries

2.1 The category of locales

We will start by briefly introducing the notion of locale, essentially in order to
fix the notation and the vocabulary. A short introduction to this subject can be
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found in the first two sections of [8], a more complete one in part C (especially
in C1) of [44] and an extremely complete (but non constructive) one in [62].

2.1.1. A frame F is an ordered set which admits arbitrary supremums, also
called union, (hence it also admits arbitrary infimums, called intersections) and
such that binary intersections distribute over arbitrary unions, that is:

v ∧
∨
u∈I

ui =
∨
i∈I

(v ∧ Ui)

for each v ∈ F and each family (Ui) of elements of F . A frame homomorphism
is a function which commutes to arbitrary unions (in particular to the bottom
element, which is the supremum of the empty set) and to finite intersection (i.e.
to both binary intersection and the top element which is the intersection of the
empty family).

2.1.2. The category of locales is defined as the opposite category of the category
of frames. But we will adopt “topological” notations for them:

• If X is a locale, the corresponding frame is denoted by O(X).
• If f : X → Y is a morphism of locales, we denote by f∗ the corresponding

frame homomorphism from O(Y ) to O(X).
• An element U ∈ O(X) is called an open sublocale of X, the top element

of O(X) is denoted X.
• As f∗ commutes to arbitrary supremums, it has a right adjoint denoted
f∗.

2.1.3. A sublocale of a locale X is (an equivalence class of) a locale Y endowed
with a morphism f : Y → X such that f∗ is a surjective frame homomorphism
(such a morphism is called an inclusion). A morphism of locale f is said to be
surjective if the corresponding frame homomorphism is injective. In particular,
the injection/surjection factorisation of frame homomorphisms induces a unique
(up to unique isomorphism) factorisation of every morphism of locale f : X → Y
in a surjection followed by an inclusion:

X � f!(X) ↪→ Y.

The sublocale f!(X) is called the image 2 of f . More generally if S is any
sublocale of X we denote by f!(S) the image of the restriction of f to S and
this is called the image of S by f .

2.1.4. If f : X → Y is a morphism of locales and S is a sublocale of Y then
the categorical pullback f−1(S) is a sublocale of X and one has an adjunction
formula:

A ⊂ f−1(B)⇔ f!(A) ⊂ B
for any sublocale A of X and B of Y .

2. From a purely categorical point of view, we should call it the regular image of X.
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2.1.5. If U is an element of the frame O(X) then it corresponds to a sublocale
(also denoted U) of X which is defined by the frame O(U) = {v ∈ O(X)|v 6 U}
and which is sent into X by the morphism corresponding to i∗(V ) = V ∧ U for
any V ∈ O(X). Hence, the elements ofO(X) correspond to particular sublocales
of X, which justifies the term “open sublocales” for elements of O(X). Also,
through this identification, one has f∗(U) = f−1(U).

2.1.6. To any locale X one can associate the topos of sheaves on X, denoted
Sh(X). If X and Y are two locales, the category of geometric morphisms from
Sh(X) to Sh(Y ) is (equivalent to) the ordered set of locale morphisms from X to
Y ordered by the pointwise ordering of the corresponding frame homomorphism
(this is called the specialisation order). Hence locales can be seen as a specific
kind of toposes.

2.1.7. An extremely important result of the theory of locales is that there is
an equivalence of category between X-locales, that is locales in the logic of
Sh(X) and locales Y endowed with a morphism to X. This allows one to turn
any reasonable property of locales into a property of geometric morphisms,
corresponding to the relative notion, for example one says that a map Y → X
is proper if the X-locale corresponding to Y is compact in the logic of Sh(X).
The same holds for toposes: a T -topos is the same thing as a topos E endowed
with a geometric morphism to T .

2.1.8. At several points of this chapter we will deal (in simple situations) with
locales as if they had points in order to define a map between two locales or
to give constraints on some map. This kind of expression should of course not
be interpreted in terms of points of a locale X but in terms of “generalized
points”, that is morphisms from T to X for an arbitrary locale T , and all the
constructions done on these points should be interpreted in the logic of Sh(T ).
If all the constructions on these generalized elements are “geometric” (that is
compatible with the pullback from Sh(T ) to Sh(T ′) for any locale T ′ over T )
then these constructions yield a morphism of functor, or relation between such
morphisms and hence by the Yoneda lemma this indeed gives a morphism of
locales or conditions between such morphisms.

2.2 Presentations, classifying spaces and pullbacks by ge-
ometric morphisms.

2.2.1. One says that a (Grothendieck) topos T classifies some structure T , or
that T is the classifying topos of the theory T if for any Grothendieck topos
E there is an equivalence of categories (natural in E) between the geometric
morphisms from E to T and the model of the structure T in the logic of E . In
particular, it requires that a model of T can be pulled back along geometric
morphisms. One can consult part D of [44] for the general theory of classify-
ing topos. Roughly this notion induces an equivalence between Grothendieck
toposes and something called “geometric theory” up to a notion of equivalence.
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2.2.2. One says that a locale L classifies some theory T if the topos Sh(L)
classifies the theory T . Locales are the classifying spaces of what is called
propositional geometric theory. That is theory over a signature (see [44]D1.1.1)
which contains no sorts. In particular it contains no function symbol and all the
relations symbol it contains have no free variable and are called propositions.

2.2.3. A frame can be described by generators and relations. Basically, if one
chooses a family of generators (Ui)i∈I and a family of relations R of the form T 6
T ′ where T and T ′ are expressions formed inductively using the Ui, the symbols
> and ⊥ (denoting the top element and the bottom element), arbitrary unions
and finite intersections, then there exists a (unique up to unique isomorphism)
frame F = {I|R} satisfying the following universal property: a morphism from
F to an arbitrary frame G is the data of a family Vi ∈ G of elements indexed by
I, such that all the relations in R are satisfied by the Vi.

2.2.4. Another way to state the universal property of the frame F = {I|R} is
to say that the corresponding locale is the classifying space of the propositional
geometric theory on the basic propositions (Ui) with axioms T ⇒ T ′. As the T
are formed with the Ui, ⊥ and > using finite intersection and arbitrary union
they are interpreted as geometric propositions in the sense of [44, D1.1.3(f)].

2.2.5. There are other kinds of presentations of locales, for example the notion
of Grothendieck site: if C is a category which is a pre-order (that is every of its
morphisms set has at most one element) and J is any Grothendieck topology
on C, then the category of sheaves for this topology is the category of sheaves
over some locale L, and we say that (C, J) is a site for L. There are lots
of other notions of presentation like “sup-lattice presentation” (see [45]) and
“preframe presentation” (see [42]). See also [70] for a comparison of these last
two approaches.

2.2.6. If L is a locale in the logic of some topos T and if f : E → T is a geometric
morphism then, f∗O(L) is in general not a frame in E , but it can be completed
in a frame, giving rise to locale called f#(L) in E . More precisely, if one takes
any sort of presentation of L, then one can pullback the presentation through f
and construct a locale L′ in E . One can then check from the universal property
that (for any reasonable kind of presentations) one has the following pullback
diagram:

ShE(L′) E

ShT (L) T
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which shows that L′ does not depend on any choice of the presentation, and
hence can be denoted f#(L). This construction is very practical as it allows
one to easily obtain presentations of f#(X), or to easily know what will be the
pullback when L is given by a presentation or as the classifying locale of some
theory.

2.3 Positivity

2.3.1. Definition :
• A locale L is said to be positive, if whenever we can write L as a union

of open sublocales:

L =
∨
i∈I

ui

the set of indices I has to be inhabited. In this case, we write L > ∅.
• A locale L is said to be locally positive if every open sublocale can be

written as a union of positive open sublocales.

If one assumes the law of excluded middle, then an open sublocale is positive if
and and only if it is non-zero and every locale is locally positive (any non-zero
element is the union of just itself, and the zero element is the empty union).
But without the law of excluded middle this becomes a non trivial property.

2.3.2. If X is a locale (preferably locally positive) we will denote by O(X)+ the
subset of positive open sublocales of X.

2.3.3. Local positivity is closely related to the notion of open map:

Proposition : Let f : L → M be a morphism of locale, then the following
conditions are equivalent:

• For any U open sublocale of L, its image f!(U) is an open sublocale of
M;

• The frame morphism f∗ : O(M) → O(L) has a left adjoint f◦ (i.e.
f◦(U) 6 V if and only if U 6 f∗(V )) which satisfies the additional
identity:

f◦(U ∧ f∗(V )) = (f◦U) ∧ V ;

• L is locally positive as a M-locale.
Moreover in this situation, f◦ is the same as f! (restricted to open sublocales)
and it corresponds to the internal map which associates to every U ∈ O(L) the
M-proposition “ U is positive ”.

For a proof, see [8]1.6.1 and 1.6.2 for the equivalence of the first two points, and
see [44] C3.1.17 for the last point.
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2.3.4. The following lemma will often be useful to prove that some locales are
locally positive:

Lemma : Let X be a locale, and p the morphism from X to the point {∗}.
Assume that there is a basis (bi)i∈I of X and a collection of propositions (wi)i∈I
such that:

wi ⇒ (bi) > ∅
bi 6 p

∗wi

Then X is positive, wi is equivalent to bi > ∅ and an arbitrary open sublocale
of X is positive if and only if it contains one of the bi such that bi > ∅.

Proof :
As the bi form a basis, any U ∈ O(X) can be written as:

U =
∨
i∈I
bi6U

bi

but as bi 6 p∗(wi) =
∨
wi
> one has:

U =
∨
i∈I
bi6U

p∗(wi) ∧ bi =
∨
i∈I

bi6U and wi

bi

as wi implies that bi is positive, this is an expression of U as a supremum of
positive open sublocales, proving that X is locally positive. Now wi ⇒ bi > ∅
and as bi =

∨
wi
bi one also has bi > ∅ ⇒ wi, which proves the equivalence

between wi and “bi is positive”. Finally if U is positive, then from the previous
expression of U as a union, there exists an i such that bi 6 U and wi hence bi
is positive, and conversely if U contains a positive bi then U is itself positive.
�

2.3.5. Proposition : A locale L is locally positive if and only if it can be defined
by a Grothendieck site where each covering is inhabited. In this situation, an
open U of L is positive if and only if it contains one of the representable.

This is essentially the localic version of [44, C3.1.19].

2.3.6. Proposition : Let X be a locally positive locale in a topos T and f : E →
T a geometric morphism. Then f#(X) is also locally positive, and (internally
in E) an open f∗(U) ∈ f∗(O(X)) is positive if and only if f∗(“U > ∅”).

Proof :
If one has a site of definition (C, J) for L in which each covering relation is
inhabited then f∗(C, J) also has this property and it is a site of definition for
f#(L). Hence this is an immediate corollary of the previous proposition. �
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2.3.7. Once we replace the idea of “having points” by “being positive and locally
positive” to state that a locale is inhabited one can obtain a constructive version
of “the axiom of choice” in the form of:

Proposition : Let I be a set with decidable equality and let (Xi)i∈I be a family
of positive and locally positive locales. Then

∏
i∈I Xi is positive and locally

positive.

Proof :
Open surjections are stable by composition and pullback ([44, C3.1.11]), hence
if X1, . . . Xn are locally positive locales, then

∏n
i=1Xi also is. In general, a

base of open sublocales of
∏
i∈I Xi is given by the finite intersections of open

sublocales of the form π∗i (U) for U as open of Xi. If I is decidable, each of these
open sublocales can be rewritten as an intersection π∗i1(U1)∧ · · · ∧ pi∗ik(Uk) with
the ij pairwise distinct. Moreover, as each Xi is locally positive such an open
sublocale can be written as a union of sublocales of the same form but with
the Ui positive. As locales these open sublocales can be identified with

∏n
i=1 Ui

which is positive if each Ui is positive, hence one has given a basis of positive
open sublocales of the product

∏
i∈I Xi. This concludes the proof. �

2.3.8. Note that the hypothesis that I has a decidable equality cannot be re-
moved, and in fact cannot be weakened too much as the following proposition
shows:

Proposition : Let I be a set which is a quotient of a set J with a decidable
equality. Then

∏
i∈I Xi is positive and locally positive for any family of positive

and locally positive locale Xi if and only if I has a decidable equality.

Together with lemma 2.4.7 this shows that we essentially only have a (localic)
axiom of choice indexed by decidable sets. This should probably be related to
Diaconescu theorem asserting that the full axiom of choice imply the law of
excluded middle (the law of excluded middle is equivalent to every set having a
decidable equality).
This proposition is not used anywhere in this thesis but answer a question asked
to us by the reviewer S.Vickers.

Proof :
Let p : J � I be the surjection. Let (Xi) be the discrete (hence locally positive)
locale whose points are p−1(i). As p is a surjection, each p−1(i) is inhabited
and hence the Xi are also positive.
Let Y =

∏
iXi, i.e. Y is the space of sections of p. Let f be the canonical map

from Y to the base topos. In the logic of Y the map f∗(p) : f∗(J) → f∗(I)
has a section (the universal section of p) hence f∗(I) can be identified with a
subobject of f∗(J), in particular f∗(I) is decidable. Now if we assume that Y is
positive and locally positive then f is an open surjection and hence f∗ preserves
(and reflects) all first order logic (and not just geometric logic) and as “ I is
decidable” is a statement of first order logic the decidability of f∗(I) imply the
decidability of I. �
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2.3.9. We also have a constructive version of the axiom of dependent choice:

Proposition : Let X be an inhabited set equipped with a relation R such that
for each x ∈ X there exists y ∈ X with xRy. Then the sublocale of XN which
classifies the sequences (xn) such that for each n one has xnRxn+1 is positive
and locally positive.

This is proved in [56] as lemma C.

2.4 Positivity and fiberwise density.

2.4.1. Definition : A geometric morphism f : M→ L is said to be fiberwise
dense (or to have a fiberwise dense image) if for any proposition U , one has the
relation:

p∗(U) = f∗f
∗p∗(U)

where p denotes the canonical map L → {∗} and U is identified with an open
sublocale of {∗}.
A sublocale S ⊂ L is said to be fiberwise closed if it is fiberwise dense in no
other sublocale of L.

We will soon see that in the presence of the law of excluded middle these are
equivalent to the more classical notions of density and closeness, but in general
fiberwise density only implies density, and closeness only implies fiberwise close-
ness. For this reason they have also been called “strongly dense” and “weakly
closed”, but we prefer the terminology “fiberwise” which is more uniform, more
specific and allows less confusions. This name “fiberwise” comes from the fact
that, when interpreted internally in Sh(X) for a (nice enough) topological space
X, it indeed corresponds to a notion of fiberwise density (and fiberwise close-
ness) of morphisms of locales over X whereas the usual notion of density would
correspond to simple density, without taking the basis into account.
Of course every sublocale S admits a fiberwise closure S which is the smallest
fiberwise closed sublocale containing S, or equivalently, the unique fiberwise
closed sublocale in which S is fiberwise dense.

2.4.2. In the case of locally positive locales, the fiberwise density takes the
following simpler form.

Proposition : Let f : X → Y be a map with X locally positive. Then the
following conditions are equivalent:

(a) f is fiberwise dense.
(b) Y is locally positive, and for any positive open sublocale U of Y , f∗(U)

is positive.
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In presence of the law of excluded middle, every locale is locally positive and a
positive open sublocale is just a non-zero open sublocale. Hence the previous
proposition asserts (in presence of the law of excluded middle) that f is fiberwise
dense if for every non zero open sublocale f∗(U) is also non zero, which is a
classical characterisation of a dense map.

Proof :
Let p denotes the canonical map from Y to {∗}.
Assume (a). Let U be an open sublocale of Y . As X is locally positive one has

f∗(U) 6 f∗p∗(“f∗(U) > ∅”)

By adjunction one gets

U 6 f∗f
∗p∗(“f∗(U) > ∅”)

but by strong density of f , f∗f
∗p∗ = p∗, also, in full generality f∗(U) > ∅ ⇒

U > ∅ hence, by 2.3.4 this proves both that Y is locally positive, and that the
positivity of U implies the positivity of f∗(U).
Now assume (b). Let V be some proposition, in general, one has p∗(V ) 6
f∗f
∗p∗(V ). We need to prove the reverse inequality. First assume that for

some positive element u one has u 6 f∗f
∗p∗(V ) then f∗(u) 6 f∗p∗(V ) but,

by hypothesis, f∗(u) is also positive, and hence this inequality implies that V
holds. In particular, u 6 p∗(V ).
We have proved that, for all positive u such that u 6 f∗f

∗p∗(V ) one has also
u 6 p∗(V ). By locale positivity of Y this concludes the proof. �

2.4.3. Corollary : Let f : X → Y be a surjection with X locally positive, then
Y is locally positive.

Proof :
A surjection is in particular a fiberwise dense map. �

2.4.4. Proposition : A fiberwise dense sublocale of a locally positive sublocale
is also locally positive.

Proof :
Let X be a locally positive locale and S be a fiberwise dense sublocale of X.
Let i be the inclusion of S into X, f the canonical map from X to the point
and g the canonical map from S to the point (g = f ◦ i). We define g! = f!i∗
and we check that g! is indeed a left adjoint for g∗. As S is fiberwise dense, one
has: i∗g

∗ = i∗i
∗f∗ = f∗ hence:

g!(u) 6 v ⇔ i∗(u) 6 f∗(v) = i∗g
∗(v)

⇔ u 6 g∗(v) because i∗ is injective.

This concludes the proof (there is no need to check the identity g!(a ∧ g∗b) =
g!(a) ∧ b because it is automatic when g is a map to {∗}). �
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2.4.5. Proposition : If g : X → Y is a fiberwise dense map between two locally
positive locales, then any pullback of g by a geometric morphism is also fiberwise
dense.

Proof :
Let f : E → T be a geometric morphism between two toposes, and assume that
g : X → Y is a fiberwise dense geometric morphism between two locally positive
locales in the logic of T .
The function f#(g) : f#(X) → f#(Y ) can be constructed the following way:
f∗(O(X)+) and f∗(O(Y )+) are basis of positive open sublocales of f#(X)
and f#(Y ), and g̃ = f#(g) is defined by the fact that g̃∗ send f∗(O(Y )+)
to f∗(O(X)+) by f∗(g∗) (because as g is fiberwise dense it preserve positivity
by 2.4.2). But as an open sublocale U of f#(Y ) is positive if and only if it
contains an element of f∗(O(Y )+) this proves that if U is positive then g∗(U)
is positive, and hence concludes the proof by 2.4.2.
�

A counterexample to this proposition without the local positivity assumption
can be found in [44] right after corollary C.1.2.16.

2.4.6. Definition : A locale L is said to be weakly spatial if there exists a
fiberwise dense map P → L with P a spatial locale (or simply, with P a set).

By 2.4.2, a weakly spatial locale is automatically locally positive, and a locally
positive locale is weakly spatial if and only if every positive open sublocale has
a point.

2.4.7. Lemma : Let X be any object of the base topos, then there exists a
positive locally positive locale L, with p the canonical geometric morphism from
Sh(L) to the base topos, such that p∗X is the quotient of an object I of Sh(L)
which has decidable equality.

Proof :
If the base topos is a Grothendieck topos over a boolean topos, then any covering
of the base topos by a locale will qualify because over a locale any sheaf is a
quotient of a decidable sheaf.
In the more general situation of an elementary topos, one can take L to be the
classifying space for partial surjective maps from N to X. It is always a positive
locally positive locale (see [45]V.3 just after proposition 2), and in Sh(L) the
object p∗X is naturally a quotient of a subobject of N, which is decidable. �
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2.4.8. Proposition : Let X be a locally positive locale (of the base topos), then
there exists a topos T (even a locale) such that the canonical geometric morphism
p : T → ∗ is an open surjection and such that p#(X) is weakly spatial in T .

This result will be extremely important in the rest of the chapter: indeed weak
spatiality will play the same role as spatiality for complete metric spaces (see
3.6), and as locales descend along open surjections this result will roughly allow
us to assume whenever needed that all the metric locales involved come from
metric sets.

Proof :
Thanks to the previous lemma, one can construct a locale L in which one has
a basis (Ui)i∈I of positive open sublocales of p#(X) indexed by a set with
decidable equality. By 2.3.7:

Y =
∏
i∈I

Ui

is a positive locally positive locale, and corresponds to an open surjection (also
denoted p) p : ShL(Y ) → L → ∗. We will now prove that p#(X) is weakly
spatial.
Internally in L, there is a canonical map si : Y → X × Y defined as the
composition of the i-th projection and the inclusion of Ui into X on the first
component and the identity of Y on the second component. This defines a map
of locale over Y :

s :
∐
i∈I

Y → X × Y = p#(X)

which internally in ShL(Y ) gives a map s from f∗(I) to p#(X) such that for
each i, s(i) is a point of Ui. As any positive open sublocale of p#(X) contains
one of the Ui, it shows that p#(X) is weakly spatial. �

2.5 Descent theory

In this section we will consider a kind of structure interpretable in a topos that
can be pulled back along geometric morphisms. The term “structure” has to be
interpreted in an extremely loose sense, as the main example we have in mind
is the category of locales internal to a topos with the pullback as constructed in
2.2.6.
More precisely we just want to have a contravariant functor C from the 2-
category of toposes to the 2-category of categories, like for example the functor
which sends every topos T to the category of internal locales of T . We will
denote by f∗ the action of a geometric morphism f on C.

Let f : E → T be a geometric morphism, and let c ∈ |C(E)|. A descent data
on c is the data of an isomorphism ε : π∗1(c) → π∗2(c) ∈ C(E ×T E), such that
if ∆ denotes the diagonal map ∆ : E → E ×T E then ∆∗(ε) identifies with
the identity map of c, and if π1,2, π1,3 and π2,3 denote the three projections
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E×T E×T E → E×T E and π1, π2 and π3 the three projections from E×T E×T E
to E then one has a commutative diagram:

π∗1(c) π∗2(c)

π∗3(c)

π∗13ε

π∗12ε

π∗23ε

We define Des(f, C) to be the category of objects of C(E) endowed with a descent
data (and morphisms being the morphisms in C(E) whose pullback along π1 and
π2 commute to the ε). If c0 ∈ C(T ) then f∗c is naturally endowed with a descent
data and this defines a functor from C(T ) to Des(f, C). One says that objects
of C descend along f , or that f is a descent morphism 3 for C if this functor
induces an equivalence between C(T ) and Des(f, C).
It is for example proved in [45] that both objects and locales descend along open
surjections. That is, for C(T ) = T and C(T ) being the category of internal
locales of T the geometric morphisms which are open and surjective are descent
morphisms.

In another language, the fact that objects of C descend along all open sur-
jections, or more generally along all geometric morphisms belonging to some
Grothendieck topology one the 2-category of topos exactly means that C is a
stack for this topology.

2.6 Spaces of numbers

2.6.1. As mentioned in the introduction we are assuming that the base topos
has a natural number object denoted by N. This essentially means that N is
a model of Peano arithmetic, see [44, A2.5 and D5.1] for more details on this
notion. From a natural number object one easily defines the set Z of relative
integers (as two copies of N) with all its operations. And the set Q of rational
numbers is then defined as the quotient of Z × N − {0} by the proportionality
relation.

2.6.2. When working in a Grothendieck topos, or more generally in a topos T
equiped with a geometric morphism to the topos of sets, the three objects N,
Z and Q are simply the constant sheaves with value N, Z and Q. In particular
any first order property 4 provable in classical set theory also holds in T . When
we are working in a general elementary topos (with a natural number object) as

3. We follow the terminology of [44], it is in fact more common to say that f is an effective
descent morphism.

4. Obviously this is true for geometric properties, but as the topos of sets is boolean any
first order property can be written in the form of several geometric properties by explicitly
adding a proposition for each required negation and a property stating that this is indeed the
negation of something. This process is essentially what is called Morleyization of a theory, see
the statement and the proof of [44, D.1.5.13]
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we are doing in this chapter, one can still prove that N, Z and Q have decidable
equality and that anything which is provable in Peano arithmetic (with the law
of excluded middle) also holds internally.

2.6.3. The definition of real numbers becomes a little more complex. Of course
as we do not assume the axiom of dependent choice the definition of R by
Cauchy sequences should be avoided. A definition by one-sided Dedekind cuts
gives a set of real numbers with good properties as an ordered set, but poor
algebraic properties (it is in general not even possible to define the opposite
of an element). On the contrary a definition by two-sided Dedekind cuts gives
good algebraic properties (the reals no longer form a field, but they still form a
locale ring) but fails to yield good order properties: the fact that every bounded
set admits a supremum no longer holds. The two-sided Dedekind cuts will be
used when we need to perform algebraic operations on the numbers, for example
when they arise as scalars of a vector space. And the one-sided Dedekind cuts
will be used when we are only interested in the order relation: for example the
distance function will take value in one sided Dedekind cuts as suggested by
earlier works of C.J Mulvey. Moreover, we will not consider the “set of real
numbers” as set but always as a locale. It appears that without the law of
excluded middle, the topological space R can loose some of its good properties
(like local compactness) whereas the locale of (two-sided) real numbers always
has good topological properties (See [44, D4.7]).

2.6.4. More precisely, a Dedekind real number or a continuous real number is
a pair (L,U) of subsets of Q such that:
• Both L and U are inhabited.
• If q ∈ U and q′ > q then q′ ∈ U , and symmetrically if q ∈ L and q′ < q

then q′ ∈ L
• If q ∈ U then there exists q′ such that q′ < q and q′ ∈ U and symmetri-

cally if q ∈ L then there exists q′ such that q′ > q and q′ ∈ L
• for all q < q′ one has either q ∈ L or q′ ∈ U

Of course once we have defined the embeddings of Q and proved the basic
properties of this set, when x is a Dedekind real number the corresponding U
and L are simply U = {q|x < q} and and L = {q|q < x}. See [44, D4.7] for the
structure on two-sided Dedekind cuts.
Finally R will denote the classifying locale of the geometric propositional theory
of Dedekind real numbers. When it is spatial (for example in presence of the
law of excluded middle) it is the set of real numbers endowed with its classical
topology. In any case, it agrees with the localic completion (as we define in
3.3.12) of Q for the Archimedean distance.

2.6.5. Similarly we will define a locale
←−−
R∞+ in which the distance function will

take value. As earlier work of C.J.Mulvey showed we only care about knowing

when a distance is smaller than some rational number, hence
←−−
R∞+ will be defined

as the classifying locale of the theory of P ⊂ Q∗+ such that if q ∈ P and q < q′

then q′ ∈ P and if q ∈ P then there exists q′ < q such that q′ ∈ P .
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As P is defined as a subset of positive rational numbers,
←−−
R∞+ corresponds only

to non-negative numbers, and as we do not ask P to be inhabited,
←−−
R∞+ contains

a point +∞ (corresponding to P = ∅). The topology on
←−−
R∞+ is the topology of

upper semi-continuity i.e. the basic open sublocales are the [0, q[ for q a rational
(or real) number.

2.6.6. On a topological space (or more generally in a Grothendieck topos)
Dedekind real numbers correspond to continuous functions to R, whereas points

of
←−−
R∞+ correspond to non negative upper semi-continuous (possibly infinite) func-

tions. This explains why Dedekind reals are called “continuous” real numbers,

and why points of
←−−
R∞+ can be called upper semi-continuous real numbers.

2.7 [X,R] is locally positive

The goal of this subsection is to show that, when X is a compact regular locale,
the locale [X,R] is locally positive (and hence also [X,C] ' [X,R]2).

If U and V are two open sublocales of X we write U � V if U is way below
V , i.e. if when V 6

∨
i∈I Ui then there exists a finite subset J ⊂ I such

that U 6
∨
j∈J Uj . We write U ≺ V when U is rather below V , i.e. when

V ∨¬U = X, where ¬U is the biggest open sublocale disjoint from U . A locale
X is regular when ∀V ∈ O(X), V =

∨
U≺V U . In a compact regular locale the

two relations ≺ and � are equivalent.

In [37] one can find a description of the geometric theory classified by [X,R].
This description shows that the open sublocales of the form (U, q, q′) = {f |U �
f∗(]q, q′[)} 5 for U an open sublocale of X and q, q′ two rational numbers form
a pre-basis of the topology of [X,R].

As:

U � f∗(]q, q′[)⇔ (U � f∗(]q,+∞[)) ∧ (U � f∗(]−∞, q′[)),

[X,R] has a basis of open sublocales of the form

B =

(
n∧
i=1

(Ui, ui,−)

)
∧

 m∧
j=1

(Vj , vj ,+)

 , (3.1)

where Ui and Vi are open sublocales of X, ui and vi are rational numbers,
(Ui, ui,−) denotes {f |U � f∗(] − ∞, ui[)} and (Vj , vj ,+) denotes {f |Vj �
f∗(]vj ,+∞[)}.

5. Of course, we do not mean the set of points f of [X,R] satisfying this properties, but
the open sublocale classifying such functions f .
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2.7.1. Definition : An open sublocale of the form given in (3.1) will be called
a basic sublocale. A basic sublocale will be said to be admissible if it satisfies the
following condition:

∀i ∈ 1, . . . , n, j ∈ 1, . . . ,m, (ui 6 vj)⇒ (¬Ui) ∨ (¬Vj) = X.

We will show in 2.7.5 that a basic open is admissible if and only if it is pos-
itive, hence the property of being admissible is indeed a property of the open
sublocale B, and not of its representation. But, while we have not proven this,
we will assume that each time we consider a basic open B, it is given with a
representation in the form of (3.1) and say that it is admissible if and only if its
representation is.

2.7.2. The following lemma is in some sense a constructive form of Urysohn’s
lemma, asserting that compact regular locales are in fact completely regular.

Lemma : Let X be a compact regular locale, and let U ,V be two open sublocales
of X such that U � V . Then there exists a positive locally positive locale L,
such that in the logic of L there exists a continuous function from X to [0, 1] 6

such that f restricted to U is zero and f is constant equal to one on ¬V .

Proof :
The classical proof of the Urysohn lemma for locale (see for example [62, Chap.
XIV]) goes as follows: In a compact regular locale the relation U ≺ V defined as
¬U ∨ V = > (ie, the closure of U is included in V ) is equivalent to the relation
U � V defined by: if (Vi) is a directed set of open subspaces of X such that
V 6

∨
Vi then U 6 Vj for some j (or equivalently the closure of U is compact

and included in V ). The relation ≺ in general does not interpolate, but in a
locally compact locale the relation � always does, ie if a� b then there exists
c such that a � c � b. In particular in a compact regular space the relation
≺ interpolates and (using the axiom of choice) one can construct a Q-indexed
family of open subspaces Uq such that U0 = U , U1 = V and if q < q′ then
Uq ≺ Vq′ , and we define Uq = ∅ when q < 0 and Uq = X when q > 1. This
defines a “scale” (see [62] XIV.5.2 ) which in turns defines a function from X
to [0, 1] with the required property (see [62]XIV.5.2.2).

The only part of the previous proof which is not constructive is the application
of the axiom of dependent choice to construct the sequence Uq. By applying
2.3.9 one can construct a locale L in which there exists such a sequence and then
finish the proof in the logic of L by constructing the function we are looking
for. The only thing we need to check is that if x ≺ y then their pullback to L
also satisfy this identity, but as it can equivalently be defined by “ ∃c such that
x ∧ c = ∅ and c ∨ y = > ” this is immediate.
�

6. That is externally a function from L ×X to [0, 1].
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2.7.3. Proposition : If X is compact completely regular and B is an admissible
basic sublocale of [X,R], then B has a point. If X is just compact regular and
B is admissible then B is positive.

Proof :
Assume that X is completely regular, and let us first remark that when X is
a compact completely regular locale, if U and V are two open sublocales of X
such that (¬U) ∨ (¬V ) = X, then, as U � (¬V ), it is possible to construct a
continuous function f : X → [0, 1] such that f restricted to U is constant equal
to 0 and f restricted to V ⊆ ¬¬V is constant equal to 1.

Now let

B =

(
n∧
i=1

(Ui, ui,−)

)
∧

 m∧
j=1

(Vj , vj ,+)


be an admissible basic sublocale of [X,R].
Let ε be a positive rational number smaller than all the positive differences
between two numbers of the form ui or vi. For each couple (i, j) we choose a
continuous function fi,j : X → R such that:

• If vj < ui then fi,j is the constant function equal to
vj+ui

2
• If ui 6 vj then (¬Ui)∨ (¬Vj) = X and fi,j is a continuous function such

that f is constant equal to ui − ε on Ui, f is constant equal to vj + ε on
Vj and f takes value in [ui − ε, vj + ε]. (such a function exists by the
previous remark).

Then,
f = max

16j6m
min

16i6n
fi,j ,

is a point of B. Indeed:
• Let i ∈ {1, . . . , n}, then (on Ui), since for each j, fi,j is smaller than
ui− ε

2 , the infimum infni′=1 fi′,j is smaller than ui− ε
2 and f smaller than

ui − ε
2 on Ui as a (finite) supremum of a quantities smaller than ui − ε

2 .
• Let j ∈ {1, . . . ,m}, then (on Vj), as for each i, fi,j is greater than vj + ε

2 ,
the infimum infni=1 fi,j is greater than vj + ε

2 . And finally f is greater
than vj + ε

2 on Vj .
This concludes the proof when X is completely regular. We now assume that
X is only regular. Then all the functions fi,j we used in the first part can be
instead constructed in the logic of positive locally positive locales Li,j using
2.7.2. The product L of all these Li,j is also positive and locally positive by
2.3.7, and in the logic of L, all the functions fi,j we used in the first part exist
and hence one can construct the function f which is going to be a point of B
in the logic of L exactly as we did above. This defines a map L → B and, as L
is positive, this proves that B is positive and concludes the proof. �

2.7.4. Lemma : Let p denote the canonical map from [X,R] to the point. Let
B be a basic sublocale then one has:

B 6 p∗(“ B is admissible ” )
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where we identify the proposition “B is admissible” with a subset of {∗} and
hence with an open sublocale of the point.

Proof :
We will prove that in the theory classified by [X,R] (describe in [37]) the propo-
sition asserting that B is admissible can be deduced from the proposition cor-
responding to B.
Maybe we should first recall the axioms of the theory describe in [37]:

1. a� f∗(b) ` a′ � f∗(b′) when a′ 6 a and b 6 b′.

2. ` ∅ � f∗(b) for all b, and ` a� f∗(R) for all a� X.

3. a′ � f∗(b) , a� f∗(b) ` a ∪ a′ � f∗(b)

4. a� f∗(b), a� f∗(b′) ` a′ � f∗(b ∩ b′) for any a′ � a.

5. a� f∗(b) `
∨
a�a′ a

′ � f∗(b)

6. If b =
⋃
i∈I bi then one has the axiom:

a� f∗(b) `
∨

J⊂I finite
a=

⋃
j∈J aj

∧
j∈J

(aj � f∗(bj))


Also note that axiom 6. applied with I = ∅ gives the axiom a� f∗(∅) ` a = ∅.

Let B be as in (3.1) and let i and j such that ui 6 vj .
By (3.1) and axiom 1. one has:

B ` (Ui � f∗(]−∞, ui[)) ∧ (Vj � f∗(]vj ,+∞[)) ,

By axiom 5. one also has:

(Ui � f∗(]−∞, ui[)) `
∨

Ui�U
(U � f∗(]−∞, ui[))

(Vj � f∗(]vj ,+∞[)) `
∨

Vj�V
(V � f∗(]vj ,+∞[))

Putting together axioms 1. and 4. one gets that for any C � U ∧ V one has:

(U � f∗(]−∞, ui[)) ∧ (V � f∗(]vj ,+∞[)) ` C � f∗(]−∞, ui[∧]vj ,+∞[).

Moreover, ]−∞, ui[∧]vj ,+∞[= ∅ as ui 6 vj , hence by the case I = ∅ of 6. one
deduce that for all C � U ∧ V one has:

B ` C = ∅

Now as X is locally compact there exists U ′ and V ′ such that Ui � U ′ � U ,
Vi � V ′ � V and as X is regular U ′ ∧ V ′ � U ∧ V . Hence taking C = U ′ ∧ V ′
(and removing the ′) one obtain that:

B `
∨
Ui�U
Vj�V

(V ∧ U = ∅)

but for any Ui � U and Vj � V if (V ∧ U = ∅) then ¬U ∨ ¬V = X because
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X = (¬Ui ∨ U) ∧ (¬Vj ∨ V )
= (¬Ui ∧ ¬Vj) ∨ (¬Ui ∧ V ) ∨ (U ∧ ¬Vj) ∨ (U ∧ V )

The last term of the union can be removed by assumption, and we can duplicate
the first, obtaining

X = [(¬Ui ∧ ¬Vj) ∨ (¬Ui ∧ V )] ∨ [(U ∧ ¬Vj) ∨ (¬Ui ∧ ¬Vj)]
= [(¬Ui) ∧ (¬Vj ∨ V )] ∨ [(¬Vj) ∧ (¬Ui ∨ U)]
= ¬Ui ∨ ¬Vj

Hence B ` ¬Ui ∨ ¬Vj = X. As this is true for any (i, j) such that ui 6 vj we
get the desired result.
�

2.7.5. Combining all these results we obtain:

Theorem : If X is a compact regular locale, then a basic sublocale B of [X,R],
is admissible if and only it is positive. In particular, [X,R] is locally positive
and the admissible basic sublocales form a basis of positive open sublocales.

Proof :
It suffices to apply Lemma 2.3.4 with bi the basic open sublocales and wi the
propositions “bi is admissible”. Proposition 2.7.3 shows that wi implies bi > ∅
and 2.7.4 is exactly the second condition. �

2.7.6. We also obtain the following

Proposition : Let X be a compact regular locale, X is completely regular if
and only if [X,R] is weakly spatial.

Proof :
If X is completely regular, then 2.7.3 shows that each admissible has a point.
But by 2.7.5 they form a basis of positive open, hence this proves that points of
[X,R] are dense. Conversely, if [X,R] is weakly spatial and U ,V are two open
sublocales of X such that U ≺ V , then there exists W such that U ≺ W ≺ V
and the basic open:

B = (U, 0,−) ∧ (¬W, 1,+)

is admissible because ¬U ∨ ¬¬W > ¬U ∨W = X. Hence it is positive and
hence it has a point. But a point of B is a function from X to R such that f
is negative on U and greater than one on ¬W . As ¬W ∨ V = X the function
f shows that U is “completely below V ”, and this proves that X is completely
regular. �
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3 Constructive theory of metric locales

3.1 Pre-metric locale

As our major concern is the study of localic Banach spaces, we will only consider
metrics on a locale which are defined by a distance function. However, it should
be noted that the point 9 of the series of propositions given in 3.1.4 shows that
one can specify a distance by giving the diameter δ(U) of each open sublocale
U , and the classical theory 7 which can be found for example in the chapter XI
of [62] suggests that a definition by diameters should also be possible.

3.1.1. Definition : A pre-distance d on a locale X is a function

d : X ×X →
←−−
R∞+

which is symmetric (d(x, y) = d(y, x)), satisfies the triangular inequality d(x, y) 6
d(x, z) + d(z, y) and such that d(x, x) = 0
A pre-metric locale is a locally positive locale X endowed with a pre-distance.

We insist on the fact that our pre-metric locale are always assumed to be locally
positive. We do not know exactly which parts of the theory of metric locales it is
possible to develop without this hypothesis (without it, one should at least avoid
everything which uses the construction BqL of 3.1.2 but it seems that what is
left is relatively well behaved without it). In any case, the theory is at least
easier, and probably nicer with this local positivity assumption. Theorem 2.7.5
shows that this case is enough for the Gelfand duality, and as locale positivity
descend along open surjections and is automatic for metric sets it is also enough
to obtain good descent properties.

Of course, the formulas d(x, y) = d(y, x) and d(x, y) 6 d(x, z) + d(z, y) have
to be interpreted in a diagrammatic way or in terms of generalized points. In
particular, if we define

∆q := {(x, y)|d(x, y) < q} = d∗
(←−−

[0, q[
)

then the symmetry means that ∆q is invariant by exchange of the two factors,
d(x, x) = 0 means that for all q, ∆q contains the diagonal embeddings of X,
and finally the triangular inequality means that:

π∗1,2(∆q) ∧ π∗2,3(∆q′) 6 π
∗
1,3(∆q+q′)

Where πi,j denote the various projections from X3 to X2.

7. Which has not been done constructively yet as far the author knows.
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3.1.2. Definition : Let X be a pre-metric locale, and L andM be two sublocales
of X. then

• We say that δ(L) < q if L × L ⊆ ∆q′ for some positive rational number

q′ < q. One easily sees that δ(L) is indeed an element of
←−−
R∞+ ;

• We say that L /q M if π∗1(L) ∧ ∆q 6 π∗2(M). We say that L /M if
L /qM for some positive rational q;

• if q is a positive rational number then BqL = (π2)!(π
∗
1(L) ∧∆q).

These should be interpreted as: δ is the diameter of a sublocale, Bq is the q
neighborhood of a sublocale and L /qM means that the q neighborhood of L
is included in M.

3.1.3. We will denote by O(X)<q the set of open sublocales U of X such that
δ(U) < q, and O(X)+,<q will be simply the subset O(X)+∩O(X)<q of positive
elements of O(X)<q.

3.1.4. Proposition :

1. BqL ⊆M if and only if L /qM.

2. If L ⊆M then δ(L) 6 δ(M).

3. If L /M then L ⊆ M. In particular for all positive rational numbers q
one has L ⊆ BqL.

4. If L /qM and L′ /qM′ then L ∧ L′ /qM∧M′ and L ∨ L′ /qM∨M′.

5. δ

(∨
i∈I
Li

)
= sup
i,j∈I

δ(Li ∨ Lj)

6. If L∧M contains a positive and locally positive sublocale then δ(L∨M) 6
δ(L) + δ(M).

7. Let (Li)i=0...n be a finite sequence of sublocales such that for all i, Li−1∧
Li contains a positive and locally positive sublocale then:

δ

(
n∨
i=0

Li

)
6

n∑
i=0

δ(Li)

8. For any q > 0, O(X)<q is a basis of the topology of X.

9. ∆q =
∨

U∈O(X)<q

U × U

10. If L is locally positive, then

BqL =
∨

U∈O(X)<q

U∧L>∅

U.

In particular, if L is locally positive, BqL is open.

11. If L is locally positive then

Bq′(Bq(L)) ⊆ Bq+q′(L).
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12. If L is locally positive then δ(BqL) 6 2q + δ(L).

Proof :

1. This is simply the adjunction between (π2)! and (π2)∗.

2. If L ⊆ M and if δ(M) < q then there exists a positive rational q′ < q
such that L × L ⊆M×M ⊆ ∆q′ hence δ(L) < q.

3. Assume that π∗1(L) ∧∆q ⊆ π∗2(M) for some positive rational number q,
and let i : X → X ×X be the diagonal embedding, then:

i∗(π∗1(L) ∧∆q) ⊆ i∗π∗2(M) =M

And:

i∗(π∗1(L) ∧∆q) = i∗π∗1(L) ∧ i∗∆q = L ∧X = L

hence L ⊆ M. The second part of the result then follows from the fact
that as BqL ⊆ BqL, one has L /q BqL.

4. Assume that π∗1L ∧∆q ⊆ π∗2M and that π∗1L′ ∧∆q ⊆ π∗2M′, then:

π∗1(L ∧ L′) ∧∆q = π∗1(L) ∧∆q ∧ π∗1(L′) ∧∆q ⊆ π∗2(M) ∧ π∗2(M′)

hence L ∧ L /qM∧M.

And for the union:

π∗1(L ∨ L′) ∧∆q = (π∗1(L) ∨ π∗1(L′)) ∧∆q

= (π∗1L ∧∆q) ∨ (π∗1L′ ∧∆q)
⊆ π∗2(M) ∨ π∗2(M′),

which gives the result.

The fact that intersections distribute over finite unions of sublocales and
that pullbacks preserve finite unions of sublocales can be found in [44]
C1.1.15 and C.1.19, but formulated in terms of frames instead of locales
(i.e. union of sublocales correspond to intersection of nuclei, and pullback
of a sublocale to a pushout).

5. Clearly, supi,j∈I δ(Li ∨ Lj) 6 δ (
∨
i Li) because Li ∨ Lj ⊆

∨
Li. Let q

such that supi,j∈I δ(Li ∨ Lj) < q i.e. there exists q′ < q such that for all
i, j, δ(Li ∨ Lj) < q′. But as(∨

i∈I
Li

)
×

∨
j∈I
Lj

 =
∨
i,j

Li × Lj

and for all i, j, Li × Lj ⊆ ∆q′ , one obtains(∨
i∈I
Li

)
×

∨
j∈J
Lj

 ⊆ ∆q′ ,

which concludes the proof.
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6. Assume that L × L ⊆ ∆q and M×M⊆ ∆q′ , we will prove that, under
the assumption of the proposition, (L ∨M)× (L ∨M) ⊆ ∆q+q′ .

As (L ∨M) × (L ∨M) = (L × L) ∨ (L ×M) ∨ (L ×M) ∨ (M×M)
and (L×L) and (M×M) are already known to be subsets of ∆q+q′ , we
only have to prove it for (L ×M) and (M×L). In X3 one has:

M× (L ∧M)× L ⊆ π∗1,2(M×M) ∧ π∗2,3(L × L) ⊆ π∗1,2(∆′q) ∧ π∗2,3(∆q)
⊆ π∗1,3(∆q′+q)

Applying (π1,3)! yields the result because as (L × M) contains some
positive and locally positive sublocale, the projection π1,3 from L× (L∧
M)×M to L ×M is a surjection.

7. It is immediate by induction on n using the previous point.

8. Thanks to the point 2. it is enough to check that O(X)<q covers X. Take
a covering of ∆q/2 by open sublocales of the form Ui × Vi, then pulling
back along the diagonal embeddings of X into ∆q/2 one has:

X =
∨
i

Ui ∧ Vi

but (Ui ∧ Vi)2 6 Ui × Vi 6 ∆q/2 hence δ(Ui ∧ Vi) < q which concludes
the proof.

9. Thanks to the previous point, for any q′ < q, ∆q′ can be written as a
union of Ui × Vi with δ(Ui) < q′ and δ(Vi) < q′. If Ui × Vi ⊆ ∆q′ . then
so does Vi × Ui, and hence, in our situation:

(Ui ∪ Vi)2 = (Ui × Ui) ∪ (Vi × Ui) ∪ (Ui × Vi) ∪ (Vi × Vi) ⊆ ∆q′

Hence δ(Ui ∪ Vi) < q and the (Ui ∪ Vi)2 cover ∆q′ . This being done for
an arbitrary q′ < q, these open sublocales also cover ∆q, because as the

∆q are defined by a function from X ×X to
←−−
R∞+ one has

∆q =
∨
q′<q

∆q′

10. Applying the definition of BqV using that π∗1(L) = L ×X and the pre-
vious point gives directly

BqL = (π2)!

 ∨
δ(U)<q

(L ∧ U)× U

 =
∨

δ(U)<q
L∧U>∅

U.

11. From the previous point

Bq(Bq′L) =
∨

v∈O(X)<q

v∧B
q′L>∅

v

But, still by the previous point, an open sublocale v of X satisfies v ∧
Bq′L > ∅ if and only if there exists v′ ∈ O(X)<q

′
such that v′∧L > ∅ and
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v∧v′ > ∅. For any open sublocale of this sort, one has δ(v∨v′) < q+q′ by
point 6. Hence v∨v′ is a positive open sublocale such that δ(v∨v′) < q+q′

and (v ∨ v′) ∧ L > ∅. In particular v 6 v ∨ v′ 6 Bq+q′L.

This proves that Bq(Bq′L) 6 Bq+q′L.

12. From point 10 one has

BqL =
∨

v∈O(X)<q

v∧L>∅

v.

Hence from point 5 one has

δ(BqL) = sup
v,v′∈O(X)<q

v∧L,v′∧L>∅

δ(v ∨ v′).

But for any two such v, v′ one has by point 7: δ(v ∨ v′) 6 δ(v ∨ v′ ∨L) 6
δ(L) + δ(v) + δ(v′) 6 δ(L) + 2q. One obtains the result by taking the
supremum.

�

3.1.5. Usually, the distance function d : X ×X →
←−−
R∞+ is expected to be in fact

a continuous map from X×X to R, and not only a semi-continuous map as our
definition of distance suggest it. The reason for our choice is that we know (see

for example [12]) that the norm on a Banach space has to take value in
←−−
R∞+ ,

even if we want to think of it as a function which is continuous 8. Classically,
the continuity is a consequence of the triangular inequality, and the following
proposition gives a constructive interpretation of this result, restoring a form of
“fiberwise continuity” of d.

Proposition : Let ∆q be the fiberwise closure of ∆q in X ×X. Then for all
q < q′ one has ∆q ⊆ ∆q′ .

Proof :
Let q′ be a rational such that q < q′ and let ε = q′−q

2 . As ∆q is by definition

fiberwise dense in ∆q, Proposition 2.4.2 implies that ∆q is locally positive, and
in particular one can write that

∆q 6
∨

v,v′∈O(X)<ε

v×v′∧∆q>∅

v × v′.

But, still by 2.4.2 and by fiberwise density of ∆q in ∆q, for any two such v, v′

one has v × v′ ∧ ∆q > ∅ and hence there exists U such that δ(U) < q and
(v×v′)∧ (U×U) is positive. This implies that v∧U and v′∧U are positive and
hence, by point 7 of 3.1.4, that δ(v ∨ v′) 6 δ(v) + δ(v′) + ∆(U) < q + 2ε = q′.
Therefore,

v × v′ ⊆ (v ∨ v′)× (v ∨ v′) ⊆ ∆q′ ,

and this concludes the proof.
�

8. as opposed to semi-continuous.
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3.1.6. Definition : Let X be a pre-metric locale, we will say that X has a

continuous distance if the pre-distance function d : X × X →
←−−
R∞+ internally

corresponds to a continuous real number, i.e. if the pre-distance function factors

into X×X → R+→
←−−
R∞+ . In this situation we define Θq to be the open sublocale

of X ×X corresponding to {(x, y)|d(x, y) > q}.

3.1.7. Assuming the law of excluded middle, we indeed obtain continuity:

Proposition : Assuming the law of excluded middle in the base topos, any
pre-metric locale has a continuous distance.

Proof :
If one assumes the law of excluded middle in the base topos then any fiberwise
closed sublocale is in fact a closed sublocale. In particular, there exists open
sublocales Θ′q of X × X, which are the complementary open sublocales of the

(closed) sublocales ∆q. From the fact, proved in 3.1.5 that for any q < q′ one
has the relation

∆q 6 ∆q 6 ∆q′

and we deduce

∆q ∧Θ′q = ∅

∆q′ ∨Θ′q = X ×X

and ∆q 6 ∆q′ gives Θ′q > Θ′q′ .

If we define, Θq =
∨
q<q′ Θ

′
q′ , then ∆q and Θq define a map from X ×X to R+

which yields the desired factorisation. �

3.1.8. Proposition : Let f : X → Y be a map between two pre-metric locales.
Then the following conditions are equivalent:

(a) For any positive rational q, ∆q ⊆ (f × f)∗(∆q)

(b) For any locally positive sublocale L of X, δ(f!L) 6 δ(L).

(c) For any U ∈ O(X)<q1 , v1 ∈ O(Y )<q2 , v2 ∈ O(Y )<q3 such that f∗(v1)∧U
and f∗(v2) ∧ U are positive, one has δ(v1 ∨ v2) < q1 + q2 + q3.

(d) For any U ∈ O(X) and any positive rational q:

δ(Bqf!U) 6 δ(U) + 2q.

(e) For any open sublocale U of X such that δ(U) < q there exists an open
sublocale V of Y such that δ(V ) < q and U ⊆ f∗(V ).
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A map satisfying these conditions is called a metric map.

Of course, condition (a) is the point free formulation of the usual d(f(x), f(y)) 6
d(x, y).

Proof :

(a)⇒ (b) Let q such that δ(L) < q, i.e. there exists q′ < q such that L× L ⊆ ∆q′ .
Hence,

L × L ⊆ (f × f)∗(∆q′)

This proves that the image (f × f)!(L×L) in X ×X is included in ∆q′ .
Unfortunately, as a product of surjections may fail to be a surjection, it
is not enough to conclude directly that f!(L)× f!(L) ⊆ ∆q′ . But we can
still conclude using the fact that as L and f!(L) are both locally positive,
then by 2.4.5 (applied twice) the map f : L×L → f!(L)×f!(L) is always
fiberwise dense. This implies that ∆q′ is fiberwise dense in f!(L)× f!(L),
and by 3.1.5 that:

f!(L)× f!(L) ⊆ ∆q′ ⊆ ∆q

which concludes the proof.

(b)⇒ (c) by 2.4.3 L = f!(U) is locally positive because U is and f : U → f!(U) is a
surjection. Also, δ(f!(U)) < q1 by (b). Hence one obtains (c) by applying
point 7 of 3.1.4 (with n=2), together with the fact that f∗v ∧ U > ∅ is
equivalent to v ∧ f!U > ∅ because f : U → f!U is a surjection and hence
in particular a fiberwise dense map.

(c)⇒ (d) One has

Bqf!U =
∨

v∈O(Y )<q

f∗(v)∧U>∅

v

The same argument as given for point 12 of 3.1.4 allow one to conclude.

(d)⇒ (e) If δ(U) < q then there exists a positive ε such that δ(U) < q − 2ε. Take
V = Bεf!U yields the result as U 6 f∗f!U 6 f∗Bεf!U = f∗V .

(e)⇒ (a) Using (e) one gets immediately the inclusion

∆q =
∨

U∈O(X)<q

U × U ⊆
∨

V ∈O(Y )<q

f∗(V )× f∗(V ) = (f × f)∗(∆q)

�

3.1.9. Proposition : Let f : X → Y be a map between two pre-metric locales,
let ε and η be two positive rational numbers, then the following conditions are
equivalent:

(a) ∆η 6 (f × f)∗∆ε
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(b) If U ∈ O(X) and δ(U) < η then δ(f!(U)) < ε

(c) If U ∈ O(X) and δ(U) < η then there exists V ∈ O(Y ) such that δ(V ) < ε
and U 6 f∗(V ).

The point of this proposition is to define a uniform map:

Definition : One says that a map f is a uniform map if for all ε there exists
η satisfying the conditions of the previous proposition.

Proof :
The proof essentially follows the same lines as the proof of 3.1.8:

(a)⇒ (b) The argument for (a)⇒ (b) in 3.1.8 applies in exactly the same way here.

(b)⇒ (c) If δ(f!(U) < ε, then there exists q such that δ(Bqf!(U)) < ε hence one
can take V = Bqf!(U).

(c)⇒ (a) One has

∆η =
∨

δ(U)<η

U × U

but for each U such that δ(U) < η, there exists V such that δ(V ) < ε
and U 6 f∗(V ), hence

∆η 6
∨

δ(V )<ε

f∗V × f∗V = (f × f)∗(V × V )

�

3.1.10. Definition : A map between two pre-metric locales is said to be “com-
patible with /” if U / V implies f∗U / f∗V .

Metric maps and uniform maps are in particular compatible with / because if
f is uniform and if π∗1U ∧∆ε 6 π∗2(V ) then, letting η such that

∆η 6 (f × f)∗∆ε

as we have

(f × f)∗(π∗1(U) ∧∆ε) 6 (f × f)∗π∗2V

we obtain

π∗1(f∗U) ∧∆η 6 π
∗
1(f∗U)) ∧ (f × f)∗∆ε 6 π

∗
2f
∗V

i.e. f∗U /η f
∗V
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3.1.11. Definition : A map f : X → Y between two pre-metric locales is called
an isometric map if d(f(x), f(y)) = d(x, y), i.e. if ∆q = (f × f)∗(∆q).

We can easily see (by the same kind of argument that 3.1.8) that this is equiv-
alent to the fact that δ(L) = δ(f!L) for all sublocales of X.

Lemma : If f is an isometric map X → Y then for any locally positive sublocale
L of X

L 6 f∗(Bqf!L) 6 BqL

Proof :
The first inequality immediately follows from the fact that f!L 6 Bqf!L. For
the second, as f!(L) is locally positive (because of 2.4.3) one can write that

Bqf!L =
∨

v∈O(Y )<q

v∧f!(L)>∅

v.

By 2.4.2, v ∧ f!(L) is positive if and only if f∗(v)∧L is. Also, as f is isometric,
for any v ∈ O(Y )<q , one has f∗(v) ∈ O(X)<q. Finally

f∗(Bqf!L) =
∨

v∈O(Y )<q

f∗(v)∧L>∅

f∗(v) 6
∨

w∈O(X)<q

w∧L>∅

w = BqL.

�

3.1.12. We now consider two toposes E and T , a geometric morphism f : E → T
and X a pre-metric locale in T . As f# is a functor from locale in T to locale

in E commuting to projective limit and f#(
←−−
R∞+ T ) '

←−−
R∞+ E , we obtain a map

f#(d) : f#(X) × f#(X) →
←−−
R∞+ . Moreover all the axioms asserting that d is a

pre-distance can be pulled back turning f#(X) into a pre-metric locale.

Proposition : Let L,M be a sublocales of X, then (as sublocales of the pre-
metric locale f#(X)) one has:

• If δ(L) < q then δ(f#(L)) < q.
• If L /qM then f#(L) /q f

#(M).
• If L is locally positive then Bqf

#(L) = f#(BqL).

Proof :
f# is a functor commuting to all projective limits, in particular pullbacks, prod-
ucts and intersections, and by definition of the metric f#(∆q) = ∆q hence

L × L ⊆ ∆q′

implies
f#(L)× f#(L) ⊆ ∆q′

146



and
π∗1(L) ∧∆q ⊆ π∗2(M)

implies
π∗1(f#(L)) ∧∆q ⊆ π∗2(f#(M))

which proves the first two points.
The third point is harder because in general the pullback f# does not commute
with the direct image functor (π2)!. But if we assume that L is locally positive,
then the map

π∗1(L) ∧∆q → BqL

is the restriction of the projection from L × X to X and hence is an open
map. In particular (as we know that it is a surjection by definition) it is an
open surjection and hence its pullback by f# is again an open surjection. In
particular, the maps

π∗1(f#(L)) ∧∆q → f#(BqL)→ f#(X)

form a factorisation surjection/inclusion and, by uniqueness of such a factorisa-
tion, we obtain the third point. �

3.1.13. We also note that if we define C(T ) to be the category of pre-metric
locales and metric maps internal to T , then open surjections are descent mor-
phisms for C (see 2.5) : If f : E → T is an open surjection and (X, d) is a
pre-metric locale in E endowed with a descent data then it is in particular a de-
scent data on X as a locale, so as locale descend along open surjections, X comes
from a locale X ′ in T . As the ε : π∗1X → π∗2X is an isomorphism in the category
of metric maps it is an isometric map and hence the distance is a morphism in

Des(f, C) and hence also descends into a function d′ : X ′ ×X ′ →
←−−
R∞+ . All the

axioms defining a pre-distance are equality relations (and inequality for the spe-
cialisation order), hence as they are satisfied by the pullback of (X ′, d′) along an
open surjection they are also satisfied by (X ′, d′). Hence (X, d) is the pullback
of the pre-metric locale (X ′, d′). This proves that the functor T → Des(f, C)
is essentially surjective, but it is also fully faithful for similar reasons: a metric
map commuting to descent data is in particular a map of locales commuting to
descent data, and as f is an open surjection a map h is metric if and only if
f∗(h) is metric.

3.2 Metric locales

3.2.1. If (X, d) is a pre-metric locale, then the various properties given in 3.1.4
show that, essentially, the “topology defined by d” (whatever the precise mean-
ing of this is) is coarser than the topology of X, but nothing forces them to
agree. For example, a metric set in the usual sense (with a distance function

taking value in
←−−
R∞+ ), gives a pre-distance on a discrete locale, and the topology

defined by d can disagree with the discrete topology. That is why we require
the following additional property:
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Definition : A Metric locale is a pre-metric locale X such that for all U ∈
O(X),

U =
∨

V∈O(X)
V /U

V.

This definition is equivalent to the fact that the family (BqV )V ∈O(X),q∈Q∗+ forms
a basis of the topology. Indeed V /q U is equivalent to BqV 6 U and BqV =∨
Bq′V for q′ < q, hence this asserts that the open balls form a basis of the

topology.
Also if X is metric and f is a geometric morphism then f#(X) is also metric
because the BqV for V ∈ f∗(O(X)) form a basis of f#(X).

Proposition : A Metric locale satisfies the following separation axiom: the
diagonal embedding

X →
∧
q

∆q

is an isomorphism (where the intersection is an intersection of sublocale).

The intuitive reason for this is that if we consider two points (x, y) in
∧
q ∆q

then by definition d(x, y) = 0. If the open balls form a basis of the topology
then for any open U , x ∈ U if and only if y ∈ U , but for points of a locale this
implies that x = y. The following proof is just the translation of this argument
in terms of generalized points.

Proof :
Consider f : Y →

∧
q ∆q a map, and let f1 and f2 be the two components

Y → X of f . Let U ,V be two open sublocales of X such that U /q V . Then

π∗1(U) ∧∆q 6 π
∗
2(V ).

Applying f∗ to each side gives

f∗1 (U) ∧ f∗(∆q) 6 f
∗
2 (V ),

and as f∗(∆q) = Y by hypothesis, one has f∗1 (U) 6 f∗2 (V ).
Finally, writing V =

∨
U/V U one has:

f∗1 (V ) =
∨
U/V

f∗1 (U) 6 f∗2 (V ).

The converse inequality follows by symmetry and hence f1 = f2 i.e. f factors
into the diagonal embedding, and this concludes the proof. �

In particular, as by 3.1.5, ∧
∆q =

∧
∆q

The diagonal embedding of a metric locale is fiberwise closed, one says that
metric locales are fiberwise separated.
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3.2.2. Proposition : Let X be a metric locale, and Y a pre-metric locale. Let
f : X → Y be an isometric map. Then X is a sublocale of Y i.e. f∗ is onto.
More generally, if we only assume that X is pre-metric then we obtain the
inequalities

∀U ∈ O(X),
∨
V /U

V 6 f∗f∗(U) 6 U

The proposition follows from Lemma 3.1.11:

Proof :
Let U be any open sublocale of X, such that

U =
∨
V /U

V

For any V /q U one has by Lemma 3.1.11

V 6 f∗(Bqf!V ) 6 U

hence

U =
∨

q,V /qU

f∗(Bqf!V ) = f∗

 ∨
q,V /qU

Bqf!V


In particular, if X is metric, then this works for an arbitrary U and f∗ is
surjective.
If X is no longer metric, then let U ′ =

∨
V /U V , then U ′ satisfy U ′ =

∨
V /U ′ V

and hence the first part can be applied to U ′ and there exists V such that
U ′ = f∗(V ). In particular, as f∗(V ) 6 U we obtain that V 6 f∗(U) and hence

U ′ = f∗(V ) 6 f∗(f∗(U)).

The inequality f∗(f∗(U)) 6 U being always true this concludes the proof.
�

3.2.3. The following proposition allows one to extend by density relations be-
tween continuous functions with values in metric locale.

Proposition : Let f, g : X ⇒ Y be two maps of locales with Y a metric locale
(or more generally a fiberwise separated locale). Assume that f and g coincide
on some fiberwise dense sublocale T ⊂ X. Then f = g.

Proof :
Let V be the pullback of the diagonal of Y by the map (f, g) : X → Y × Y . As
fiberwise closeness is stable under pullback (see [44] C1.2.14(v) ), V is a fiberwise
closed sublocale of X, containing the fiberwise dense sublocale T , hence V = X,
and this concludes the proof. �
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3.2.4. We will also sometimes need to extend by continuity “metric relations”
between functions, which will generally be about comparing functions with value

in
←−−
R∞+ . As

←−−
R∞+ is not fiberwise separated, it is not possible to apply directly the

previous result. However, one has the following statement:

We will say that a function from m : X →
←−−
R∞+ is admissible if there exist

two families of functions f1, . . . fn and g1, . . . , gn from X to pre-metric locales
X1, . . . Xn and a commutative diagram:

(R+)n R+

(←−−
R∞+
)n ←−−

R∞+
λ

(where the vertical arrows are the canonical maps) such that:

m(x) = λ(d(f1(x), g1(x)), . . . , d(fn(x), gn(x))).

It is probably possible to use a more general definition of “admissible” map, but
this one will be enough for all the applications appearing here.

Proposition : Assume that one has two admissible maps m1,m2 : X ⇒
←−−
R∞+

such that one has an inequality m1 6 m2 on some fiberwise dense sublocale S
of X a locally positive locale, then the inequality holds one the whole X.

Proof :
The idea is to pullback everything to some boolean locale B. In the logic of
B, thanks to 3.1.7 the admissible functions m1 and m2 will factor as functions
X ⇒ R still satisfying an inequality over S. The pullback of S is still fiberwise

dense in the pullback of X because of 2.4.5, but, contrary to
←−−
R∞+ , R is (fiberwise)

separated and hence one can conclude that in the category of sheaves over B
the pullbacks of m1 and m2 agree on the pullback of X by 3.2.3. This implies
that (in the base topos) one has a diagram:

B ×X B ×
←−−
R∞+

X
←−−
R∞+

m16m2

π2 π2

m1,m1

In order to conclude that m1 6 m2 it is enough to choose B such that π2 :
B ×X → X is surjective. It is possible, indeed, if one chooses a boolean locale
B which covers X, i.e. with a surjective map s : B � X then:
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B × B B ×X

B X

π2 π2

s

The projection π2 : B×B → B is a surjection because it has a section, the map
s : B → X is surjective by hypothesis, hence the diagonal map is surjective.
This implies that the map π2 : B ×X → X is surjective and hence it concludes
the proof. �

Of course the same result where the inequality is replaced by an equality also
holds by two applications of this result.

3.3 Completion of a metric locale

In this subsection we will define the completion of pre-metric locale as the space
of minimal Cauchy filters. The same idea has been previously used by S.Vickers
in [71].

3.3.1. Definition : Let X be a pre-metric locale. A basis B of X is said to be
a metric basis if and only if B contains only positive elements, and if V ∈ B
implies BqV ∈ B.

This definition can easily be changed without altering the main result of this
chapter, we have chosen it only because it is the simplest notion we have found
which is strong enough to assert that the basis will be well behaved and weak
enough so that the natural examples we will encounter in practice satisfy this
definition, like for example the basis of all open balls on a normed space.
Of course if B is an arbitrary basis of X (composed of positive elements) one
can consider the metric basis generated by B by adding to B all the elements of
the form Bq1 . . . BqnV for V ∈ B and (qi) a finite sequence of positive rational
numbers. Also, if B is a metric basis on X in a topos, then the pullback of B
by any geometric morphism f : E → T is a metric basis of the pullback of X.

3.3.2. Definition : Let X be a pre-metric locale endowed with a metric basis
B, a B-Cauchy filter on X is a subset F ⊆ B such that:
(CF1) For all V ∈ F and U ∈ B such that V 6 U one has U ∈ F . .
(CF2) If U, V ∈ F then there exists W ∈ B such that W 6 U and W 6 V

and W ∈ F .
(CF3) For all positive rational numbers q, there exists U ∈ F such that δ(U) <

q.
A B-Cauchy filter is said to be regular if it satisfies additionally:
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(CF4) For all U ∈ F there exists V ∈ F such that V / U .
A Cauchy filter on X (without specifying the basis) is a B-Cauchy filter on X,
for B = O(X)+.

We insist on the fact that B (as a metric basis) is always assumed to be a subset
of O(X)+. This is why there is no axiom asserting that ∅ is not an element of
F , or that all the elements of F are positive.

3.3.3. Proposition : Any B-Cauchy filter F contains a unique regular Cauchy
filter which is Fr = {V ∈ B|∃u ∈ F , u / V }.

Proof :
One easily checks that Fr is a regular B-Cauchy filter. Conversely, let F ′ be
a regular B-Cauchy filter included in F , then for any U ∈ F ′ there exists by
(CF4) an element V ∈ F such that V 6 BqV 6 U , hence U ∈ Fr, which
proves that F ′ ⊂ Fr. Let now U ∈ Fr, by definition there exists V ∈ F such
that V 6 BqV 6 U , by (CF3) there exists W ∈ F ′ such that δ(W ) < q and
by (CF2) there must be an element τ of F such that τ 6 W and τ 6 V . In
particular, W ∧ V > ∅ and hence (by the point 10 of 3.1.4) W 6 BqV 6 U and
U ∈ F ′ which concludes the proof. �

Hence regular Cauchy filters correspond to the notion of minimal Cauchy fil-
ter, this explains why we will later construct the completion of a locale as the
classifying space of regular Cauchy filters, by analogy with the classical con-
struction of the completion of a uniform space as a uniform structure on the set
of minimal Cauchy filters (see [10, Chap. II.7]).

3.3.4. Lemma : Let X be a pre-metric locale endowed with a metric basis B,
and let F be a regular Cauchy filter on X. Then for any U ∈ F , there exists
V ∈ B ∧ F such that V 6 U .

Proof :
Let U ∈ F , by (CF4) there exists U ′ /q U such that U ′ ∈ F . Also by (CF3)
there exists an element W ∈ F such that δ(W ) < (q/3) and as B is a basis
and W is positive there exists b 6 W with b ∈ B. Let V = Bq/3b, then, by the
point 12 of 3.1.4, one has δ(V ) < q , also V ∈ B because B is metric, W 6 V
because b∧W = b is positive and δ(W ) < q/3 and hence V ∈ F . Also by (CF2)
there exists V ′ ∈ F such that V ′ 6 V ∧ U ′, as V ′ is positive this implies that
V 6 BqU ′ 6 U . As V ∈ B ∧ F , this concludes the proof. �
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3.3.5. Corollary : The map F → B ∧F induces a bijection between the set of
regular Cauchy filters on X and the set of regular B-Cauchy filters on X.

We also mention that, as the following proof will show, this proposition holds
for any family B satisfying the conclusion of the previous lemma (3.3.4) even if
it is not a metric basis or even if it is not a basis at all.

Proof :
Let F be a regular Cauchy filter on X. We will first prove that F ′ = F ∧ B is
a regular B-Cauchy filter, this is essentially immediate by Lemma 3.3.4:
• If U 6 V with V ∈ F ′ and U ∈ B then U ∈ F and hence U ∈ F ′ because
F satisfy (CF1).

• If U, V ∈ F ′ then there exists W ∈ F such that W 6 U ∧ V and by the
lemma there exists W ′ ∈ F ′ such that W ′ 6W 6 U, V .

• There exists U ∈ F such that δ(U) < q and (by the lemma) a U ′ 6 U
such that U ′ ∈ F ′, hence δ(U ′) < q.

• Let U ∈ F ′, there exists V ∈ F such that V / U , then any V ′ 6 V with
V ′ ∈ F ′ (again given by the lemma) works.

Now F can be reconstructed from F ′ by the lemma together with (CF1):

F = {U |∃U ′ ∈ F ′, U ′ 6 U}.

And if you take F ′ to be any regular B-Cauchy filter, then the previous formula
defines a F ⊆ O(X)+ which is easily checked to be a regular Cauchy filter as
well, and by (CF1) F ′ = F ∧B. This concludes the proof. �

3.3.6. Let X be a pre-metric locale, and B be a metric basis on X, the theory of
regular B-Cauchy filters as defined in 3.3.2 is clearly a propositional geometric
theory with basic propositions indexed by B. Hence it has a classifying space
X̃B .
If X is a pre-metric locale in a topos T and if f : E → T is a geometric

morphism, then f#(X̃B) ' ˜f#(X)f∗(B) because the pullback of a classifying
locale classifies the pullback of the theory and the pullback of the theory of
regular B-Cauchy filter is exactly the theory of regular f∗(B)-Cauchy filter on

f#(X). But by 3.3.5 the points of X̃B do not depend on B, and hence by the
observations we just made, their points on any topos over the base topos do not
depend on B, and all the X̃B are isomorphic.

Definition : The completion X̃ of X is defined as the classifying locale X̃B of
the theory of regular B-Cauchy filters on X for any metric basis B of X.

Also if U is any positive open sublocale of X we denote by U∼ the open sublocale
of X̃ corresponding to the proposition “U ∈ F”. It is a general fact about
classifying spaces that the U∼ form a pre-basis of the topology of X, but the
axiom (CF2) show that for any metric basis B of X, the U∼ with U ∈ B form

a basis of X̃. If U is not necessarily positive, one can still defined U∼ by

U∼ =
∨
V6U
V>∅

V ∼.
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When U > ∅, the two possible definitions of U∼ are compatible because∨
V6U
V>∅

V ∼ = U∼

3.3.7. Proposition : Let Y be a locale, a morphism f from Y to X̃ corresponds
to a map τ : B → O(Y ) such that:

1. τ is non-decreasing.

2. τ(U) ∧ τ(V ) 6
∨
W∈B

W6U∧V

τ(W )

3.
∨
U∈B
δ(U)<q

(τ(U)) = Y

4. τ(U) 6
∨
V∈B
V /U

τ(V )

Moreover this correspondence is characterized by the relation τ(U) = f∗(U∼).
Also if τ only satisfies the first three properties, then there exists a unique τ r

such that τ r satisfy the four properties and τ r 6 τ for the pointwise ordering
and one has

τ r(U) =
∨
V∈B
V /U

τ(V )

Proof :
A morphism from Y to X̃ is the data of a regular Cauchy filter on X in the
internal logic of Y . i.e. for each U ∈ B one should have a proposition τ(U) :=
“U ∈ F” satisfying (internally) the axiom (CF1−5). The four properties given
for τ corresponds exactly to the externalisation of the four axioms (CF1 − 4)
(in the right order).

If τ only satisfies the first three properties then it is just a B-Cauchy filter on
X and in this case one can apply 3.3.3 and there is a unique regular B-Cauchy
filter τ r 6 τ and it is indeed given by

τ r(U) =
∨
V∈B
V /U

τ(V )

which is the direct translation of U ∈ τ r if there exists V / U with V ∈ τ .
�

Of course, the inequalities in the axioms 2. and 4. are in fact equalities because
the axiom 1. implies the reverse inequalities.
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3.3.8. Proposition : There is a map i from X to X̃ defined by

i∗(U∼) =
∨
V /U

V.

Moreover, for any U ∈ O(X),

i∗(U) = U∼

Proof :
The inclusion map e : O(X)+ → O(X) clearly satisfies the first three points of
3.3.7. Hence the map

er(U) =
∨
V /U

V

satisfies the four points of 3.3.7 and hence there is a map i : X → X̃ such that
for any U ∈ O(X)+ one has i∗(U∼) = er(U). But as U∼ is defined as

∨
V6U
V>∅

V ∼

this formula immediately extends to an arbitrary U .
We still have to prove that i∗(U) = U∼. As i∗(U∼) 6 U , one has U∼ 6 i∗(U).
Let V an arbitrary open sublocale of X such that V ∼ 6 i∗U hence,∨

V ′/V

V ′ 6 U

Consider an arbitrary Cauchy filter F on X such that V ∈ F . Then there
exists V ′ / V such that V ′ ∈ F and hence U ∈ F . This proves that V ∼ 6 U∼

and hence, as V ∼ 6 U∼ imply V ∼ 6 i∗(U) one has V ∼ 6 i∗U if and only if

V ∼ 6 U∼ hence as the V ∼ form a basis of X̃ this proves that i∗(U) = U∼.
�

3.3.9. Proposition : The canonical map i : X → X̃ is fiberwise dense and X̃
is locally positive.

Proof :
The (BqV )∼ for q a positive rational number and V a positive element of O(X)

form a basis of X̃. Indeed, the U∼ for U ∈ O(X)+ form a basis, and for any
U ∈ O(X) by (CF4),

U∼ =
∨
V /U
V>∅

V ∼ =
∨

BqV6U

(BqV )∼.

Moreover,

i∗((BqV )∼) =
∨

U/BqV

U >
∨
q′<q

Bq′V = BqV.

Hence one has a basis of elements of X̃ whose pre-image by i are positive. This
implies that X̃ has a basis of positive elements and that for each positive element
of X̃ its pre-image along i is positive, which concludes the proof. �
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3.3.10. Proposition : There is a distance function d on X̃ such that

∆q =
∨

U∈O(X)<q

U∼ × U∼.

One might note that this definition of the distance on X̃ is the point-free for-
mulation of the more usual definition:

d(F ,F ′) < q if and only if ∃u ∈ F ∧ F ′ with δ(u) < q

which is equivalent if interpreted in terms of generalized points.

Proof :
Let U ∈ O(X) such that δ(U) < q. Then there exists q′ such that δ(U) < q′

and U∼ × U∼ 6 ∆q′ . Hence

∆q =
∨
q′<q

∆q′ ,

which proves that this formula defines a function d : X̃×X̃ →
←−−
R∞+ . This function

is clearly symmetric, and the diagonal embeddings factor into ∆q because the

U∼ with δ(U) < q cover X̃ by axiom (CF3). The last point to check is the
triangular inequality, but:

π∗1,2(∆q) ∧ π∗2,3(∆q′) =
∨

δ(U)<q

δ(U′)<q′

U∼ × (U∼ ∧ U ′∼)× U ′∼

(π1,3)!

(
π∗1,2(∆q) ∧ π∗2,3(∆q′)

)
=

∨
δ(U)<q

δ(U′)<q′
U∧U′>∅

U∼ × U ′∼.

Since U∼ × U ′∼ 6 (U ∨ U ′)∼ × (U ∨ U ′)∼ and as we are restricted to the case
U∧U ′ > ∅, one has δ(U∨U ′) < q+q′ by point 6 of 3.1.4, hence U∼×U ′∼ ⊂ ∆q+q′

and

(π1,3)!

(
π∗1,2(∆q) ∧ π∗2,3(∆q′)

)
6 ∆q+q′ ,

which is the triangular inequality. The last point to prove is that this pre-
distance is a distance. This a consequence of the following lemma. �

Lemma : For any U ∈ O(X) one has Bq(U
∼) 6 (BqU)∼. In particular, if

U /q V then U∼ /q V
∼.

Proof :
Indeed, for any W ∈ O(X) such that δ(W ) < q and U∼∧W∼ is positive, (CF2)
proves that U ∧W is positive, hence, from the definition of ∆q:

Bq(U
∼) = (π2)!(π

∗
1(U∼)∆q) =

 ∨
δ(W )<q

U∼∧W∼>0

W∼

 6 (BqU)∼
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which concludes the proof of the lemma. �

This lemma allows to finish the proof of the proposition, indeed, by (CF4),

V ∼ =
∨
U/V U

∼, hence any V ∈ O(X̃) can be written as

V =
∨

U∼6V

U∼ =
∨

A∼/U∼6V

A∼.

3.3.11. Proposition : Let S → Y be a fiberwise dense isometric map between

two pre-metric locales, let X be any pre-metric locale and f : S → X̃ be a
uniform map. Then there exists a unique extension f̃ : Y → X̃.

Proof :
The uniqueness of the extension follows from the fact that X̃ is metric (3.3.10)
and the result of 3.2.3, so we only have to prove the existence. We will use 3.3.7
for this. Let τ : O(X)+ → O(Y ) defined by:

τ(U) = i∗f
∗(U∼)

where i denote the embeddings of S into Y .
We will first check that τ satisfies the first three properties of 3.3.7:

1. i∗, f
∗ and U 7→ U∼ are all order preserving. Hence τ is order preserving.

2. One has U∼ ∧ V ∼ = (U ∧ V )∼ (essentially by (CF2)) hence as i∗ and
f∗ also commute to binary intersection one has: τ(U) ∧ τ(V ) = τ(U ∧
V ). This is not enough to conclude immediately the proof of this point
because U ∧V might fail to be positive. Fortunately, if one assumes that
τ(W ) = i∗f

∗(W∼) is positive, then i∗i∗f
∗(W∼) is also positive because

i is fiberwise dense, which implies that f∗(W∼) is positive (because it is
bigger than i∗i∗f

∗(W∼)) and hence that W∼ is positive, which finally
implies that W is positive (by 3.3.9 and 3.3.8). Hence one can write that

τ(U) ∧ τ(V ) = τ(U ∧ V ) =
∨

τ(U∧V )>∅

τ(U ∧ V ) 6
∨

U∧V >∅

τ(U ∧ V ),

which proves points 2.

3. We fix q a positive rational number, and (as f is uniform) η such that
∆η 6 (f × f)∗∆q/3 (see 3.1.9).

Let U ∈ O(S)+,<η then (by 3.1.9) there exists W ∈ O(X̃)<q/3 such that
U 6 f∗(W ).

In particular W is also positive and hence, by (CF3) and the fact that the

V ∼ form a basis of X̃, there exists V0 ∈ O(X)+,<q/3 such that V ∼0 6W .
We define V = Bq/3V0. One has δ(V ) < q (by 3.1.4.12) and W 6 V ∼

(by the lemma proved in 3.3.10), in particular U 6 f∗(V ∼). This proves
that
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∨
U∈O(S)+,<η

i∗U 6
∨

V ∈O(X)+,<q

i∗f
∗(V ∼) =

∨
V ∈O(X)+,<q

τ(V ), (3.2)

Finally

Y =
∨

V ∈O(Y )+,<η

V 6
∨

V ∈O(Y )+,<η

i∗i
∗V = Y.

As i is an isometric map, for any V ∈ O(Y )<η one has i∗V ∈ O(S)<η.
Hence

Y =
∨

V ∈O(Y )+,<η

i∗i
∗V 6

∨
U∈O(S)+,<η

i∗U. (3.3)

The inequalities (3.2) and (3.3) together conclude the proof of the third
point.

Hence from 3.3.7 there is a map f̃ : Y → X̃ such that f̃∗(U∼) = τ r(U) =∨
V /U i∗f

∗V ∼. It remains to be proved that f̃ is indeed an extension of f , i.e.

that f̃ ◦ i = f .

i∗f̃∗(U∼) =
∨
V /U

i∗i∗f
∗(V ∼) 6

∨
V /U

f∗(V ∼) = f∗(U∼)

Because
∨
V /U V

∼ = U∼ by (CF4). One the other hand, from the non-metric
part of 3.2.2

i∗f̃∗(U∼) =
∨
V /U

i∗i∗f
∗(V ∼) >

∨
V /U

V ′/f∗(V∼)

V ′.

As f∗ is uniform it is compatible with /, hence the set of V ′ appearing in the
last union contains all the f∗(W∼) for W / V hence

i∗f̃∗(U∼) >
∨
V /U
W/V

f∗(W∼) = f∗(U∼),

which proves i∗f̃∗(U∼) = f∗(U∼) and concludes the proof.
�

We also note that if the map f is metric (resp. isometric), the extension f̃ will
also be metric (resp. isometric) by an application of 3.2.4.

3.3.12. Theorem : Let X be a pre-metric locale, then the following conditions
are equivalent:

1. The map X → X̃ is an isomorphism;

2. X ' Ỹ for some Y ;

3. For any S → Y a strongly dense isometric map between pre-metric lo-
cales, and any map from S to X there exists a map from Y to X making
the triangle commute;
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4. Any strongly dense isometric map from X to a metric locale Y is an
isomorphism.

A locale satisfying these conditions is called a complete metric locale.

Proof :
1.⇒ 2. is clear.
2.⇒ 3. is a direct consequence of 3.3.11.
4.⇒ 1. is also clear because the map from X to X̃ is a dense isometric map.
3. ⇒ 4. remains to be proved. Let f : X → Y be a strongly dense isometric
map. The identity map from X to X can be extended into a map g from Y to
X by 3., such that g ◦ f = IdX . As, f ◦ g restricted to X is the inclusion from
X to Y , f ◦ g is the identity of Y by fiberwise density of X into Y and fiberwise
separation of Y ( 3.2.3) hence g is an inverse for f , and they are isomorphisms.
�

It is immediate from point 3. that a locally positive fiberwise closed sublocale
of a complete locale is also complete.

3.3.13. Proposition : If X is a pre-metric locale in a topos T and f : E → T is

an open (or proper) surjection such that f#(X) is complete then X is complete.

Proof :
The pullback along f of the canonical map X → X̃ is the canonical map

f#(X)→ f̃#(X). Hence as f# is a descent functor for the categories of locales,
it is in particular conservative and if the pullback map is an isomorphism, the
map X → X̃ is also an isomorphism. �

An immediate corollary of this result is that if C(T ) is the category of complete
metric locales and metric maps between them then objects of C descend along
open surjections. Indeed, it is a full subcategory of the category of pre-metric
locales, for which open surjections are descent morphisms as observed in 3.1.13,
and this just states that (X ′, d′) is complete if it descends from a complete locale
(X, d).

3.3.14. Proposition : Let X be a pre-metric locale and let Xd be the regular

image of X into X̃ then O(Xd) identifies with the set of U ∈ O(X) such that

U =
∨
V /U

V

and any map compatible with / from X to a metric locale Y factors into Xd.

Proof :
The regular image of i : X → X̃ is identified as a frame with the image of
i∗ : O(X̃)→ O(X) which is clearly (by 3.3.8) the set of open sublocales defined
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in the proposition. If one has any map f from X to a metric locale Y compatible
with / then for any U ∈ O(Y ),

U =
∨
V /U

V

Hence,

f∗(U) =
∨
V /U

f(V )∗

as f∗(V ) 6 f∗(U) this proves that f∗(U) ∈ O(Xd). Hence f factors into Xd.
�

3.4 Product of metric locales

3.4.1. Let L and M be two pre-metric locales, one defines a pre-distance on

L ×M in the following way: ∆L×Mq ⊂ (L ×M)× (L ×M) is the intersection

of the pullback π∗1,3(∆Lq ) and π∗2,4(∆Mq ) (where the exponent on ∆ indicate
to which locale it is related). This corresponds to taking d((l,m), (l′,m′)) =
max(d(l, l′), d(m,m′)), and the classical argument can be adapted (in terms of
generalised points) to prove that this is indeed a pre-distance on L ×M.

Proposition : M×L endowed with the previously constructed distance func-
tion is the categorical product of M and L in the category of pre-metric locales
and metric maps.

Proof :
The projection π1 : L × M → L satisfies ∆q ⊂ π∗1(∆q) by construction of
the distance function on L × M, hence it is a metric map. In particular if
f : X →M×L is a metric map then the two component f1 and f2 are metric
maps. Conversely, assume that f1 and f2 are metric maps. Then

(f × f)∗(∆L×Mq ) = (f × f)∗(π∗1,3(∆Lq ) ∧ π∗2,4(∆Mq )).

But π1,3(f × f) = f1 × f1 and π2,4(f × f) = f2 × f2, hence,

(f × f)∗(∆L×Mq ) = (f1 × f1)∗(∆Lq ) ∧ (f2 × f2)∗(∆Mq )

As we assume that both f1 and f2 are metric,

∆X
q ⊂ (f1 × f1)∗(∆Lq ) ∧ (f2 × f2)∗(∆Mq ),

This proves that f is also metric and concludes the proof of the proposition.
�
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3.4.2. Proposition : The product of two complete metric locales is a complete
metric locale. More generally the completion of L×M is canonically isomorphic
to L̃ × M̃.

Proof :
Assume that L and M are complete. Let S → Y be a strongly dense map,
and let f : S → L×M be an isometric map. Then by the previous result and
Proposition 3.3.11 there is a map f̃ : Y → L×M extending f . Hence L ×M
is complete.
For the second part, L ×M→ L̃ × M̃ is a fiberwise dense isometric map with
L̃ × M̃ complete, hence L̃ × M̃ is the completion of L ×M. �

3.5 The locale [X, Y ]1 of metric maps

In this subsection we show that it is possible to construct a classifying space
[X,Y ]1 of metric maps between two metric locales X and Y , at least when Y is
complete. The key observation underlying this construction is that (in a classical
settings) on the set of metric functions the topology of point-wise convergence
on any dense subsets is equivalent to the compact-open topology, and that when
we endow this set of metric functions with this topology the composition law is
bi-continuous. This suggests that this topology classifies metric functions. The
general idea of this section is to give a point-free formulation of this topology,
by replacing the basic open “f(x) ∈ V ” by “U ∧ f−1(V ) > ∅” for U a small
neighborhood of x.

3.5.1. Definition : Let X and Y be two pre-metric locales. Let A be a basis 9

of positive open of X and B be a metric basis of Y . We define [XA, YB ]1 as the
classifying space of the propositional geometric theory on propositions (U, V ) for
U ∈ A and V ∈ B with the axioms:
(MM1) For all U ′ 6 U and V ′ 6 V

(U ′, V ′) ` (U, V )

(MM2) For all V ∈ B,U ∈ A and any positive rational number q one has

(U, V ) `
∨
u6U
δ(u)<q

(u, V );

(MM3) For all U ∈ A and all q positive:

`
∨
V∈B
δ(V )<q

(U, V );

9. One can actually see that we do not even need A to be a basis. All we need is that for
all positive rational q the set of a ∈ A such that δ(a) < q cover X.
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(MM4) For all U ∈ A, V ∈ B

(U, V ) `
∨
V ′∈B
V ′/V

(U, V ′);

(MM5) Let W1,W2, τ ∈ A, q1, q2 ∈ Q, V1, V2, V
′
1 , V

′
2 ∈ B such that

δ(W1) < q1 δ(W2) < q2

V ′1 /q1 V1 V ′2 /q2 V2

τ 6W1 τ 6W2

then

(W1, V
′
1) ∧ (W2, V

′
2) `

∨
V∈B

V6V1∧V2

(τ, V )

(MM6)
(U, V ) ∧ (U, V ′) ` δ(V ∨ V ′) 6 δ(U) + δ(V ) + δ(V ′).

3.5.2. The main result of this section is

Theorem : The locale [XA, YB ]1 we just constructed does not depend on A and

B and classifies metric maps between X and Ỹ . With the propositions (U, V )
corresponding to U ∧ f∗(V ∼) > ∅. This locale will be denoted [X,Y ]1

Its proof will occupy us for the rest of this subsection.

3.5.3. If f is a geometric morphism from E to T , then, by the same argument
as in 3.3.6:

f#([XA, YB ]1) ' [f#(X)f∗(A), f
#(Y )f∗(B′)]1

So it suffices to show that the points of [XA, YB ]1 correspond to metric functions

from X to Ỹ to obtain the announced result.

3.5.4. Proposition : Let f : X → Ỹ be a metric map and let:

(U, V )f := “U ∧ f∗(V ∼) > ∅”

For U ∈ A and V ∈ B. Then this defines a point of [XA, YB ]1.

Proof :
Axiom (MM1) is immediate. (MM2) holds because for any V ∈ B,U ∈ A,
if f∗(V ∼) ∧ U is positive then one can write U as a union of u ∈ A such that
u 6 U and δ(u) < q and the locale positivity of X allows one to conclude.

Axiom (MM3) and (MM4) hold because the corresponding unions holds in Ỹ .
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We now prove axiom (MM5): Let W1,W2, τ, q1, q2, V1, V
′
1 , 22, V

′
2 satisfying the

hypothesis of (MM5). We also assume that (W1, V
′
1)f and (W2, V

′
2)f holds.

Then as f is metric and V ′i /qi Vi then V ′∼i /qi V
∼
i one has

f∗(V ′∼i ) /qi f
∗(V ∼i ).

As δ(Wi) < qi and Wi ∧ f∗(Vi) > ∅ this implies that

Wi ⊆ f∗(V ∼i ),

and hence, as τ 6W1 ∧W2, that

τ ⊆ f∗(V ∼1 ∧ V ∼2 ).

As τ is positive (the presentation of X is assumed to be locally positive) and
V ∼1 ∧ V ∼2 is covered by the V ∼ for V ⊆ V1 ∧ V2 this concludes the proof of
(MM5).

We now prove (MM6). Let U, V and V ′ such that U ∧ f∗(V ∼) > ∅ and U ∧
f∗(V ′∼) > ∅. Let q and q′ such that δ(V ) < q and δ(V ′) < q′. Let also ε be
a positive rational number such that δ(V ) < q − 2ε and δ(V ′) < q′ − 2ε. Let
W = BεV and W ′ = BεV

′, in particular δ(W ) < q and δ(W ′) < q′.
One has, by the assumption on V and V ′ and the fact that f is metric (see 3.1.8
proposition (c)):

δ(W∼ ∨W ′∼) ⊆ δ(W∼) + δ(W ′∼) + δ(U)

Let i be the isometric map Y → Ỹ of 3.3.8, i.e.

i∗(V ∼) =
∨
U/V

U.

In particular, as W and W ′ are open balls, one has i∗(W∼) = W and i∗(W ′∼) =
W ′, and i∗(W∼ ∨ W ′∼) = W ∨ W ′, and as i is isometric, this implies that
δ(W ∨W ′) 6 δ(W∼ ∨W ′∼).

Moreover since δ(W ) < q then by definition of the distance on Ỹ , W∼×W∼ ⊆
∆q, and hence δ(W∼) 6 q. One deduces from this that

δ(V ∨V ′) 6 δ(W∨W ′) 6 δ(W∼∨W ′∼) 6 δ(W∼)+δ(W ′∼)+δ(U) 6 q+q′+δ(U),

which concludes the proof as it has been done for arbitrary q and q′ bigger than
δ(V ) and δ(V ′).
�
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3.5.5. Definition : To any point p of [XA, YB ]1 we associate the function
τp : B → O(X) defined by:

τp(V ) :=
∨

δ(W )<q

V ′/qV
p∈(W,V ′)

W

where V ′ runs through elements of B, W through elements of A, and q through
positive rational numbers.

Proposition : If f is a metric map from X to Ỹ and p is the point of [XA, YB ]
associated to f in 3.5.4 then

τp(V ) = f∗(V ∼).

Proof :
One has by definition:

τp(V ) =
∨

δ(W )<q

V ′/qV
f∗(V ′∼)∧W>∅

W.

Hence, as for any W appearing in the supremum one has W 6 f∗(V ∼), we
obtain that τp(V ) 6 f∗(V ∼).
Conversely,

f∗(V ∼) =
∨

V ′/qV

f∗(V ′∼) =

 ∨
V ′/qV

∅<W6f∗(V ′∼)
δ(W )<q

W

 6 τp(V ′∼).

�

3.5.6. Lemma : Let p be any point of [XA, YB ]1, then:

p ∈ (U, V )⇔ U ∧ τp(V ) > ∅

Proof :
Assume first that τp(V ) ∧ U > ∅. Then there exists W and V ′ such that
δ(W ) < q, V ′ /q V , (W,V ′) and W ∧ U > ∅. Applying (MM5), one obtains
that there exists V ′′ 6 V such that p ∈ (W ∧ U, V ′′) and hence p ∈ (U, V ).
Conversely assume that p ∈ (U, V ), then (by (MM4)) there exists V ′ ∈ B and
a positive q such that V ′ /q V and p ∈ (U, V ′). Also by (MM2) there exists
W ∈ A such that δ(W ) < q and p ∈ (W,V ′). But this implies that W 6 τp(V )
and as W 6 U and W > ∅ one concludes that U ∧ τp(V ) > ∅. �
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3.5.7. At this point, all that remains to be checked in order to prove 3.5.2 is

that for any point p, the map τp defines a metric map X → Ỹ .

Proposition : The map τp : B → O(X) satisfies the four conditions of 3.3.7

and in particular there is a (unique) map f : X → Ỹ such that f∗(V ∼) =
τp(V ).

Proof :
We recall that

τp(V ) :=
∨

δ(W )<q

V ′/qV
p∈(W,V ′)

W

Also the point p being fixed, we will write τ instead of τp and (U, V ) instead of
p ∈ (U, V ).

1. if U 6 V then any W appearing in the supremum defining τ(U) also
appears in the one defining τ(V ) with the same V ′ and q. Hence τ is
order preserving.

2.
τ(V1) ∧ τ(V2) =

∨
W1 ∧W2

where the union runs over all W1,W2 ∈ A such that there exist q′1, q
′
2

positive rational numbers, and V ′1 , V
′
2 ∈ B such that

δ(Wi) < q′i;

V ′i /q′i Vi;

(Wi, V
′
i ).

For any such W1 and W2 there exists a positive rational number ε such
that δ(Wi) < q′i − ε. Let qi = q′i − ε. One has in particular δ(Wi) < qi
and

V ′i /qi BqiV
′
i /ε Vi.

Moreover W1 ∧ W2 can be written as the union of τ ∈ A such that
τ 6W1∧W2 and δ(τ) < ε. Finally, one can apply (MM5) (taking BqiV

′
i

instead of Vi) to obtain that there exists V such that

V 6 (Bq1V
′
1 ∧Bq2V ′2) /ε V1 ∧ V2

and
(τ, V ).

This proves that τ 6 τ(BεV ) with BεB 6 V1 ∧ V2 and BεV ∈ B because
B is metric, and hence concludes the proof that.

τ(V1) ∧ τ(V2) 6
∨
V∈B

V6V1∧V2

τ(V ).
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3. Let q be any positive rational number. Let W ∈ A such that δ(W ) < q/3.
Then by (MM3) there exists V ′ ∈ B such that δ(V ′) < q/3 and (W,V ′).
Let V = Bq/3V

′ ∈ B, one has: δ(W ) < q/3, V ′ /q/3 V , (W,V ′), hence
W 6 τ(V ) with δ(V ) < q this proves that

W 6
∨
V∈B
δ(V )<q

τ(V )

As we have done this for an arbitrary W with δ(W ) < q/3 this concludes
the proof.

4. Let V ∈ B, let W appearing in the union defining τ(V ), i.e. there exists
a positive rational q, and a V ′ ∈ B such that δ(W ) < q and V ′ /q V .

But, there exists a positive rational number ε such that δ(W ) < q − ε,
and V ′ /q−ε Bq−εV

′ /ε V . Hence

W 6 τ(Bq−εV
′ 6

∨
U∈B
U/V

τ(U).

Finally, we obtain

τ(V ) 6
∨
U∈B
U/V

τ(U).

�

The fact that the map f induced by τp is metric follow from axiom (MM6) using
the characterization (c) of metric maps given in 3.1.8, hence this concludes the
proof of theorem 3.5.2.

3.6 Case of metric sets

3.6.1. We define a (pre)metric set as set X endowed with a distance function

d : X ×X →
←−−
R∞+ satisfying the usual axioms for a (pre)distance:

• d(x, x) = 0
• d(x, y) = d(y, x)
• d(x, z) 6 d(x, y) + d(y, z)

With additionally, d(x, y) = 0⇒ x = y for a metric set.
A (pre)metric set can be seen as a pre-metric locale by seeing its underlying set
as a discrete locale. It is in general not a metric locale even if we start with a
metric set.

3.6.2. We will say that a metric set (X, d) is complete if the natural map i :

X → X̃ identifies X with the points of X̃. As points of X̃ identify with regular
Cauchy filters one easily checks that this is equivalent to the usual (Cauchy
filter based) definition of completeness.
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3.6.3. Theorem : There is an equivalence of categories between the category of
weakly spatial complete metric locales (with metric maps) and complete metric
sets (with metric maps).

Proof :
The functors are given by the following construction: to a complete metric set
X one associates its localic completion X̃, which is weakly spatial, because
X is fiberwise dense in it, and to a weakly spatial complete metric locale one
associates its set of points endowed with the induced distance. These two con-
structions are functorial on metric maps.
By definition of a complete metric set it identifies with the set of points of its
localic completion, and conversely, if L is a weakly spatial complete metric locale
and X is its set of points endowed with the induced distance, then X → L
is a fiberwise dense isometric map from X to a complete locale, hence L is
isomorphic to the completion of X. This proves that the two functors are inverse
from each other on objects. They are also inverse of each other on morphisms,
tautologically on one side and by 3.2.3 on the other side. �

3.6.4. The internal application of the fact that the set of points of a complete
metric locale is complete in the classical sense can prove directly a result of
completeness of the space of functions with values in a complete locale for the
uniform distance. This cannot be stated directly in terms of completeness of
some metric locale because in general (if the initial space is not locally compact)
the space of functions is not a locale, but one has:

Proposition : Let (fi)i∈I be a Cauchy net of functions between two locales
X and Y , with Y a complete metric locale. This means that I is a directed
(filtering) ordered set and that for all positive rational number ε there exists
i0 ∈ I such that ∀i, j > i0, the map (fi, fj) factors into ∆ε ⊂ Y × Y .
Then the net fi converges to some (uniquely defined) function f : X → Y .
This mean that there is a unique function f : X → Y such that for all positive
rational number ε there exists i0 ∈ I such that ∀i > i0, the map (f, fi) factors
into ∆ε.

Proof :
The net of functions fi : X → Y can be interpreted as a net of points of
p#Y in the logic of X (where p is the map X → ∗). And the fact that it
is externally a Cauchy net immediately gives that it is internally a Cauchy
net. The usual proof that completeness by filter imply completeness by net
is completely constructive 10 and hence the fact that p#Y is complete implies
the convergence of the net fi. Uniqueness of the limit implies that the limit is
a global point of p#Y in X, and hence a map from X to Y . One then easily
check that the internal convergence together with the external Cauchy condition
imply the external convergence. �

10. On the contrary, the converse relies on the axiom of choice.

167



3.6.5. In particular the category of complete metric sets identifies with the
full subcategory of the category of complete metric locales composed of weakly
spatial locales, and by 2.4.8 any complete metric locale becomes weakly spatial
(hence identifies with a complete metric set) after a pullback to some open locale.
We already mentioned that if one defines C(T ) as the category of complete
metric locales over T , then, it is a stack for the topology whose covering are
open surjections.
From these observations one can deduce that the stack of internal complete
metric locales is the stackification (the analogue of sheafication for stack and
pre-stack) of the pre-stack of complete metric sets, that is the universal extension
of the notion of complete metrics sets for the descent properties along open
surjection.

At this point one could obtain the localic Gelfand duality of 4.2.5 directly by ob-
serving that the notion of compact regular locale is obtained as the stackification
of the notion of compact completely regular locale, and apply the constructive
Gelfand duality between compact regular locale and C∗-algebra to show that
the two pre-stacks are equivalent. This will also avoid the use any of the mate-
rial of section 3.5, but it will give an extremely uncomfortable definition of the
spectrum of a localic C∗-algebra. This is why we prefer explicitly construct-
ing the spectrum (in 4.2.3, using the construction of 3.5) before applying the
descent argument to show the Gelfand duality.

4 Banach locales and C∗-locales

4.1 Banach locales and completeness

4.1.1. Definition : A pre-Banach locale is a locally positive locale H endowed
with:

• A commutative group law: + : H×H → H, with neutral element 0 : ∗ →
H and an inversion: x 7→ −x : H → H.

• An action of Q[i] (endowed with the discrete topology), Q[i] × H → H,
satisfying the usual axioms of a (unital) module.

• A norm function ‖.‖ : H →
←−−
R∞+

where the norm function is expected to satisfy the following conditions:
• ∀x, y ∈ H‖x+ y‖ 6 ‖x‖+ ‖y‖
• ∀λ ∈ Q[i],∀x ∈ H, ‖λx‖ = |λ|‖x‖
• ‖0‖ = 0
• H =

∨
n∈N{x|‖x‖ < n}

Of course, all the conditions stated in this definition have to be interpreted
either in diagrammatic terms or in terms of generalized elements.
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4.1.2. Proposition : Let (H, ‖.‖) be a pre-Banach locale. Let s and p denote
the maps H×H → H defined by:

s(x, y) = x− y

p(x, y) = x+ y

Let m denote the map x 7→ −x and n be the norm map, n : H →
←−−
R∞+ .

Finally we will denote Bq0 = n∗([0, q[) (point 5 ensures that there is no possible
confusion).
Then, one has the following facts:

1. The map n ◦ s is a pre-distance on H.

2. The maps s and p are open maps.

3. The open sublocales ∆q coincide with s∗(Bq0).

4. If L is any sublocale of H then BqL coincide with both p!(L × Bq0) and
s!(L ×Bq0).

5. Bq0 is the same things as Bq{0}.

Proof :

1. A proof by generalized points will be exactly the same as the usual proof
that d(x, y) = ‖x− y‖ is a distance on a normed space.

2. We will consider two maps H×H → H×H given by

τp = (p,m ◦ π1);

τs = (π1, s).

These maps correspond in term of generalized points to the maps τp(x, y) =
−x + y,−y) and τs(x, y) = (x, x − y), and they are both involutive and
hence bijective. The maps s and p are then obtained as π2◦τs and π1◦τp,
but as H is locally positive, both π1 and π2 are open maps. Hence by
composition s and p are open maps.

3. ∆q is by definition d∗([0, q[), but as d = n◦s, one has ∆q = s∗n∗([0, q[) =
s∗(Bq0).

4. The involutive map τs introduced in the proof of point 2 exchange π∗(L)∧
∆q with L ×Bq0, indeed:

τ∗s (L ×Bq0) = pi∗1(L) ∧ s∗(Bq0) = π∗1(L) ∧∆q.

Hence π2!(π
∗
1(L)∧∆q) = (π2 ◦ τs)!(L×Bq0) and π ◦ τs = s, which shows

that BqL = s!(L ×Bq0).

It also coincides with p!(L×Bq0) because as n◦m = n one has m∗(Bq0) =
Bq0, and as s = p ◦ (Id,m) this concludes the proof.

5. From the previous result, Bq{0} identifies with p!({0} ×Bq0) but p acts
on {0}×Bq0 as the inclusion of Bq0 in H (this is the definition of 0 being
the neutral element), hence p!({0} ×Bq0) = Bq0 and this concludes the
proof.

�
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4.1.3. Proposition : Let H be a pre-Banach locale, the following conditions
are equivalent:

(LB1) The open sublocales Bq0 form a basis of neighborhoods of 0.

(LB2) H is metric for the distance induced by ‖.‖.

A pre-Banach locale satisfying either (LB1) or (LB2) is called a Banach locale,
we will soon see that there is no need for a completeness assumption: it will be
automatic.

Proof :
We will use the same notation s, p as in proposition 4.1.2. Assume (LB1), and
let U be any open of H. Consider the open sublocale p∗U ⊂ H × H, and
decompose it as a union of basic open sublocales

p∗U =
∨
i∈I

Ai ×Bi

where Ai and Bi are open sublocales of H. Let i such that (Ai×Bi)∧U×{0} is
positive. Then Bi ∧{0} is also positive, hence 0 ∈ Bi, and from the hypothesis,
there exists q such that Bq0 6 Bi. This implies that for each i such that 0 ∈ Bi,
as Ai ×Bq0 6 p∗U one has BqAi = p!(Ai ×Bq0) 6 U hence Ai /q U .
Now as U × {0} is locally positive and a subset of p∗(U):

U × {0} 6
∨
i∈I

(Ai×Bi)∧(U×{0})>∅

6
∨
i∈I

0∈Bi

Ai ×Bi

Applying π1! one gets (as any Bi having a point is positive) that

U 6
∨
i∈I

0∈Bi

Ai 6
∨
i∈I
Ai/U

Ai,

which concludes the proof of the first implication.
Assume now (LB2), let U be an arbitrary neighborhood of 0, then asH is metric,
there exists an open sublocale V such that 0 ∈ V and V /U . In particular, there
exists q such that BqV 6 U , and as 0 ∈ V one has:

Bq0 ⊂ BqV ⊂ U

which proves (LB1) and concludes the proof of the proposition.
�

4.1.4. Proposition : Let H be a pre-Banach locale, then its completion H̃ is

naturally endowed with a structure of Banach locale such that the map H → H̃
is a linear isometric map.

Proof :
Everything comes more or less immediately from 3.3.11 for the construction of
operations and from 3.2.3 and 3.2.4 for the verification of the axioms:
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Indeed, as H×H has a fiberwise dense image in H̃×H̃, the canonical (uniform)

map p : H×H → H → H̃ extends into a map H̃×H̃ → H̃. Similarly, the opposite
map m : H → H is isometric and hence extends into a map m : H̃ → H̃ and
one checks all the group axioms on H̃ because they hold in H, that H̃ is metric
and that Hn has a fiberwise dense image in H̃n.
The action of the locale of complex numbers on H̃ is obtained in the same way:
for each λ ∈ Q[i] the multiplication by λ is a uniform map H → H and hence

extends into a map H̃ → H, giving a map Q[i]× H̃ → H̃ and all the axioms of
compatibility with the group law are also satisfied by a density argument.
Finally, we already know that there is a distance function on H̃ we only have
to check that ‖x‖ = d(0, x) is a norm and that d(x, y) = ‖x− y‖. But this also
immediately comes from a density argument by 3.2.4. �

4.1.5. Corollary : Banach locale are complete metric locales.

Proof :
Let H be a Banach locale, in particular H is a metric locale and hence by 3.2.2 it
identifies with a sublocale of H̃. More precisely, as the inclusion is a linear map,
H identifies with a localic subgroup of a locally positive localic group H̃, hence
thanks to the constructive version of the closed subgroups theorem proved by
P.T.Johnstone in [43], one concludes that H is fiberwise closed (weakly closed

in the terminology of [43]) in H̃ and hence is also complete (see the remark at
the end of 3.3.12). �

4.1.6. In particular, the action of Q[i] on a Banach locale extends to an action of
its completion C. Indeed (assuming that H is complete), the map Bn0×Q[i]→
H is uniform (it is n-Lipschitz) and hence it extends into Bn0 × C → H. One
has a family of compatible maps Bn0 × C → H which gives rise to a map
H× C→ H.

4.1.7. Similarly to what is done in section 3.6, a pre-Banach space in the usual
(constructive) sense is exactly the same as a pre-Banach locale whose underlying
locale is a discrete topological space. To such a Banach space one can associate
its completion which is going to be a Banach locale. Conversely to any Banach
locale one can associate its space of points which is a Banach space, and these
two constructions induce an equivalence between the category of weakly spa-
tial Banach locales (and linear map) and the category of Banach spaces (with
bounded linear map).
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4.2 The Localic Gelfand duality

4.2.1. Definition : A C∗-locale (or localic C∗-algebra) is a Banach locale C,
endowed with an involution ∗ : C → C and a product C × C → C which satisfy
the usual axioms for a C∗-algebra:

• C is a C algebra (i.e. the product is associative, distributes over the
addition and is compatible with the action of C).

• The ∗ involution is C anti-linear and satisfies (ab)∗ = b∗a∗.
• One has: ‖ab‖ 6 ‖a‖‖b‖.
• One has: ‖a∗a‖ = ‖a‖2.

All the axioms are equalities (or inequalities with respect to the specialization
order), hence are clearly preserved by pullback and therefore if C is a C∗-algebra
and f is a geometric morphism to the base topos then f#(C) is also a C∗-locale.
And if C is a (pre)-Banach locale endowed with an ∗ map and a map C ×C → C
such that for some open surjection f , f#(C) is a C∗-algebra for those structure
then C is a C∗-algebra.

The main result of this section will be an anti-equivalence of categories between
the categories of abelian unital C∗-locales and compact regular locales. The
“difficult” part lies in the construction of the two functors, and the proof that
they are compatible with pullback along geometric morphisms. Indeed once it
is done, one can apply 2.4.8 to reduce the proof of the equivalence to the case
of spatial C∗-algebras and completely regular compact locales which is already
known ([4] [20]). Actually, even the construction of the two functors could be
avoided since we know that the notion of C∗-locale is the “stackification” of
the notion of C∗-algebra (it is a direct consequence of the observations made
in 3.6.5), and one can prove (applying 2.7.6) a similar result for compact reg-
ular locales and compact completely regular locales. Hence the already known
equivalence between unital abelian C∗-algebras and compact completely regular
locales immediately yields the equivalence between the “stackified” notions, but
we think that it is important to have an explicit construction of these functors
without having to use descent theory.

4.2.2. Proposition : Let X be a compact regular locale, then [X,C] is a C∗-
algebra, for the addition, product and involution given by the addition, the prod-
uct and the complex conjugation of C, and the norm given by:

Bq0 = [X � f∗Dq]

where Dq denotes the open disc of radius q in C, and [X � f∗Dq] denotes the
basic open which classifies the f such that X � f∗Dq.

Proof :
[X,C] is indeed locally positive by 2.7.5. For the rest, we recall that Hyland
gave in [37] a description of the theory classified by [X,Y ] in terms of the basic
propositions [U � f∗V ] for U ∈ O(X) and V ∈ O(Y ). From this description,
we immediately obtain that:
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∨
q′<q

Bq′0 = Bq0;

∨
n

Bn0 = [X,C].

Also, as 0 is the point corresponding to the function constant equal to 0, one
has indeed 0 ∈ Bq0.

Hence the Bq0 indeed define a function ‖.‖ : [X,C] →
←−−
R∞+ such that ‖0‖ = 0,

and such that
∨
nBn0 = [X,C].

All the algebraic axioms (including the triangular inequality) are checked on
generalized point exactly as one does for classical points in the usual (construc-
tive) case.
A basic open [U � f∗V ] (for U positive) contains 0 if U �

∨
0∈V X, but

this implies that there exists a finite set F included in {0 ∈ V } such that
U 6

∨
f∈F X. A finite set is inhabited or empty, hence either F is empty and

U = ∅ or F is inhabited and 0 ∈ V . In the first case [U � f∗V ] = [X,C]
contains all the Bq0. In the second case one has a q such that Dq � V and
hence 0 ∈ Bq0 = [X � f∗(Dq)] 6 [U � f∗(V )] which proves that the Bq0 form
a basis of neighborhood of 0, and hence [X,C] is a Banach locale.
�

4.2.3. We now want to construct the spectrum of a C∗-locale. We will start by
defining the locale Fn H of linear forms of norm smaller than 1 on a Banach
locale H (the spectrum being the space of characters, it will be a sublocale of
this locale). It generalizes the locale Fn E constructed in [60] and [19].

Proposition : Let H be a Banach locale. There exists a sublocale Fn H ⊂
[H,C]1 which classifies the linear forms of norm smaller or equal to one on H. If
C is a unital commutative C∗-locale, then there exists a sublocale Spec C ⊂ [C,C]1
which classifies characters of C.

Proof :
One can for example define the locale Fn H as the intersection of the equalizer
of the following two diagrams:

[H,C]1 ⇒ [D1 ×H,C]1

where D1 denotes the open unit ball in C and the two maps are the maps defined
on generalized elements by: f 7→ ((λ, x) 7→ λf(x)) and f 7→ ((λ, x) 7→ f(λx)),
and where the distance on D1 ×H is the max distance.
And,

[H,C]1 ⇒ [H×H,C]1

where H×H is endowed with the norm ‖x1‖+‖x2‖ and the two maps are given
by: f 7→ ((x, y) 7→ f(x+ y)) and f 7→ ((x, y) 7→ f(x) + f(y)).

A map X → Fn H is then exactly the data (internally to X) of a metric map
from H → C which is additive and linear with respect to complex numbers
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smaller than 1. As it is also linear with respect to integers, it is linear on nD1

for all n and this forms an open cover of C so it concludes the proof.

If now C is a unital C∗-locale, then one defines Spec C as the intersection of the
two previous equalizers with the pullback of {1} ⊂ C by the map of evaluation
on the unit on [C,C]1 and with the equalizer of the following diagram:

[C,C]1 ⇒ [B10×B10,C]

where B10 is the open unit ball of C, and the distance B10 × B10 is given by
the max distance. The two maps are given by f 7→ ((x, y) 7→ f(x)f(y)) and
f 7→ ((x, y) 7→ f(xy)).
A map factoring into Spec C exactly corresponds to an internal character of C.
�

4.2.4. The following result is a localic version of the Banach-Alaoglu theorem.

Proposition : Let H be a Banach locale, C a unital commutative C∗-locale,
then the locales Fn H and Spec C are compact regular locales.

Proof :
Compact regular locales descend along open surjections: for example because
for a locale being compact and regular is the same thing as having a map to
the point which is both proper and separated (see [44] C.3.2.10) and because
both proper maps and separated maps descend along open morphisms, (see
[44]C5.1.7). Hence it is enough to prove that some pullback of Fn H and Spec C
by an open surjection is compact and regular to conclude. In particular, by 2.4.8
one can freely assume that H and C are weakly spatial and hence that it is the
completion of some Banach space H or C∗-algebra C. But in this situation, a
linear form or a character on the Banach locale is exactly the same as a linear
form or a character on the set of points (by extension to the completion) and
hence (the pullback of) Fn H and Spec C classify the same theory as the locale
Fn H and Spec C (also called MFn C) studied in [60] and [4] for the case of
Grothendieck toposes, and in [19] and [20] for general elementary toposes. These
references prove that these locales are indeed compact (completely) regular. �

4.2.5. Theorem : The previous two constructions X → [X,C] and C → Spec C
induce an anti-equivalence of categories between unital abelian C∗-locales and
compact regular locales.

Proof :
These two constructions are defined in terms of the theory they classified and
hence we can easily check that they are preserved by pullback along geometric
morphisms. They correspond to the well known notion of (completion of the)
space of continuous functions on X and spectrum of a C∗-algebra when X is
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completely regular and when C is weakly spatial. Moreover the two canonical
maps “evaluation at x ∈ X” from X to Spec [X,C] and “evalution at c ∈ C”
from C to [Spec C,C] are preserved by pullback (a proof by generalized points
shows it immediately).
Hence, applying 2.4.8 one can pullback (along an open surjection) those two
maps to a similar situation but with C and [X,C] weakly spatial (hence with
X completely regular by 2.7.6). We can then conclude that the pullback (along
an open surjection) of the two canonical maps are isomorphisms from the usual
constructive Gelfand duality (proved in [4] for Grothendieck toposes, and gen-
eralized in [20] to arbitrary elementary toposes). And hence, as pullback by
an open surjection is conservative, these two canonical maps are isomorphisms.
This proves that the two constructions are inverse from each other, the fact
that they form an equivalence of categories follows immediately from the same
argument. �

5 A spatiality theorem

5.1 Definition and statement of the theorem

Assuming the axiom of dependent choice, there is no difference between complete
metric locales and complete metric sets: indeed one can construct a point in a
non empty open sublocale of a complete metric locale by choosing decreasing
sequences of non-empty open sublocales whose diameters tend to zero, which
will generate a Cauchy filter. Moreover, in the appendix of [25] it is proved
by Douady and Dal Soglio-Hérault that over a paracompact topological space,
a notion which looks a lot like our notion of Banach locale is equivalent to
the usual notion of continuous field of Banach spaces, which is known to be
equivalent to the notion of weakly spatial Banach locales. This suggests that
the fact that every Banach locale is weakly spatial can be true far beyond the
case of a topos where one can apply the axiom of dependent choice.
The goal of this section is to generalize the arguments of Douady and Dal
Soglio-Hérault to prove that, for a class of toposes satisfying a certain technical
hypothesis generalizing paracompactness, there is indeed no difference between
Banach locales and Banach spaces.
The argument given in [25] relies on constructing ε-continuous sections of a
Banach Bundle, where ε-continuous roughly means that the eventual disconti-
nuities are ε-small. But in our context this technique cannot be adapted directly
because it relies on discontinuous functions, which does not make sense between
locales. Fortunately, one can apply their arguments by replacing the construc-
tion of ε-continuous functions by constructing ε-small positive open sublocales
of the bundle which, informally, corresponds to tubular neighborhoods of these
ε-continuous sections.

5.1.1. Definition : Let T be a topos, we say that the terminal object of T is
numerically projective if for each inhabited object X � 1 there exists a decidable
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object I of T , a map I → X and a function λ : I → [0, 1] where [0, 1] denotes
the sheaf of continuous real numbers between 0 and 1, such that internally:∑

i∈I
λ(i) = 1

(where the sum converges in the sense of continuous real numbers.)
We say that a general object X ∈ T is numerically projective if the terminal
object of T/X is numerically projective.

We see this definition as a technical tool. These “numerically projective” objects
are exactly what we need in order to make the proof of the spatiality theorem
work. At the present moment nothing indicates that this definition has some
deeper meaning, but we hope that the spatiality theorem can be formulated
under more natural hypothesis.

5.1.2. Here are the three main examples of numerically projective objects we
have in mind:

Proposition :

1. If X is a locale (or a topological space) which admits enough partitions of
unity in the sense that 11 for every open covering (Uv)v∈V of X there is a
family of functions λv from X to [0, 1] such that for each v, λv has support
included in Uv and

∑
v λv = 1 (with a locally uniform convergence) then

1 is numerically projective in Sh(X).

2. If P is a (externally) projective object of a topos T then P is numerically
projective in T .

3. If T has a generating family of inhabited finite decidable objects, then
every object of T is numerically projective.

Proof :

1. Let F be any inhabited object of Sh(X). Then F can be covered by a
sheaf of the form I =

∐
v∈V Uv where the Uv are open sublocales of X.

Then I is a decidable object (it is a subobject of p∗(V )) and, as I cover
F and F is inhabited, I is also inhabited and hence, the Uv form a cover
of X.

By hypothesis one can construct a partition of the unity λv subordinated
to Uv. This can be internally interpreted as a function from p∗(V ) to
[0, 1] supported by I and such that

∑
v∈V λv = 1. As the function is

supported by I, this also means that
∑
i∈I λi = 1 and concludes the

proof.

2. If P is projective, then for any object F � P , there exists a section
P → F . As P is always a decidable object in T/P one can take I = P
and λi to be the function constant equal to one on P .

11. Assuming the axiom of choice, this is the case when X is paracompact and regu-
lar/Hausdorff.
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3. Let T be a topos with a generating family of finite decidable objects. We
will prove that the terminal object is numerically projective. Let F be
an inhabited object of T . Then there exists an inhabited finite decidable
object T with a map into F . One can take I = T and λi the function on
T internally defined as the constant equal of 1/|T |. This proves that 1 is
numerically projective. Now as the hypothesis on T are stable by slice,
this proves that the results holds for any objects of the topos.

�

5.1.3. Definition : Let T be a topos, X an object of T and U, V be two
subobjects of X. One says that U is rather below V and denote U ≺ V if there
exists (externally) a subobject W of X such that U ∧W = ∅ and U ∨W = X
We say that V is regular in X if

V =
∨

U∈Sub(X)
U≺V

U.

5.1.4. We are now ready to state our spatiality theorem:

Theorem : Let T be a topos, assume that there exists a generating family of
objects Ai of T such that for each i, Ai is a regular sub-object of a numerically
projective object Pi. Also assume that the axiom of dependent choice holds in
the base topos. Then any Banach locale of T is internally weakly spatial.

This theorem applies to any topos of sheaves over a regular space X which have
partitions of unity (that is over any paracompact Hausdorff space if one assume
the axiom of choice) but also to all toposes having enough projective objects, or
to the locally separated atomic toposes studied in chapter 1 or more generally to
the boolean locally separated toposes studied in chapter 2 (both because they
admit enough slice generated by finite decidable objects), to classifying toposes
of a compact or locally compact (pro-discrete) groups, and essentially to any
topos with good enough analytical properties
It implies that in each of these situations there is essentially no difference be-
tween Banach locales and usual Banach spaces. The proof of this theorem will
end in 5.3.2

5.2 Convexity and barycentre

Before proving Theorem 5.1.4, we will need some generalities about the theory
of convex open sublocales of Banach locales and barycentres in a constructive
context. The results of this subsection are seen as useful lemmas for the proof
of 5.3.1, in particular we have not tried to make them optimal and most of them
can probably be improved (for example it is unlikely that it is indeed necessary
to take the closure in 5.2.6 or 5.2.8).
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5.2.1. Definition : Let U be an open sublocale of a Banach locale H, we say
that U is convex if the map

p2 : B × B → B
(x, y) → x+ y

2

sends U × U on U .

5.2.2. Proposition : Let U be an arbitrary open sublocale of H. We define a
sequence of open sublocales:

U0 = 0

Un+1 = Un ∪ p2!(Un × Un)

(where p2 is the map p2(x, y) = (x+ y)/2). We also define:

Conv U :=
∨
n∈N

Un.

Then Conv U is the smallest convex open sublocale of H containing U .

Proof :
The Un are all open since p2 is an open map (see 4.1.2 points 2), hence Conv U
is open. If W is a convex open sublocale containing U then by an immediate
induction W contain Un for each n and hence Conv U ⊂W .
It remains to show that Conv U is convex, but as p2 is an open map one can
write

p2!(Conv U × Conv U) =
∨

n,m∈N
p2!(Un × Um).

For each n,m, if t denotes the maximum of n and m one has

p2!(Un × Um) 6 p2!(Ut × Ut) 6 Ut+1 6 Conv U,

hence p2!(Conv U × Conv U) 6 Conv U , which concludes the proof. �

5.2.3. Proposition : Let U be an open sublocale of a Banach locale H such
that δ(U) < q. Then δ(Conv U) < q.

Proof :
We will work in H×H endowed with the product distance (as defined in 3.4).
It is a norm which turns it into a Banach locale.
For any q, ∆q is convex by triangular inequality. And for any open sublocale of
the form U × V of H×H one has:
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Conv (U × V ) = Conv U × Conv V.

Indeed one easily checks by induction that (U × V )n = Un × Vn
In particular, if U × U ⊂ ∆q′ for some q′ < q then Conv U × Conv U ⊂ ∆q′

which concludes the proof. �

5.2.4. Proposition : Let H be a Banach locale then any open sublocale of H
can be written as a union of convex open sublocale.

Proof :
Let U ⊂ H, let q and V such that V /q U . We write V as a union of positive
open sublocales vi ⊂ V such that δ(vi) < q and we set wi = Conv vi.
Then from the previous result δ(wi) < q , and hence as ∅ < v1 6 wi ∧ V and
V /q U , one has wi ⊂ U and as vi ⊂ wi one has:

V 6
∨
i∈I

wi

As the V such that V / U form a covering of U , the various wi we will obtain
will give a covering of U by convex open sublocales. �

5.2.5. Proposition : If U is a convex open sublocale of H then BqU is convex
for any q.

Proof :
BqU is the direct image of the convex open sublocale Bq0 × U by the map
p : H×H → H and the map p and p2 commute. This immediately implies that
BqU is also stable by p2. �

5.2.6. In order to use the existence of partitions of unity, we want to be able to
take a barycentre of the form

∑
i∈I λixi for I a decidable set, (xi) a family of

elements of H and (λi) a family of real numbers such that
∑
i∈I λi = 1. Even

if the family (λi) is fixed there is no hope of defining this as map from HI to
H. But if we assume that the element (xi) are uniformly bounded then it is
possible to give a constructive definition of this map, which will give us a map
ΣI : (Bq0)I → Bq0.
More precisely, for any S ⊂ I finite, one can define a map:

ΣS : (Bq0)I → (Bq0)S → Bq0 ⊂ Bq0
where the first map is the projection, the second map is (xs)s∈S 7→

∑
s∈S λsxS ,

and bq0 denotes the fiberwise closure of Bq0. As I is decidable, any finite subset
S of I is complemented and we define
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c(S) =
∑
s/∈S

λs = 1−
∑
s∈S

λs.

For any S ⊂ S′ two finite sets, one has d(ΣS ,ΣS′) < qc(S) i.e. the map (ΣS ,ΣS′)
factors into

∨
q′<qc(S) ∆q′ .

This relation (and the fact that c(S) can be made arbitrarily small) asserts that
if we think of the ΣS as a family of points of Bq0 ⊂ Bq0 in the logic of (Bq0)I

it is a Cauchy net, as Bq0 is complete it is sill complete in the logic of (Bq0)I

and hence this net has a limit, which is a function

ΣI = lim
S⊂I

ΣS : (Bq0)I → Bq0.

It should be possible to replace Bq0 by Bq0 but this would require a little more
work and is not necessary here.

5.2.7. Lemma : Let λi be a family of (continuous) real numbers between 0 and
1 such that

∑
i∈I λi = 1. Let ε be a positive rational number. There exists a

family (qi)i∈I of rational numbers such that:
• Only a finite number of qi are non-zero.
• Each qi is between 0 and 1.
• Each qi is of the form ni/2

k
i with ni and ki integers.

•
∑
i qi = 1.

•
∑
i |qi − λi| < ε.

Proof :
If ε > 2 then the last condition is always true, and one can choose any family
qi such that

∑
i qi = 1. We will assume that ε 6 2. Let S ⊂ I be a finite family

such that: ∑
s∈S

λs > 1− ε

4

S is a finite subset of a decidable subset, hence S is complemented in I, and is
isomorphic to {1, . . . , n} for some integer n. As

∑
s∈S λS > 1/2, n cannot be 0,

and hence S is inhabited. For each, s ∈ S let qs be a rational number between
0 and 1 and of the form a/2b such that 0 6 λs − qs < ε

4n .
Then e =

∑
s∈S qs is again a rational number of the form a/2b, and is greater

than 1 − ε/2 and smaller than 1. We choose s0 ∈ S and we replace qs0 by
qs0 + (1− e). Finally, (as S is complemented) we define qi = 0 when i is not in
s. One has:

• qi is non zero only when i is in S, hence there is only a finite number of
non zero qi.

• Each qi is nonnegative.
• The denominator of each qi is a power of two.
•
∑
i∈I qi =

∑
s∈S qs = 1 because of the modification of qs0 , in particular,

each qi is smaller than or equal to 1.
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• ∑
i

|qi − λi| =

(∑
i/∈S

λi

)
+

∑
s∈S
s 6=s0

λs − qs

+ |λs0 − qs0 |

The first term is smaller than ε/4, the second term is smaller than (n−1)ε
4n

and the last one is smaller than ε/2 + ε/(4n), hence the sum is smaller
than ε which concludes the proof.

�

5.2.8. Proposition : Let U be a convex open sublocale of Bq0, then the image

of the sublocale U I ⊂ (Bq0)I by ΣI is included in the fiberwise closure U of U .

Proof :
Let ε be any positive rational number, and let qi be a family of rational numbers
as in Lemma 5.2.7. We denote by Σq the map (Bq0)I → Bq0 corresponding to
the barycentre with coefficient qi.
As only a finite number of qi are non zero, and all their denominators are powers
of two, the map Σq can be expressed as a composition of various maps p2. Hence
as U is convex, it is stable by p2 and hence Σq send U I into U .
Let S be a finite subset of I containing all the i ∈ I such that qi is non zero,
then d(ΣS ,Σq) < 2qε. And as ΣI is the limit of the ΣS , this proves that
d(ΣI ,Σq) < (2q + 1)ε. In particular, ΣI can be approximated (uniformly) as
close as we want by functions Σq such that when restricted to U I , ΣQ takes value
in U . Hence ΣI , when restricted to U I takes value in U and this concludes the
proof. �

5.2.9. Lemma : Let H be a Banach locale, we endow H × H with the max

norm. Then the function ΣH×HI : (Bq0×Bq0)I → (Bq0×Bq0) of H×H is just
the product of two maps ΣI : (Bq0)I → Bq0 of H.

Proof :
The result holds for immediate diagrammatic reason for all the maps ΣS when
S ⊂ I is finite, and passes to the limit ΣI = limS⊂I ΣS . �
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5.2.10. Proposition : Let (Ui)i∈I be a family of open sublocales of Bq0 such
that for every i, δ(Ui) < ε. Then the image of

∏
i∈I Ui by ΣI is of diameter

smaller than ε′ for any ε < ε′.

Proof :
In H × H, the sublocale X = ∆ε ∧ (Bq0)2 is open and convex. Each of the
Ui×Ui is included in X. Hence by the previous result, if we apply ΣI in H×H,
the image of

∏
i∈I(Ui × Ui) will be included in X.

Now let Y be the image of
∏
i∈I Ui by ΣI then the image of

∏
i∈I(Ui × Ui)

by ΣI is (by 5.2.9) the same thing as the image of
(∏

i∈I Ui
)2

by (ΣI)
2 which

is fiberwise dense in Y × Y , hence Y × Y is also included in X, and as X is
included in ∆ε′ for any ε′ > ε, this concludes the proof.
�

5.3 Proof of the spatiality theorem

5.3.1. Here is the key lemma:

Lemma : Consider:
• A topos T in which 1 is numerically projective.
• A Banach locale H in T .
• Two positive rational numbers a and e and a positive integer n.
• A global section U of the sheaf of positive convex open sublocales of H

such that U ⊂ Bn0
Then there exists a global section V of the sheaf of convex open sublocales of H
such that V is included in BeU and δ(V ) < a.

Proof :
Internally in T , one can prove that there exists a positive open sublocale V such
that δ(V ) < a/2 and V ⊂ U . Indeed such a V covers U and U is positive. In
particular, externally, there exists an object P � 1 which parametrizes a family
of such possible choices. Applying the fact that 1 is numerically projective, one
can construct an object I → P and a family of real numbers λ : I → [0, 1] such
that internally

∑
i∈I λi = 1. Also, internally in T one has a family (Vi)i∈I of

open sublocales of H such that Vi ⊂ U and δ(Vi) < a/2.
We define Y to be the image of

∏
i∈I Vi by the map

ΣI : (Bn0)I → Bn0

induced (following 5.2.6)by the family λi.
Then Y is included in U and of diameter smaller v for any v greater than a/2,
in particular δ(Y ) < (a/2)+(a/5). Moreover as the image of something positive
and locally positive, Y is positive and locally positive. Let e′ = min(a/5, e/2)
then one can define:

V = Conv Be′Y

one has the following properties:
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• V is given by a global section because its construction depends on no
internal choices.

•
δ(V ) = δ(Be′Y ) < 2e′ +

a

2
+
a

5
6

2a

5
+
a

2
+
a

5
= a

• Y ⊂ U ⊂ Be/2U hence,

Be′Y ⊂ Be/2Be/2U ⊂ BeU.

As BeU is convex, one concludes that V ⊂ BeU .
This concludes the proof.
�

5.3.2. We can now prove theorem 5.1.4

Proof :
Let T be a topos satisfying all the hypothesis of theorem 5.1.4, and H be a
Banach locale in T .
It is enough to prove internally that for any (positive) integer n, for any positive
rational number ε and for any positive convex open sublocale U ⊂ BnO the open
sublocale BεU has a point. Indeed, as H is metric these BεU form a basis of the
topology. Also, as NT and QT are just p∗(N) and p∗(QT ) for p the canonical
geometric morphism to the base topos, it is enough to prove this for any n and
any ε fixed in the base topos. We fix n and ε (externally) for the rest of the
proof.

More precisely, we will prove the following external statement:

For each i, for each section U of Oconv,+(H) over Ai such that U ⊂ Bn0, for
each Vi ≺ Ai, there exists a point p : Pi → H such that over Vi, the point p
belongs to BεU .
As the Vi such that Vi ≺ Ai cover Ai, this indeed proves that for any positive
convex open sublocale defined over Ai we indeed have internal existence of a
point. As the Ai form a generating family it is indeed enough in order to
conclude the proof of the theorem

Let Ai, Vi and U be as previously stated. Let Wi such that Vi ∧Wi = ∅ and
Ai ∨Wi = >. We extend U to U ′ a positive convex open sublocale included in
Bn0 defined over Pi by defining: (for all x ∈ Pi)

U ′x = Conv

(( ∨
x∈Ai

Ux

)
∨ (Bn0 ∧ “x ∈Wi”)

)

U ′x is positive for all x because either x ∈ Ai and the left side is positive, either
x ∈ Wi and the right side is positive. U ′x ⊂ Bn0 because each side does and
Bn0 is convex. And for all x ∈ Vi one has U ′x = Ux.
Hence one obtains a section U ′ over Pi of the sheaf of positive convex open
sublocales of Bn0 which coincide with U over Vi.
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As Pi is numerically projective, one can then apply Lemma 5.3.1 (and the axiom
of dependent choice) to construct a sequence Un of sections over Pi of the sheaf
of positive convex open sublocales such that:

U0 ⊂ Bε/3U ′

δ(Un) <
1

n+ 1

Un ⊂ Bl+n+1

Un ⊂ Bε2−n−1Un−1

And then we define, Vn = Bε2−n−1Un.
One has

V0 ⊂ B5ε/6U
′;

Vn ⊂ Bε2−n−1Bε2−n−1Un−1 ⊂ Bε2−nUn−1 = Vn−1;

δ(Vn) <
1

n+ 1
+ ε2−n.

If we consider (internally) the set of convex open U of H such that Vn / U for
some n, then this defines a Pi indexed family regular Cauchy filter on H and
by completeness of H this defines a Pi-indexed point of H, which will belong
to B5ε/6U ′ ⊂ BεU

′. When one restricts it to Vi it belongs to BεU , and this
concludes the proof.
�
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