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Equilibrium density of •: q ∈ [0, 1].
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For q close enough to 1, FA-2f on a box with • boundary condition
exhibits precutoff at linear time.

Theorem (H., F. Toninelli’22+)

For p ∈ (0, 1] and q close enough to 1, FA-2f on Z2 with initial
condition Ber(p)⊗Z2

converges exponentially fast to Ber(q)⊗Z2
.

Remark

Holds for any kinetically constrained model, dimension and domain.
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Kinetically constrained models

Geometry: Z2.

State space: Ω = {◦, •}Z2
(◦/• =healthy/infected).

Update rule: U ⊂ Z2 \ {0}, U 6= ∅, |U| <∞.

Update family U 6= ∅: finite set of update rules.

In U-KCM at rate 1 we update to Ber(q) any x ∈ Z2 such that

∃U ∈ U ,∀u ∈ U : x + u is • .
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KCM universality

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister,
Bollobás, Przykucki, Smith, Uzzell)

For any update family U , the U-KCM started at Ber(q)⊗Z2
is one of:

supercritical unrooted: τ = q−Θ(1) w.h.p. as q → 0,

supercritical rooted: τ = q−Θ(log(1/q)) w.h.p. as q → 0,

critical: τ = exp(q−Θ(1)) w.h.p. as q → 0,

subcritical non-trivial: τ =∞ w.h.p. as q → 0, but τ <∞ a.s. if
q is close enough to 1,

subcritical trivial: Pπ(τ =∞) > 0 for any q < 1.
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Previous results

FA-2f: cutoff for q = 1, d = 2. [Lacoin’14]

Critical models: ∅.

Oriented models, any q > qc: n log n mixing time upper bound.
[Chleboun–Martinelli’13]

Supercritical models, any d : exponential convergence to
equilibrium. [Marêché’20]

East, d = 1, any q > 0: exponential convergence to equilibrium.
[Cancrini, Martinelli, Schonmann, Toninelli’10]

FA-1f, d = 1: cutoff. [Ertul’22]

East, d = 1, any q > 0: cutoff. [Ganguly, Lubetzky, Martinelli’15]

East, d > 1, q small enough: cutoff for an axis-parallel box with
special boundary condition. [Couzinié, Martinelli’22]
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Last passage percolation

FA-2f

1−q

�
q

6�

Observation

CCP with ◦ initial condition has at most as much • as FA-2f.

Lemma

When there are no ◦ left, FA-2f is coupled for all initial conditions.

Observation

All ◦ form a single space-time connected component.
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Bootstrap percolation with death

Observation

For any ε > 0, if q is close enough to 1, then ε-BPwD has at most as
much • as q-CCP sped up by a factor 1/

√
1− q.

Theorem (Toom’80)

Let δ > 0. For ε > 0 small enough, for ε-BPwD with • initial
condition on Z2, P(0 is ◦ at time t) < δ for all t ≥ 0.

Proposition

For C > 0 there exists ε > 0 such that for any x ∈ Z2 × R+, in
ε-BPwD with • initial condition on Z2,

P(x ∈ space-time ◦-connected component of diameter n) ≤ e−Cn.
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Last passage percolation

Observation

All • sites in LPP sped up by a factor 1− q are coupled in q-CPP.

Theorem (Greenberg, Pascoe, Randall’09)

LPP on a box with • boundary condition reaches the • configuration
in linear time.
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Questions

Open questions

Prove the same for low temperatures (any q > 0).

Prove cutoff.

Both questions are open even for FA-1f in d = 2.

Ivailo Hartarsky Kinetically constrained models out of equilibrium



Results
Proof

Questions

Open questions

Prove the same for low temperatures (any q > 0).

Prove cutoff.

What about other graphs?
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