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Coalescing Random Walks
with Neighbour Births

G = (V ,E ) is a connected graph.

CRWNB representation

Coalescing independent random walks jumping along each edge at rate
1 and giving birth to a particle at each neighbour independently

at rate β.
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History

Biased voter model

Williams-Bjerknes tumour growth model [WB'72]

CRWNB was introduced as the dual of biased voter [Schwartz'77;
Harris'76]

β = 0 is CRW � dual of voter

On Zd for β > 0 CRWNB converges weakly to its unique invariant
measure starting with at least one particle.

On Zd for β > 0 � limit shape, cuto� [Bramson,Gri�eath'80,81;
Durrett,Gri�eath'82]

On Z for β → 0 Brownian net [Sun,Swart'08]
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Coalescing and Branching
Simple Exclusion Process

G = (V ,E ), Ω = {0, 1}V , 0 < p < 1, π = Ber(p)⊗V

CBSEP representation

(SEP) a particle swaps with a hole with rate (1− p)/(2− p);

(B) a particle �lls the adjacent hole with rate p/(2− p);

(C) two particles coalesce at uniformly chosen of the two positions
at rate 2(1− p)/(2− p).
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What is so nice about CBSEP?

CBSEP is attractive. It's even additive!

µ := π(·|Ω+) is reversible, where Ω+ = {at least one particle}.
CBSEP is the same as CRWNB with β = p/(1− p) slowed down
by a factor (1− p)/(2− p).

Nice dual model (in two distinct ways).

Lots of embedded random walks (even more than those in the
CRWNB representation).
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Mixing times
Let htω(·) = Pt

ω(·)/µ(·) be the density of the law of CBSEP started at
ω w.r.t. the reversible measure µ.
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Mixing times
htω(·) = Pt

ω(·)/µ(·)
Let ‖f ‖q =

(∫
f q dµ

)1/q
= (µ(f q))1/q for q ∈ [1,∞].
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‖f ‖q = (µ(f q))1/q

‖htω − 1‖1 = 2dTV(Pt
ω, µ)
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htω(·) = Pt

ω(·)/µ(·)
‖f ‖q = (µ(f q))1/q

‖htω − 1‖1 = 2dTV(Pt
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Tq = inf{t > 0,maxω ‖htω − 1‖q 6 1/e}
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Mixing times
htω(·) = Pt

ω(·)/µ(·)
‖f ‖q = (µ(f q))1/q

‖htω − 1‖1 = 2dTV(Pt
ω, µ)

Tq = inf{t > 0,maxω ‖htω − 1‖q 6 1/e}
T1 = Tmix

(
1
2e

)
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Mixing times
htω(·) = Pt

ω(·)/µ(·)
‖f ‖q = (µ(f q))1/q

‖htω − 1‖1 = 2dTV(Pt
ω, µ)

Tq = inf{t > 0,maxω ‖htω − 1‖q 6 1/e}
T1 = Tmix

(
1
2e

)
∀q ∈ [1,∞], Tq 6 O

(
log log

1

µ∗

)
TSob,

µ∗ = minω µ(ω); TSob is `the inverse rate of decay of entropy'
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Commuting and meeting

The commute time T x ,y
com of a RW between x , y ∈ V is

Ex [τy ] + Ey [τx ].

It's also 2|V |Rx ,y , where Rx ,y is the resistance between x , y .

T x ,y
meet is the expected meeting time of x and y .

In all examples we will encounter (and many others) we have

Tmeet :=
1

|V |2
∑
x ,y

T x ,y
meet �

1

|V |2
∑
x ,y

T x ,y
com

� max
x ,y

T x ,y
meet � max

x ,y
T x ,y
com =: Tcom

and these are known up to a constant factor (or better).
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Setting
Slightly supercritical: pn → 0.

torus of side L = n1/d and dimension d .

uniform random regular graph G (n, d).

complete binary tree.

hypercube of dimension log2 n.
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torus of side L = n1/d and dimension d .

Tcom � n ×


n d = 1

log n d = 2

1 d > 3

uniform random regular graph G (n, d).Tcom � n

complete binary tree. Tcom � n log n

hypercube of dimension log2 n. Tcom � n/ log n
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Theorem (Martinelli,Toninelli,H.'20)

Let pn = Θ(1/n) and Gn = (Vn,En) be a sequence of `nice'a graphs

with |Vn| = n. Then

Ω(Tmeet) 6 TCBSEP
Sob 6 O(Tcom log n).

aE.g. with bounded degree or rapidly mixing with degree at most n1/5. This
is only needed for the upper bound.
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Theorem (Martinelli,Toninelli,H.'20)

Let pn = Θ(1/n) and Gn = (Vn,En) be a sequence of `nice'a graphs

with |Vn| = n. Then

Ω(Tmeet) 6 TCBSEP
Sob 6 O(Tcom log n).

aE.g. with bounded degree or rapidly mixing with degree at most n1/5. This
is only needed for the upper bound.

Corollary

If Gn is the d-dimensional torus, then

Ω(n2) 6 TCBSEP
Sob 6 O(n2 log n) d = 1

Ω(n log n) 6 TCBSEP
Sob 6 O(n log2 n) d = 2

Ω(n) 6 TCBSEP
Sob 6 O(n log n) d > 3
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FA1f
G = (V ,E ), Ω = {0, 1}V , 0 < p < 1, π = Ber(p)⊗V

De�nition (FA1f)

Each vertex v ∈ V such that there is a neighbouring particle (i.e.
{u, v} ∈ E with ωu = 1) resamples at rate 1 from πv .

+ µ = π(·|Ω+) is reversible.

− Not attractive (and does not have a dual).

− No other (known) nice representations.

− No (known) embedded random walks.

− Not well understood even for p = 1/10 on Z.
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Observation

A particle can perform a SEP move by creating a second one which

kills the initial one.

De�nition (TSob)

TSob is the smallest constant such that

Entµ(f 2) := µ(f 2 log(f 2/µ(f 2))) 6 TSobD(f ).

Corollary

TFA1f
Sob 6 O(dmax/p)TCBSEP

Sob
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Corollary

With p = Θ(1/n) on the torus of dimension d , for all q > 1

TFA
q 6 O(log n)TFA

Sob 6 O(n log n)TCBSEP
Sob 6


O(n3 log2 n) d = 1

O(n2 log3 n) d = 2

O(n2 log2 n) d > 3

Theorem (Pillai,Smith'17; Pillai,Smith'19)

Ω(n2) 6 TFA
mix 6

{
O(n2 log14 n) d = 2

O(n2 log n) d > 3

Simpler proof.

Stronger mixing notion.

General graphs and choices of p.
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De�nition
G = (V ,E ), Ω = SV , S = S1 t S0 is �nite, ρ is a product probability
measure on Ω.
We say there is a particle at v ∈ V if ωv ∈ S1.

De�nition (g-CBSEP)

Each edge e containing a particle resamples at rate 1 from ρe
conditioned to still contain a particle.

Remark

The projection on {0, 1}V of g-CBSEP is CBSEP with p = ρ(S1).
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Theorem (Martinelli,Toninelli,H.'20)

TCBSEP
mix 6 T g−CBSEP

mix 6 O(TCBSEP
mix + T rw

cov).

Remark

It is known that Tcom 6 T rw
cov 6 O(Tcom log |V |), so on `nice' graphs

with pn = Θ(1/n) we get

Ω(Tmeet) 6 T g−CBSEP
mix 6 O(Tcom log2 |V |).

Corollary

On {1, . . . , L}d , d > 2 with p = Θ(1/Ld) we have

T g−CBSEP
mix = Ld(log L)O(1).
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Flashes of the proof

FAjf
d > j > 2, Ω = {0, 1}Zd

, 0 < p < 1, π = Ber(p)⊗Zd

De�nition (FAj f)

Each vertex v ∈ Zd such that there are at least j neighbouring particles
resamples at rate 1 from πv .

De�nition (j-neighbour bootstrap percolation)

Each vertex v ∈ Zd such that there are at least j neighbouring particles
becomes �lled at rate 1.
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Bootstrap percolation

Theorem (Gravner,Holroyd'08+Morris,H.'19; �rst term: Holroyd'03)

For d = j = 2 w.h.p. the origin becomes �lled at time

exp

(
π2

18p
− Θ(1)
√
p

)
.
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Bootstrap percolation

Theorem (Gravner,Holroyd'08+Morris,H.'19; �rst term: Holroyd'03)

For d = j = 2 w.h.p. the origin becomes �lled at time

exp

(
π2

18p
− Θ(1)
√
p

)
.

Morally: a particle reaches the origin starting from a small anomalously
occupied region called droplet, which occurs with probability

q = exp

(
−π

2

9p
+

Θ(1)
√
p

)
and invades space at linear speed.
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Bootstrap percolation

Theorem (Gravner,Holroyd'08+Morris,H.'19; �rst term: Holroyd'03)

For d = j = 2 w.h.p. the origin becomes �lled at time

exp

(
π2

18p
− Θ(1)
√
p

)
.

Theorem (Balogh,Bollob�as,Duminil-Copin,Morris'12+Uzzell'19)

For d > j > 2 there exists an explicit constanta λ(d , j) > 0 such that

w.h.p. the �lling time τ of the origin satis�es

expj−1

(
λ(d , j)− o(1)

p1/(d−j+1)

)
6 τ 6 expj−1

(
λ(d , j)

p1/(d−j+1)
− Ω(1)

p1/(2(d−j+1))

)
aThis notation is not the standard one in bootstrap percolation.
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FA2f in 2d

Conjecture (Toninelli'03)

Trel = exp

(
π2 + o(1)

9p

)

Theorem (Cancrini,Martinelli,Roberto,Toninelli'08)

Theorem (Martinelli,Toninelli,H.'20+)

Trel = exp

(
π2

9p
+
O(log(1/q))3

√
p

)
.
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FA2f in 2d

Conjecture (Toninelli'03)

Trel = exp

(
π2 + o(1)

9p

)
Theorem (Cancrini,Martinelli,Roberto,Toninelli'08)

exp

(
π2 − o(1)

18p

)
6 Trel 6 exp

(
O(1)

p5

)
.

Theorem (Martinelli,Toninelli,H.'20+)

Trel = exp

(
π2

9p
+
O(log(1/q))3

√
p

)
.
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FA2f in 2d
Conjecture (Toninelli'03)

Trel = exp

(
π2 + o(1)

9p

)
Theorem
(Cancrini,Martinelli,Roberto,Toninelli'08+Martinelli,Toninelli'19)

exp

(
π2 − o(1)

18p

)
6 Trel 6 exp

(
(log(1/p))O(1)

p

)
.

Theorem (Martinelli,Toninelli,H.'20+)

Trel = exp

(
π2

9p
+
O(log(1/q))3

√
p

)
.
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FAj f, d > j > 3
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expj−1

(
λ(d , j)− o(1)

p1/(d−j+1)
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6 Trel 6 expd−1

(
O(1)

p

)
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Trel 6 expj−1

(
λ(d , j)
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− Ω(1)
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Mechanism behind.

Bootstrap percolation paradox and slow convergence for j > 3.

Sharp thresholds.

Sharp thresholds for most other models available in bootstrap
percolation transfer to KCM.

The proof extends to all models for which similar results hold
(called isotropic). [H.'20+]

The techniques allow proving tight upper bounds completing
universality for critical KCM. [Mar�ech�e,H.20+;H.'20+]
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Conclusion

Some questions that are not crazy (any more)

Close the logarithmic gap for TSob. Also between TSob and Tmix.

Can one further exploit CBSEP for FA1f?

Is there a discrepancy in the second term between bootstrap
percolation and FA2f?

Does the same hold for FAj f out of equilibrium?
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Theorem

There exists c > 0 s.t. for any pn → 0

TSob 6 c max

(
davgd

2
max

d2
min

T rw
mix log(n),

(
max
y
R̄y

)
n| log(pn)|

)
,

where T rw
mix is the mixing time of the lazy simple random walk on G .

[Alon-Kozma'18+Lee-Yau'98]
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