CBSEP
Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

Coalescing and branching simple exclusion and Fredrickson-Andersen models¹

Ivailo Hartarsky

CEREMADE, Université Paris Dauphine, PSL University joint with Fabio Martinelli and Cristina Toninelli

2 June 2020

Analysis-Probability seminar CEREMADE, Paris

¹Supported by ERC Starting Grant 680275 MALIG

Ivailo Hartarsky

G = (V, E) is a connected graph.

G = (V, E) is a connected graph.

CRWNB representation

Random walk jumping along each edge at rate 1.

G = (V, E) is a connected graph.

CRWNB representation

Independent random walks jumping along each edge at rate 1.

G = (V, E) is a connected graph.

CRWNB representation

Coalescing independent random walks jumping along each edge at rate 1.

G = (V, E) is a connected graph.

CRWNB representation

Coalescing independent random walks jumping along each edge at rate 1 and giving birth to a particle at each neighbour independently at rate β .

CBSEP
Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

Model Preliminarie Result

Model Preliminarie Result

History

Biased voter model

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter
- On \mathbb{Z}^d for $\beta>0$ CRWNB converges weakly to its unique invariant measure starting with at least one particle.

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter
- On \mathbb{Z}^d for $\beta > 0$ CRWNB converges weakly to its unique invariant measure starting with at least one particle.
- On \mathbb{Z}^d for $\beta>0$ limit shape, cutoff [Bramson,Griffeath'80,81; Durrett,Griffeath'82]

- Biased voter model
- Williams-Bjerknes tumour growth model [WB'72]
- CRWNB was introduced as the dual of biased voter [Schwartz'77; Harris'76]
- $\beta = 0$ is CRW dual of voter
- On \mathbb{Z}^d for $\beta > 0$ CRWNB converges weakly to its unique invariant measure starting with at least one particle.
- On \mathbb{Z}^d for $\beta>0$ limit shape, cutoff [Bramson,Griffeath'80,81; Durrett,Griffeath'82]
- ullet On $\mathbb Z$ for eta o 0 Brownian net [Sun,Swart'08]

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle.

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle. In other words along e:

• (SEP) a particle swaps with a hole with rate (1-p)/(2-p);

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle. In other words along e:

- (SEP) a particle swaps with a hole with rate (1-p)/(2-p);
- (B) a particle fills the adjacent hole with rate p/(2-p);

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

CBSEP representation

Each edge e containing a particle resamples at rate 1 from π_e conditioned to still contain a particle. In other words along e:

- (SEP) a particle swaps with a hole with rate (1-p)/(2-p);
- (B) a particle fills the adjacent hole with rate p/(2-p);
- (C) two particles coalesce at uniformly chosen of the two positions at rate 2(1-p)/(2-p).

• CBSEP is attractive. It's even additive!

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}$.

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}$.
- CBSEP is the same as CRWNB with $\beta = p/(1-p)$ slowed down by a factor (1-p)/(2-p).

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}$.
- CBSEP is the same as CRWNB with $\beta = p/(1-p)$ slowed down by a factor (1-p)/(2-p).
- Nice dual model (in two distinct ways).

- CBSEP is attractive. It's even additive!
- $\mu := \pi(\cdot | \Omega_+)$ is reversible, where $\Omega_+ = \{ \text{at least one particle} \}$.
- CBSEP is the same as CRWNB with $\beta = p/(1-p)$ slowed down by a factor (1-p)/(2-p).
- Nice dual model (in two distinct ways).
- Lots of embedded random walks (even more than those in the CRWNB representation).

Let $h_{\omega}^t(\cdot) = P_{\omega}^t(\cdot)/\mu(\cdot)$ be the density of the law of CBSEP started at ω w.r.t. the reversible measure μ .

$$h_{\omega}^{t}(\cdot) = P_{\omega}^{t}(\cdot)/\mu(\cdot)$$

Let $\|f\|_{q} = \left(\int f^{q} d\mu\right)^{1/q} = (\mu(f^{q}))^{1/q}$ for $q \in [1, \infty]$.

$$\begin{array}{l} h_{\omega}^{t}(\cdot) = P_{\omega}^{t}(\cdot)/\mu(\cdot) \\ \|f\|_{q} = (\mu(f^{q}))^{1/q} \\ \|h_{\omega}^{t} - 1\|_{1} = 2d_{\mathrm{TV}}(P_{\omega}^{t}, \mu) \end{array}$$

$$\begin{split} h_{\omega}^{t}(\cdot) &= P_{\omega}^{t}(\cdot)/\mu(\cdot) \\ \|f\|_{q} &= (\mu(f^{q}))^{1/q} \\ \|h_{\omega}^{t} - 1\|_{1} &= 2d_{\mathrm{TV}}(P_{\omega}^{t}, \mu) \\ T_{q} &= \inf\{t > 0, \max_{\omega} \|h_{\omega}^{t} - 1\|_{q} \leqslant 1/e\} \end{split}$$

$$\begin{split} & h_{\omega}^{t}(\cdot) = P_{\omega}^{t}(\cdot)/\mu(\cdot) \\ & \|f\|_{q} = (\mu(f^{q}))^{1/q} \\ & \|h_{\omega}^{t} - 1\|_{1} = 2d_{\mathrm{TV}}(P_{\omega}^{t}, \mu) \\ & T_{q} = \inf\{t > 0, \max_{\omega} \|h_{\omega}^{t} - 1\|_{q} \leqslant 1/e\} \\ & T_{1} = T_{\mathrm{mix}}\left(\frac{1}{2e}\right) \end{split}$$

$$egin{aligned} h_{\omega}^{t}(\cdot) &= P_{\omega}^{t}(\cdot)/\mu(\cdot) \ \|f\|_{q} &= (\mu(f^q))^{1/q} \ \|h_{\omega}^{t} - 1\|_{1} &= 2d_{\mathrm{TV}}(P_{\omega}^{t}, \mu) \ T_{q} &= \inf\{t > 0, \max_{\omega} \|h_{\omega}^{t} - 1\|_{q} \leqslant 1/e\} \ T_{1} &= T_{\mathrm{mix}}\left(\frac{1}{2e}\right) \end{aligned}$$
 $orall q \in [1, \infty], \quad T_{q} \leqslant O\left(\log\log\frac{1}{\mu_{\omega}}\right) T_{\mathrm{Sob}},$

 $\mu_* = \min_{\omega} \mu(\omega)$; T_{Sob} is 'the inverse rate of decay of entropy'

• The commute time $T_{\text{com}}^{x,y}$ of a RW between $x,y\in V$ is $\mathbb{E}_{\mathbf{x}}[\tau_y]+\mathbb{E}_{V}[\tau_x].$

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x,y \in V$ is $\mathbb{E}_x[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It's also $2|V|\mathcal{R}_{x,y}$, where $\mathcal{R}_{x,y}$ is the resistance between x,y.

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x,y\in V$ is $\mathbb{E}_{\mathbf{x}}[\tau_y]+\mathbb{E}_{V}[\tau_x].$
- It's also $2|V|\mathcal{R}_{x,y}$, where $\mathcal{R}_{x,y}$ is the resistance between x,y.
- $T_{\text{meet}}^{x,y}$ is the expected meeting time of x and y.

- The commute time $T_{\text{com}}^{x,y}$ of a RW between $x,y \in V$ is $\mathbb{E}_{\mathbf{x}}[\tau_y] + \mathbb{E}_y[\tau_x]$.
- It's also $2|V|\mathcal{R}_{x,y}$, where $\mathcal{R}_{x,y}$ is the resistance between x,y.
- $T_{\text{meet}}^{x,y}$ is the expected meeting time of x and y.
- In all examples we will encounter (and many others) we have

$$T_{\text{meet}} := \frac{1}{|V|^2} \sum_{x,y} T_{\text{meet}}^{x,y} \asymp \frac{1}{|V|^2} \sum_{x,y} T_{\text{com}}^{x,y}$$
$$\asymp \max_{x,y} T_{\text{meet}}^{x,y} \asymp \max_{x,y} T_{\text{com}}^{x,y} =: T_{\text{com}}$$

and these are known up to a constant factor (or better).

Setting

Slightly supercritical: $p_n o 0$.

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\text{com}} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

• torus of side $L = n^{1/d}$ and dimension d.

$$T_{\text{com}} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

• uniform random regular graph G(n, d).

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

• torus of side $L = n^{1/d}$ and dimension d.

$$T_{\text{com}} \asymp n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

ullet uniform random regular graph G(n,d). $\mathcal{T}_{\mathrm{com}} symp n$

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\text{com}} \approx n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

- ullet uniform random regular graph G(n,d). $T_{
 m com} symp n$
- complete binary tree.

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\text{com}} \approx n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

- ullet uniform random regular graph G(n,d). $T_{
 m com} symp n$
- complete binary tree. $T_{\rm com} symp n \log n$

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\text{com}} \approx n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

- uniform random regular graph $G(n, d).T_{com} \approx n$
- complete binary tree. $T_{\text{com}} \approx n \log n$
- hypercube of dimension log₂ n.

Slightly supercritical: $p_n \to 0$. For the purposes of the talk we look at the $p_n = \Theta(1/n)$, where n = |V|.

We have in mind G is 'fairly sparse' and 'roughly regular', like:

$$T_{\text{com}} \approx n \times \begin{cases} n & d = 1 \\ \log n & d = 2 \\ 1 & d \geqslant 3 \end{cases}$$

- ullet uniform random regular graph G(n,d). $T_{
 m com} symp n$
- complete binary tree. $T_{\mathrm{com}} symp n \log n$
- hypercube of dimension $\log_2 n$. $T_{\text{com}} \approx n/\log n$

Let $p_n = \Theta(1/n)$ and $G_n = (V_n, E_n)$ be a sequence of 'nice' graphs with $|V_n| = n$. Then

$$\Omega(T_{\mathrm{meet}}) \leqslant T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant O(T_{\mathrm{com}} \log n).$$

 a E.g. with bounded degree or rapidly mixing with degree at most $n^{1/5}$. This is only needed for the upper bound.

Let $p_n = \Theta(1/n)$ and $G_n = (V_n, E_n)$ be a sequence of 'nice' graphs with $|V_n| = n$. Then

$$\Omega(T_{\text{meet}}) \leqslant T_{\text{Sob}}^{\text{CBSEP}} \leqslant O(T_{\text{com}} \log n).$$

 a E.g. with bounded degree or rapidly mixing with degree at most $n^{1/5}$. This is only needed for the upper bound.

Corollary

If G_n is the d-dimensional torus, then

$$\Omega(n^2) \leqslant T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant O(n^2 \log n)$$
 $d=1$
 $\Omega(n \log n) \leqslant T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant O(n \log^2 n)$ $d=2$
 $\Omega(n) \leqslant T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant O(n \log n)$ $d\geqslant 3$

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

Definition (FA1f)

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

Definition (FA1f)

$$+ \mu = \pi(\cdot|\Omega_+)$$
 is reversible.

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

Definition (FA1f)

- + $\mu = \pi(\cdot|\Omega_+)$ is reversible.
- Not attractive (and does not have a dual).

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

Definition (FA1f)

- + $\mu = \pi(\cdot|\Omega_+)$ is reversible.
- Not attractive (and does not have a dual).
- No other (known) nice representations.

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

Definition (FA1f)

- + $\mu = \pi(\cdot|\Omega_+)$ is reversible.
- Not attractive (and does not have a dual).
- No other (known) nice representations.
- No (known) embedded random walks.

$$G = (V, E), \ \Omega = \{0, 1\}^V, \ 0$$

Definition (FA1f)

- + $\mu = \pi(\cdot|\Omega_+)$ is reversible.
- Not attractive (and does not have a dual).
- No other (known) nice representations.
- No (known) embedded random walks.
- Not well understood even for p = 1/10 on Z.

A particle can perform a SEP move by creating a second one which kills the initial one.

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

$$\mathcal{D}^{\mathrm{CBSEP}} \leqslant O(d_{\mathsf{max}}/p)\mathcal{D}^{\mathrm{FA1f}}.$$

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

$$\mathcal{D}^{\mathrm{CBSEP}} \leqslant O(d_{\mathsf{max}}/p)\mathcal{D}^{\mathrm{FA1f}}.$$

Definition (T_{Sob})

 $T_{
m Sob}$ is the smallest constant such that

$$\operatorname{Ent}_{\mu}(f^2) := \mu(f^2 \log(f^2/\mu(f^2))) \leqslant T_{\operatorname{Sob}} \mathcal{D}(f).$$

A particle can perform a SEP move by creating a second one which kills the initial one. In terms of Dirichlet forms this reads

$$\mathcal{D}^{\mathrm{CBSEP}} \leqslant O(d_{\mathsf{max}}/p)\mathcal{D}^{\mathrm{FA1f}}.$$

Definition (T_{Sob})

 $T_{
m Sob}$ is the smallest constant such that

$$\operatorname{Ent}_{\mu}(f^2) := \mu(f^2 \log(f^2/\mu(f^2))) \leqslant T_{\operatorname{Sob}} \mathcal{D}(f).$$

Corollary

$$T_{\mathrm{Sob}}^{\mathrm{FA1f}} \leqslant O(d_{\mathrm{max}}/p)T_{\mathrm{Sob}}^{\mathrm{CBSEP}}$$

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\mathrm{FA}} \leqslant O(\log n) T_{\mathrm{Sob}}^{\mathrm{FA}} \leqslant O(n \log n) T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geqslant 3 \end{cases}$$

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\mathrm{FA}} \leqslant O(\log n) T_{\mathrm{Sob}}^{\mathrm{FA}} \leqslant O(n \log n) T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geqslant 3 \end{cases}$$

Theorem (Pillai,Smith'17; Pillai,Smith'19)

$$\Omega(n^2) \leqslant T_{ ext{mix}}^{ ext{FA}} \leqslant egin{cases} O(n^2 \log^{14} n) & d = 2 \ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\mathrm{FA}} \leqslant O(\log n) T_{\mathrm{Sob}}^{\mathrm{FA}} \leqslant O(n \log n) T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geqslant 3 \end{cases}$$

Theorem (Pillai, Smith' 17; Pillai, Smith' 19)

$$\Omega(n^2) \leqslant T_{ ext{mix}}^{ ext{FA}} \leqslant \begin{cases} O(n^2 \log^{14} n) & d = 2\\ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

Simpler proof.

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\mathrm{FA}} \leqslant O(\log n) T_{\mathrm{Sob}}^{\mathrm{FA}} \leqslant O(n \log n) T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geqslant 3 \end{cases}$$

Theorem (Pillai, Smith' 17; Pillai, Smith' 19)

$$\Omega(n^2) \leqslant T_{ ext{mix}}^{ ext{FA}} \leqslant \begin{cases} O(n^2 \log^{14} n) & d = 2 \\ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

- Simpler proof.
- Stronger mixing notion.

With $p = \Theta(1/n)$ on the torus of dimension d, for all $q \geqslant 1$

$$T_q^{\mathrm{FA}} \leqslant O(\log n) T_{\mathrm{Sob}}^{\mathrm{FA}} \leqslant O(n \log n) T_{\mathrm{Sob}}^{\mathrm{CBSEP}} \leqslant \begin{cases} O(n^3 \log^2 n) & d = 1 \\ O(n^2 \log^3 n) & d = 2 \\ O(n^2 \log^2 n) & d \geqslant 3 \end{cases}$$

Theorem (Pillai, Smith' 17; Pillai, Smith' 19)

$$\Omega(n^2) \leqslant T_{ ext{mix}}^{ ext{FA}} \leqslant \begin{cases} O(n^2 \log^{14} n) & d = 2\\ O(n^2 \log n) & d \geqslant 3 \end{cases}$$

- Simpler proof.
- Stronger mixing notion.
- General graphs and choices of p.

Definition

 $G=(V,E),\ \Omega=S^V,\ S=S_1\sqcup S_0$ is finite, ρ is a product probability measure on Ω .

We say there is a particle at $v \in V$ if $\omega_v \in S_1$.

Definition

 $G=(V,E),\ \Omega=S^V,\ S=S_1\sqcup S_0$ is finite, ρ is a product probability measure on Ω .

We say there is a particle at $v \in V$ if $\omega_v \in S_1$.

Definition (g-CBSEP)

Each edge e containing a particle resamples at rate 1 from ρ_e conditioned to still contain a particle.

Definition

 $G=(V,E),\ \Omega=S^V,\ S=S_1\sqcup S_0$ is finite, ρ is a product probability measure on Ω .

We say there is a particle at $v \in V$ if $\omega_v \in S_1$.

Definition (g-CBSEP)

Each edge e containing a particle resamples at rate 1 from ρ_e conditioned to still contain a particle.

Remark

The projection on $\{0,1\}^V$ of g-CBSEP is CBSEP with $p=\rho(S_1)$.

$$T_{\rm mix}^{\rm CBSEP} \leqslant T_{\rm mix}^{\rm g-CBSEP} \leqslant \textit{O}(T_{\rm mix}^{\rm CBSEP} + T_{\rm cov}^{\rm rw}).$$

$$T_{\rm mix}^{\rm CBSEP} \leqslant T_{\rm mix}^{
m g-CBSEP} \leqslant O(T_{
m mix}^{\rm CBSEP} + T_{
m cov}^{
m rw}).$$

Proof idea.

Once CBSEP couples, wait for one of the random walks to cover G. \square

$$T_{\text{mix}}^{\text{CBSEP}} \leqslant T_{\text{mix}}^{\text{g-CBSEP}} \leqslant O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{\text{rw}}).$$

Proof idea.

Once CBSEP couples, wait for one of the random walks to cover G. \square

Remark

Not true for $T_{
m Sob}^{
m g-CBSEP}$.

$$T_{\rm mix}^{\rm CBSEP} \leqslant T_{\rm mix}^{
m g-CBSEP} \leqslant O(T_{
m mix}^{\rm CBSEP} + T_{
m cov}^{
m rw}).$$

Remark

It is known that $T_{\rm com}\leqslant T_{\rm cov}^{\rm rw}\leqslant O(T_{\rm com}\log|V|)$, so on 'nice' graphs with $p_n=\Theta(1/n)$ we get

$$\Omega(T_{
m meet}) \leqslant T_{
m mix}^{
m g-CBSEP} \leqslant O(T_{
m com} \log^2 |V|).$$

$$T_{\text{mix}}^{\text{CBSEP}} \leqslant T_{\text{mix}}^{\text{g-CBSEP}} \leqslant O(T_{\text{mix}}^{\text{CBSEP}} + T_{\text{cov}}^{\text{rw}}).$$

Remark

It is known that $T_{\rm com}\leqslant T_{\rm cov}^{\scriptscriptstyle {
m TW}}\leqslant O(T_{\rm com}\log|V|)$, so on 'nice' graphs with $ho_n=\Theta(1/n)$ we get

$$\Omega(T_{
m meet}) \leqslant T_{
m mix}^{
m g-CBSEP} \leqslant O(T_{
m com} \log^2 |V|).$$

Corollary

On
$$\{1,\ldots,L\}^d$$
, $d\geqslant 2$ with $p=\Theta(1/L^d)$ we have

$$T_{\text{mix}}^{\text{g-CBSEP}} = L^d (\log L)^{O(1)}.$$

CBSEP
Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

Model Bootstrap percolation Results Flashes of the proof

FA*j*f

$$d\geqslant j\geqslant 2,\;\Omega=\{0,1\}^{\mathbb{Z}^d},\;0< p<1,\;\pi=\mathit{Ber}(p)^{\otimes\mathbb{Z}^d}$$

FAjf

$$d \geqslant j \geqslant 2$$
, $\Omega = \{0,1\}^{\mathbb{Z}^d}$, $0 , $\pi = Ber(p)^{\otimes \mathbb{Z}^d}$$

Definition (FAjf)

Each vertex $v \in \mathbb{Z}^d$ such that there are at least j neighbouring particles resamples at rate 1 from π_v .

FAjf

$$d\geqslant j\geqslant 2$$
, $\Omega=\{0,1\}^{\mathbb{Z}^d}$, $0< p<1$, $\pi=Ber(p)^{\otimes \mathbb{Z}^d}$

Definition (FAjf)

Each vertex $v \in \mathbb{Z}^d$ such that there are at least j neighbouring particles resamples at rate 1 from π_v .

Definition (j-neighbour bootstrap percolation)

Each vertex $v \in \mathbb{Z}^d$ such that there are at least j neighbouring particles becomes filled at rate 1.

Bootstrap percolation

Theorem (Gravner, Holroyd'08+Morris, H.'19; first term: Holroyd'03)

For d = j = 2 w.h.p. the origin becomes filled at time

$$\exp\left(\frac{\pi^2}{18p} - \frac{\Theta(1)}{\sqrt{p}}\right).$$

Bootstrap percolation

Theorem (Gravner, Holroyd'08+Morris, H.'19; first term: Holroyd'03)

For d = j = 2 w.h.p. the origin becomes filled at time

$$\exp\left(\frac{\pi^2}{18p}-\frac{\Theta(1)}{\sqrt{p}}\right).$$

Morally: a particle reaches the origin starting from a small anomalously occupied region called droplet, which occurs with probability

$$q = \exp\left(-rac{\pi^2}{9p} + rac{\Theta(1)}{\sqrt{p}}
ight)$$

and invades space at linear speed.

Bootstrap percolation

Theorem (Gravner,Holroyd'08+Morris,H.'19; first term: Holroyd'03)

For d = j = 2 w.h.p. the origin becomes filled at time

$$\exp\left(\frac{\pi^2}{18p}-\frac{\Theta(1)}{\sqrt{p}}\right).$$

Theorem (Balogh, Bollobás, Duminil-Copin, Morris' 12+Uzzell' 19)

For $d \geqslant j \geqslant 2$ there exists an explicit constant^a $\lambda(d,j) > 0$ such that w.h.p. the filling time τ of the origin satisfies

$$\exp^{j-1}\left(\frac{\lambda(d,j) - o(1)}{p^{1/(d-j+1)}}\right) \leqslant \tau \leqslant \exp^{j-1}\left(\frac{\lambda(d,j)}{p^{1/(d-j+1)}} - \frac{\Omega(1)}{p^{1/(2(d-j+1))}}\right)$$

^aThis notation is not the standard one in bootstrap percolation.

FA2f in 2d

Conjecture (Toninelli'03)

$$T_{\mathrm{rel}} = \exp\left(\frac{\pi^2 + o(1)}{9p}\right)$$

FA2f in 2d

Conjecture (Toninelli'03)

$$T_{\rm rel} = \exp\left(\frac{\pi^2 + o(1)}{9p}\right)$$

Theorem (Cancrini, Martinelli, Roberto, Toninelli'08)

$$\exp\left(rac{\pi^2-o(1)}{18p}
ight)\leqslant T_{
m rel}\leqslant \exp\left(rac{O(1)}{p^5}
ight).$$

FA2f in 2d

Conjecture (Toninelli'03)

$$T_{\mathrm{rel}} = \exp\left(\frac{\pi^2 + o(1)}{9p}\right)$$

Theorem

(Cancrini, Martinelli, Roberto, Toninelli'08+Martinelli, Toninelli'19)

$$\exp\left(rac{\pi^2-o(1)}{18p}
ight)\leqslant T_{
m rel}\leqslant \exp\left(rac{(\log(1/p))^{O(1)}}{p}
ight).$$

FA2f in 2d

Conjecture (Toninelli'03)

$$T_{\rm rel} = \exp\left(\frac{\pi^2 + o(1)}{9p}\right)$$

Theorem

(Cancrini, Martinelli, Roberto, Toninelli'08+Martinelli, Toninelli'19)

$$\exp\left(rac{\pi^2-o(1)}{18
ho}
ight)\leqslant T_{\mathrm{rel}}\leqslant \exp\left(rac{(\log(1/
ho))^{O(1)}}{
ho}
ight).$$

Theorem (Martinelli, Toninelli, H.'20+)

$$T_{\mathrm{rel}} = \exp\left(rac{\pi^2}{9p} + rac{O(\log(1/q))^3}{\sqrt{p}}
ight).$$

FAjf, $d \geqslant j \geqslant 3$

Theorem (Cancrini, Martinelli, Roberto, Toninelli'08)

$$\exp^{j-1}\left(rac{\lambda(d,j)-o(1)}{p^{1/(d-j+1)}}
ight)\leqslant T_{\mathrm{rel}}\leqslant \exp^{d-1}\left(rac{O(1)}{p}
ight).$$

FAjf, $d \geqslant j \geqslant 3$

Theorem (Cancrini, Martinelli, Roberto, Toninelli'08)

$$\exp^{j-1}\left(rac{\lambda(d,j)-o(1)}{p^{1/(d-j+1)}}
ight)\leqslant T_{\mathrm{rel}}\leqslant \exp^{d-1}\left(rac{O(1)}{p}
ight).$$

Theorem (Martinelli, Toninelli' 19)

$$\mathcal{T}_{\mathrm{rel}} \leqslant \exp^{j-1} \left(rac{O(1)}{p^{1/(d-j+1)}}
ight).$$

FAjf, $d \geqslant j \geqslant 3$

Theorem (Cancrini, Martinelli, Roberto, Toninelli'08)

$$\exp^{j-1}\left(rac{\lambda(d,j)-o(1)}{p^{1/(d-j+1)}}
ight)\leqslant T_{\mathrm{rel}}\leqslant \exp^{d-1}\left(rac{O(1)}{p}
ight).$$

Theorem (Martinelli,Toninelli'19)

$$\mathcal{T}_{\mathrm{rel}} \leqslant \exp^{j-1} \left(rac{O(1)}{p^{1/(d-j+1)}}
ight).$$

Theorem (Martinelli, Toninelli, H.'20+)

$$T_{\mathrm{rel}} \leqslant \exp^{j-1} \left(\frac{\lambda(d,j)}{p^{1/(d-j+1)}} - \frac{\Omega(1)}{p^{1/(2(d-j+1))}} \right).$$

Ivailo Hartarsky

CBSEP and FA

Importance

For the model:

For the model:

Mechanism behind.

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \ge 3$.

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \ge 3$.
- Sharp thresholds.

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \ge 3$.
- Sharp thresholds.

Generalisations:

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geqslant 3$.
- Sharp thresholds.

Generalisations:

 Sharp thresholds for most other models available in bootstrap percolation transfer to KCM.

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geqslant 3$.
- Sharp thresholds.

Generalisations:

- Sharp thresholds for most other models available in bootstrap percolation transfer to KCM.
- The proof extends to all models for which similar results hold (called isotropic). [H.'20+]

For the model:

- Mechanism behind.
- Bootstrap percolation paradox and slow convergence for $j \geqslant 3$.
- Sharp thresholds.

Generalisations:

- Sharp thresholds for most other models available in bootstrap percolation transfer to KCM.
- The proof extends to all models for which similar results hold (called isotropic). [H.'20+]
- The techniques allow proving tight upper bounds completing universality for critical KCM. [Marêché,H.20+;H.'20+]

Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

Model Bootstrap percolation Results Flashes of the proof

Flashes of the proof

Droplets

- Droplets
- g-CBSEP

- Droplets
- g-CBSEP
- 'Toy' model

- Droplets
- g-CBSEP
- 'Toy' model
- Overcoming with non-product measures

- Droplets
- g-CBSEP
- 'Toy' model
- Overcoming with non-product measures
- Mobility-cost trade-off

- Droplets
- g-CBSEP
- 'Toy' model
- Overcoming with non-product measures
- Mobility-cost trade-off
- ...

CBSEP
Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

Some questions that are not crazy (any more)

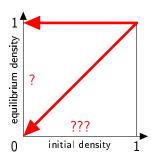
 \bullet Close the logarithmic gap for $T_{\rm Sob}$. Also between $T_{\rm Sob}$ and $T_{\rm mix}$.

- ullet Close the logarithmic gap for $T_{
 m Sob}$. Also between $T_{
 m Sob}$ and $T_{
 m mix}$.
- Can one further exploit CBSEP for FA1f?

- ullet Close the logarithmic gap for $T_{
 m Sob}$. Also between $T_{
 m Sob}$ and $T_{
 m mix}$.
- Can one further exploit CBSEP for FA1f?
- Is there a discrepancy in the second term between bootstrap percolation and FA2f?

- ullet Close the logarithmic gap for $T_{
 m Sob}$. Also between $T_{
 m Sob}$ and $T_{
 m mix}$.
- Can one further exploit CBSEP for FA1f?
- Is there a discrepancy in the second term between bootstrap percolation and FA2f?
- Does the same hold for FAjf out of equilibrium?

- ullet Close the logarithmic gap for $T_{
 m Sob}$. Also between $T_{
 m Sob}$ and $T_{
 m mix}$.
- Can one further exploit CBSEP for FA1f?
- Is there a discrepancy in the second term between bootstrap percolation and FA2f?
- Does the same hold for FAjf out of equilibrium?



CBSEP
Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

Thank you.

CBSEP
Application to FA1f
g-CBSEP
Application to FAjf
Conclusion

?

Theorem

There exists c > 0 s.t. for any $p_n \to 0$

$$T_{\mathrm{Sob}} \leqslant c \max \left(rac{d_{\mathrm{avg}} d_{\mathrm{max}}^2}{d_{\mathrm{min}}^2} T_{\mathrm{mix}}^{\mathrm{rw}} \log(n), \left(\max_y ar{\mathcal{R}}_y
ight) n |\log(p_n)|
ight),$$

where $T_{\mathrm{mix}}^{\mathrm{rw}}$ is the mixing time of the lazy simple random walk on G.

[Alon-Kozma'18+Lee-Yau'98]