

Two-neighbour bootstrap percolation and the Fredrickson–Andersen model

Ivailo Hartarsky Probability seminar ICJ/UMPA Lyon, 7 December 2023

Der Wissenschaftsfonds.

This project has received funding from the ERC under the EU's Horizon 2020 research and innovation programme (Grant agreement No. 680275) and Austrian Science Fund (FWF): P35428-N

• Geometry: \mathbb{Z}^2 .

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

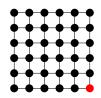
- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.



- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : 0 \text{ is } \bullet\} \in \mathbb{N} \cup \{\infty\}.$

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : 0 \text{ is } \bullet\} \in \mathbb{N} \cup \{\infty\}.$
- Density of •: $q \in [0, 1]$.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : 0 \text{ is } \bullet\} \in \mathbb{N} \cup \{\infty\}.$
- Density of •: $q \in [0, 1]$.
- Initial distribution: $Ber(q)^{\otimes \mathbb{Z}^2}$.

- Geometry: \mathbb{Z}^2 .
- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$ (\circ/\bullet =healthy/infected).
- If at time $t \in \mathbb{N}$ site $x \in \mathbb{Z}^2$ has at least 2 neighbours in state •, then at time t+1 its state also becomes •.
- never becomes o.
- Infection time: $\tau^{\mathrm{BP}} = \inf\{t \in \mathbb{N} : 0 \text{ is } \bullet\} \in \mathbb{N} \cup \{\infty\}.$
- Density of •: $q \in [0, 1]$.
- Initial distribution: $Ber(q)^{\otimes \mathbb{Z}^2}$.
- Low temperature regime: all bounds will hold a.a.s. as $q \to 0$.

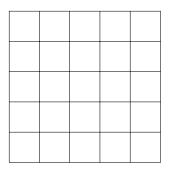
• [Van Enter'87] For all q>0 we have $au^{\mathrm{BP}}<\infty$ a.s.

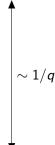
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right)\leqslant au^{\mathrm{BP}}\leqslant \exp\left(\frac{C}{q}\right).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

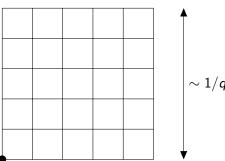
$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$

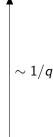




- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

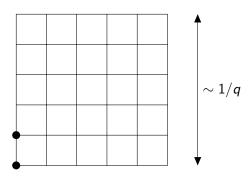
$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$





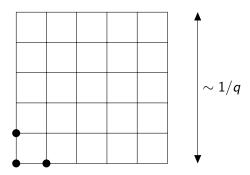
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



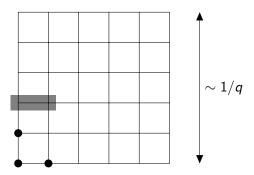
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



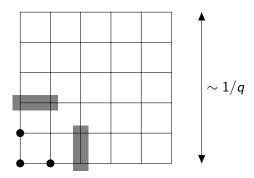
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



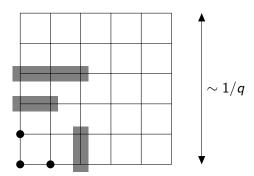
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



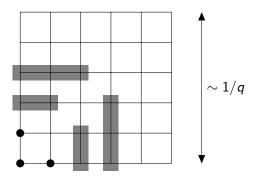
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



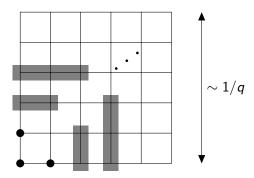
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$



- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{C}{q}\right).$$

$$q\prod_{k=1}^{\infty}(1-(1-q)^k)^2\approx \exp\left(2\int_0^{\infty}\log\left(1-\mathrm{e}^{-qx}\right)\mathrm{d}x\right)=\exp\left(\frac{-\pi^2}{3q}\right)$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] For some c, C > 0

$$\exp\left(\frac{c}{q}\right)\leqslant au^{\mathrm{BP}}\leqslant \exp\left(\frac{C}{q}\right).$$

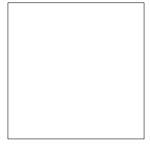
Lower bound: Rectangles process—if $1/q < \tau^{\mathrm{BP}} < \infty$, there exists an internally filled rectangle of size 1/q.

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$

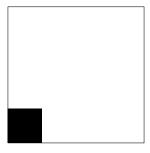
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



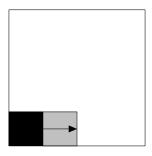
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



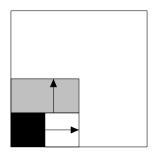
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



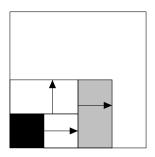
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



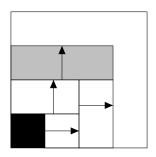
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



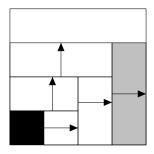
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



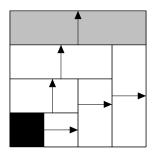
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



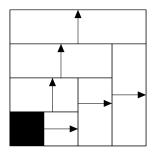
- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant au^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$



- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] For every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2 - \varepsilon}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 + \varepsilon}{18q}\right).$$

- [Lenormand–Zarcone'84] 0.33 for q = 0.086, size 2.10^3 .
- [Nakanishi-Takano'86] 0.27 for q = 0.03, size 1.10³.
- [Adler–Stauffer–Aharony'89] 0.245 ± 0.015 for q = 0.03, size 2.10^4 .
- [Teomy–Shokef'14] 0.274 for 8 cpu years, q=0.016, size 3.10⁷.

But $\pi^2/18 \approx 0.548$.

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner–Holroyd'08] For every $\varepsilon > 0$ and some c > 0

$$\exp\left(\frac{\pi^2-\varepsilon}{18q}\right)\leqslant \tau^{\mathrm{BP}}\leqslant \exp\left(\frac{\pi^2-\mathbf{c}\sqrt{q}}{18q}\right).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner-Holroyd'08] Upper bound for the second term
- [Gravner–Holroyd–Morris'12] For some c, C > 0

$$\exp\left(\frac{\pi^2 - C(\log(1/q))^3\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner-Holroyd'08] Upper bound for the second term
- [Gravner-Holroyd-Morris'12] Almost matching lower bound
- [Bringmann–Mahlburg'12] 'Morally,' for some c, C > 0

$$\exp\left(\frac{\pi^2 - C(\log(1/q))^{5/2}\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right).$$

- [Van Enter'87] Trivial transition
- [Aizenman-Lebowitz'88] Scaling
- [Holroyd'03] Sharp threshold
- [Gravner-Holroyd'08] Upper bound for the second term
- [Gravner-Holroyd-Morris'12] Almost matching lower bound
- [Bringmann-Mahlburg'12] Slightly better lower bound

Theorem (H-Morris'19)

For some c, C > 0

$$\exp\left(rac{\pi^2-rac{\mathcal{C}}{\sqrt{q}}}{18q}
ight)\leqslant au^{\mathrm{BP}}\leqslant\exp\left(rac{\pi^2-c\sqrt{q}}{18q}
ight).$$

Theorem (H-Morris'19)

For some c, C > 0

$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right).$$

Theorem (H'22, but morally Gravner–Holroyd'08)

For some C > 0 and all $\varepsilon > 0$

$$\frac{F_{\tau^{\mathrm{BP}}}^{-1}(1-\varepsilon)}{F_{\tau^{\mathrm{BP}}}^{-1}(\varepsilon)} \leqslant \frac{1}{q^C}.$$

Theorem (H–Morris'19)

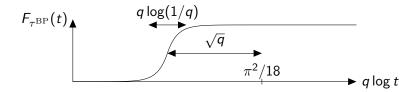
For some c, C > 0

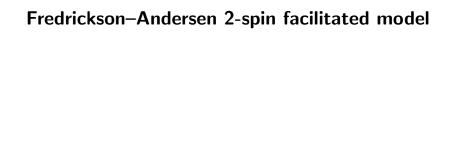
$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{18q}\right) \leqslant \tau^{\mathrm{BP}} \leqslant \exp\left(\frac{\pi^2 - c\sqrt{q}}{18q}\right).$$

Theorem (H'22, but morally Gravner-Holroyd'08)

For some C > 0 and all $\varepsilon > 0$

$$\frac{F_{\tau^{\mathrm{BP}}}^{-1}(1-\varepsilon)}{F_{\tau^{\mathrm{BP}}}^{-1}(\varepsilon)} \leqslant \frac{1}{q^C}.$$





• State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0,1]$.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Glauber dynamcis

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q).

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Glauber dynamcis

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q).

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson–Andersen 2-spin facilitated model (FA-2f) [FA'84

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- $Ber(q)^{\otimes \mathbb{Z}^2}$ is a reversible measure.
- $\tau = \inf\{t > 0 : 0 \text{ is } \bullet\} \in [0, \infty].$

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- $Ber(q)^{\otimes \mathbb{Z}^2}$ is a reversible measure.
- $\tau = \inf\{t > 0 : 0 \text{ is } \bullet\} \in [0, \infty].$
- Initial state $Ber(q)^{\otimes \mathbb{Z}^2}$: equilibrium.

- State space: $\{\circ, \bullet\}^{\mathbb{Z}^2}$.
- Equilibrium density of •: $q \in [0, 1]$.

Fredrickson-Andersen 2-spin facilitated model (FA-2f) [FA'84]

The state of each site $x \in \mathbb{Z}^2$ is resampled independently at rate 1 from Ber(q). However, the update is rejected unless x has at least 2 neighbours in state \bullet .

- $Ber(q)^{\otimes \mathbb{Z}^2}$ is a reversible measure.
- $\tau = \inf\{t > 0 : 0 \text{ is } \bullet\} \in [0, \infty].$
- Initial state $Ber(q)^{\otimes \mathbb{Z}^2}$: equilibrium.
- Low temperature: $q \rightarrow 0$.

• [Cancrini–Martinelli–Roberto–Toninelli'08] For all q>0 we have $\tau<\infty$ a.s.

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] For some C>0 and every $\varepsilon>0$

$$\exp\left(\frac{\pi^2-\varepsilon}{18q}\right)\leqslant\tau\leqslant\exp\left(\frac{C}{q^5}\right).$$

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] For some C > 0 and every $\varepsilon > 0$

$$\exp\left(\frac{\pi^2-\varepsilon}{18q}\right)\leqslant\tau\leqslant\exp\left(\frac{C}{q^5}\right).$$

Idea: FA-2f cannot be faster than 2-neighbour bootstrap percolation.

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] For some C > 0

$$\exp\left(\frac{\pi^2-o(1)}{18q}\right)\leqslant au\leqslant\exp\left(rac{C(\log(1/q))^2}{q}
ight).$$

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] For some C > 0

$$\exp\left(\frac{\pi^2-o(1)}{18q}\right)\leqslant au\leqslant\exp\left(rac{C(\log(1/q))^2}{q}
ight).$$

Idea: take an infected frame of slightly supercritical size and move it in a FA-1f fashion.

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

Non-rigorous predictions

• [Nakanishi-Takano'86] For some $C(q) o \infty$ as q o 0

$$au pprox \exp\left(rac{C(q)}{q}
ight).$$

- [Cancrini-Martinelli-Roberto-Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi-Takano'86] Log corrections
- [Reiter'91] For some C > 0

$$au pprox \exp\left(rac{\pi^2 + C}{9q}
ight).$$

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi-Takano'86] Log corrections
- [Reiter'91] No log corrections; different constant; exponentially slow movement of droplets
- [Toninelli-Biroli-Fisher'05] For some $C \in \mathbb{R}$

$$aupprox \exp\left(rac{\pi^2+ extstyle C\sqrt{m{q}}}{9m{q}}
ight).$$

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi-Takano'86] Log corrections
- [Reiter'91] No log corrections; different constant; exponentially slow movement of droplets
- [Toninelli–Biroli–Fisher'05] No log corrections; same constant; stretched exponential movement of droplets
- [Teomy-Shokef'15]

$$aupprox \exp\left(rac{2\pi^2}{9q}
ight).$$

- [Cancrini–Martinelli–Roberto–Toninelli'08] Trivial transition
- [CMRT08] Very rough scaling (log log τ up to constant)
- [Martinelli–Toninelli'19] Rough scaling (log τ up to log corrections)

- [Nakanishi-Takano'86] Log corrections
- [Reiter'91] No log corrections; different constant; exponentially slow movement of droplets
- [Toninelli–Biroli–Fisher'05] No log corrections; same constant; stretched exponential movement of droplets
- [Teomy-Shokef'15] No log corrections; doubled constant

Theorem (H-Martinelli-Toninelli'23)

For some C > 0

$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{9q}\right) \leqslant \tau \leqslant \exp\left(\frac{\pi^2 + C\sqrt{q}(\log(1/q))^3}{9q}\right).$$

Theorem (H-Martinelli-Toninelli'23)

For some C > 0

$$\exp\left(\frac{\pi^2 - C\sqrt{q}}{9q}\right) \leqslant \tau \leqslant \exp\left(\frac{\pi^2 + C\sqrt{q}(\log(1/q))^3}{9q}\right).$$

In particular,

$$\tau = \left(\tau^{\mathrm{BP}}\right)^{2+o(1)}.$$

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$.

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$. We have $\tau_0 > 0$ w.h.p. since $\tau^{\rm BP}$ is exponentially large w.h.p.

Let au_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$. We have $au_0 > 0$ w.h.p. since $au^{\rm BP}$ is exponentially large w.h.p. If $au_0 > 0$, then at au_0 there is an internally filled rectangle of size $\sim \log(1/q)/q$ at the origin.

Let τ_0 be the first time when the origin can become infected only using infections at distance at most $\sim \log(1/q)/q$.

We have $au_0 > 0$ w.h.p. since au^{BP} is exponentially large w.h.p.

If $\tau_0 > 0$, then at τ_0 there is an internally filled rectangle of size $\sim \log(1/q)/q$ at the origin.

Theorem (HM19)

The probability of this under the stationary measure is at most

$$\exp\left(rac{-\pi^2+C\sqrt{q}}{9q}
ight).$$

Find a good droplet structure such that:

Problems

Find a good droplet structure such that:

• it has probability at least

$$\exp\left(\frac{-\pi^2}{9q}\right),$$

Problems

Find a good droplet structure such that:

• it has probability at least

$$\exp\left(\frac{-\pi^2}{9q}\right),$$

• it can move fast locally—at rate at least

$$\exp\left(\frac{-\mathit{C}(\log(1/q))^3}{\sqrt{q}}\right),$$

Problems

Find a good droplet structure such that:

• it has probability at least

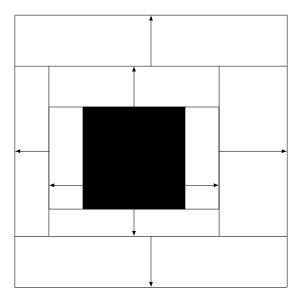
$$\exp\left(\frac{-\pi^2}{9q}\right),$$

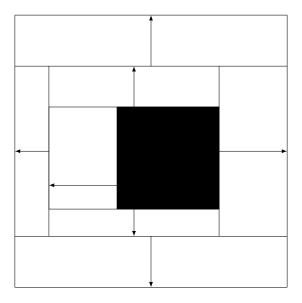
• it can move fast locally—at rate at least

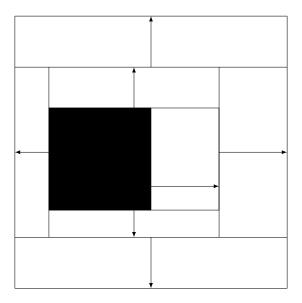
$$\exp\left(rac{-C(\log(1/q))^3}{\sqrt{q}}
ight),$$

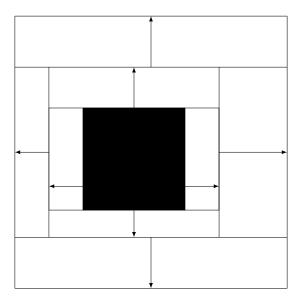
• it can move globally without recreating itself.

https://www.youtube.com/watch?v=7pR7TNzJ_pA

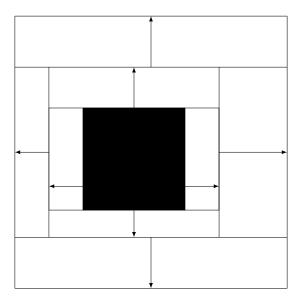












• The amoeba moves by 1 step.

- The amoeba moves by 1 step.
- The amoeba splits.

- The amoeba moves by 1 step.
- The amoeba splits.
- The amoeba meets another one and eats it.

- The amoeba moves by 1 step.
- The amoeba splits.
- The amoeba meets another one and eats it.

Theorem (H–Martinelli–Toninelli'22)

The relaxation time on a box of volume V such that there is on average one amoeba is |V| (up to logarithms).

?