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olation,

there exists an internally �lled re
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Idea:

Use the entropy gain from the 
hoi
e of the lengths of growth steps

instead of �xing them as 1/
√
p.
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Consider �ner hierar
hies starting from size 1/
√
p. Compensate the

large number of hierar
hies with the high 
ost of having many large

seeds.
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Remark

The upper bound is from GH.
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Key lemmas � strong bounds on the probability of gradual

growth.

Multiple pods allow taking advantage of atypi
al re
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featuring in hierar
hies.

Optimised amount of growth of a re
tangle in one step

depending on its size. In parti
ular, a swift divergen
e is

needed above the 
riti
al size.
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