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If at time t ∈ N site x ∈ Z2 has at least j neighbours in state •,
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Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.
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State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-bootstrap percolation infections never heal and at each step
we infect all x ∈ Z2 such that

∃U ∈ U ,∀u ∈ U : x + u is • .

Critical probability: pc = inf{p ∈ [0, 1] : π(τ0 =∞) = 0}.
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Definition (Supercritical family)

An update family U is supercritical if a finite set Z ⊂ Z2 of infections
can infect an infinite one.

Theorem (Bollobás–Smith–Uzzell’15)

If U is supercritical, then pc = 0 and τ0 = p−Θ(1).

Definition (Stable directions)

A direction u ∈ S1 is unstable if there exists U ∈ U contained in

U ⊂ Hu = {x ∈ Z2 : 〈x , u〉 < 0}.

Theorem (BSU15)

An update family U is supercritical iff there is an open semi-circle of
unstable directions.
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Definition (Critical family)

An update family is critical if there is no unstable open semi-circle, but
there exists a semi-circle with finitely many stable directions.

Definition (Difficulty)

The difficulty α(u) ∈ {1, 2, . . . } of an isolated stable direction u ∈ S1

is the smallest cardinal of a set of Z ⊂ Z2 such that Z ∪Hu can infect
an infinite set. We set α(u) =∞ for non-isolated stable directions and
α(u) = 0 for unstable ones.
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is the smallest cardinal of a set of Z ⊂ Z2 such that Z ∪Hu can infect
an infinite set. We set α(u) =∞ for non-isolated stable directions and
α(u) = 0 for unstable ones. The difficulty of U is
α = α(U) = minC maxu∈C α(u), where the minimum is over open
semi-circles.
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there exists a semi-circle with finitely many stable directions.
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Definition (Subcritical family)

An update family is subcritical if every semi-circle contains infinitely
many stable directions. It is trivial subcritical if all directions are stable.

Theorem (Balister–Bollobás–Przykucki–Smith’16)

If U is subcritical, then pc > 0. Moreover, pc = 1 iff it is trivial
subcritical.

Conjecture (Schonmann’92,H’21)

For all U and p > pc, τ0 has an exponential moment.

Theorem (H’22)

For all U supported in a half-space the conjecture holds.
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Bootstrap percolation
Geometry: Z2.

State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-bootstrap percolation infections never heal and at each step
we infect all x ∈ Z2 such that

∃U ∈ U , ∀u ∈ U : x + u is • .

Infection time: τ0 = inf{t ∈ N : 0 is •} ∈ N ∪ {∞}.
Density of •: p ∈ [0, 1].

Initial distribution: π = Ber(p)⊗Z
2
.

Critical probability: pc = inf{p ∈ [0, 1] : π(τ0 =∞) = 0}.
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Kinetically constrained models
Geometry: Z2.

State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-KCM infections can heal and at rate 1 we update to Ber(p)
all x ∈ Z2 such that

∃U ∈ U , ∀u ∈ U : x + u is • .

Infection time: τ0 = inf{t ∈ R+ : 0 is •} ∈ R+ ∪ {∞}.
Density of •: p ∈ [0, 1].

Initial and stationary distribution: π = Ber(p)⊗Z
2
.

Critical probability: pc = inf{p ∈ [0, 1] : Pπ(τ0 =∞) = 0}.
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Theorem (Cancrini–Martinelli–Roberto–C. Toninelli’08)

For any U the following are equivalent:

π(τ0 =∞) = 0 in U-bootstrap percolation;

Pπ(τ0 =∞) = 0 in the U-KCM;

0 is a simple eigenvalue of the generator of the U-KCM;

the U-KCM is ergodic;

the U-KCM is mixing.

Theorem (CMRT08,H21)

For any U the following are equivalent:

in U-bootstrap percolation τ0 has an exponential moment;

in U-KCM τ0 has an exponential moment;

Trel <∞ for the U-KCM.

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

Theorem (Cancrini–Martinelli–Roberto–C. Toninelli’08)

For any U the following are equivalent:

π(τ0 =∞) = 0 in U-bootstrap percolation;

Pπ(τ0 =∞) = 0 in the U-KCM;

0 is a simple eigenvalue of the generator of the U-KCM;

the U-KCM is ergodic;

the U-KCM is mixing.

Theorem (CMRT08,H21)

For any U the following are equivalent:

in U-bootstrap percolation τ0 has an exponential moment;

in U-KCM τ0 has an exponential moment;

Trel <∞ for the U-KCM.

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

τ0 6 exp(1/
√
p)

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

1/
√
p

τ0 6 (1/
√
p)2/p = 1/p2

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Models
Subcritical
Supercritical
Critical

1-neighbour KCM

Theorem (CMRT08,Shapira’20)

For the 1-neighbour KCM we have

Trel =


Θ(p−3) d = 1,

p−2+o(1) d = 2,

Θ(p−2) d > 3.
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Chung–Diaconis–Graham’01)

Starting from an infection at 0 and using at most n infections
simultaneously, we can bring an infection only as far as 2n−1 − 1.
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Lemma (Mauch–Jackle’99, Sollich–Evans’99,
Chung–Diaconis–Graham’01)

Starting from an infection at 0 and using at most n infections
simultaneously, we can bring an infection only as far as 2n−1 − 1.

Theorem (Aldous–Diaconis’02, CMRT08)

Trel = exp

(
log2(1/p)

2 log 2 + o(1)

)
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Definition (Rooted)

A supercritical family U is rooted if there exist two non-opposite stable
directions and unrooted otherwise.

Theorem (Martinelli–C. Toninelli’19, Martinelli–Morris–C. Toninelli’19,
Marêché’20, Marêché–Martinelli–C. Toninelli’20)

For a supercritical KCM we have

Trel = p−Θ(1) if U is unrooted;

Trel = exp(Θ(log2(1/p))) if U is rooted.
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Critical KCM
Theorem (MT19, MMT19)

For critical U-KCM we have τ0 = exp(p−Θ(1)).

Conjecture (MMT19)

The correct exponent is between α and 2α. It corresponds to either
moving 1-neighbour-like or East-like (whichever is more efficient).

Theorem (MMT19, H–Marêché–C. Toninelli’20)

For a critical U-KCM with infinite number of stable directions and
difficulty α we have τ0 = exp(p−2α+o(1)).

East-like movement of ‘droplets’.

East-like deterministic logarithmic bottleneck.
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Conjecture (MMT19)

The correct exponent is between α and 2α. It corresponds to either
moving 1-neighbour-like or East-like (whichever is more efficient).

Theorem (MMT19, HMT20)

For a critical U-KCM with infinite number of stable directions and
difficulty α we have τ0 = exp(p−2α+o(1)).

Theorem (H–Martinelli–C. Toninelli’21)

For a critical U-KCM with finite number of stable directions and
difficulty α we have τ0 = exp(p−α+o(1)).
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Higher dimensions
Out of equilibrium

Refined universality

Definition

Fix a critical update family. A direction u is hard if α(u) > α. The
family is unbalanced if there are two opposite hard directions and
balanced otherwise.

Theorem (BDCMS14+)

For critical U-bootstrap percolation with difficulty α we have

τ0 = exp

(
Θ(1)

1

pα

(
log

1

p

)γ′)
,

where γ′ = 0 if U is balanced and γ′ = 2 if it is unbalanced.
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Higher dimensions
Out of equilibrium

Definition

A critical update family is rooted if it has two non-opposite hard
directions and unrooted otherwise. Families with one hard direction
are semi-directed, while those with no hard directions are isotropic.

Theorem (MMT19, HMT’21,H–Marêché’22, H’21+)

For critical U-KCM with difficulty α we have

τ0 = exp

(
Θ(1)

(
1

pα

)β (
log

1

p

)γ (
log log

1

p

)δ)
,

where the exponents β, γ, δ are given in the table below.

Ivailo Hartarsky Universality



Bootstrap percolation
Kinetically constrained models

Further directions
Conclusion

Refined universality for critical families
Higher dimensions
Out of equilibrium

Definition

A critical update family is rooted if it has two non-opposite hard
directions and unrooted otherwise. Families with one hard direction
are semi-directed, while those with no hard directions are isotropic.

Theorem (MMT19, HMT’21,H–Marêché’22, H’21+)
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Definition

A critical update family is rooted if it has two non-opposite hard
directions and unrooted otherwise. Families with one hard direction
are semi-directed, while those with no hard directions are isotropic.

Theorem (MMT19, HMT’21,H–Marêché’22, H’21+)

For critical U-KCM with difficulty α we have

τ0 = exp

(
Θ(1)

(
1

pα

)β (
log

1

p

)γ (
log log

1

p

)δ)
,

where the exponents β, γ, δ are given in the table below.

Infinite stable dir.
Finite stable dir.

Rooted Unrooted

Unbalanced 2, 4, 0 1, 3, 0 1, 2, 0

Balanced 2, 0, 0 1, 1, 0
1, 0, 1
S.-dir. Iso.

1, 0, 0
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Higher dimensions

Theorem (3× Balister–Bollobás–Morris–Smith’22+)

Bootstrap percolation universality statements for supercritical and
subcritical families extend to higher dimensions modulo adapting the
definition as needed. For every critical family there exists an integer
1 6 r 6 d − 1 such that

τ0 = exp◦r
(
p−Θ(1)

)
.
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Higher dimensions
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Higher dimensions
Theorem (3× Balister–Bollobás–Morris–Smith’22+)

Bootstrap percolation universality statements for supercritical and
subcritical families extend to higher dimensions modulo adapting the
definition as needed. For every critical family there exists an integer
1 6 r 6 d − 1 such that

τ0 = exp◦r
(
p−Θ(1)

)
.

For KCM the analogous universality result (with a rooted/unrooted
distinction for supercritical families) is not known. More precisely, the
upper bounds for supercritical and critical families are still missing.
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Refined universality for critical families
Higher dimensions
Out of equilibrium

Out of equilibrium

Theorem (H–F. Toninelli’22+)

For any update family U which is not trivial subcritical there exist
p0 < 1 and C > 0 such that for any p > p0 the following holds for the
U-KCM on [−L, L]d with infected boundary condition. For any
δ ∈ (0, 1) and L large enough depending on δ

tmix(δ)/L ∈ [1/C ,C ].
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Open problems

KCM universality in higher dimensions.

Higher dimensional analogue of α, when possible.

Prove sharp threshold for (2d) critical bootstrap percolation.

Convergence to equilibrium from a product measure different from
the invariant one. Even for the 1-neighbour case this is open
when p is not close to 1.

Limit shapes, cutoff.

Sharp phase transition of (2d) subcritical models.

Determine or even conjecture which subcritical models exhibit a
continuous phase transition.
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