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Ideas

Upper bound: One an infet a square of `ritial' size 1/p by

�nding an infetion in eah row/olumn suessively. It is

found at typial distane exp(Θ(1)/p) and easily grows

inde�nitely.

Lower bound: Retangles proess � if there is perolation,

there exists an internally �lled retangle of every size.
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[Holroyd'03℄ Sharp asymptotis

Ideas

Upper bound: Only ask for an infetion in every seond

row/olumn and grow in steps of 1/
√
p.

Lower bound: Hierarhies, disjoint ourrene, pod,

quantitative optimality of square shapes . . .
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[Holroyd'03℄ Sharp asymptotis

[Gravner-Holroyd'08℄ Upper bound for the seond term

Idea:

Use the entropy gain from the hoie of the lengths of growth steps

instead of �xing them as 1/
√
p.
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[Gravner-Holroyd-Morris'12℄ Almost mathing lower bound

Idea:

Consider �ner hierarhies starting from size 1/
√
p. Compensate the

large number of hierarhies with the high ost of having many large

seeds.
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Idea:

Apply [Friedgut-Kalai'96℄.
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pc(n) =
π2

18 log n
− Θ(1)

(log n)3/2

Remark

The upper bound is from GH.
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Using non-inreasing and non-disjointly ourring events to

ompensate the number of hierarhies.

Key lemmas � strong bounds on the probability of gradual

growth.

Multiple pods allow taking advantage of atypial retangles

featuring in hierarhies.

Optimised amount of growth of a retangle in one step

depending on its size. In partiular, a swift divergene is

needed above the ritial size.
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Some onsequenes

Bounded number of (large) seeds.

Small pod.

Short hierarhies.

Non-small retangles are not far from squares.
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