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Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.

d = κ = 2

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.
κ = 1 is the in�nite fugacity Glauber dynamics of the hard core
model on the line graph.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.
κ = 1 is the in�nite fugacity Glauber dynamics of the hard core
model on the line graph.

κ = 2d is ordinary percolation.

Ivailo Hartarsky Weakly constrained-degree percolation



Introduction
Contribution
Conclusion

Model
Di�culties
Background

Constrained-degree percolation

Dimension d > 2, constraint κ ∈ [1, 2d ], time t ∈ [0, 1].

Graph: Ld = (Zd ,Ed) with xy ∈ Ed if ‖x − y‖2 = 1.

Graphical construction: rings (Ue)e∈Ed i.i.d. uniform on [0, 1].

Initial state (t = 0): all edges are closed.

At time Ue we open e = xy ∈ Ed if both x and y are incident to
at most κ− 1 open edges at time Ue−.
κ = 1 is the in�nite fugacity Glauber dynamics of the hard core
model on the line graph.

κ = 2d is ordinary percolation.

tκc (d) = inf{t ∈ [0, 1] : P(0↔∞ at time t) > 0} ∈ [0, 1] ∪ {∞}.
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What is hard about it?

No clear monotonicity in d .

No clear monotonicity in κ.

No FKG inequality (having some edges may in�uence other
negatively).

No �nite energy property (adding an edge may change the
probability by more than a bounded factor).

The range of dependency is unbounded.
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What do we know about it?

For κ = 2d − 1, d > 2 we have tκc (d) 6=∞. [Teodoro'14]

For κ = 2 6 d we have tκc (d) =∞. [de Lima, Sanchis, dos
Santos, Sidoravicius, Teodoro'20]

For d = 2, κ = 3 we have t4c (2) = 1/2 < t3c (2) < 1. [dLSdSST]

For d = 2 and random constraints concentrated on κ = 3 and t
close to 1 there is percolation. [Sanchis, dos Santos, Silva'21+]

d

κ
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We have tκc (d) < 1.9/d for:

κ > 10 and d > κ/2;

κ > 9 and d ∈ {7, 8, 9, 10, 11, 12, 14, 16};
κ > 8 and d ∈ {5, 6};
κ > 7 and d = 4;

κ > 5 and d = 3.

d

κ
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We have tκc (d) < 1.9/d for:

κ > 10 and d > κ/2;

κ > 9 and d ∈ {7, 8, 9, 10, 11, 12, 14, 16};
κ > 8 and d ∈ {5, 6};
κ > 7 and d = 4;

κ > 5 and d = 3.

Theorem

For any κn, dn such that κn →∞ and dn →∞ as n→∞ we have

lim
n→∞

dn · tκn
c (dn) =

1

2
.
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When stuck, make events non-monotone.
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Thank you.
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Based on IH, Bernardo de Lima, Weakly constrained-degree percolation on the

hypercubic lattice. ArXiv:2010.08955.
Ivailo Hartarsky Weakly constrained-degree percolation

https://arxiv.org/abs/2010.08955
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