

Bootstrap percolation and kinetically constrained models: two-dimensional universality and beyond

Ivailo Hartarsky

7 January 2022

This project has received funding from the ERC under the EU's Horizon 2020 research and innovation programme (Grant agreement No. 680275)

§10 Two-neighbour bootstrap percolation. Joint with Rob Morris

- §10 Two-neighbour bootstrap percolation. Joint with Rob Morris
- § 5 Fredrickson-Anderesen 2-spin facilitated model. Joint with Fabio Martinelli & Cristina Toninelli

- §10 Two-neighbour bootstrap percolation. Joint with Rob Morris
- § 5 Fredrickson-Anderesen 2-spin facilitated model. Joint with Fabio Martinelli & Cristina Toninelli
- § 3 Coalescing and branching simple symmetric exclusion process. Joint with Fabio Martinelli & Cristina Toninelli

- §10 Two-neighbour bootstrap percolation. Joint with Rob Morris
- § 5 Fredrickson-Anderesen 2-spin facilitated model. Joint with Fabio Martinelli & Cristina Toninelli
- § 3 Coalescing and branching simple symmetric exclusion process. Joint with Fabio Martinelli & Cristina Toninelli

- §10 Two-neighbour bootstrap percolation. Joint with Rob Morris
- § 5 Fredrickson-Anderesen 2-spin facilitated model. Joint with Fabio Martinelli & Cristina Toninelli
- § 3 Coalescing and branching simple symmetric exclusion process. Joint with Fabio Martinelli & Cristina Toninelli

For universality see §1, 4, 6, 7, 8, \leq , 12.

Motivation

Motivation

Proposition

Everything is useful.

Two neighbour bootstrap percolation Fredrickson–Andersen 2-spin facilitated model Model Results

• Geometry: \mathbb{Z}^2 .

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).

- Geometry: \mathbb{Z}^2 .
- State space: {○,●}^{Z²} (○/● =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time t ∈ N site x ∈ Z² has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : 0 \text{ is } \bullet\} \in \mathbb{N} \cup \{\infty\}.$

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time t ∈ N site x ∈ Z² has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.
- Infection time: $\tau^{BP} = \inf\{t \in \mathbb{N} : 0 \text{ is } \bullet\} \in \mathbb{N} \cup \{\infty\}.$
- Density of •: $q \in [0, 1]$.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time t ∈ N site x ∈ Z² has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : \mathbf{0} \text{ is } \mathbf{\bullet}\} \in \mathbb{N} \cup \{\infty\}.$
- Density of •: $q \in [0, 1]$.
- Initial distribution: $Ber(q)^{\otimes \mathbb{Z}^2}$.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- If at time t ∈ N site x ∈ Z² has at least 2 neighbours in state •, then at time t + 1 its state also becomes •.
- • never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : \mathbf{0} \text{ is } \mathbf{\bullet}\} \in \mathbb{N} \cup \{\infty\}.$
- Density of •: $q \in [0, 1]$.
- Initial distribution: $Ber(q)^{\otimes \mathbb{Z}^2}$.
- Low temperature regime: all bounds will hold a.a.s. as $q \rightarrow 0$.

Model Results

Previous results

• [Van Enter'87] For all q>0 we have $au^{\mathrm{BP}}<\infty$ a.s.

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(rac{c}{q}
ight)\leqslant au^{\mathrm{BP}}\leqslant \exp\left(rac{C}{q}
ight).$$

Model Results

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(rac{c}{q}
ight)\leqslant au^{\mathrm{BP}}\leqslant \exp\left(rac{C}{q}
ight).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

Model Results

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(rac{c}{q}
ight)\leqslant au^{\mathrm{BP}}\leqslant \exp\left(rac{C}{q}
ight)$$

Lower bound: Rectangles process—if $1/q < \tau^{\rm BP} < \infty$, there exists an *internally filled* rectangle of size 1/q.

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right)$$

- [Lenormand–Zarcone'84] 0.33 for q = 0.086, size 2.10³.
- [Nakanishi–Takano'86] 0.27 for q = 0.03, size 1.10^3 .
- [Adler–Stauffer–Aharony'89] 0.245 ± 0.015 for q = 0.03, size 2.10^4 .
- [Teomy–Shokef'14] 0.274 for 8 cpu years, q=0.016, size 3.10^7 .

But $\pi^2/18 \approx 0.548$.

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner–Holroyd'08] For every $\varepsilon > 0$ and some c > 0

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner–Holroyd'08] Upper bound for the second term
- [Gravner–Holroyd–Morris'12] For some c, C > 0

$$\exp\left(\frac{\pi^2 - \mathcal{C}(\log(1/q))^3 \sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner–Holroyd'08] Upper bound for the second term
- [Gravner–Holroyd–Morris'12] Almost matching lower bound
- [Bringmann–Mahlburg'12] 'Morally,' for some c, C > 0

$$\exp\left(\frac{\pi^2 - C(\log(1/q))^{5/2}\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner-Holroyd'08] Upper bound for the second term
- [Gravner–Holroyd–Morris'12] Almost matching lower bound
- [Bringmann–Mahlburg'12] Slightly better lower bound

Theorem (H–Morris'19)

For some c, C > 0

$$\exp\left(\frac{\pi^2 - \mathbf{C}\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right).$$

Theorem (H–Morris'19)

For some c, C > 0

$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right)$$

Theorem (H'22, but morally Gravner-Holroyd'08)

For some C > 0 and all $\varepsilon > 0$

$$rac{\mathcal{F}_{ au^{ ext{BP}}}^{-1}(1-arepsilon)}{\mathcal{F}_{ au^{ ext{BP}}}^{-1}(arepsilon)}\leqslant rac{1}{q^{\mathcal{C}}}.$$

Theorem (H–Morris'19)

For some c, C > 0

$$\exp\left(rac{\pi^2-\mathcal{C}\sqrt{q}}{18q}
ight)\leqslant au^{ ext{BP}}\leqslant \exp\left(rac{\pi^2-\mathcal{C}\sqrt{q}}{18q}
ight)$$

Theorem (H'22, but morally Gravner–Holroyd'08)

For some C > 0 and all $\varepsilon > 0$

$$rac{F_{ au^{ ext{BP}}}^{-1}(1-arepsilon)}{F_{ au^{ ext{BP}}}^{-1}(arepsilon)}\leqslantrac{1}{q^{ extsf{C}}}.$$

Ivailo Hartarsky Bootstrap percolation and kinetically constrained models

.

• State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Glauber dynamcis

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q).

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Glauber dynamcis

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q).

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson–Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

•
$$Ber(q)^{\otimes \mathbb{Z}^2}$$
 is a reversible measure.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

•
$$Ber(q)^{\otimes \mathbb{Z}^2}$$
 is a reversible measure.

•
$$\tau = \inf\{t > 0 : 0 \text{ is } \bullet\} \in [0, \infty].$$

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- $Ber(q)^{\otimes \mathbb{Z}^2}$ is a reversible measure.
- $\tau = \inf\{t > 0 : 0 \text{ is } \bullet\} \in [0, \infty].$
- Initial state $Ber(q)^{\otimes \mathbb{Z}^2}$: equilibrium.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- $Ber(q)^{\otimes \mathbb{Z}^2}$ is a reversible measure.
- $\tau = \inf\{t > 0 : 0 \text{ is } \bullet\} \in [0, \infty].$
- Initial state $Ber(q)^{\otimes \mathbb{Z}^2}$: equilibrium.
- Low temperature: $q \rightarrow 0$.

Previous results

• [Cancrini–Martinelli–Roberto–Toninelli'08] For all q>0 we have $\tau<\infty$ a.s.

Previous results

• [Cancrini–Martinelli–Roberto–Toninelli'08] For all q>0 we have $\tau<\infty$ a.s.

Idea: the bisection technique. See $\S2$.

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] For some C > 0 and every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau \leqslant \exp\left(\frac{C}{q^5}\right)$$

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] For some C > 0 and every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau \leqslant \exp\left(\frac{C}{q^5}\right)$$

Idea: FA-2f cannot be faster than 2-neighbour bootstrap percolation.

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] For some C > 0

$$\exp\left(rac{\pi^2-o(1)}{18q}
ight)\leqslant au\leqslant\exp\left(rac{m{C}(\log(1/q))^2}{q}
ight)$$

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] For some C > 0

$$\exp\left(rac{\pi^2 - o(1)}{18q}
ight) \leqslant au \leqslant \exp\left(rac{C(\log(1/q))^2}{q}
ight)$$

Idea: take an infected frame of slightly supercritical size and move it in a FA-1f fashion.

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

Non-rigorous predictions

• [Nakanishi–Takano'86] For some $C(q)
ightarrow \infty$ as q
ightarrow 0

$$au pprox \exp\left(rac{C(q)}{q}
ight).$$

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi–Takano'86] Log corrections
- [Reiter'91] For some C > 0

$$\tau \approx \exp\left(\frac{\pi^2 + \mathbf{C}}{9q}\right).$$

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi–Takano'86] Log corrections
- [Reiter'91] No log corrections; different constant; exponentially slow movement of droplets
- [Toninelli–Biroli–Fisher'05] For some $C \in \mathbb{R}$

$$au pprox \exp\left(rac{\pi^2 + C\sqrt{q}}{9q}
ight).$$

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi–Takano'86] Log corrections
- [Reiter'91] No log corrections; different constant; exponentially slow movement of droplets
- [Toninelli-Biroli-Fisher'05] No log corrections; same constant; stretched exponential movement of droplets
- [Teomy-Shokef'15]

$$\tau \approx \exp\left(\frac{2\pi^2}{9q}\right)$$

Previous results

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi–Takano'86] Log corrections
- [Reiter'91] No log corrections; different constant; exponentially slow movement of droplets
- [Toninelli–Biroli–Fisher'05] No log corrections; same constant; stretched exponential movement of droplets
- [Teomy–Shokef'15] No log corrections; doubled constant

Theorem (H–Martinelli–Toninelli'20+)

For some C > 0

$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{9q}\right) \leqslant \tau \leqslant \exp\left(\frac{\pi^2 + C\sqrt{q}(\log(1/q))^3}{9q}\right)$$

.

Theorem (H–Martinelli–Toninelli'20+)

For some C > 0

$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{9q}\right) \leqslant \tau \leqslant \exp\left(\frac{\pi^2 + C\sqrt{q}(\log(1/q))^3}{9q}\right)$$

In particular,

$$\tau = \left(\tau^{\rm BP}\right)^{2+o(1)}$$

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$.

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$. We have $\tau_0 > 0$ w.h.p. since $\tau^{\rm BP}$ is exponentially large w.h.p.

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$. We have $\tau_0 > 0$ w.h.p. since $\tau^{\rm BP}$ is exponentially large w.h.p. If $\tau_0 > 0$, then at τ_0 there is an internally filled rectangle of size $\sim \log(1/q)/q$ at the origin.

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$. We have $\tau_0 > 0$ w.h.p. since $\tau^{\rm BP}$ is exponentially large w.h.p. If $\tau_0 > 0$, then at τ_0 there is an internally filled rectangle of size $\sim \log(1/q)/q$ at the origin.

Theorem (HM19)

The probability of this under the stationary measure is at most

$$\exp\left(\frac{-\pi^2 + C\sqrt{q}}{9q}\right)$$

Problems

Find a good droplet structure such that:

Problems

Find a good droplet structure such that:

• it has probability at least

$$\exp\left(rac{-\pi^2}{9q}
ight),$$

Problems

Find a good droplet structure such that:

• it has probability at least

$$\exp\left(rac{-\pi^2}{9q}
ight),$$

• it can move fast locally—at rate at least

$$\exp\left(rac{-C(\log(1/q))^3}{\sqrt{q}}
ight),$$

Problems

Find a good droplet structure such that:

• it has probability at least

$$\exp\left(rac{-\pi^2}{9q}
ight),$$

• it can move fast locally—at rate at least

$$\exp\left(rac{-C(\log(1/q))^3}{\sqrt{q}}
ight),$$

• it can move globally without recreating itself.

https://www.youtube.com/watch?v=7pR7TNzJ_pA

Amoeba motion

Amoeba motion

Ivailo Hartarsky Bootstrap percolation and kinetically constrained models

Amoeba motion

Ivailo Hartarsky Bootstrap percolation and kinetically constrained models

Amoeba motion

Amoeba motion

Ivailo Hartarsky Bootstrap percolation and kinetically constrained models
Model Results

Amoeba motion

Model Results

Amoeba motion

Ivailo Hartarsky Bootstrap percolation and kinetically constrained models

Model Results

Global movement: coalescing and branching simple symmetric exclusion process.

Global movement: coalescing and branching simple symmetric exclusion process.

• The amoeba moves by 1 step.

Global movement: coalescing and branching simple symmetric exclusion process.

- The amoeba moves by 1 step.
- The amoeba splits.

Results

Global movement: coalescing and branching simple symmetric exclusion process.

- The amoeba moves by 1 step.
- The amoeba splits.
- The amoeba meets another one and eats it.

Global movement: coalescing and branching simple symmetric exclusion process.

- The amoeba moves by 1 step.
- The amoeba splits.
- The amoeba meets another one and eats it.

Theorem (H–Martinelli–Toninelli'22)

The relaxation time on a box of volume V such that there is on average one amoeba is 1/|V| (up to logarithms).

?

Ivailo Hartarsky Bootstrap percolation and kinetically constrained models