

Kinetically Constrained Models Out of Equilibrium

Ivailo Hartarsky (joint with Fabio Toninelli) Inn'formal probability seminar Innsbruck, 28 November 2023

This project has received funding from the Austrian Science Fund (FWF): P35428-N

Der Wissenschaftsfonds.

Results M Proof M Juestions B

Model Main results Background

Fredrickson–Andersen 2-spin facilitated model

Results N Proof M Questions E

Model Main results Background

Fredrickson–Andersen 2-spin facilitated model

• State space: $\{\circ,\bullet\}^\Lambda,\,\Lambda\subset\mathbb{Z}^2.$

Results Model Proof Main res Questions Backgrou

Fredrickson–Andersen 2-spin facilitated model

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Results Model Proof Main resul Questions Backgrour

Fredrickson–Andersen 2-spin facilitated model

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Glauber dynamics

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q).

ResultsModelProofMain resulQuestionsBackground

Fredrickson–Andersen 2-spin facilitated model

- State space: $\{\circ, \bullet\}^\Lambda, \, \Lambda \subset \mathbb{Z}^2.$
- Equilibrium density of •: $q \in [0, 1]$.

Glauber dynamics

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q).

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

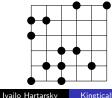
Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.



- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

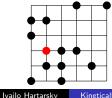
Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

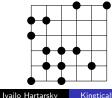
The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.



- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.



- State space: $\{\circ, \bullet\}^{\Lambda}$, $\Lambda \subset \mathbb{Z}^2$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \Lambda$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state •.

Results Model Proof Main results Questions Background

Theorem (H., F. Toninelli'22+)

For q close enough to 1, FA-2f on a box with • boundary condition exhibits precutoff at linear time.

Theorem (H., F. Toninelli'22+)

For q close enough to 1, FA-2f on a box with \bullet boundary condition exhibits precutoff at linear time. That is: there exist $q_0 < 1$ and C > 1 such that for any $\varepsilon > 0$ there exists $N \ge 0$ such that for any $n \ge N$ and $q \in [q_0, 1]$ the following holds. Let μ_t^{ω} be the law at time $t \ge 0$ of FA-2f on $\Lambda = ([-n, n] \cap \mathbb{Z})^2$ with \bullet boundary condition on $\mathbb{Z}^2 \setminus \Lambda$ and initial condition $\omega \in \{\circ, \bullet\}^{\Lambda}$. Then

$$\max_{\omega} d_{\mathrm{TV}}\left(\mu_{n/C}^{\omega}, Ber(q)^{\otimes \Lambda}\right) \geq 1 - \varepsilon, \quad \max_{\omega} d_{\mathrm{TV}}\left(\mu_{Cn}^{\omega}, Ber(q)^{\otimes \Lambda}\right) \leq \varepsilon.$$

$$d_{\mathrm{TV}}(\mu,\nu) = \sup_{A} (\mu(A) - \nu(A))$$

Theorem (H., F. Toninelli'22+)

For q close enough to 1, FA-2f on a box with \bullet boundary condition exhibits precutoff at linear time. That is: there exist $q_0 < 1$ and C > 1 such that for any $\varepsilon > 0$ there exists $N \ge 0$ such that for any $n \ge N$ and $q \in [q_0, 1]$ the following holds. Let μ_t^{ω} be the law at time $t \ge 0$ of FA-2f on $\Lambda = ([-n, n] \cap \mathbb{Z})^2$ with \bullet boundary condition on $\mathbb{Z}^2 \setminus \Lambda$ and initial condition $\omega \in \{\circ, \bullet\}^{\Lambda}$. Then

$$\max_{\omega} d_{\mathrm{TV}}\left(\mu_{n/C}^{\omega}, \operatorname{Ber}(q)^{\otimes \Lambda}\right) \geq 1 - \varepsilon, \quad \max_{\omega} d_{\mathrm{TV}}\left(\mu_{Cn}^{\omega}, \operatorname{Ber}(q)^{\otimes \Lambda}\right) \leq \varepsilon.$$

Theorem (H., F. Toninelli'22+)

For $p \in (0,1]$ and q close enough to 1, FA-2f on \mathbb{Z}^2 with initial condition $Ber(p)^{\otimes \mathbb{Z}^2}$ converges exponentially fast to $Ber(q)^{\otimes \mathbb{Z}^2}$.

Theorem (H., F. Toninelli'22+)

For q close enough to 1, FA-2f on a box with \bullet boundary condition exhibits precutoff at linear time. That is: there exist $q_0 < 1$ and C > 1 such that for any $\varepsilon > 0$ there exists $N \ge 0$ such that for any $n \ge N$ and $q \in [q_0, 1]$ the following holds. Let μ_t^{ω} be the law at time $t \ge 0$ of FA-2f on $\Lambda = ([-n, n] \cap \mathbb{Z})^2$ with \bullet boundary condition on $\mathbb{Z}^2 \setminus \Lambda$ and initial condition $\omega \in \{\circ, \bullet\}^{\Lambda}$. Then

$$\max_{\omega} d_{\mathrm{TV}}\left(\mu_{n/C}^{\omega}, \operatorname{Ber}(q)^{\otimes \Lambda}\right) \geq 1 - \varepsilon, \quad \max_{\omega} d_{\mathrm{TV}}\left(\mu_{Cn}^{\omega}, \operatorname{Ber}(q)^{\otimes \Lambda}\right) \leq \varepsilon.$$

Theorem (H., F. Toninelli'22+)

For $p \in (0,1]$ and q close enough to 1, FA-2f on \mathbb{Z}^2 with initial condition $Ber(p)^{\otimes \mathbb{Z}^2}$ converges exponentially fast to $Ber(q)^{\otimes \mathbb{Z}^2}$.

Remark

Holds for any kinetically constrained model, dimension and domain.

ResultsModelProofMain resultsQuestionsBackground

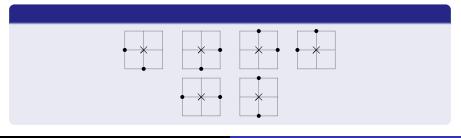
Kinetically constrained models

• Geometry: \mathbb{Z}^2 .

- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).

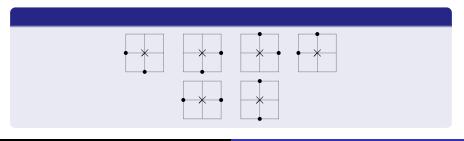
- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- Update rule: $U \subset \mathbb{Z}^2 \setminus \{0\}$, $U \neq \varnothing$, $|U| < \infty$.

- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- $\bullet \ \ {\rm Update \ rule:} \ \ U\subset \mathbb{Z}^2\setminus\{0\}, \ U\neq \varnothing, \ |U|<\infty.$
- Update family $\mathcal{U} \neq \varnothing$: finite set of update rules.

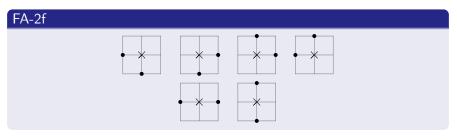


- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- Update rule: $U \subset \mathbb{Z}^2 \setminus \{0\}$, $U \neq \varnothing$, $|U| < \infty$.
- Update family $\mathcal{U} \neq \varnothing$: finite set of update rules.
- In \mathcal{U} -KCM at rate 1 we update to $\operatorname{Ber}(q)$ any $x\in\mathbb{Z}^2$ such that

$$\exists U \in \mathcal{U}, \forall u \in U : x + u \text{ is } \bullet.$$



- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- Update rule: $U \subset \mathbb{Z}^2 \setminus \{0\}$, $U \neq \emptyset$, $|U| < \infty$.
- Update family $\mathcal{U} \neq \varnothing$: finite set of update rules.
- In \mathcal{U} -KCM at rate 1 we update to $\mathrm{Ber}(q)$ any $x\in\mathbb{Z}^2$ such that



 $\exists U \in \mathcal{U}, \forall u \in U : x + u \text{ is } \bullet.$

- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- Update rule: $U \subset \mathbb{Z}^2 \setminus \{0\}, \ U \neq \varnothing, \ |U| < \infty.$
- Update family $\mathcal{U} \neq \varnothing$: finite set of update rules.
- In \mathcal{U} -KCM at rate 1 we update to $\operatorname{Ber}(q)$ any $x\in\mathbb{Z}^2$ such that

$$\exists U \in \mathcal{U}, \forall u \in U : x + u \text{ is } \bullet.$$

• Equilibrium distribution: $Ber(q)^{\otimes \mathbb{Z}^2}$.

- Geometry: \mathbb{Z}^2 .
- State space: $\Omega = \{\circ, \bullet\}^{\mathbb{Z}^2}$ ($\circ/\bullet = healthy/infected$).
- Update rule: $U \subset \mathbb{Z}^2 \setminus \{0\}$, $U \neq \emptyset$, $|U| < \infty$.
- Update family $\mathcal{U} \neq \varnothing$: finite set of update rules.
- In \mathcal{U} -KCM at rate 1 we update to $\operatorname{Ber}(q)$ any $x\in\mathbb{Z}^2$ such that

$$\exists U \in \mathcal{U}, \forall u \in U : x + u \text{ is } \bullet.$$

- Equilibrium distribution: $Ber(q)^{\otimes \mathbb{Z}^2}$.
- Infection time: $\tau = \inf\{t \in \mathbb{R}_+ : 0 \text{ is } \bullet\} \in \mathbb{R}_+ \cup \{\infty\}.$

ResultsModelProofMain resultsQuestionsBackground

KCM universality

Results Model Proof Main results Questions Background

KCM universality

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister, Bollobás, Przykucki, Smith, Uzzell)

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister, Bollobás, Przykucki, Smith, Uzzell)

For any update family \mathcal{U} , the \mathcal{U} -KCM started at $Ber(q)^{\otimes \mathbb{Z}^2}$ is one of:

• supercritical unrooted: $au=q^{-\Theta(1)}$ w.h.p. as q
ightarrow 0,

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister, Bollobás, Przykucki, Smith, Uzzell)

- supercritical unrooted: $au = q^{-\Theta(1)}$ w.h.p. as $q \to 0$,
- supercritical rooted: $au = q^{-\Theta(\log(1/q))}$ w.h.p. as $q \to 0$,

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister, Bollobás, Przykucki, Smith, Uzzell)

- supercritical unrooted: $au=q^{-\Theta(1)}$ w.h.p. as q
 ightarrow 0,
- supercritical rooted: $au = q^{-\Theta(\log(1/q))}$ w.h.p. as $q \to 0$,

• critical:
$$au = \exp(q^{-\Theta(1)})$$
 w.h.p. as $q o 0$,

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister, Bollobás, Przykucki, Smith, Uzzell)

- supercritical unrooted: $au = q^{-\Theta(1)}$ w.h.p. as $q \to 0$,
- supercritical rooted: $au = q^{-\Theta(\log(1/q))}$ w.h.p. as $q \to 0$,
- critical: $au = \exp(q^{-\Theta(1)})$ w.h.p. as q o 0,
- subcritical non-trivial: τ = ∞ w.h.p. as q → 0, but τ < ∞ a.s. if q is close enough to 1,

Theorem (Marêché, Martinelli, Morris, C. Toninelli + Balister, Bollobás, Przykucki, Smith, Uzzell)

- supercritical unrooted: $au = q^{-\Theta(1)}$ w.h.p. as $q \to 0$,
- supercritical rooted: $au = q^{-\Theta(\log(1/q))}$ w.h.p. as $q \to 0$,
- critical: $au = \exp(q^{-\Theta(1)})$ w.h.p. as q o 0,
- subcritical non-trivial: $\tau = \infty$ w.h.p. as $q \rightarrow 0$, but $\tau < \infty$ a.s. if q is close enough to 1,
- subcritical trivial: $\mathbb{P}_{\pi}(\tau = \infty) > 0$ for any q < 1.

ResultsModelProofMain resultsQuestionsBackground

ResultsModelProofMain resultsQuestionsBackground

Previous results

• FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]

- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: \emptyset .

- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: Ø.
- Oriented models, any q > q_c: n log n mixing time upper bound. [Chleboun-Martinelli'13]

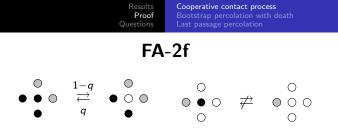
- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: Ø.
- Oriented models, any q > q_c: n log n mixing time upper bound. [Chleboun–Martinelli'13]
- Supercritical models, any *d*: exponential convergence to equilibrium. [Marêché'20]

- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: Ø.
- Oriented models, any q > q_c: n log n mixing time upper bound. [Chleboun–Martinelli'13]
- Supercritical models, any *d*: exponential convergence to equilibrium. [Marêché'20]
- East, *d* = 1, any *q* > 0: exponential convergence to equilibrium. [Cancrini, Martinelli, Schonmann, Toninelli'10]

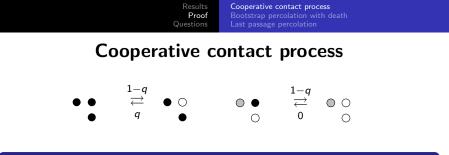
- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: Ø.
- Oriented models, any q > q_c: n log n mixing time upper bound. [Chleboun–Martinelli'13]
- Supercritical models, any *d*: exponential convergence to equilibrium. [Marêché'20]
- East, *d* = 1, any *q* > 0: exponential convergence to equilibrium. [Cancrini, Martinelli, Schonmann, Toninelli'10]
- FA-1f, *d* = 1: cutoff. [Ertul'22]

- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: Ø.
- Oriented models, any q > q_c: n log n mixing time upper bound. [Chleboun–Martinelli'13]
- Supercritical models, any *d*: exponential convergence to equilibrium. [Marêché'20]
- East, *d* = 1, any *q* > 0: exponential convergence to equilibrium. [Cancrini, Martinelli, Schonmann, Toninelli'10]
- FA-1f, *d* = 1: cutoff. [Ertul'22]
- East, d = 1, any q > 0: cutoff. [Ganguly, Lubetzky, Martinelli'15]

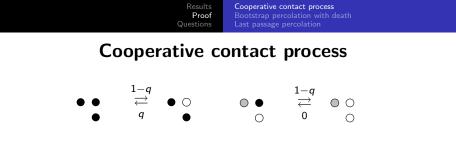
- FA-2f: cutoff for q = 1, d = 2. [Lacoin'14]
- Critical models: Ø.
- Oriented models, any q > q_c: n log n mixing time upper bound. [Chleboun–Martinelli'13]
- Supercritical models, any *d*: exponential convergence to equilibrium. [Marêché'20]
- East, *d* = 1, any *q* > 0: exponential convergence to equilibrium. [Cancrini, Martinelli, Schonmann, Toninelli'10]
- FA-1f, *d* = 1: cutoff. [Ertul'22]
- East, d = 1, any q > 0: cutoff. [Ganguly, Lubetzky, Martinelli'15]
- East, d > 1, q small enough: cutoff for an axis-parallel box with special boundary condition. [Couzinié, Martinelli'22]



Cooperative contact process

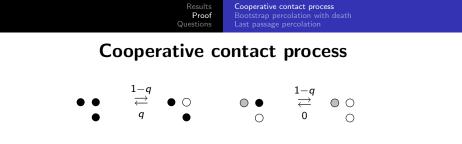


CCP with \circ initial condition has at most as much \bullet as FA-2f.



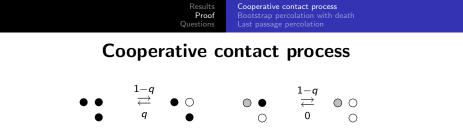
CCP with \circ initial condition has at most as much \bullet as FA-2f.

Make all \circ initially \circ .



CCP with \circ initial condition has at most as much \bullet as FA-2f.

Make all \circ initially \circ . When placing \circ next to a \circ , make it \circ as well.



CCP with \circ initial condition has at most as much \bullet as FA-2f.

Make all \circ initially \circ . When placing \circ next to a \circ , make it \circ as well.

Lemma

When there are no o left, FA-2f is coupled for all initial conditions.

CCP with \circ initial condition has at most as much \bullet as FA-2f.

Make all \circ initially \circ . When placing \circ next to a \circ , make it \circ as well.

Lemma

When there are no o left, FA-2f is coupled for all initial conditions.

Observation

All o form a single space-time connected component.

Bootstrap percolation with death

Bootstrap percolation with death

Discrete time, parallel updates (probabilistic cellular automaton).

Bootstrap percolation with death

Discrete time, parallel updates (probabilistic cellular automaton).

$$\varepsilon \overset{\bullet}{\underset{\bullet}{\overset{\circ}{\longrightarrow}}} \overset{\circ}{\underset{\bullet}{\overset{\circ}{\longrightarrow}}} \overset{\bullet}{\underset{\bullet}{\overset{\bullet}{\longrightarrow}}} \overset{\circ}{\underset{\circ}{\overset{\circ}{\supset}}} 1 \qquad 1 - \varepsilon \overset{\varepsilon}{\underset{\bullet}{\overset{\varepsilon}{\longrightarrow}}} 0$$

Bootstrap percolation with death

Discrete time, parallel updates (probabilistic cellular automaton).

$$\varepsilon \xrightarrow{\bullet} \overset{\bullet}{\overset{\circ}{\longrightarrow}} \overset{\bullet}{\overset{\bullet}{\longrightarrow}} \overset{\bullet}{\overset{\bullet}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} 1 \qquad 1 - \varepsilon \xrightarrow{\bullet} \overset{\varepsilon}{\overset{\varepsilon}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} 1$$

Observation

For any $\varepsilon > 0$, if q is close enough to 1, then ε -BPwD has at most as much • as q-CCP sped up by a factor $1/\sqrt{1-q}$.

Bootstrap percolation with death

Discrete time, parallel updates (probabilistic cellular automaton).

$$\varepsilon \xrightarrow{\bullet} \overset{\bullet}{\overset{\circ}{\longrightarrow}} \overset{\bullet}{\overset{\bullet}{\longrightarrow}} \overset{\bullet}{\overset{\bullet}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} 1 \qquad 1 - \varepsilon \xrightarrow{\varepsilon} \overset{\varepsilon}{\overset{\varepsilon}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} 0$$

Observation

For any $\varepsilon > 0$, if q is close enough to 1, then ε -BPwD has at most as much • as q-CCP sped up by a factor $1/\sqrt{1-q}$.

Theorem (Toom'80)

Let $\delta > 0$. For $\varepsilon > 0$ small enough, for ε -BPwD with \bullet initial condition on \mathbb{Z}^2 , $\mathbb{P}(0 \text{ is } \circ \text{ at time } t) < \delta$ for all $t \ge 0$.

Bootstrap percolation with death

Discrete time, parallel updates (probabilistic cellular automaton).

$$\varepsilon \xrightarrow{\bullet} \overset{\bullet}{\overset{\circ}{\longrightarrow}} \overset{\bullet}{\overset{\bullet}{\longrightarrow}} \overset{\bullet}{\overset{\bullet}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} 1 \qquad 1 - \varepsilon \xrightarrow{\varepsilon} \overset{\varepsilon}{\overset{\varepsilon}{\longrightarrow}} \overset{\circ}{\overset{\circ}{\longrightarrow}} 0$$

Observation

For any $\varepsilon > 0$, if q is close enough to 1, then ε -BPwD has at most as much • as q-CCP sped up by a factor $1/\sqrt{1-q}$.

Theorem (Toom'80)

Let $\delta > 0$. For $\varepsilon > 0$ small enough, for ε -BPwD with \bullet initial condition on \mathbb{Z}^2 , $\mathbb{P}(0 \text{ is } \circ \text{ at time } t) < \delta$ for all $t \ge 0$.

Proposition

For C > 0 there exists $\varepsilon > 0$ such that for any $x \in \mathbb{Z}^2 \times \mathbb{R}_+$, in ε -BPwD with \bullet initial condition on \mathbb{Z}^2 ,

 $\mathbb{P}(x \in \text{space-time } \circ \text{-connected component of diameter } n) \leq e^{-Cn}$.

Results Cooper Proof Bootst Justions Last pa

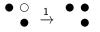
Cooperative contact process Bootstrap percolation with death Last passage percolation

Last passage percolation

Results Proof Questions

Cooperative contact process Bootstrap percolation with death Last passage percolation

Last passage percolation



Last passage percolation

Observation

All • sites in LPP sped up by a factor 1 - q are coupled in q-CPP.

Last passage percolation

Observation

All \bullet sites in LPP sped up by a factor 1 - q are coupled in q-CPP.

Theorem (Greenberg, Pascoe, Randall'09)

LPP on a box with • boundary condition reaches the • configuration in linear time.

Recap of the proof scheme for FA-2f

Recap of the proof scheme for FA-2f

FA-2f

Recap of the proof scheme for FA-2f

 $\mathsf{FA-2f}\to \mathrm{CCP}$

Recap of the proof scheme for FA-2f

 $\mathsf{FA-2f} \to \mathrm{CCP} \to \mathrm{LPP}$

Recap of the proof scheme for FA-2f

 $\begin{array}{l} \mathsf{FA-2f} \rightarrow \mathrm{CCP} \rightarrow \mathrm{LPP} \\ \rightarrow \mathrm{BPwD} \end{array}$

Results Proof Questions

Open questions

• Prove the same for low temperatures (any q > 0).

- Prove the same for low temperatures (any q > 0).
- Prove cutoff.

- Prove the same for low temperatures (any q > 0).
- Prove cutoff.

Both questions are open even for FA-1f in d = 2.

- Prove the same for low temperatures (any q > 0).
- Prove cutoff.
- What about other graphs?

Results Proof Questions

?

Ivailo Hartarsky Kinetically constrained models out of equilibrium