Weakly constrained-degree percolation

Ivailo Hartarsky¹ CEREMADE, Université Paris Dauphine, PSL University joint with Bernardo de Lima

26 August 2021

Percolation session Journées Modélisation Aléatoire et Statistique 2020→2021, SIAM

¹Supported by ERC Starting Grant 680275 MALIG

Introduction Model Contribution Difficulties Conclusion Background

• Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

$$d = \kappa = 2$$

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

$$d = \kappa = 2$$

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.
- κ = 1 is the infinite fugacity Glauber dynamics of the hard core model on the line graph.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.
- κ = 1 is the infinite fugacity Glauber dynamics of the hard core model on the line graph.
- $\kappa = 2d$ is ordinary percolation.

- Dimension $d \ge 2$, constraint $\kappa \in [1, 2d]$, time $t \in [0, 1]$.
- Graph: $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ with $xy \in \mathbb{E}^d$ if $||x y||_2 = 1$.
- Graphical construction: rings $(U_e)_{e \in \mathbb{E}^d}$ i.i.d. uniform on [0, 1].
- Initial state (t = 0): all edges are *closed*.
- At time U_e we open $e = xy \in \mathbb{E}^d$ if both x and y are incident to at most $\kappa 1$ open edges at time U_e -.
- κ = 1 is the infinite fugacity Glauber dynamics of the hard core model on the line graph.
- $\kappa = 2d$ is ordinary percolation.

 $t_c^\kappa(d) = \inf\{t \in [0,1]: \mathbb{P}(0 \leftrightarrow \infty \text{ at time } t) > 0\} \in [0,1] \cup \{\infty\}.$

Introduction

• No clear monotonicity in *d*.

- No clear monotonicity in *d*.
- No clear monotonicity in κ .

- No clear monotonicity in *d*.
- No clear monotonicity in κ .
- No FKG inequality (having some edges may influence other negatively).

- No clear monotonicity in *d*.
- No clear monotonicity in κ .
- No FKG inequality (having some edges may influence other negatively).
- No finite energy property (adding an edge may change the probability by more than a bounded factor).

- No clear monotonicity in *d*.
- No clear monotonicity in κ .
- No FKG inequality (having some edges may influence other negatively).
- No finite energy property (adding an edge may change the probability by more than a bounded factor).
- The range of dependency is unbounded.

Introduction Contribution Conclusion Background

What do we know about it?

• For $\kappa = 2d - 1$, $d \ge 2$ we have $t_c^{\kappa}(d) \ne \infty$. [Teodoro'14]

- For $\kappa = 2d 1$, $d \ge 2$ we have $t_c^{\kappa}(d) \ne \infty$. [Teodoro'14]
- For $\kappa = 2 \leq d$ we have $t_c^{\kappa}(d) = \infty$. [de Lima, Sanchis, dos Santos, Sidoravicius, Teodoro'20]

- For $\kappa = 2d 1, \ d \geqslant 2$ we have $t_c^{\kappa}(d) \neq \infty$. [Teodoro'14]
- For $\kappa = 2 \leq d$ we have $t_c^{\kappa}(d) = \infty$. [de Lima, Sanchis, dos Santos, Sidoravicius, Teodoro'20]
- For $d = 2, \kappa = 3$ we have $t_c^4(2) = 1/2 < t_c^3(2) < 1$. [dLSdSST]

Introduction Model Contribution Difficulties Conclusion Background

- For $\kappa = 2d 1, \ d \geqslant 2$ we have $t_c^{\kappa}(d) \neq \infty$. [Teodoro'14]
- For $\kappa = 2 \leqslant d$ we have $t_c^{\kappa}(d) = \infty$. [de Lima, Sanchis, dos Santos, Sidoravicius, Teodoro'20]
- For $d = 2, \kappa = 3$ we have $t_c^4(2) = 1/2 < t_c^3(2) < 1$. [dLSdSST]
- For d = 2 and random constraints concentrated on κ = 3 and t close to 1 there is percolation. [Sanchis, dos Santos, Silva'21+]

Results Proof

Theorem

We have $t_c^{\kappa}(d) < 1.9/d$ for:

- $\kappa \geqslant$ 10 and $d > \kappa/2$;
- $\kappa \ge 9$ and $d \in \{7, 8, 9, 10, 11, 12, 14, 16\};$
- $\kappa \ge 8$ and $d \in \{5, 6\};$
- $\kappa \ge 7$ and d = 4;
- $\kappa \ge 5$ and d = 3.

Theorem

We have $t_c^{\kappa}(d) < 1.9/d$ for:

- $\kappa \geqslant$ 10 and $d > \kappa/2$;
- $\kappa \ge 9$ and $d \in \{7, 8, 9, 10, 11, 12, 14, 16\};$
- $\kappa \ge 8$ and $d \in \{5, 6\};$

•
$$\kappa \geqslant 7$$
 and $d = 4;$

•
$$\kappa \geqslant 5$$
 and $d=3$

Theorem

For any $\kappa_n,\ d_n\ {\rm such}\ {\rm that}\ \kappa_n\to\infty\ {\rm and}\ d_n\to\infty\ {\rm as}\ n\to\infty$ we have

$$\lim_{n\to\infty}d_n\cdot t_c^{\kappa_n}(d_n)=\frac{1}{2}.$$

Results Proof

Results Proof

Conclusion

Conclusion

Conclusion

Conclusion

When stuck, make events non-monotone.

Conclusion

Thank you.

Ivailo Hartarsky Weakly constrained-degree percolation

Conclusion

?

Based on IH, Bernardo de Lima, *Weakly constrained-degree percolation on the hypercubic lattice*. ArXiv:2010.08955.