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Abstract

We study a general class of interacting particle systems called kinet-
ically constrained models (KCM) in two dimensions. They are tightly
linked to the monotone cellular automata called bootstrap percolation.
Among the three classes of such models [8], the critical ones are the
most studied.

Together with the companion paper by Marêché and the author
[21], our work determines the logarithm of the infection time up to
a constant factor for all critical KCM. This was previously known
only up to logarithmic corrections [22, 23, 33]. We establish that on
this level of precision critical KCM have to be classi�ed into seven
categories. This re�nes the two classes present in bootstrap percolation
[7] and the two in previous rougher results [22, 23, 33]. In the present
work we establish the upper bounds for the novel �ve categories and
thus complete the universality program for equilibrium critical KCM.
Our main innovations are the identi�cation of the dominant relaxation
mechanisms and a more sophisticated and robust version of techniques
recently developed for the study of the Fredrickson-Andersen 2-spin
facilitated model [25].
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1 Introduction

Kinetically constrained models (KCM) are interacting particle systems. They
have challenging features including non-ergodicity, non-attractiveness, hard
constraints, cooperative dynamics and dramatically diverging time scales.
This prevents the use of conventional mathematical tools in the �eld.

KCM originated in physics in the 1980s [13, 14] as toy models for the
liquid-glass transition, which is still a hot and largely open topic for physicists
[3]. The idea behind them is that one can induce glassy behaviour without the
intervention of static interactions, disordered or not, but rather with simple
kinetic constraints. The latter translate the phenomenological observation
that at high density particles in a super-cooled liquid become trapped by
their neighbours and require a scarce bit of empty space in order to move at
all. We direct the reader interested in the motivations of these models and
their position in the landscape of glass transition theories to [3, 15,37].

Bootstrap percolation is the natural monotone deterministic counterpart
of KCM (see [36] for an overview). Nevertheless, the two subjects arose
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for di�erent reasons and remained fairly independent until the late 2000s.
That is when the very �rst rigorous results for KCM came to be [9], albeit
much less satisfactory than their bootstrap percolation predecessors. The
understanding of these two closely related �elds did not truly unify until
the recent series of works [21�23, 25, 32�34] elucidating the common points,
as well as the serious additional di�culties in the non-monotone stochastic
setting. It is the goal of this series that is accomplished by the present paper.

1.1 Models

Let us introduce the class of U -KCM introduced in [9]. In d ¥ 1 dimensions
an update family is a nonempty �nite collection of �nite nonempty subsets of
Zdzt0u called update rules. The U -KCM is a continuous time Markov chain
with state space Ω � t0, 1uZd . Given a con�guration η P Ω, we write ηx for
the state of x P Zd in η and say that x is infected (in η) if ηx � 0. We
write ηA for the restriction of η to A � Zd and 0A for the completely infected
con�guration with A omitted when it is clear from the context. We say that
the constraint at x P Zd is satis�ed if there exists an update rule U P U such
that x� U � tx� y : y P Uu is fully infected. We denote the corresponding
indicator by

cxpηq � 1DUPU ,ηx�U�0. (1)

The �nal parameter of the model is its equilibrium density of infections
q P r0, 1s. We denote by µ the product measure such that µpηx � 0q � q for
all x P Zd and by Var the corresponding variance. Given a �nite set A � Zd
and real function f : Ω Ñ R, we write µApfq for the average µpfpηq|ηZdzAq of
f over the variables in A. We write VarApfq for the corresponding conditional
variance, which is thus also a function from ΩZdzA to R, where ΩB � t0, 1uB
for B � Zd.

With this notation the U -KCM can be formally de�ned via its generator

Lpfqpηq �
¸
xPZd

cxpηq � pµxpfq � fq pηq (2)

and its Dirichlet form reads

Dpfq �
¸
xPZd

µ pcx � Varxpfqq ,

where µx and Varx are shorthand for µtxu and Vartxu. Alternatively, the
process can be de�ned via a graphical representation as follows (see [30]
for background). Each site x P Zd is endowed with a standard Poisson
process called clock. Whenever the clock at x rings we assess whether its
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constraint is satis�ed by the current con�guration. If it is, we update ηx to
an independent Bernoulli variable with parameter 1� q and call this a legal
update. If the constraint is not satis�ed, the update is illegal, so we discard
it without modifying the con�guration. It is then clear that µ is a reversible
measure for the process (there are others, e.g. the Dirac measure on the fully
non-infected con�guration 1).

Our regime of interest is q Ñ 0, corresponding to the low temperature
limit relevant for glasses. A quantitative observable, measuring the speed of
the dynamics, is the infection time of 0

τ0 � inf tt ¥ 0 : η0ptq � 0u ,
where pηptqqt¥0 denotes the U -KCM process. More speci�cally, we are inter-
ested in its expectation for the stationary process Eµrτ0s, namely the process
with random initial condition distributed according to µ. This quanti�es the
equilibrium properties of the system and is closely related e.g. to the more
analytic quantity called relaxation time (i.e. inverse of the spectral gap of
the generator) that the reader may be familiar with.
U -bootstrap percolation is essentially the q � 1 case of U -KCM started

out of equilibrium, from a product measure with q0 Ñ 0 density of infections.
More conventionally, it is de�ned as a synchronous cellular automaton, which
updates all sites of Zd simultaneously at each discrete time step, by infecting
sites whose constraint is satis�ed and never removing infections. As the
process is monotone, it may alternatively be viewed as a growing subset of
the grid generated by its initial condition. We denote by rAsU the set of
sites eventually infected by the U -bootstrap percolation process with initial
condition A � Zd, that is, the sites which can become infected in the U -
KCM in �nite time starting from ηp0q � p1xRAqxPZd . Strictly speaking, other
than this notation, bootstrap percolation does not feature in our proofs,
but its intuition and techniques are omnipresent. On the other hand, some
of our intermediate results can translate directly to recover some bootstrap
percolation results of [7, 8].

1.2 Universality setting

We direct the reader to the companion paper by Marêché and the author [21],
a monograph of Toninelli and the author [27] and the author's PhD thesis
[20, Chap. 1], for comprehensive background on the universality results for
two-dimensional KCM and their history. Instead, we provide a minimalist
presentation of the notions we need. The de�nitions in this section were pro-
gressively accumulated in [7,8,16,21,23,33] and may di�er in phrasing from
the originals, but are usually equivalent thereto (see [21] for more details).
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Henceforth, we restrict our attention to models in two dimensions. The
Euclidean norm and scalar product are denoted by }�} and x�, �y, and distances
are w.r.t. } � }. Let S1 � tx P R2 : }x} � 1u be the unit circle consisting of
directions, which we occasionally identify with R{2πZ in the standard way.
We denote the open half plane with outer normal u P S1 and o�set l P R by

Huplq �
 
x P R2 : xx, uy   l

(
(3)

and omit l if it is 0. We further denote its closure by Huplq, omitting zero
o�sets. We often refer to continuous sets such as Hu, but whenever talking
about infections or sites in them, we somewhat abusively identify them with
their intersections with Z2 without further notice.

Fix an update family U .

De�nition 1.1 (Stability). A direction u P S1 is unstable if there exists
U P U such that U � Hu and stable otherwise.

It is not hard to see that unstable directions form a �nite union of �nite
open intervals in S1 [8, Theorem 1.10]. We say that a stable direction is
semi-isolated (resp. isolated) if it is the endpoint of a nontrivial (resp. trivial)
interval of stable directions.

De�nition 1.2 (Criticality). Let C be the set of open semicircles of S1. An
update family is

• supercritical if there exists C P C such that all u P C are unstable;

• subcritical if every semicircle contains in�nitely many stable directions;

• critical otherwise.

The following notion measures �how stable� a stable direction is.

De�nition 1.3 (Di�culty). For u P S1 the di�culty αpuq of u is

• 0 if u is unstable;

• 8 if u is stable, but not isolated;

• mintn : DZ � Z2, |Z| � n, |rHu Y ZsUzHu| � 8u otherwise.
The di�culty of U is

α � min
CPC

max
uPC

αpuq.
We say that a direction u P S1 is hard if αpuq ¡ α.
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See Fig. 1 for an example update family with α � 3 and its di�culties.
It can be shown that αpuq P r1,8q for isolated stable directions [7, Lemma
2.8]. Consequently, a model is critical i� 0   α   8 and supercritical i�
α � 0, so di�culty is tailored for critical models and re�nes De�nition 1.2.
Furthermore, for supercritical models the notions of stable and hard direction
coincide. Finally, observe that the de�nition implies that for any critical
or supercritical update family there exists an open semicircle with no hard
direction.

De�nition 1.4 (Re�ned types). A critical or supercritical update family is

• rooted if there exist two non-opposite hard directions;

• unrooted if it is not rooted;

• unbalanced if there exist two opposite hard directions;

• balanced if it is not unbalanced, that is, there exists a closed semicircle
containing no hard direction.

We further partition balanced unrooted update families into

• semi-directed if there is exactly one hard direction;

• isotropic if there are no hard directions.

We further consider the distinction between models with �nite and in�nite
number of stable directions. The latter being necessarily rooted, but possibly
balanced or unbalanced, we end up with a partition of all (two-dimensional
non-subcritical) families into the seven classes studied in detail below in the
critical case. We invite the interested reader to consult [21, Fig. 1] for simple
representatives of each class with rules contained in the the lattice axes and
reaching distance at most 2 from the origin. Naturally, many more examples
have been considered in the literature (also see Fig. 1).

Let us remark that models in each class may have one axial symme-
try, but non-subcritical models invariant under rotation by π are necessarily
either isotropic or unbalanced unrooted (thus with �nite number of stable
directions), while invariance by rotation by π{2 implies isotropy.

1.3 Results

Our result, summarised in Table 1, together with the companion paper by
Marêché and the author [21], is the following complete re�ned classi�cation
of two-dimensional critical KCM (for the classi�cation of supercritical ones,
which only features the rooted/unrooted distinction, see [31�33]).
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In�nite stable directions
Finite stable directions
Rooted Unrooted

Unbalanced (a) 2, 4, 0 (c) 1, 3, 0 (d) 1, 2, 0

Balanced (b) 2, 0, 0 (e) 1, 1, 0
(f) 1, 0, 1
S.-dir. Iso.

(g) 1, 0, 0

Table 1: Classi�cation of critical U -KCM with di�culty α. For each class

Eµrτ0s � exp

�
Θp1q

�
1
qα

	β �
log 1

q

	γ �
log log 1

q

	δ

as q Ñ 0. The label of the

class and the exponents β, γ, δ are indicated in that order.

Theorem 1 (Universality classi�cation of two-dimensional critical KCM).
Let U be a two-dimensional critical update family with di�culty α. We have
the following exhaustive alternatives as q Ñ 0 for the expected infection time
of the origin under the stationary U-KCM.1 If U is

(a) unbalanced with in�nite number of stable directions (so rooted), then

Eµrτ0s � exp

�
Θ
�plogp1{qqq4�

q2α

�
;

(b) balanced with in�nite number of stable directions (so rooted), then

Eµrτ0s � exp

�
Θp1q
q2α



;

(c) unbalanced rooted with �nite number of stable directions, then

Eµrτ0s � exp

�
Θ
�plogp1{qqq3�

qα

�
;

(d) unbalanced unrooted (so with �nite number of stable directions), then

Eµrτ0s � exp

�
Θ
�plogp1{qqq2�

qα

�
;

1We write f � Θpgq if there exist c, C ¡ 0 such that cgpqq   fpqq   Cgpqq for all q
small enough and use other standard asymptotic notation (see e.g. [21, Section 1.2]).
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(e) balanced rooted with �nite number of stable directions, then2

Eµrτ0s � exp

�
Θ plogp1{qqq

qα



;

(f) semi-directed (so balanced unrooted with �nite number of stable direc-
tions), then

Eµrτ0s � exp

�
Θ plog logp1{qqq

qα



;

(g) isotropic (so balanced unrooted with �nite number of stable directions),
then

Eµrτ0s � exp

�
Θp1q
qα



.

This theorem is the result of a tremendous amount of e�ort by a panel
of authors. It would be utterly unfair to claim that it is due to the present
paper and its companion [21] alone. Indeed, parts of the result (sharp up-
per or lower bounds for certain classes) were established by (subsets of)
Marêché, Martinelli, Morris, Toninelli and the author [22, 23, 33, 34]. More-
over, particularly for the lower bounds, the classi�cation of two-dimensional
critical U -bootstrap percolation models by Bollobás, Duminil-Copin, Morris
and Smith [7] (featuring only the balanced/unbalanced distinction) is heavily
used, while upper bounds additionally use prerequisites from [24, 25]. Thus,
a fully self-contained proof of Theorem 1 from common probabilistic back-
ground is currently contained only in all the above references combined and
spans hundreds of pages. Our contribution is but the conclusive step.

More precisely, the lower bound for classes (d) and (g) was deduced from
[7] in [34]; the lower bound for class (b) was established in [22], while the
remaining four were proved in [21]. Turning to upper bounds, the one for
class (a) was given in [33] and the one for class (c) is due to [23]. The
remaining �ve upper bounds are new and those are the subject of our work.
The most novel and di�cult ones concern classes (e) and (f), the latter
remaining quite mysterious prior to our work. Indeed, [23, Conjecture 6.2]
predicted the above result with the exception of this class, whose behaviour
was unclear. We should note that this conjecture itself recti�ed previous ones
from [33,36], which were disproved by the unexpected result of [23], and was
new to physicists, as well as mathematicians.

Remark 1.5. It should be noted that universality results including The-
orem 1 apply to KCM more general than the ones de�ned in Section 1.1.

2See Remark 1.6.
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Namely, we may replace cx in Eq. (2) by a �xed linear combination of the
constraints cx associated to any �nite set of update families. For instance, we
may update vertices at rate proportional to their number of infected neigh-
bours. This and other models along these lines have been considered e.g. in
[2, 5, 13]. For such mixtures of families, the universality class is determined
by the family obtained as their union. Indeed, upper bounds follow by direct
comparison of the corresponding Dirichlet forms, while lower bounds (e.g.
[21]) generally rely on deterministic bottlenecks, which remain valid.

Remark 1.6. Let us note that for reasons of extremely technical nature,
we do not provide a full proof of (the upper bound of) Theorem 1(e). More
precisely, we prove it as stated for models with rules contained in the axes of
the lattice. We also prove a fully general upper bound of

exp

�
Oplogp1{qqq log log logp1{qq

qα



. (4)

Furthermore, with very minor modi�cations (see Remark 7.1), the error fac-
tor can be reduced from log log log to log�, where log� denotes the number
of iterations of the logarithm before the result becomes negative (the inverse
of the tower function). Unfortunately, removing this minuscule error term
requires further work, which we omit for the sake of concision. Instead, we
provide a sketch of how to achieve this in Appendix C.

1.4 Organisation

The paper is organised as follows. In Section 2 we begin by outlining all
the relevant relaxation mechanisms used by critical KCM, providing detailed
intuition for the proofs to come. This section is particularly intended for
readers unfamiliar with the subject, as well as physicists, for whom it may
be su�ciently convincing on its own. In Section 3 we gather various notation
and simple preliminaries.

In Section 4 we formally state the two fundamental techniques we use
to move from one scale to the next, namely East-extensions and CBSEP-
extensions, which import and generalise ideas of [25]. They are used in
various combinations throughout the rest of the paper. The proofs of the
results about those extensions, including the microscopic dynamics treated
by [19] are deferred to Appendix A, since they are quite technical and do
not require new ideas. The bounds arising from extensions feature certain
conditional expectations. We provide technical tools for estimating them in
Section 4.4. We leave the entirely new proofs of these general analogues of
[25, Appendix A] to Appendix B.
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Sections 5 to 9 are the core of our work and use the extensions mentioned
above to prove the upper bounds of Theorem 1 for classes (g), (d), (f), (e), (b)
respectively. As we will discuss in further detail (see Section 2 and Table 2b),
some parts of the proofs are common to several of these classes, making the
sections interdependent. Thus, they are intended for linear reading.

We conclude in Appendix C by explaining how to remove the correc-
tive log log logp1{qq factor discussed in Remark 1.6 to recover the result of
Theorem 1(e) as stated in full generality. Due to their technical nature, we
delegate Appendices A to C to the arXiv version of the present work.

Familiarity with the companion paper [21] or bootstrap percolation [7]
is not needed. Inversely, familiarity with [23, 25] is strongly recommended
for going beyond Section 2 and achieving a complete view of the proof of
the upper bounds of Theorem 1. Nevertheless, we systematically state the
implications of intermediate results of those works for our setting in a self-
contained fashion, without re-proving them.

2 Mechanisms

In this section we attempt a heuristic explanation of Theorem 1 from the
viewpoint of mechanisms, which is mostly related to upper bound proofs.
Yet, let us say a few words about the lower bounds. The proof of the lower
bounds in the companion paper [21] has the advantage and disadvantage of
being uni�ed for all seven classes. This is undeniably practical and spotlights
the fact that all scaling behaviours can be viewed through the lens of the
same bottleneck (few energetically costly con�gurations through which the
dynamics has to go to infect the origin) on a class-dependent length scale.
However, the downside is that it provides little insight on the particularities
of each class, which turn out to be quite signi�cant. To prove upper bounds
we need a clear vision of an e�cient mechanism for infecting the origin in
each class. Since we work with the stationary process, e�cient means that it
should avoid con�gurations which are too unlikely w.r.t. µ. However, while
lower bounds only identify what cannot be avoided, they do not tell us how
to avoid everything else, nor indeed how to reach the unavoidable bottleneck.

Instead of outlining the mechanism used by each class, we focus on tech-
niques which are somewhat generic and then apply combinations thereof to
each class. In �gurative terms, we develop several computer hardware com-
ponents (three processors, four RAMs, etc.), give a general scheme of how to
compose a generic computer out of generic components and, �nally, assemble
seven concrete computer con�gurations, using the appropriate components
for each, sometimes changing a single component from a machine to the
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Global Mesoscopic Internal
CBSEP East CBSEP East, Stair CBSEP East Unbal.

ρ
�1�op1q
D ρ

�Oplogp1{ρDqq
D eq

�op1q
ρ
�Oplogp1{qqq
D eq

�op1q
ρ
�Oplog logp1{qqq
D ρ

�Op1q
D

(a) The relaxation time cost associated to each choice of dynamics mechanism
on each scale in terms of the probability of a droplet ρD.

(a) (b) (c) (d) (e) (f) (g)
Global East* East* CBSEP CBSEP* CBSEP CBSEP CBSEP*

Mesoscopic Stair East East* CBSEP East* CBSEP CBSEP

Internal � East Unbal. Unbal.* East East* CBSEP

(b) The fastest mechanism available to each class of Theorem 1 on each scale.
The * indicates a leading contribution for the class (column).

Table 2: Summary of the mechanisms and their costs. The microscopic one
common to all classes and with negligible cost is not shown (see Section 2.2).

other. Moreover, within each component type di�erent instances are strictly
comparable, so, at the assembly stage, we might simply choose the best pos-
sible component �tting with the requirements of model at hand. This enables
us to highlight the robust tools developed and re�ned recently, which corre-
spond to the components and how they are manufactured, as well as give a
clean universal proof scheme into which they are plugged.

Our di�erent components are called the microscopic, internal, mesoscopic
and global dynamics and correspond to progressively increasing length scales
on which we are able to relax, given a suitable infection con�guration. As the
notion of �suitable,� which we call super good (SG), depends on the class and
lower scale mechanisms used, we mostly use it as a black box input extended
progressively over scales in a recursive fashion.

In order to guide the reader through Section 2 and beyond, in Table 2, we
summarise the optimal mechanisms for each universality class on each scale
and its cost. While its full meaning will only become clear in Section 2.7, the
reader may want to consult it regularly, as they progress through Section 2.

The SG events concern certain convex polygonal geometric regions called
droplets. These events are designed so as to satisfy several conditions ensuring
that the con�guration of infections inside the droplet is su�cient to infect the
entire droplet. The SG events de�ned by extensions from smaller to larger
scales require the presence of a lower scale droplet inside the large one (see
Fig. 2) in addition to well-chosen more sparse infections called helping sets
in the remainder of the larger scale droplet (see Fig. 1). Helping sets allow
the smaller one to move inside the bigger one.

We say that a droplet relaxes in a certain relaxation time if the dynamics
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restricted to the SG event and to this region �mixes� in this much time. For-
mally, this translates to a constrained Poincaré inequality for the conditional
measure, but this is unimportant for our discussion.

One should think of droplets as extremely unlikely objects, which are able
to move within a slightly favourable environment. Indeed, at all stages of our
treatment, we need to control the inverse probability of droplets being SG
and their relaxation times, keeping them as small as feasible. Furthermore,
due to their inductive de�nition, the favourable environment required for
their movement should not be too costly. Indeed, that would result in the
deterioration of the probability of larger scale droplets, as those incorporate
the lower scale environment in their internal structure. Hence, we seek a
balance between asking for many infections to make the movement e�cient
and asking for few in order to keep the probability of droplets high enough.

2.1 Scales

Microscopic dynamics refers to modifying infections at the level of
the lattice along the boundary of a droplet, while respecting the KCM con-
straint.

Internal dynamics refers to relaxation on scales from the lattice level
to the internal scale `int � C2 logp1{qq{qα, where C is a large constant de-
pending on U . This is the most delicate and novel step. Up to `int we account
for the main contribution to the probability of droplets. That is, at all larger
scales the probability of a droplet essentially saturates at a certain value ρD,
because �nding helping sets becomes likely. Thus, on smaller scales, it is
important to only very occasionally ask for more than α infections to appear
close to each other in order to get the right probability ρD. This means that
up to the internal scale hard directions are practically impenetrable, since
they require helping sets of more that α infections.

Mesoscopic dynamics refers to relaxation on scales from `int to the
mesoscopic scale `mes � 1{qC . As our droplets grow to the mesoscopic scale
and past it, it becomes possible to require larger helping sets, which we call
W -helping sets. These allow droplets to move also in hard directions of �nite
di�culty, while nonisolated stable directions are still blocking.

Global dynamics refers to relaxation on scales from `mes to in�nity.
The extension to in�nity being fairly standard (and not hard), one should
rather focus on scales up to the global scale given by `gl � expp1{q3αq, which
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is notably much larger than all time scales we are aiming for, but otherwise
rather arbitrary.

Roughly speaking, on each of the last three scales, one should decide how
to move a droplet of the lower scale in a domain on the larger scale.

For simplicity, in the remainder of Section 2, we assume that the only four
relevant directions are the axis ones so that droplets have rectangular shape
(see Section 3.3). We further assume that all directions in the left semicircle
have di�culties at most α, while the down direction is hard, unless there are
no hard directions (isotropic class).

2.2 Microscopic dynamics

The microscopic dynamics (see Appendix A.2) is the only place where we
actually deal with the KCM directly and is the same, regardless of the size
of the droplet and the universality class. Roughly speaking, from the outside
of the droplet, we may think of it as fully infected, since it is able to relax
and, therefore, bring infections where they are needed. Thus, the outer
boundary of the droplet behaves like a 1-dimensional KCM with update
family re�ecting that we view the droplet as infected. Hence, provided there
are enough helping sets at the boundary to infect it, we can apply results on
1-dimensional KCM supplied for this purpose by the author [19].

This way we establish that one additional column can relax in time
exppOplogp1{qqq2q, similarly to the East model described in Section 2.3.2
below. Assuming we know how to relax on the droplet itself, this allows us
to relax on a droplet with one column appended. However, applying this
procedure recursively line by line is not e�cient enough to be useful for ex-
tending droplets more signi�cantly.

2.3 One-directional extensions

We next explain two fundamental techniques beyond the microscopic dynam-
ics which we use to extend droplets on any scale in a single direction (see
Section 4).

As mentioned above, our droplets are polygonal regions with a SG event
(presence of a suitable arrangement of infections in the droplet). An exten-
sion takes as input a droplet and produces another one. In terms of geometry,
it contains the original one and is obtained by extending it, say, horizontally,
either to the left or both left and right (see Fig. 2). The extended droplet's
SG event requires that the smaller one is SG and, additionally, certain help-
ing sets appear in the remaining volume. The choice of where we position
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the smaller droplet (at the right end of the bigger one, or anywhere inside it)
depends on the type of extension. The additional helping sets are required
in such a way that, with their help, the smaller droplet can, in principle,
completely infect the larger one and, therefore, make it relax (resample its
con�guration within its SG event).

Thus, an extension is a procedure for iteratively de�ning SG events on
larger and larger scales. For each of our two types of extensions we need to
provide corresponding iterative bounds on the probability of the SG event
and on the relaxation time of droplets on this event. The former is a matter
of careful computation. For the latter task we intuitively use a large-scale
version of an underlying one-dimensional spin model, which we describe �rst.

2.3.1 CBSEP-extension

In the one-dimensional spin version of CBSEP [24,25] we work on tÒ, ÓuZ. At
rate 1 we resample each pair of neighbouring spins, provided that at least one
of them is Ò. Their state is resampled w.r.t. the reference product measure,
which is reversible, conditioned to still have a Ò in at least one of the two
sites. In other words, Ò can perform coalescence, branching and symmetric
simple exclusion moves, hence the name. The relaxation time of this model
on volume V is roughly minpV, 1{qq2 in one dimension and minpV, 1{qq in two
and more dimensions [24, 25], where q is the equilibrium density of Ò, which
we think of as being small.

For us Ò represent SG droplets, which we would like to move within a
larger volume. However, as we would like them to be able to move possibly
by an amount smaller than the size of the droplet, we need to generalise the
model a bit. We equip each site of a �nite interval of Z with a state space
corresponding to the state of a column of the height of our droplet of interest
in the original lattice Z2. Then the event �there is a SG droplet� may occur on
a group of ` consecutive sites (columns). The long range generalised CBSEP,
which, abusing notation, we call CBSEP, is de�ned as follows. We �x some
range R ¡ ` and resample at rate 1 each group of R consecutive sites, if
they contain a SG droplet. The resampling is performed conditionally on
preserving the presence of a SG droplet in those R sites. Thus, one move of
this process essentially delocalises the droplet within the range.

It is important to note (and this was crucial in [25]) that CBSEP does not
have to create an additional droplet in order to evolve. Since SG droplets
are unlikely, it su�ces to move an initially available SG droplet through
our domain in order to relax. Since infection needs to be able to propagate
both left and right from the SG droplets, we will de�ne (see Section 4.3 and
particularly De�nition 4.7 and Fig. 2b) CBSEP-extension by extending our
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domain horizontally and asking for the SG droplet anywhere inside with suit-
able �rightwards-pointing� helping sets on its right and �leftwards-pointing�
on its left.

While we now know that droplets evolve according to CBSEP, it remains
to see how one can reproduce one CBSEP move via the original dynamics.
This is done inductively on R by a bisection procedure, the trickiest part
being the case R � `� 1. We then dispose with a droplet plus one column�
exactly the setting for microscopic dynamics. However, we not only want to
resample the state of the additional column, but also allow the droplet to
move by one lattice step. To achieve this, we have to look inside the structure
of the SG droplet and require for its infections (which have no rigid structure
and may therefore move around like the organelles of an amoeba) to be
somewhat more on the side we want to move towards (see e.g. Fig. 4 and also
De�nitions 5.3, 6.5, 7.7 and 7.8). Then, together with a suitable con�guration
on the additional column provided by the microscopic dynamics, we easily
recover our SG event shifted by one step, since most of the structure was
already provided by the version of the SG event �contracted� towards the
new column.

This amoeba-like motion (moving a droplet, by slightly rearranging its
internal structure) leads to a very small relaxation time of the dynamics.
Indeed, the time needed to move the droplet is the product of three contri-
butions: the relaxation time of the 1-dimensional spin model; the relaxation
time of the microscopic dynamics; the time needed to see a droplet contract-
ing as explained above (see Proposition 4.9). The �rst of these is a power of
the volume (number of sites); the second is exppOplogp1{qqqq2q; the third is
also small, as we discuss in Section 2.3.2.

However, CBSEP-extensions can only be used for su�ciently symmetric
update families. That is, the droplet needs to be able to move indi�erently
both left and right and its position should not be biased in one direction
or the other. Speci�cally, if we are working on a scale that requires the
use of helping sets of size α, these have to exist both for the left and right
directions, so the model needs to be unrooted (if instead we use larger helping
sets, having a �nite number of stable directions su�ces). The reason is that
otherwise the position of the SG droplet is biased in one direction instead of
being approximately uniform. This would break the analogy with the original
one-dimensional spin model, which is totally symmetric. When symmetry is
not available, we recourse to the East-extension presented next, which may
also be viewed as a totally asymmetric version of the CBSEP-extension.
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2.3.2 East-extension

The East model [28] is the one-dimensional KCM with U � tt1uu. That
is, we are only allowed to resample the left neighbour of an infection. An
e�cient recursive mechanism for its relaxation is the following [35]. Assume
we start with an infection at 0. In order to bring an infection to �2n�1, using
at most n infections at a time (excluding 0), we �rst bring one to �2n�1 � 1,
using n� 1 infections. We then place an infection at �2n�1 and reverse the
procedure to remove all infections except 0 and �2n�1. Finally, start over
with n�1 infections, viewing �2n�1 as the new origin, thus reaching �2n�1.
It is not hard to check that this is as far as one can get with n infections [11].
Thus, a number of infections logarithmic in the desired distance is needed.
This is to be contrasted with CBSEP, for which only one infection is ever
needed, as it can be moved inde�nitely by SEP moves. The relaxation time
of East on a segment of length L is q�Oplog minpL,1{qqq [1, 9, 10], where q is the
equilibrium density of infections. This corresponds to the cost of n infections
when 2n � minpL, 1{qq is the typical distance to the nearest infection.

The long-range generalised version of the East model is de�ned similarly
to that of CBSEP. The only di�erence is that now R ¡ ` consecutive columns
are resampled together if there is a SG droplet on their extreme right. It is
clear that this does not allow moving the droplet, but rather forces us to
recreate a new droplet at a shifted position before we can progress. The
associated East-extension of a droplet corresponds to extending its geometry
to the left (see Section 4.2 and particularly De�nition 4.4 and Fig. 2a). The
extended SG event requires that the original SG droplet is present in the
rightmost position and �leftwards-pointing� helping sets are available in the
rest of the extended droplet.

The generalised East process goes back to [33], while the long range ver-
sion is implicitly used in [23]. However, both works used a brutal strategy
consisting of creating the new droplet from scratch. Instead, in this work we
have to be much more careful, particularly for semi-directed models. Indeed,
take ` large and R � ` � 5. Then it is intuitively clear that the presence
of the original rightmost droplet overlaps greatly with the occurrence of the
shifted SG one we would like to craft. Hence, the idea is to take advantage of
this and only pay the conditional probability of the droplet we are creating,
given the presence of the original one.

This is not as easy as it sounds for several reasons. Firstly, we should make
the SG structure soft enough (in contrast with e.g. [23,33]) so that small shifts
do not change it much. Secondly, we need to actually have a quantitative
estimate of the conditional probability of a complicated multi-scale event,
given its translated version, which necessarily does not quite respect the
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same multi-scale geometry. To make matters worse, we do not have at our
disposal a very sharp estimate of the probability of SG events (unlike in
[25]), so directly computing the ratio of two rough estimates would yield a
very poor bound on the conditional probability. In fact, this problem is also
present when contracting a droplet in the CBSEP-extension�we need to
evaluate the probability of a contracted version of the droplet, conditionally
on the original droplet being present.

We deal with these issues in Section 4.4 (see also Appendix B). We estab-
lish that, as intuition may suggest, to create a droplet shifted by R� `, given
the original one, we roughly only need to pay the probability of a droplet
on scale R � ` rather than `, which provides a substantial gain. Hence, the
time necessary for an East-extension of a droplet to relax is essentially the
product of the inverse probabilities of a droplet on scales of the form 2m up
to the extension length (see Proposition 4.6).

2.4 Internal dynamics

The internal dynamics (see Sections 5.1, 6.1, 7.1 and 8.1) is where most of
our work goes. This is not surprising, as the probability of SG events sat-
urates at its �nal value ρD at the internal scale. The value of ρD is given
by expp�Op1q{qαq for balanced models and expp�Oplogp1{qqq2{qαq for un-
balanced ones, as in bootstrap percolation [7]. However, relaxation times for
some classes keep growing past the internal scale, so the internal dynamics
does not necessarily give the �nal answer in Theorem 1 (see Table 2b).

2.4.1 Unbalanced internal dynamics

Let us begin with the simplest case of unbalanced models. If U is unbalanced
with in�nite number of stable directions (class (a)), droplets in [33] on the
internal scale consist of several infected consecutive columns, so that no re-
laxation is needed (the SG event is a singleton). The columns have size `int,
which justi�es the value of ρD � q�Op`

intq � expp�Oplogp1{qqq2{qαq.
Assume U is unbalanced with �nite number of stable directions (classes

(c) and (d), see Section 6.1). Then droplets on the internal scale are fully
infected square frames of thickness Op1q and size `int. That is, the `8 ball
of radius `int minus the one of radius `int � Op1q (see [23, Figs. 2-4] or
Fig. 5 for more general geometry). This frame is infected with probability
ρD � q�Op`

intq. In order to relax inside the frame, one can divide its interior
into groups of Op1q consecutive columns (see [23, Fig. 8]). We can then
view them as performing a CBSEP dynamics with Ò corresponding to a fully
infected group of columns. This is possible, because with the help of the frame
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each completely infected group is able to completely infect the neighbouring
ones. Here we are using that there are �nitely many stable directions to
ensure both the left and right directions have �nite di�culty, so �nite-sized
helping sets, as provided by the frame, are su�cient to propagate our group
of columns. This was already done in [23] and the time necessary for this

relaxation is easily seen to be ρ
�Op1q
D (the cost for creating a group of infected

columns)�see Proposition 6.2.

2.4.2 CBSEP internal dynamics

If U is isotropic (class (g), see Section 5.1), up to the conditioning problems
of Section 4.4 described above, we need only minor adaptations of the strat-
egy of [25] for the paradigmatic isotropic model called FA-2f. Droplets on
the internal scale have an internal structure as obtained by iterating Fig. 4a
(see also [25, Fig. 2]). Our droplets are extended little by little alternating
between the horizontal and vertical directions, so that their size is multiplied
essentially by a constant at each extension. Thus, roughly logp1{qq exten-
sions are required to reach `int. As isotropic models do not have any hard
directions, we can move in all directions and thus the symmetry required for
CBSEP-extensions is granted. Hence, this mechanism leads to a very fast
relaxation of droplets in time exppq�op1qq�see Theorem 5.2.3

Remark 2.1. Note that for CBSEP-extensions to be used, we need a very
strong symmetry. Namely, leftwards and rightwards pointing helping sets
should be the same up to rotation by π. Yet, for a general isotropic model we
only know that there are no hard directions, so helping sets have the same
size (equal to the di�culty α of the model), but not necessarily the same
shape. We circumvent this issue by arti�cially symmetrising our droplets
and events. Namely, whenever we require helping sets in one direction, we
also require the helping sets for the opposite direction rotated by π (see De�-
nitions 3.8, 4.1 and 4.7). Although these are totally useless for the dynamics,
they are important to ensure that the positions of droplets are indeed uni-
form rather than su�ering from a drift towards an �easier� non-hard direction
(see Lemma 4.10).

2.4.3 East internal dynamics

The most challenging case is the balanced non-isotropic one (classes (b), (e)
and (f)). It is treated in Sections 7.1 and 8.1, but for the purposes of the

3Note that in [25, Proposition 4.7] a much larger internal relaxation time of order
exppq�1{2�op1qq was obtained, but the cost ρ�1

D of SG droplets was much smaller than the
one in the present work, so our treatment here is by no means as sharp for FA-2f as [25].
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present section only Section 7.1 is relevant. This is because we assume that
only the four axis directions are relevant and our droplets are rectangular.
The treatment of the general case for balanced rooted families is left to
Section 8.1 and Appendix C (recall Remark 1.6).

For the internal dynamics the downwards hard direction prevents us from
using CBSEP-extensions. To be precise, for semi-directed models (class (f))
it is possible to perform CBSEP-extensions horizontally (and not vertically),
but the gain is insigni�cant, so we treat all balanced non-isotropic models
identically up to the internal scale as follows.

We still extend droplets, starting from a microscopic one, by a constant
factor alternating between the horizontal and vertical directions (see Fig. 6).
However, in contrast with the isotropic case (see Fig. 4a), extensions are
done in an oriented fashion, so that the original microscopic droplet remains
anchored at the corner of larger ones. Thus, we may apply East-extensions
on each step and obtain that the cost is given by the product of conditional
probabilities from Section 2.3.2 over all scales and shifts of the form 2n:

log2p`
intq¹

n�1

n¹
m�0

apnqm , (5)

where a
pnq
m is the inverse of the conditional probability of a SG droplet of size

2n being present at position 2m, given that a SG droplet of size 2n is present
at position 0. It is crucial that Eq. (5) is not the straightforward bound±

npρpnqD q�n, with ρpnqD the probability of a droplet of scale n, that one would
get by direct analogy with the East model (recall from Section 2.3.2 that
the relaxation time of East on a small volume L is q�OplogLq), as that would
completely devastate all our results. Indeed, as mentioned in Section 2.3.2,
the term a

pnq
m in Eq. (5) is approximately equal to pρpmq

D q�1, rather than

pρpnqD q�1. This is perhaps one of the most important points to our treatment.
Hence, Eq. (5) transforms into

log2p`
intq¹

n�1

n¹
m�0

�
ρ
pmq
D

	�1

.

In other words, a droplet of size 2m needs to be paid for once per scale larger
than 2m (see Eq. (44)). A careful computation shows that only droplets larger
than q�α provide the dominant contribution and those all have probability
essentially ρ

pmq
D � ρD � expp�Op1q{qαq (see Eq. (45)). Thus, the total cost

would be
log2p`

intq¹
n�log2p1{q

αq

n¹
m�log2p1{q

αq

ρ�1
D � ρ

�Oplog logp1{qqq2

D � eOplog logp1{qqq2{qα , (6)
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since there are Oplog logp1{qqq scales from q�α to `int, as they increase expo-
nentially.

Equation (6) is unfortunately a bit too rough for the semi-directed class,
overshooting Theorem 1(f). However, the solution is simple. It su�ces to
introduce scales growing double-exponentially above q�α instead of exponen-
tially (see Eq. (39)), so that the product over scales n in Eq. (6) becomes
dominated by its last term, corresponding to droplet size `int. This gives the
optimal �nal cost

ρ
� log2pq

α`intq
D � ρ

�Oplog logp1{qqq
D � eOplog logp1{qqq{qα

(see Theorem 7.3).

2.5 Mesoscopic dynamics

For the mesoscopic dynamics (see Sections 5.1, 6.2, 7.2 and 9.1) we are given
as input a SG event for droplets on scale `int � C2 logp1{qq{qα and a bound
on their relaxation time and occurrence probability ρD. We seek to output
the same on scale `mes � q�C . Taking C " W , once our droplets have size
`mes, we are able to �nd W -helping sets (sets of W consecutive infections,
where W is large enough).

2.5.1 CBSEP mesoscopic dynamics

If U is unrooted (classes (d), (f) and (g), see Sections 6.2 and 7.2), recall that
the hard directions (if any) are vertical. Then we can perform a horizontal
CBSEP-extension directly from `int to `mes, since `int � C2 logp1{qq{qα makes
it likely for helping sets (of size α) to appear along all segments of length
`int until we reach scale `mes � q�C . The resulting droplet is very wide, but
short (see Fig. 5a). However, this is enough for us to be able to perform a
vertical CBSEP-extension (see Fig. 5b), requiring W -helping sets, since they
are now likely to be found. Again, CBSEP dynamics being very e�cient,
its cost is negligible. Note that, in order to perform the vertical extension,
we are using that there are no nonisolated stable directions, so that W is
larger than the di�culty of the up and down directions, making W -helping
sets su�cient to induce growth in those directions. Thus, morally, there are
no hard directions beyond scale `mes for unrooted models.

2.5.2 East mesoscopic dynamics

If U is rooted (classes (a)-(c) and (e), see Section 9.1), CBSEP-extensions
are still inaccessible. We may instead East-extend horizontally from `int to
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`mes in a single step. If the model is balanced or has a �nite number of
stable directions (classes (b), (c) and (e)), we may proceed similarly in the

vertical direction, reaching a droplet of size `mes in time ρ
�Oplogp1{qqq
D (here

we use the basic bound q�OplogLq for East dynamics recalled in Section 2.3.2,
which is fairly tight in this case, since droplets are small compared to the
volume: log `mes � logp`mes{`intq). For the unbalanced case (class (c)) here we
requireW -helping sets along the long side of the droplet like in Section 2.5.1.
Another way of viewing this is simply as extending the procedure used for
the East internal dynamics all the way up to the mesoscopic scale `mes (see
Section 9.1).

It should be noted that a version of this mechanism, which coincides with
the above for models with rectangular droplets, but di�ers in general, was
introduced in [23]. Though their snail mesoscopic dynamics can be replaced
by our East one, for the sake of concision in Section 8.2 we directly import
the results of [23] based on the snail mechanism.

2.5.3 Stair mesoscopic dynamics

For unbalanced families with in�nite number of stable directions (class (a))
the following stair mesoscopic dynamics was introduced in [33]. Recall from
Section 2.4.1 that for unbalanced models the internal droplet is simply a
fully infected frame or group of consecutive columns. While moving the
droplet left via an East motion, we pick up W -helping sets above or below
the droplet. These sets allow us to make all droplets to their left shifted up
or down by one row. Hence, we manage to create a copy of the droplet far to
its left but also slightly shifted up or down (see [33, Fig. 6]). Repeating this
(with many steps in our staircase) in a two-dimensional East-like motion,
we can now relax on a mesoscopic droplet with horizontal dimension much
larger than `mes but still polynomial in 1{q and vertical dimension `mes in

time ρ
�Oplogp1{qqq
D . Here, one should again intuitively imagine we are using the

bound q�OplogLq but this time for the relaxation time of the 2-dimensional
East model.

2.6 Global dynamics

The global dynamics (see Sections 5.2, 6.3, 7.3, 8.2 and 9.2) receives as input
a SG event for a droplet on scale `mes with probability roughly ρD and a
bound on its relaxation time, as provided by the mesoscopic dynamics. Its
goal is to move such a droplet e�ciently to the origin from its typical initial
position at distance roughly ρ

�1{2
D .
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2.6.1 CBSEP global dynamics

If U has a �nite number of stable directions (classes (c)-(g)) the mesoscopic
droplet can perform a CBSEP motion in a typical environment. Indeed,
the droplet is large enough for CBSEP-extensions with W -helping sets to
be possible in all directions. Therefore, the cost of this mechanism is given
by the relaxation time of CBSEP on a box of size `gl � expp1{q3αq with
density of Ò given by ρD. Performing this strategy carefully and using the
2-dimensional CBSEP, this yields a relaxation time minpp`glq2, 1{ρDq � 1{ρD

(recall Section 2.3.1 and see Section 5.2).

2.6.2 East global dynamics

If U has in�nite number of stable directions (classes (a) and (b)), the strat-
egy is identical to the CBSEP global dynamics, but employs an East dy-
namics. Now the cost becomes the relaxation time of an East model with
density of infections ρD, which yields a relaxation time of ρ

�Oplog minp`gl,1{ρDqq
D �

ρ
�Oplogp1{ρDqq
D (recall Section 2.3.2 and see Section 9.2).

2.7 Assembling the components

To conclude, let us return to the summary provided in Table 2. In Table 2a
we collect the mechanisms for each scale and their cost to the relaxation time.
The results are expressed in terms of the probability of a droplet ρD, which
equals expp�Oplogp1{qqq2{qαq for unbalanced models and expp�Op1q{qαq for
balanced ones. The �nal bound on Eµrτ0s for each class then corresponds
to the product of the costs of the mechanism employed at each scale. To
complement this, in Table 2b we indicate the fastest mechanism available for
each class on each scale. We further indicate which one gives the dominant
contribution to the �nal result appearing in Theorem 1, once the bill is footed.

Finally, let us alert the reader that, for the sake of concision, the proof
below does not systematically implement the optimal strategy for each class
as indicated in Table 2b if that does not deteriorate the �nal result. Similarly,
when that is unimportant, we may give weaker bounds than the ones in
Table 2a. In Section 8.2 we tacitly import a weaker precursor of the CBSEP
global mechanism from [23] not listed above.
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3 Preliminaries

3.1 Harris inequality

Let us recall a well-known correlation inequality due to Harris [18]. It is used
throughout and we state some particular formulations that are useful to us.

For Section 3.1 we �x a �nite Λ � Z2. We say that an event A � ΩΛ is
decreasing if adding infections does not destroy its occurrence.

Proposition 3.1 (Harris inequality). Let A,B � ΩΛ be decreasing. Then

µpAX Bq ¥ µpAqµpBq. (7)

Corollary 3.2. Let A,B, C,D � ΩΛ be nonempty and decreasing events such
that B and D are independent, then

µpA|B XDq ¥ µpA|Bq ¥ µpAq, (8)

µpAX C|B XDq ¥ µpA|BqµpC|Dq. (9)

Proof. The �rst inequality in Eq. (8) is Eq. (9) for C � ΩΛ, the second follows
from Eq. (7) and µpA|Bq � µpAX Bq{µpBq, while Eq. (9) is

µpAXC|BXDq � µpAX C X B XDq
µpB XDq ¥ µpAX BqµpC XDq

µpBqµpDq � µpA|BqµpC|Dq,

using Eq. (7) in the numerator and independence in the denominator.

We collectively refer to Eqs. (7) to (9) as Harris inequality.

3.2 Directions

Throughout this work we �x a critical update family U with di�culty α. We
call a direction u P S1 rational if uR X Z2 � t0u. It follows from De�ni-
tion 1.1 that isolated and semi-isolated stable directions are rational [8, The-
orem 1.10]. Therefore, by De�nition 1.3 there exists an open semicircle with
rational midpoint u0 such that all directions in the semicircle have di�culty
at most α. We may assume without loss of generality that the direction
u0 � π{2 is hard unless U is isotropic. It is not di�cult to show (see e.g.
[8, Lemma 5.3]) that one can �nd a nonempty set S 1 of rational directions
such that:

• all isolated and semi-isolated stable directions are in S 1;

• u0 P S 1;
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• for every two consecutive directions u, v in S 1 either there exists a rule
X P U such that X � HuXHv or all directions between u and v are stable.

We further consider the set pS � S 1 � t0, π{2, π, 3π{2u obtained by making
S 1 invariant by rotation by π{2. It is not hard to verify that the three
conditions above remain valid when we add directions, so they are still valid
for Ŝ instead of S 1. We refer to the elements of pS as quasi-stable directions
or simply directions, as they are the only ones of interest to us. We label
the elements of pS � puiqiPr4ks clockwise and consider their indices modulo
4k (we write rns for t0, . . . , n � 1u), so that ui�2k � �ui (the inverse being
taken in R2 and not w.r.t. the angle) is perpendicular to ui�k. In �gures we

take pS � π
4
pZ{8Zq and u0 � p�1, 0q. Further observe that if all U P U are

contained in the axes of Z2, then we may set pS � π
2
pZ{4Zq.

For i P r4ks we introduce ρi � mintρ ¡ 0 : Dx P Z2, xx, uiy � ρu and
λi � mintλ ¡ 0 : λui P Z2u, which are both well-de�ned, as the directions
are rational (in fact ρiλi � 1, but we use both notations for transparency).

3.3 Droplets

We next de�ne the geometry of the droplets we use. Recall half planes from
Eq. (3).

De�nition 3.3 (Droplet). A droplet is a nonempty closed convex polygon
of the form

Λprq �
£
iPr4ks

Huipriq

for some radii r P Rr4ks (see the black regions in Fig. 2). For a sequence of
radii r we de�ne the side lengths s � psiqiPr4ks with si the length of the side
of Λprq with outer normal ui.

We say that a droplet is symmetric if it is of the form x � Λprq with
2x P Z2 and ri � ri�2k for all i P r2ks. If this is the case, we call x the center
of the droplet.

Note that if all U P U are contained in the axes of Z2, then droplets are
simply rectangles with sides parallel to the axes.

We write peiqiPr4ks for the canonical basis of Rr4ks and we write 1 �°
iPr4ks ei, so that Λpr1q is a polygon with inscribed circle of radius r and

sides perpendicular to pS. It is often more convenient to parametrise dimen-
sions of droplets di�erently. For i P r4ks we set

vi �
i�k�1¸
j�i�k�1

xui, ujyej. (10)
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This way Λpr� viq is obtained from Λprq by extending the two sides parallel
to ui by 1 in direction ui and leaving all other side lengths unchanged (see
Fig. 2a). Note that if Λprq is symmetric, then so is Λpr � λiviq for i P r4ks.
De�nition 3.4 (Tube). Given i P r4ks, r and l ¡ 0, we de�ne the tube of
length l, direction i and radii r (see the thickened regions in Fig. 2)

T pr, l, iq � Λpr � lviqzΛprq.

We often need to consider boundary conditions for our events on droplets
and tubes. Given two disjoint �nite regions A,B � Z2 and two con�gurations
η P ΩA and ω P ΩB, we de�ne η � ω P ΩAYB as

pη � ωqx �
#
ηx x P A,
ωx x P B. (11)

3.4 Scales

Throughout the work we consider the positive integer constants

1{ε " 1{δ " C " W.

Each one is assumed to be large enough depending on U and, therefore, pS
and α (e.g. W ¡ α), and much larger than any explicit function of the next
(e.g. eW   C). These constants are not allowed to depend on q. Whenever
asymptotic notation is used, its implicit constants are not allowed to depend
on the above ones, but only on U . Also recall Footnote 1.

The following are our main scales corresponding to the mesoscopic and
internal dynamics:

`mes� � q�C{
?
δ, `mes � q�C ,

`mes� � q�C �
?
δ, `int � C2 logp1{qq{qα.

3.5 Helping sets

We next introduce various constant-sized sets of infections su�cient to in-
duce growth. As the de�nitions are quite technical in general, in Fig. 1 we
introduce a deliberately complicated example, on which to illustrate them.
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(a) The �ve update rules U P U given as
dots. The cross marks the origin.

3

33

3

u2

u1

u0

u3

(b) The four stable directions, which
coincide with pS, and their di�culties.

u0

u1
u2

x3

u3

Z3 � k1x3 � λ0u0Z3

. . .

(c) Possible choice of ui-helping sets. The hatched region represents Hui X Z2.

Figure 1: An intricate isotropic example.
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3.5.1 Helping sets for a line

Recall puiqiPr4ks and pλiqiPr4ks from Section 3.2 and that for i P r4ks, the
direction ui�k is obtained by rotating ui clockwise by π{2.
De�nition 3.5 (W -helping set in direction ui). Let i P r4ks. A W -helping
set in direction ui is any set of W consecutive infected sites in HuizHui , that
is, a set of the form x� rW sλi�kui�k for some x P HuizHui .

The relevance of W -helping sets in direction ui is that, since W is large
enough, rZ YHuisU � Hui for any direction ui such that αpuiq   8 and Z a
W -helping set in direction ui (see [8, Lemma 5.2]).

We next de�ne some smaller sets which are su�cient to induce such
growth but have the annoying feature that they are not necessarily contained
in Hui and do not necessarily induce growth in a simple sequential way like
W -helping sets in direction ui. Let us note that except in Appendix A.2
the reader will not lose anything conceptual by thinking that the sets Zi,
ui-helping sets and α-helping sets in direction ui de�ned below are simply
single infected sites in HuizHui and the period Q is 1.

In words, the set Zi provided by the following lemma together with Hui

can infect a semi-sublattice of the �rst line outside Hui and only a �nite
number of other sites.

Lemma 3.6. Let i P r4ks be such that 0   αpuiq ¤ α. Then there exists a
set Zi � Z2zHui and xi P Z2zt0u such that

xxi, uiy � 0, |Zi| � α,
��rZi YHuisU zHui

��   8, rZi YHuisU � xiN,

where N � t0, 1, . . . u.
Proof. De�nition 1.3 supplies a set Z � Z2zHui such that Z � rHuiYZsUzHui

is in�nite and |Z| � αpuiq. Among all possible such Z, choose Z to min-
imise l � maxtxz, uiy : z P Zu. Yet, ui is stable, since αpuiq � 0 (recall
De�nition 1.3). Therefore, Z � HuiplqzHui , because Z YHui � Huiplq (recall
De�nition 1.1 and observe that it implies that rHuiplqsU � Huiplq).

Then [7, Lemma 3.3] asserts that ZXHui is either �nite or contains xiN for
some xi P HuizpHuiYt0uq. Assume that |ZzHui |   8, so that |ZXHui | � 8,
since |Z| � 8. Then we conclude by setting Zi equal to the union of Z with
α � αpuiq arbitrarily chosen elements of ZzZ, so that Zi � Z.

Assume for a contradiction that, on the contrary, |ZzHui | � 8. Set
Z 1 � pZ � ρiuiqzHu (i.e. shift Z one line closer to Hui) and observe that
Z 1 � pZzHui � ρiuiq is still in�nite. Therefore, by De�nition 1.3 αpuiq ¤
|Z 1| ¤ |Z| � αpuiq. This contradicts our choice of Z minimising l.
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In the example of Fig. 1 the u3 direction admits a set Z3 of cardinality 3
such that rZ3YHu3sU only contains every second site of the lineHuizHui , while
at least 4 sites are needed to infect the entire line. Thus, in order to e�ciently
infect Hu3zHu3 , assuming Hu3 is infected, we may use two translates of Z3

with di�erent parity. This technicality is re�ected in the next de�nition.

De�nition 3.7 (ui-helping set). For all i P r4ks such that 0   αpuiq ¤ α �x
a choice of Zi and xi as in Lemma 3.6 in such a way that the period

Q � }xi}
λi�k

is independent of i and su�ciently large so that the diameter of t0u Y Zi is
much smaller than Q. A ui-helping set is a set of the form¤

jPrQs

pZi � jλi�kui�k � kjxiq , (12)

for some integers kj. For i P r4ks with αpuiq � 0, we de�ne ui-helping sets
to be empty. For i P r4ks with αpuiq ¡ α there are no ui-helping sets.

Note that by Lemma 3.6 a ui-helping set Z is su�cient to infect a half-line,
but since that contains aW -helping set in direction ui, we have rZYHuisU �
Hui .

We further incorporate the arti�cial symmetrisation alluded to in Re-
mark 2.1 in the next de�nition.

De�nition 3.8 (α-helping set in direction ui). Let i P r4ks.
• If αpuiq ¤ α and αpui�2kq ¤ α, then a α-helping set in direction ui is a set
of the form H Y H 1 with H a ui-helping set and �H 1 � t�h : h P H 1u a
ui�2k-helping set.

• If αpuiq ¤ α and αpui�2kq ¡ α, then a α-helping set in direction ui is a
ui-helping set.

• If α   αpuiq ¤ 8, there are no α-helping sets in direction ui.

If αpuiq   8, any set which is either a W -helping set in direction ui or a
α-helping set in direction ui is called helping set in direction ui. If αpuiq � 8,
there are no helping sets in direction ui.

In the example of Fig. 1 u0 and u2 are both of di�culty α � 3, so
α-helping sets in direction u0 correspond to pz1 � tp0, 0q, p2, 0q, p3, 0quq Y
pz2 � tp0, 0q, p�2, 1q, p0, 2quq for some pz1, z2q P pt0u � Zq2. The set z2 �
tp0, 0q, p�2, 1q, p0, 2qu is not a u0-helping set, but we include it in α-helping
sets in direction u0. We do so, in order for α-helping sets in direction u0

and u2 to be symmetric. Namely, they satisfy that Z is a α-helping set in
direction u0 if and only if �Z is a α-helping set in direction u2.
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3.5.2 Helping sets for a segment

For this section we �x a direction ui P pS with αpuiq   8 and a discrete
segment S perpendicular to ui of the form 

x P Z2 : xx, uiy � 0, xx, ui�ky{λi�k P r0, as
(

(13)

for some integer a ¥ W . The direction ui is kept implicit in the notation, so
it may be useful to view S as having an orientation.

De�nition 3.9. For d ¥ 0, we denote by HW
d pSq the event that there is an

infected W -helping set in direction ui in S at distance at least d from its
endpoints:

HW
d pSq �

 
η P Ω : Dx P ZX rd{λi�k, a� pW � 1q � d{λi�ks,

ηpx�rW sqλi�kui�k � 0
(
.

We write HW pSq � HW
0 pSq.

For helping sets the de�nition is more technical, since they are not in-
cluded in S. We therefore require that they are close to S and at some
distance from its endpoints.

De�nition 3.10. For d ¥ 0, we denote by HdpSq � Ω the event such that
η P HdpSq if there exists Z a helping set in direction ui such that for all
z P Z, we have ηz � 0,

xz, uiy P r0, Qs, xz, ui�ky P rd, aλi�k � ds . (14)

Given a domain Λ � S and a boundary condition ω P ΩZ2zΛ we de�ne
Hω
d pSq � tη P ΩΛ : ω � η P HdpSqu. We write HωpSq � Hω

0 pSq and HpSq �
H0pSq.

Note that in view of De�nition 3.8, if αpuiq   8, then HωpSq � HW pSq
for any ω with equality if αpuiq ¡ α. The next observation bounds the
probability of the above events.

Observation 3.11 (Helping set probability). For any Λ � S and ω P ΩZ2zΛ

we have: if αpuiq   8, then

µ pHωpSqq ¥ µ
�
HW pSq� ¥ 1� �

1� qW
�t|S|{W u ¥ max

�
qW , 1� e�q

2W |S|
	

;

if αpuiq ¤ α, then

µpHpSqq ¥ �
1� p1� qαqΩp|S|q�Op1q ¥ �

1� e�q
α|S|{Op1q

�Op1q
.
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Proof. Assume αpuiq   8. As already observed, by De�nitions 3.8 to 3.10,
HωpSq � HW pSq, as W -helping sets in direction ui are helping sets in direc-
tion ui. For the second inequality follows by dividing S into disjoint groups
ofW consecutive sites (each of which is aW -helping set in direction ui). The
�nal inequality follows since |S| ¥ W and p1� qW q1{W ¤ e�q

W {p2W q ¤ e�q
2W
.

The case αpuiq ¤ α is treated similarly. Indeed, in order for HpSq to
occur, we need to �nd each of the Q � Op1q pieces of a ui-helping set in
Eq. (12), each of which has cardinality α. We direct the reader to [7, Lemma
4.2] for more details.

3.6 Constrained Poincaré inequalities

We next de�ne the (constrained) Poincaré constants of various regions. For
Λ � Z2, η, ω P Ω (or possibly η de�ned on a set including Λ and ω on a
set including Z2zΛ) and x P Z2, we denote by cΛ,ω

x pηq � cxpηΛ � ωZ2zΛq (recall
Eqs. (1) and (11)) the constraint at x in Λ with boundary condition ω. Given
a �nite Λ � Z2 and a nonempty event SG1pΛq � ΩΛ, let γpΛq be the smallest
constant γ P r1,8s such that the inequality

VarΛ

�
f |SG1pΛq� ¤ γ

¸
xPΛ

µΛ

�
cΛ,1
x Varxpfq

�
(15)

holds for all f : Ω Ñ R. Here we recall from Section 1.1 that µ denotes
both the product Bernoulli probability distribution with parameter q and
the expectation with respect to it. Moreover, for any function φ : Ω Ñ R,
µΛpφq � µpφpηq|ηZ2zΛq is the average on the con�guration η of law µ in
Λ, conditionally on its state in Z2zΛ. Thus, µΛpφq is a function on ΩZ2zΛ.
Similarly, Varxpfq � µpf 2pηq|ηZ2ztxuq � µ2pfpηq|ηZ2ztxuq and

VarΛ

�
f |SG1pΛq� � µ

�
f 2pηq�� ηΛ P SG1pΛq, ηZ2zΛ

�
� µ2

�
fpηq|ηΛ P SG1pΛq, ηZ2zΛ

�
.

Remark 3.12. It is important to note that in the r.h.s. of Eq. (15) we
average w.r.t. µΛ and not µΛp�|SG1pΛqq (the latter would correspond to the
usual de�nition of Poincaré constant, from which we deviate). In this respect
Eq. (15) follows [23, Eq. (12)] and di�ers from [25, Eq. (4.5)]. Although this
nuance is not important most of the time, this choice is crucial for the proof
of Theorem 8.5 below.
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3.7 Boundary conditions, translation invariance, mono-

tonicity

Let us make a few conventions in order to lighten notation throughout the
paper. As we already witnessed in Section 3.5, it is often the case that much
of the boundary condition is actually irrelevant for the occurrence of the
event. For instance, in De�nition 3.10, HωpSq only depends on the restric-
tion of ω to a �nite-range neighbourhood of the segment S. Moreover, even
the state in ω of sites close to S, but in Hui is of no importance. Such occa-
sions arise frequently, so, by abuse, we allow ourselves to specify a boundary
condition on any region containing the sites whose state actually matters for
the occurrence of the event.

We also need the following natural notion of translation invariance.

De�nition 3.13 (Translation invariance). Let A � R2. Consider a collection
of events EωpA � xq for x P Z2 and ω P ΩZ2zpA�xq. We say that EpAq is
translation invariant, if for all η P ΩA, ω P ΩZ2zA and x P Z2 we have

η P EωpAq ô η��x P Eω��xpA� xq.
Similarly, we say that EωpAq is translation invariant, if the above holds for a
�xed ω P ΩZ2zA.

We extend the eventsHdpSq,Hω
d pSq,HW

d pSq from De�nitions 3.9 and 3.10
in a translation invariant way. Similarly, T and ST events for tubes de�ned in
Section 4.1 below and SG events for droplets de�ned throughout the paper
are translation invariant. Therefore, we sometimes only de�ne them for a
�xed region, as we did in Section 3.5.2, but systematically extended them in
a translation invariant way to all translates of this region.

We also use the occasion to point out that, just like the event Hω
d pSq, all

our T , ST and SG events are decreasing in both the con�guration and the
boundary condition, so that we are able to apply Section 3.1 as needed.

4 One-directional extensions

In this section we de�ne our crucial one-directional CBSEP-extension and
East-extension techniques (recall Section 2.3).

4.1 Traversability

We �rst need the following traversability T and symmetric traversability ST
events for tubes (recall De�nition 3.4) requiring infected helping sets (recall
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Section 3.5.2) to appear for each of the segments composing the tube. The
de�nition is illustrated in Fig. 2. Recall the constant C from Section 3.4

De�nition 4.1 (Traversability). Fix a tube T � T pr, l, iq. Assume that
i P r4ks is such that αpujq   8 for all j P pi � k, i � kq. For m ¥ 0 and
j P pi � k, i � kq write Sj,m � Z2 X Λpr � mvi � ρjejqzΛpr � mviq. Note
that Sj,m is a discrete line segment perpendicular to uj of length sj � Op1q
(recall from De�nition 3.3 that s is the sequence of side lengths of Λprq). For
ω P ΩZ2zΛpr�lviq

we denote by

T ωd pT q �
£

j,m:∅�Sj,m�T

Hω
C2�d pSj,mq

the event that T is pω, dq-traversable. We set T ωpT q � T ω0 pT q.
If moreover αpuiq   8 for all i P r4ks, that is, U has a �nite number of

stable directions, we denote by

ST ωd pT q � T ωd pT q X
£

j:αpujq¤α αpuj�2kqq

£
m:∅�Sj,m�T

HW
C2�d pSj,mq

the event that T is pω, dq-symmetrically traversable.

Thus, if all side lengths of Λprq are larger than C2 � d by a large enough
constant, the event T ωd pT pr, s, iqq decomposes each of the hatched parallel-
ograms in Fig. 2a into line segments parallel to its side that is not parallel
to ui. A helping set is required for each of these segments in the direction
perpendicular to them which has positive scalar product with ui. The last
boundedly many segments may also use the boundary condition ω, but it is
irrelevant for the remaining ones, since it is far enough from them.

For symmetric traversability, we rather require W -helping sets for oppo-
sites of hard directions (recall from De�nition 3.8 that if the direction itself
is hard, helping sets are simply W -helping sets). In particular, if none of the
directions uj for j P r4kszti� k, i� ku is hard (implying that U is unrooted),
we have ST ωd pT pr, l, iqq � T ωd pT pr, l, iqq. The reason for the name �symmet-
ric traversability� is that if U has a �nite number of stable directions and
Λprq is a symmetric droplet (recall Section 3.3), then, for any l ¡ 0, i P r4ks,
ω P ΩZ2zT pr,l,iq and η P ΩT pr,l,iq, we have

η P ST ωd pT pr, l, iqq ô η1 P ST ω1d pT pr, l, i� 2kqq, (16)

denoting by ω1 P ΩZ2zT pr,l,i�2kq the boundary condition obtained by rotating
ω by π around the center of Λprq and similarly for η1. To see this, recall
from Section 3.5.2 that HωpSq � HW pSq with equality when αpuiq ¡ α and
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note that the same symmetry as in Eq. (16) holds at the level of the segment
Sj,m and its symmetric one, S 1

j�2k,m � Z2XΛpr�mvi�2k�ρj�2kej�2kqzΛpr�
mvi�2kq:

η P
#
Hω
C2�dpSj,mq αpuj�2kq ¤ α

HW
C2�dpSj,mq αpuj�2kq ¡ α

ô η1 P
#
Hω1

C2�dpS 1
j�2k,mq αpujq ¤ α

HW
C2�dpS 1

j�2k,mq αpujq ¡ α,

all four cases following directly from De�nitions 3.8 to 3.10.
We next state a simple observation which is used frequently to modify

boundary conditions as we like at little cost.

Lemma 4.2 (Changing boundary conditions). Let Λprq be a droplet, l ¡ 0
be a multiple of λi and i P r4ks. Assume that for any j P r4kszti � k, i � ku
the side length sj of Λprq satis�es sj ¥ C3. Set T � T pr, l, iq. Then there
exists a decreasing event WpT q � ΩT such that µpWpT qq ¥ qOpW q for any
ω P ΩZ2zT and η PWpT q we have

η P T ωpT q ô η P T 1pT q.
Moreover, µpT ωpT qq � q�OpW qµpT 1pT qq for all ω P ΩZ2zT . The same holds
with ST instead of T .
Proof. Recall the segments Sj,m from De�nition 4.1. Let WpT q be the in-
tersection of HW

C2pSj,mq for the largest su�ciently large but �xed number of
values of m for each j P pi� k, i� kq, such that ∅ � Sj,m � T . By Observa-
tion 3.11 µpWpT qq ¥ qOpW q. Moreover, the boundary condition is irrelevant
for the remaining segments, soWpT q is indeed as desired. Finally, by Eq. (7)
we have

µ
�
T 1pT q� ¤ µ pT ωpT qq ¤ µpWpT q X T ωpT qq

µpWpT qq
¤ q�OpW qµ

�
WpT q X T 1pT q� ¤ q�OpW qµ

�
T 1pT q� .

Another convenient property allowing us to decompose a long tube into
smaller ones is the following.

Lemma 4.3 (Decomposing tubes). Let T � T pr, l, iq be a tube, ω P ΩZ2zT

be a boundary condition and s P r0, ls be a multiple of λi. Set T1 � T pr, s, iq
and T2 � sui � T pr, l � s, iq. Then

η P T ωpT pr, l, iqq ô pηT2 P T ωpT2q and ηT1 P T ηT2
�ωpT1qq

and the same holds for ST instead of T .
Proof. This follows immediately from De�nition 4.1, since for each of the
segments Sj,m in De�nition 4.1 either Sj,m � T1 or Sj,m X T1 � ∅ and
similarly for T2 (see Fig. 2a).
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ω

ui

s
Λprq

T pr, s, iq

(a) East-extension. The thickened tube
is traversable (T ).

ω ω

ui ui�2k

s� x x
Λprq � xui

T pr, s� x, iq � xui T pr, x, i� 2kq � xui

(b) CBSEP-extension. Thickened tubes
are symmetrically traversable (ST ).

Figure 2: One-directional extensions. The black droplet is SG. Helping sets
appear on each line of the hatched parallelograms as indicated by the hatch-
ing direction. The white strips have width ΘpC2q.

4.2 East-extension

We start with the East-extension (see Fig. 2a), which is simpler to state.

De�nition 4.4 (East-extension). Fix i P r4ks, a droplet Λprq, a multiple
l ¡ 0 of λi and an event SG1pΛprqq � ΩΛprq. Assume that αpujq   8 for
all j P pi � k, i � kq. We use the expression �we East-extend Λprq by l in
direction ui� to state that, for all s P p0, ls multiple of λi and ω P ΩZ2zΛpr�sviq

,
we de�ne the event SGωpΛpr � sviqq � ΩΛpr�sviq

to occur for η P ΩΛpr�sviq
if

ηΛprq P SG1pΛprqq and ηT pr,s,iq P T ωpT pr, s, iqq.
In other words, given the event SG1 for the droplet Λprq, we de�ne the

event SGω (in particular for ω � 1, but not only) for the larger droplet
Λpr � lviq � Λprq \ T pr, l, iq. The event obtained on the larger droplet
requires for the smaller one to be 1-super good (SG) and for the remaining
tube to be ω-traversable (recall De�nition 4.1). Note that these two events
are independent. Further observe that if SG1pΛprqq is translation invariant
(recall De�nition 3.13), then so is SGpΛpr � sviqq for any s P p0, ls multiple
of λi, de�ned by East-extending Λprq by l in direction ui. To get a grasp
on De�nition 4.4, let us note the following fact, even though it is not used
directly in the proof of Theorem 1.

Lemma 4.5 (East-extension ergodicity). Let i P r4ks, Λprq be a droplet, l be
a multiple of λi and SG1pΛprqq � ΩΛprq be an event. Assume that αpujq   8
for all j P pi � k, i � kq. Further assume that η P SG1pΛprqq implies that
the U-KCM with initial condition η � 1Z2zΛprq can entirely infect Λprq. If
we East-extend Λprq by l in direction ui, then for any ω P ΩZ2zΛpr�lviq

and
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η P SGωpΛpr� lviqq the U-KCM with initial condition ω �η can entirely infect
Λpr � lviq.
Proof. The proof is rather standard, so we only sketch the reasoning. Let
η P SGωpΛpr� lviqq. Since ηΛprq P SG1pΛprqq by De�nition 4.4, by hypothesis
we can completely infect Λprq, starting from ω � η. We next proceed by
induction on s P r0, ls to show that we can infect Λpr�sviq. When a new site
in Z2 is added to this set, as we increase s, we actually add to it an entire
segment Sj,m as in De�nition 4.1 (at most one m for each j P pi� k, i� kq).
Since T pr, l, iq is pω, 0q-traversable, by De�nitions 3.10 and 4.1, there is a
helping set (in direction uj) for this segment. As noted in Section 3.5.1,
helping sets in direction uj together with the half-plane Huj infect the entire

line HujzHuj on the boundary of the half-plane. Since the helping set in
our setting is only next to a �nite fully infected droplet Λpr� sviq, infection
spreads along its edge until it reaches a bounded distance from the corners
(see [7, Lemma 3.4]). However, by our choice of Ŝ (recall Section 3.2), for
each j P r4ks there is a rule X P U such that X � Huj X Huj�1

. Using this
rule, we can infect even the remaining sites to �ll up the corner between
directions uj and uj�1 of the droplet Λpr � s1viq with s1 ¡ s minimal such
that Λpr � s1viqzΛpr � sviq � ∅ (see [8, Lemma 5.5 and Fig. 6]).

We next state a recursive bound on the Poincaré constant γ from Sec-
tion 3.6 re�ecting the recursive de�nition of SG events in an East-extension.
In rough terms, it states that in order to relax on the larger volume, we
need to be able to relax on the smaller one and additionally pay the cost of
creating logarithmically many copies of it shifted by exponentially growing
o�sets, conditionally on the presence of the original droplet. We further need
to account for the cost of microscopic dynamics (see the elog2p1{qq term below),
but its contribution is unimportant. Recall `mes� from Section 3.4.

Proposition 4.6 (East-extension relaxation). Let i P r4ks be such that for
all j P pi�k, i�kq we have αpujq   8. Let Λprq be a droplet with r � q�OpCq

and side lengths at least C3. Let l P p0, `mes�s be a multiple of λi. De�ne
dm � λitp3{2qmu for m P r1,Mq and M � mintm : λip3{2qm ¥ lu. Let
dM � l, Λm � Λpr � dmviq and sm�1 � dm � dm�1 for m P r2,M s.

Let SG1pΛprqq be a nonempty translation invariant decreasing event. As-
sume that we East-extend Λprq by l in direction ui. Then SG1pΛpr� lviqq is
also nonempty, translation invariant, decreasing and satis�es

γpΛpr � lviqq ¤ max
�
γpΛprqq, µ�1

�
SG1pΛprqq�� eOpC2q log2p1{qq

M�1¹
m�1

am,

36



with
am � µ�1

�
SG1 pΛm � smuiq

��SG1pΛmq� . (17)

The proof is left to Appendix A.3.

4.3 CBSEP-extension

We next turn our attention to CBSEP-extensions (see Fig. 2b). The de�ni-
tion di�ers from De�nition 4.4 (cf. Fig. 2a) in three ways. Firstly, we allow
the smaller SG droplet to be anywhere inside the larger one (the exact po-
sition is speci�ed by the o�set below). Secondly, we ask for traversability
on both sides of the smaller droplet in the direction away from it (so that
infection can spread, starting from it), rather than just on one side. Thirdly,
we require our tubes to be symmetrically traversable, instead of traversable.
This makes the position of the small SG droplet roughly uniform.

De�nition 4.7 (CBSEP-extension). Assume that U has a �nite number of
stable directions (equivalently, αpujq   8 for all j P r4ks). Fix i P r4ks, a
droplet Λprq and a multiple l of λi. Let SG1pΛprqq be a translation invariant
event. We use the expression �we CBSEP-extend Λprq by l in direction ui�
to state that, for all s P p0, ls multiple of λi and ω P ΩZ2zΛpr�sviq

, we de�ne
the event SGωpΛpr � sviqq � ΩΛpr�sviq

as follows.
For o�sets x P r0, ss divisible by λi we de�ne η P SGωx pΛpr � sviqq if the

following all hold:

ηT pr,s�x,iq�xui P ST ωpT pr, s� x, iq � xuiq;
ηΛprq�xui P SG1pΛprq � xuiq;

ηT pr,x,i�2kq�xui P ST ωpT pr, x, i� 2kq � xuiq.

We then set SGωpΛpr � sviqq �
�
x SGωx pΛpr � sviqq.

Note that CBSEP-extending in direction ui gives the same result as
CBSEP-extending in direction ui�2k. We further reassure the reader that,
in applications De�nitions 4.4 and 4.7, are not used simultaneously for the
same droplet Λprq, so no ambiguity arises as to whether SGωpΛpr � lviqq
is obtained by CBSEP-extension or East-extension. However, as it is clear
from Table 2b, it is sometimes necessary to CBSEP-extend a droplet itself
obtained by East-extending an even smaller one. But for the time being, let
us focus on a single CBSEP-extension.

The following analogue of Lemma 4.5 holds for CBSEP-extension, which
is also not used directly in the proof of Theorem 1.
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Lemma 4.8 (CBSEP-extension ergodicity). Assume that U has a �nite num-
ber of stable directions. Let i P r4ks, Λprq be a droplet and l be a multiple
of λi. Let SG1pΛprqq � ΩΛprq be translation invariant. Further assume that
η P SG1pΛprqq implies that the U-KCM with initial condition η � 1Z2zΛprq can
entirely infect Λprq. If we CBSEP-extend Λprq by l in direction ui, then for
any ω P ΩZ2zΛpr�lviq

and η P SGωpΛpr�lviqq the U-KCM with initial condition
ω � η can entirely infect Λpr � lviq.
Proof. By De�nition 4.7, it su�ces to prove that for each o�set x P r0, ss the
conclusion holds for η P SGωx pΛpr� lviqq. By De�nition 4.7, this implies that
the events SG1pxui�ΛprqqXST ωpxui�T pr, s�x, iqq and SG1pxui�ΛprqqX
ST ωpxui � T pr, x, i � 2kqq hold. Moreover, by De�nition 4.1, ST ω1pT q �
T ω1pT q for any tube T and boundary condition ω1. Therefore, we may apply
Lemma 4.5 to each of the droplets Λpr � xviq and xui �Λpr � ps� xqviq (in
directions ui and ui�2k respectively) to obtain the desired conclusion.

We next state the CBSEP analogue of Proposition 4.6, which is more
involved, but also more e�cient. Roughly speaking, we show that the time
needed in order to relax on a CBSEP-extended droplet, is the product of
four contributions: the Poincaré constant of the smaller droplet; the inverse
probability of the symmetric traversability events in De�nition 4.7; the cost
of microscopic dynamics; the conditional probability of suitable contracted
versions of the super good and symmetric traversability events, given the
original ones (recall Section 2.3.1). The last two contributions turn out to
be negligible, but the last one requires some care and make the statement
somewhat technical.

Proposition 4.9 (CBSEP-extension relaxation). Assume that U has a �nite
number of stable directions. Let i P r4ks. Let Λprq be a droplet with r �
q�OpCq and side lengths at least C3. Let l P p0, `mes�s be a multiple of λi. Let
SG1pΛprqq be a nonempty translation invariant decreasing event.

Denote Λ1 � T pr, λi, i� 2kq, Λ2 � Λpr�λiviq and Λ3 � T pr�λivi, λi, iq,
so that Λpr�λiviq�λiui � Λ1\Λ2\Λ3 and Λ2YΛ3 � Λprq � pΛ1YΛ2q�λiui.
Consider some nonempty decreasing events4 SGpΛ2q � ΩΛ2, ST η2pΛ1q � ΩΛ1

and ST η2pΛ3q � ΩΛ3 for all η2 P SGpΛ2q. Assume that 
η : ηΛ1 P ST ηΛ2

pΛ1q, ηΛ2 P SGpΛ2q, ηΛ3 P ST ηΛ2
pΛ3q

(
� SG1pΛ1 Y Λ2q X SG1pΛ2 Y Λ3q. (18)

Set SGpΛ1 Y Λ2q � tη : ηΛ2 P SGpΛ2q, ηΛ1 P ST ηΛ2
pΛ1qu.

4We use a bar to denote �contracted� versions of events (recall Section 2.3.1).
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If we CBSEP-extend Λprq by l in direction ui, then SGpΛpr � lviqq is
nonempty, translation invariant, decreasing and satis�es

γpΛpr � lviqq ¤
µpSG1pΛprqqq

µpSG1pΛpr � lviqqq
�max

�
µ�1

�
SG1pΛprqq� , γpΛprqq�

� eOpC
2q log2p1{qq

µpSGpΛ1 Y Λ2q|SG1pΛ1 Y Λ2qqminη2PSGpΛ2q
µpST η2pΛ3q|ST 0pΛ3qq

.

Proposition 4.9 is proved in Appendix A.3 based on [25]. We referring
the reader to [25, Section 4.3] for the principles behind Proposition 4.9 in a
less technical framework, but let us brie�y discuss the contracted events.

Equation (18) should be understood as follows. In the middle droplet
Λ2, which has the shape of Λprq, but contracted in direction ui by Op1q, we
require an event SGpΛ2q. This event provides simultaneously as much of the
structure of SG1pΛ1 Y Λ2q and SG1pΛ2 Y Λ3q (these regions both have the
shape of Λprq), as one can hope for, given that we are missing a tube of length
Op1q of these regions. Once such a favourable con�guration η2 P SGpΛ2q
is �xed, the events ST ηΛ2

pΛ1q and ST ηΛ2
pΛ3q provide exactly the missing

part of SG1pΛ1 Y Λ2q and SG1pΛ2 Y Λ3q respectively. In applications, these
events necessarily need to be de�ned, taking into account the structure of
SG1pΛprqq, on which we have made no assumptions at this point.

4.4 Conditional probability tools

In both Propositions 4.6 and 4.9 our bounds feature certain conditional prob-
abilities of SG events. We now provide two tools for bounding them.

The next result generalises [25, Corollary A.3], which relied on explicit
computations unavailable in our setting. It shows that the o�set of the
core of a CBSEP-extended droplet (see Fig. 2b and recall the notation SGωx
from De�nition 4.7) is roughly uniform. This result is the reason for the
somewhat arti�cial De�nition 3.8 of helping sets and De�nition 4.1 of ST
(also see Remark 2.1).

Lemma 4.10 (Uniform core position). Assume that U has a �nite number
of stable directions. Fix i P r4ks and a symmetric droplet Λ � Λpr � lviq
obtained by CBSEP-extension by l in direction ui. Assume that l ¤ `mes� is
divisible by λi and that the side lengths of Λprq are at least C3. Then for all
s P r0, ls divisible by λi and ω, ω

1 P ΩZ2zΛ

µ
�
SGωs pΛq|SGω

1pΛq
	
¥ qOpCq.
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l

l1

T 1

T

ui

uj

Figure 3: Illustration of the perturbation of Lemma 4.11. The two thickened
tubes are T and T 1. The regions concerned by their traversability are hatched
in di�erent directions.

The proofs of Lemmas 4.10 and 4.11 are left to Appendix B. The latter
vastly generalises [25, Lemma A.4] and is proved by di�erent means. It is
illustrated in Fig. 3. In words, Lemma 4.11 states in a quantitative way
that the conditional probability of a tube of �critical� size, q�α�op1q, being
traversable, given that a slightly perturbed version of it (shifted spatially,
with di�erent boundary condition, width of the white strips in Fig. 2a, radii
and length) is traversable, is not very low. We note that sizes other than the
critical one are not important, so cruder bounds su�ce.

Lemma 4.11 (Perturbing a tube). Let i P r4ks such that αpujq ¤ α for all
j P pi�k, i�kq. Let Λprq be a droplet with side lengths s and let T � T pr, l, iq
be a tube. Assume that l P rΩp1q, eq�op1qs, s � mini�k j i�k sj � q�α�op1q and
maxi�k j i�k sj � q�α�op1q. For some ∆ P rC2, s{W 2s, let r1 and l1 be such
that 0 ¤ sj� s1j ¤ Op∆q for all j P pi�k, i�kq and 0 ¤ l� l1 ¤ Op∆q, where
s1 are the side lengths of the droplet Λpr1q. Further let x P R2 be such that
}x} � Op∆q and d, d1 P r0, Op∆qs with d ¤ d1. Denoting T 1 � T pr1, l1, iq � x,
for any boundary conditions ω P ΩZ2zT and ω1 P ΩZ2zT 1, we have

µ
�
T ω1d1 pT 1q

��� T ωd pT q	 ¥ qOpW q
�
1� p1� qαqΩpsq�Op∆q

� �
1�W∆{s� q1�op1q

�Oplq
.
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5 Isotropic models

For this section we assume U to be isotropic (class (g)). In this case the rea-
soning closely follows and generalises [25]. We treat internal and mesoscopic
dynamics simultaneously, since for this class there is no di�erence between
the two.

5.1 Isotropic internal and mesoscopic dynamics

We start by de�ning the geometry of our droplets and the corresponding
length scales. They are all symmetric and every 2k-th droplet is twice larger.
Each such dilation is decomposed into 2k steps, so that their geometry �ts
the setting of our CBSEP-extensions from Section 4.3 (see Fig. 4a and recall
Fig. 2b).

Recall Section 3.3 and the constant ε from Section 3.4. Let rp0q be a

sequence of radii with r
p0q
i � r

p0q
i�2k for all i P r2ks, such that for all i P r4ks,

r
p0q
i � Θp1{εq and the corresponding side length s

p0q
i � Θp1{εq is a multiple

of 2λi�k. For any integer m ¥ 0, i P r2ks and n � 2km� r with r P r2ks we
de�ne

s
pnq
i � s

pnq
i�2k � s

p0q
i 2m �

#
2 k ¤ i   k � r

1 otherwise
(19)

and Λpnq � Λprpnqq with rpnq the sequence of radii associated to spnq satisfying

r
pnq
i � r

pnq
i�2k for all i P r2ks. Further set Nmes� � 2krlogpε`mes�q{ log 2s (recall

`mes� from Section 3.4).
Note that, as claimed, Λpnq are nested symmetric droplets extended in one

direction at each step satisfying Λp2kmq � 2mΛp0q. Moreover, they are nested
so that we can de�ne their SG events by extension (recall De�nition 4.7
and Fig. 2b for CBSEP-extensions).

De�nition 5.1 (Isotropic SG). Let U be isotropic. We say that Λp0q is SG
(SG1pΛp0qq occurs), if all sites in Λp0q are infected. We then recursively de�ne
SG1pΛpn�1qq for n P rNmes�s by CBSEP-extending Λpnq in direction un by

lpnq � s
pnq
n�k � Θp2n{2k{εq (recall from Section 3.2 that indices of directions

and sequences are considered modulo 4k as needed and see Fig. 4a).

Recall from Section 3.6 that once SG1pΛpnqq is de�ned, so is γpΛpnqq. We
next prove a bound on γpΛpnqq.
Theorem 5.2. Let U be isotropic (class (g)). Then for all n ¤ Nmes�

γ
�

ΛpNmes�q
	
¤ expp1{plogC{2p1{qqqαqq

µpSG1pΛpNmes�qqq , µ
�
SG1

�
Λpnq

�� ¥ exp

� �1

qαε2



.
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(a) A generic realisation of SG1pΛpnqq
depicting the SG translates of
Λpnq, . . . ,Λpn�2kq involved in progres-
sive shades of grey. Each extension
is as in Fig. 2b.

Λ
pnq
1

Λ
pnq
2

Λ
pnq
3

(b) The setting of De�nition 5.3. The

tubes Λ
pnq
1 and Λ

pnq
3 of length λr are

hatched, Λ
pnq
2 � ΛpnqzΛ

pnq
3 is thickened,

while the symmetrically traversable tubes
are in progressive shades of grey.

Figure 4: Geometry of isotropic SG and SG events.

The rest of Section 5.1 is devoted to the proof of Theorem 5.2. The
bound on µpSG1pΛpnqqq is fairly standard in bootstrap percolation and could
essentially be attributed to [7], but we prove it in Lemma 5.6, since we
also need some better bounds on intermediate scales. Bounding γpΛpNmes�qq
is more demanding and is done by iteratively applying Proposition 4.9, as
suggested by De�nition 5.1.

Note that γpΛp0qq � 1, since Eq. (15) is trivial, because SG1pΛp0qq is a
singleton. We seek to apply Proposition 4.9, in order to recursively upper
bound γpΛpnqq for all n ¤ Nmes�. To that end, we need the following def-
inition of contracted events. Since, in the language of Proposition 4.9, the
events ST η2 we de�ne do not depend on η2, we directly omit it from the
notation.

De�nition 5.3 (Contracted isotropic events). For n � 2km�r P rNmes��1s
with r P r2ks, as in Proposition 4.9 with r � rpnq, l � lpnq and i � r, let

Λ
pnq
1 � T

�
rpnq, λr, n� 2k

�
Λ
pnq
2 � Λ

�
rpnq � λrvr

�
(20)

Λ
pnq
3 � T

�
rpnq � λrvr, λr, r

�
.
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If n   2k, we de�ne ST pΛpnq
1 q, SGpΛpnq

2 q and ST pΛpnq
3 q to occur if Λ

pnq
1 ,

Λ
pnq
2 and Λ

pnq
3 is fully infected respectively.

For n ¥ 2k, we de�ne ST pΛpnq
1 q � Ω

Λ
pnq
1

(resp. ST pΛpnq
3 q � Ω

Λ
pnq
3
) to

be the event that for every segment S � Λ
pnq
1 (resp. Λ

pnq
3 ) perpendicular to

some uj with j � r � k of length 2m{pWεq the event HW pSq occurs (recall
De�nition 3.9). Finally, for n ¥ 2k, we de�ne SGpΛpnq

2 q as the intersection of
the following events (see Fig. 4b):5

• SG1pΛpn�2kqq;
• ST 1pT prpn�2kq, lpn�2kq{2� λr, rqq X ST 1pT prpn�2kq, lpn�2kq{2� λr, r� 2kqq;
• for all i P p0, 2kq

ST 1
W

�
T
�
rpn�2k�iq � λrpvr � vr�2kq, lpn�2k�iq{2, r � i

��
X ST 1

W

�
T
�
rpn�2k�iq � λrpvr � vr�2kq, lpn�2k�iq{2, r � i� 2k

��
.

• for every i P r2ks, j P r4ks and segment S � Λ
pnq
2 , perpendicular to uj of

length 2m{pWεq at distance at most W from the uj-side (parallel to S) of
Λpn�2k�iq, the event HW pSq holds.

In words, SGpΛpnq
2 q is close to being the event that the central copy

of Λpn�2kq in Λ
pnq
2 is SG and several tubes are symmetrically traversable.

Namely, for each i P r2ks, the two tubes of equal length around Λpn�2k�iq cor-
responding to a CBSEP-extension by lpn�2k�iq in direction ur, �nally reaching
Λpnq after 2k extensions. However, we have modi�ed this event in the follow-
ing ways. Firstly, the �rst extension is shortened by 2λr, so that the �nal
result after the 2k extensions �ts inside Λ

pnq
2 and actually only its ur�k and

ur�k-sides are shorter than those of Λ
pnq
2 by λr (see Fig. 4b). Secondly, the

symmetric traversability events for tubes are required to occur with segments
shortened by W (recall De�nition 4.1) on each side. Finally, we roughly re-
quire W helping sets for the last OpW q lines of each tube, as well as the �rst

OpW q outside the tube (without going out of Λ
pnq
2 ).

Lemma 5.4 (CBSEP-extension relaxation condition). For all n P rNmes�s
we have SGpΛpnq

2 q�ST pΛpnq
3 q � SG1pΛpnq

2 YΛ
pnq
3 q and similarly for Λ

pnq
1 instead

of Λ
pnq
3 .

5Recall from De�nition 4.1 that STW refers to symmetric traversability with parallel-
ograms in Fig. 2a shrunken by W , but not necessarily requiring W -helping sets. Further
recall from Section 4.1 that for isotropic models T and ST events are the same.
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Proof. If n   2k, this follows directly from De�nition 5.3, since SGpΛpnq
2 q �

ST pΛpnq
3 q is only the fully infected con�guration and similarly for Λ

pnq
1 . We

therefore assume that n ¥ 2k and set n � 2km� r with r P r2ks.
We start with the �rst claim. Note that Λ

pnq
2 Y Λ

pnq
3 � Λpnq. Let η P

SGpΛpnq
2 q � ST pΛpnq

3 q. We proceed by induction on i to show that ηΛpiq P
SG1pΛpiqq for i P rn� 2k, ns.

The base is part of De�nition 5.3. Assume η P SG1pΛpiqq for some i P
rn� 2k, nq. Then by De�nition 4.7, it su�ces to check that

η P ST 1
�
T
�
rpiq, lpiq{2, i��X ST 1

�
T
�
rpiq, lpiq{2, i� 2k

��
, (21)

since then η P SG1
lpiq{2

pΛpi�1qq � SG1pΛpi�1qq.
Let us �rst consider the case i � n�2k and assume for concreteness that

m is even (so that ui � ur). Then

η P SG
�

Λ
pnq
2

	
� ST 1

�
T
�
rpiq, lpiq{2� λr, r

��
,

so by Lemma 4.3 it su�ces to check that η P ST 1puiplpiq{2�λrq�T prpiq, λr, iqq,
in order for the �rst symmetric traversability event in Eq. (21) to occur. We

claim that this follows from η P ST pΛpnq
3 q and the fourth condition in Def-

inition 5.3. To see this, notice that for each j P r4ks the uj-side length of

Λprpiqq satis�es spiqj � Θpsp0qj 2mq " 2m{pWεq by Eq. (19). Further recall from
Section 3.5 that HW pSq � HωpSq for any segment S of length at least C
and boundary condition ω. Thus, for each of the segments in De�nition 4.1
for the tube uiplpiq{2 � λrq � T prpiq, λr, iq � Λpnq, we have supplied not only
a helping set, but in fact several W -helping sets. For directions uj with

j P pr� k, r� kqztru, they are in Λ
pnq
2 , while for j � r they are found in Λ

pnq
3 ,

if k � 1 and m is even, and in Λ
pnq
2 otherwise (see Fig. 4b). Hence, the claim

is established. For the second event in Eq. (21) the reasoning is the same
except that when k ¡ 1 or m is even, the tube T prpiq, lpiq{2, i� 2kq is entirely
contained in Λ

pnq
2 , so only SGpΛpnq

2 q is needed.
We next turn to the case i P pn�2k, nq, which is treated similarly. Indeed,

η P SG
�

Λ
pnq
2

	
� ST 1

W

�
T
�
rpiq � λrpvr � vr�2kq, lpiq{2, i

��
.

Comparing this tube to the desired one in Eq. (21), T prpiq, lpiq{2, iq, we no-
tice that the lengths and positions of their sides di�er by Op1q (see Fig. 3).
However, recalling De�nition 4.1 and Fig. 2a, decreasing the width of each
parallelogram there by ΩpW q " Op1q (using the event ST 1

W rather than ST 1)
is enough to compensate for this discrepancy (the shaded zones in Fig. 3 are
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empty in this case). It remains to ensure that the �rst and last Op1q seg-
ments in De�nition 4.1 also have helping sets. But this is guaranteed by the
fourth condition in De�nition 5.3 and (depending on the values of k, i and

m) ST pΛpnq
3 q exactly as in the case i � n� 2k.

Finally, the statement for Λ
pnq
1 is also proved analogously (with the o�set

for i � n� 2k modi�ed by λr in Eq. (21)), so the proof is complete.

By Lemma 5.4, Eq. (18) holds, so we may apply Proposition 4.9. This
gives

γ
�
Λpn�1q

� ¤ max
�
µ�1

�
SG1

�
Λpnq

��
, γ

�
Λpnq

��
eOpC

2q log2p1{qq

� µpSG1pΛpnqqq
µpSG1pΛpn�1qqqµ

�1
�
ST

�
Λ
pnq
3

	���ST 0
�

Λ
pnq
3

		
(22)

� µ�1
�
ST

�
Λ
pnq
1

	
X SG

�
Λ
pnq
2

	���SG1 �Λ
pnq
1 Y Λ

pnq
2

		
for n ¥ 2k and γpΛpnqq ¤ eOpC

2q log2p1{qq for n   2k. We therefore assume that

n ¥ 2k. Recalling De�nition 5.3, note that both ST pΛpnq
1 q and ST pΛpnq

3 q
can be guaranteed by the presence of OpW 2q well chosen infected W -helping
sets, since only OpW q disjoint segments of length 2m{pWεq perpendicular to
uj for a given j P pr � k, r � kq can be �t in Λ

pnq
1 or Λ

pnq
3 (see Fig. 4b), so it

su�ces to have a W -helping set at each end of those. This and the Harris
inequality, Eqs. (8) and (9), give

µ
�
ST

�
Λ
pnq
3

	���ST 0
�

Λ
pnq
3

		
¥ µ

�
ST

�
Λ
pnq
3

		
¥ qW

Op1q

, (23)

µ
�
ST

�
Λ
pnq
1

	
X SG

�
Λ
pnq
2

	���SG1 �Λ
pnq
1 Y Λ

pnq
2

		
¥ qW

Op1q

µ
�
SG

�
Λ
pnq
2

	���SG1 �Λ
pnq
1 Y Λ

pnq
2

		
.

(24)

To deal with the last term we prove the following.

Lemma 5.5 (Contraction rate). Setting m � tn{p2kqu ¥ 1, we have

µ
�
SG

�
Λ
pnq
2

	���SG1 �Λ
pnq
1 Y Λ

pnq
2

		

¥

$'''&'''%
µ
�
SG

�
Λ
pnq
2

		
2m ¤ 1{ �logCp1{qqqα� ,

qOpCq
µpSGpΛpnq

2 qq

µpSG1pΛpn�2kqqq 2m ¥ logCp1{qq{qα,
exp

��2mq1�op1q
�

otherwise.

(25)
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Proof. The �rst case follows from the Harris inequality Eq. (8).

For the other two cases we start by noting that Λ
pnq
1 YΛ

pnq
2 � Λpnq � λrur

may be viewed as a 2k-fold CBSEP-extension of Λpn�2kq. Recalling the o�set
in De�nition 4.7, set

SG
0 � SG1
�
Λpnq � λrur

�
,

SG
i �
i£

j�1

SG1lpn�jq{2
�
Λpn�j�1q � λrur

�
i P r1, 2k � 1s,

SG
2k � SG
2k�1 X SG1lpn�2kq{2�λr

�
Λpn�2k�1q � λrur

�
,

so that SG
i corresponds to �xing the position of the core, which is a translate
of Λpn�iq, inside Λpnq� λrur, but leaving its internal o�sets unconstraint (see
Fig. 4b). Thus, Lemma 4.10 applied 2k times gives

µ
�
SG
2k|SG1

�
Λ
pnq
1 Y Λ

pnq
2

		
�

2k¹
i�1

µpSG
i |SG
i�1q ¥ qOpCq.

Expanding the de�nition of SG
2k via De�nition 4.7, we see that this event is
the intersection of SG1pΛpn�2kqq with some increasing events (symmetrically
traversable tubes) independent of the latter. Thus, the Harris inequality
Eq. (8) gives

µ
�
SG

�
Λ
pnq
2

	���SG1 �Λ
pnq
1 Y Λ

pnq
2

		
¥ qOpCqµ

�
SG

�
Λ
pnq
2

	���SG
2k	 (26)

¥ qOpCqµ
�
SG

�
Λ
pnq
2

	���SG1 �Λpn�2kq
�	
.

Taking into account that SGpΛpnq
2 q � SG1pΛpn�2kqq by De�nition 5.3, this

concludes the proof of the second case of Eq. (25).
For the third case, our starting point is again Eq. (26). This time we

observe that SG
2k can be written as the intersection of SG1pΛpn�2kqq with
4k symmetric traversability events, each of which is a perturbed version (in
the sense of Lemma 4.11 and Fig. 3) of the ones appearing in De�nition 5.3

of SGpΛpnq
2 q. Thus, the Harris inequality Eq. (9) allows us to lower bound

µpSGpΛpnq
2 q|SG
2kq by

µpWq � µ
�
ST 1

�
T
�
rpn�2kq, lpn�2kq{2� λr, r

����ST 1
�
T
�
rpn�2kq, lpn�2kq{2� λr, r

�� λrur
��

�µ �ST 1
�
T
�
rpn�2kq, lpn�2kq{2� λr, r � 2k

����ST 1
�
T
�
rpn�2kq, lpn�2kq{2� λr, r � 2k

�� λrur
��
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�
2k�1¹
i�1

1¹
ξ�0

µ
�
ST 1

W

�
T
�
rpn�2k�iq � λr

�
vr � vr�2k

�
, lpn�2k�iq{2, r � i� 2kξ

��
��ST 1

�
T
�
rpn�2k�iq, lpn�2k�iq{2, r � i� 2kξ

�� λrur
��
,

where W is the event appearing in the last item of De�nition 5.3.
Firstly, each of the above conditional probabilities is bounded by

qOpW q log�C
Op1qp1{qq �1� q1�op1q

�Op2m{εq ¥ exp
��2mq1�op1q

�
,

using Lemma 4.11 with ∆ � C2 and recalling that 2m � q�α logOpCqp1{qq
and α ¥ 1. Secondly, µpWq ¥ qW

Op1q
as in Eq. (23), concluding the proof

of Eq. (25). We direct the reader to [25, Appendix A] for the details of an
analogous argument in a simpler setting.

Iterating Eq. (22) and plugging Eqs. (23) and (24) gives that γpΛpNmes�qq
is at most

eOpC
2qNmes� log2p1{qqq2Nmes�WOp1q

µpSG1pΛpNmes�qqq
Nmes��1¹
n�2k

µ�1
�
SG

�
Λ
pnq
2

���SG1 �Λ
pnq
1 Y Λ

pnq
2

			
.

Further recalling that Nmes� � Oplogp`mes�qq � OpC logp1{qqq and inserting
Eq. (25), we obtain

γ
�

ΛpNmes�q
	
¤ eq

�α�1�op1q

µpSG1pΛpNmes�qqq
2m¤1{plogCp1{qqqαq¹

n�2k

µ�1
�
SG

�
Λ
pnq
2

		
�

Nmes��1¹
n:2m¥logCp1{qq{qα

µpSG1pΛpn�2kqqq
µpSGpΛpnq

2 qq
. (27)

withm � tn{p2kqu. The �nal ingredient are the following probability bounds.
Lemma 5.6 (Probability of super good droplets). For n P r2k,Nmes�s and
m � tn{p2kqu, the following bounds hold:

µ
�
SG

�
Λ
pnq
2

		
¥ exp

� �1

logC�3p1{qqqα



if 2m ¤ 1

logCp1{qqqα , (28)

µpSGpΛpnq
2 qq

µpSG1pΛpn�2kqqq ¥ qW
Op1q

if 2m ¥ logCp1{qq
qα

, (29)

µ
�
SG1

�
Λpnq

�� ¥ exp

� �1

qαε2



. (30)
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Proof. Let us �rst bound µpSG1pΛpnqqq for n ¤ Nmes� by induction, starting
with the trivial bound

µ
�
SG1

�
Λp2kq

�� ¥ q|Λ
p2kq| ¥ qOp1{εq. (31)

From De�nition 4.7, translation invariance and Eq. (16), for n P r2k,Nmes��
1s we have

µ
�
SG1

�
Λpn�1q

�� ¥ µ
�
SG10

�
Λpn�1q

��
� µ

�
SG1

�
Λpnq

��
µ
�
ST 1

�
T
�
rpnq, lpnq, n

���
(32)

¥ qOp1{εq
n¹

i�2k

µ
�
ST 1

�
T
�
rpiq, lpiq, i

���
,

so we need to bound the last term. Applying De�nition 4.1, Lemma 4.2 and
the Harris inequality Eq. (7) and then Observation 3.11, we get

µ
�
ST 1

�
T
�
rpnq, lpnq, n

��� ¥ qOpW q
¹
j,m1

HC2 pSj,m1q

¥ qOpW q
�
1� e�q

α2m{Opεq
�Op2m{εq

(33)

¥ qOpW q

#
pqα2m�1qC2m{ε

2m ¤ 1{qα
exp p�2m exp p�qα2mqq 2m ¡ 1{qα,

where the product runs over the segments Sj,m1 appearing in De�nition 4.1 for
the event ST 1pT prpnq, lpnq, nqq � T 1pT prpnq, lpnq, nqq (the last equality holds,
since U is isotropic). Plugging Eq. (33) into Eq. (32) and iterating, we get

µ
�
SG1

�
Λpnq

�� ¥ #
exp

��1{ �logC�2p1{qqqα�� 2m ¤ 1{ �logCp1{qqqα�
exp p�1{ pqαε2qq 2m ¡ 1{ �logCp1{qqqα�

(34)
since Nmes� ¤ OpCq logp1{qq. This proves Eq. (30).

Recalling De�nition 5.3, as in the proof of Lemma 5.5, we have that for
any n P r2k,Nmes�s
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� µpWqµ �SG1 �Λpn�2kq

��
�

1¹
ξ�0

µ
�
ST 1

�
T
�
rpn�2kq, lpn�2kq{2� λr, r � 2kξ

���
�

1¹
ξ�0

2k�1¹
i�1

µ
�
ST 1

W

�
T
�
rpn�2k�iq � λr

�
vr � vr�2k

�
, lpn�2kq{2, r � 2kξ
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,
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where W is the event from the last item of De�nition 5.3 and r � n� 2km.
As in the proof of Lemma 5.5, we have µpWq ¥ qW

Op1q
, while the factors

in the products can be bounded exactly as in Eq. (33), entailing Eqs. (28)
and (29), since we already have Eq. (34).

Proof of Theorem 5.2. The bound on µpSG1pΛpnqqq was proved in Eqs. (30)
and (31). The one on γpΛpNmes�qq follows by plugging Eqs. (28) and (29) into
Eq. (27).

5.2 CBSEP global dynamics

For the global dynamics we need to recall the global CBSEP mechanism
introduced in [25]. It is useful not only for class (g), but also other unrooted
models�classes (d) and (f).

Let Λmes� and Λmes� be droplets with side lengths Θp`mes�q and Θp`mes�q
respectively (recall Section 3.4). Consider a tiling of R2 with square boxes
Qi,j � r0, `mesq � r0, `mesq � `mespi, jq for pi, jq P Z2.

De�nition 5.7 (Good and super good boxes). We say that the box Qi,j is

good if for every segment S � Qi,j, perpendicular to some u P pS of length
at least ε`mes�, HW pSq occurs (recall De�nition 3.9). We denote the cor-
responding event by Gi,j. We further say that GpΛmes�q occurs if for every
segment S � Λmes�, perpendicular to some u P pS of length at least 3ε`mes�,
the event HW pSq occurs.

Let SG1pΛmes�q � ΩΛmes� be a nonempty translation invariant event. We
say that Qi,j is super good if it is good and SG1px� Λmes�q occurs for some
x P Z2 such that x � Λmes� � Qi,j. We denote the corresponding event by
SGi,j.

In words, good boxes Qi,j and droplets Λmes� contain W -helping sets in
su�cient supply for a SG translate of Λmes� to be able to move inside the
box or droplet containing it. Our choice of `mes� makes being good so likely
that we are able to assume that all boxes and droplets are good at all times.
Finally, a box is SG, if it also contains a SG translate of Λmes� that we
wish to move around. Thus, when looking at SG boxes, we essentially see a
two-dimensional CBSEP dynamics, which leads to the following bound.

Proposition 5.8 (Global CBSEP relaxation). Let U be unrooted (classes
(d), (f) and (g)). Let T � expplog4p1{qq{qαq. Assume that SG1pΛmes�q and
SG1pΛmes�q are nonempty translation invariant decreasing events such that
the following conditions hold:

(1) p1� µpSG1pΛmes�qqqTT 4 � op1q;
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(2) for all x P Z2 such that x� Λmes� � Λmes� we have

SG1px� Λmes�q X GpΛmes�q � SG1pΛmes�q.

Then

Eµrτ0s ¤ γ
�
Λmes�

� logp1{µpSG1pΛmes�qqq
qOpCq

.

We omit the proof, which is identical to [25, Section 5], given De�ni-
tion 5.7,6 and turn to the proof of Theorem 1 for the isotropic class (g).

Proof of Theorem 1(g). Let U be isotropic. Recall the droplets Λpnq from
Section 5.1. Set Λmes� � ΛpNmes�q, Nmes� � 2krlogpε`mes�q{ log 2s and
Λmes� � ΛpNmes�q. Thus, the side lengths of Λmes� and Λmes� are indeed
Θp`mes�q and Θp`mes�q respectively by Eq. (19). By Theorem 5.2, condition
(1) of Proposition 5.8 is satis�ed:

p1� µpSG1pΛmes�qqqTT 4 ¤ p1� e�1{pqαε2qqTT 4 ¤ T 4e�e
log4p1{qq{qα�1{pqαε2q

¤ e4 log4p1{qq{qα�elog4p1{qq{p2qαq � op1q.
We next seek to verify condition (2). Proceeding by induction on n P

rNmes�, Nmes�s, it su�ces to show that for any n P rNmes�, Nmes�q and
x, y P Z2 such that x� Λpnq � y � Λpn�1q � Λmes�, we have

GpΛmes�q X SG1px� Λpnqq � SG1py � Λpn�1qq. (35)

Recalling De�nitions 4.7 and 5.1, we see that it su�ces to show that for any
tube T of the form z � T prpnq, l, jq for some l ¡ 0, j P r4ks and z P Z2

satisfying T � y�Λpn�1q also veri�es GpΛmes�q � ST 1pT q. Further recalling
De�nition 4.1, we see that it su�ces to show that on GpΛmes�q, each segment

of length minjPr4ks s
pnq
j � C2 � Op1q perpendicular to uj for some j P r4ks

contains an infected W -helping set (recall from Section 3.5.2 that HW
d pSq �

Hω
d pSq). Hence, Eq. (35) follows from De�nition 5.7, since

min
jPr4ks

s
pnq
j � C2 �Op1q � Θp`mes�q ¥ 3ε`mes�.

Thus, we may apply Proposition 5.8. Further plugging the bounds from
Theorem 5.2, we recover

Eµrτ0s ¤ expp1{plogC{2p1{qqqαqq
µpSG1pΛpNmes�qqq

1

qαε2qOpCq

6Due to the di�erence between Eq. (15) and [25, Eq. (4.5)], the factor µΛi,j
pSGpΛi,jqq

in [25, last display of Section 5] cancels out with πpS1q
�1 in [25, Eq. (5.11)] up to a qOpCq

factor, rather than compensating the conditioning in [25, last display of Section 5], which
is absent in our setting.
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¤ expp1{plogC{3p1{qqqαqq
µpSG1pΛpNmes�qqq ¤ exp

�
1� op1q
ε2qα



,

concluding the proof.

6 Unbalanced unrooted models

In this section we assume U is unbalanced unrooted (class (d)). We deal
with the internal, mesoscopic and global dynamics separately. The internal
dynamics is very simple and already known since [23]. The mesoscopic and
global ones are similar to the ones of Section 5 with some adaptations needed
for the mesoscopic one.

6.1 Unbalanced internal dynamics

For unbalanced unrooted U (class (d)) the SG event on to the internal scale
consists simply in having an infected ring of thickness W (see Fig. 5). Recall
`int from Section 3.4.

De�nition 6.1 (Unbalanced unrooted internal SG). Assume U is unbal-

anced unrooted. Let Λp0q � Λprp0qq be a droplet with side lengths s
p0q
j �

2λjr`
int{p2λjqs for j P r4ks. We say that Λp0q, is super good (SG1pΛp0qq oc-

curs) if all sites in Λp0qzΛprp0q �W1q are infected.
The following result was proved in [23, Lemma 4.10] and provides the

main contribution to the scaling for this class (see Table 2b).

Proposition 6.2. For unbalanced unrooted U (class (d)) we have

max
�
γ
�
Λp0q

�
, µ�1

�
SG1

�
Λp0q

��� ¤ q�OpW`intq ¤ exp
�
C3 log2p1{qq{qα� .

6.2 CBSEP mesoscopic dynamics

Since U is unbalanced unrooted, we may assume w.l.o.g. that αpujq ¤ α
for all j P r4ksztk,�ku. We only use 4k scales for the mesoscopic dynamics.
Recall Sections 3.3 and 3.4. For i P r0, 2ks let Λpiq � Λprpiqq be the symmetric
droplet centered at 0 with rpiq such that its associated side lengths are

s
piq
j � s

piq
j�2k �

#
2λjr`

int{p2λjqs i� k ¤ j   k

2λjr`
mes�{p2λjqs �k ¤ j   i� k.
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For i P p2k, 4ks, we de�ne Λpiq similarly by

s
piq
j � s

piq
j�2k �

#
2λjr`

mes�{p2λjqs i� 3k ¤ j   k

2λjr`
mes�{p2λjqs �k ¤ j   i� 3k.

(36)

These droplets are exactly as in Fig. 4a, except that the extensions are much
longer. More precisely, we have Λpi�1q � Λprpiq � lpiqpvi � vi�2kq{2q with

lpiq � s
pi�1q
i�k � s

piq
i�k, so that lpiq � p1 � qC�α�op1qq`mes� if i P r2ks and lpiq �

p1�Opδqq`mes� if i P r2k, 4kq. In particular, the droplets Λpnq for n P r4k�1s
are nested in such a way that allows us to de�ne their SG events by extension,
as in De�nition 5.1 (also recall De�nition 6.1 for SG1pΛp0qq and De�nition 4.7
and Fig. 2b for CBSEP-extensions).

De�nition 6.3 (Unbalanced unrooted mesoscopic SG). Let U be unbalanced
unrooted. For n P r4ks we de�ne SG1pΛpn�1qq by CBSEP-extending Λpnq by
lpnq in direction un.

With this de�nition we aim to prove the following (recall γpΛp4kqq from
Section 3.6).

Theorem 6.4. Let U be unbalanced unrooted (class (d)). Then

max
�
γ
�
Λp4kq

�
, µ�1

�
SG1

�
Λp2kq

��� ¤ exp

�
log2p1{qq
δqα



.

The remainder of Section 6.2 is dedicated to the proof of Theorem 6.4.
Naturally, Theorem 6.4 results from 4k applications of Proposition 4.9 and
using Proposition 6.2 as initial input. The second step is somewhat special
(see Fig. 5a), since there we need to take into account the exact structure of
SG1pΛp0qq from De�nition 6.1 in the de�nition of the contracted events ap-
pearing in Proposition 4.9. For the remaining steps the reasoning is identical
to the proof of Theorem 5.2, but computations are simpler, since there are
only boundedly many scales. Following the proof of Theorem 5.2, we start
by de�ning our contracted events (cf. De�nition 5.3).

De�nition 6.5 (Contracted unbalanced unrooted events). For n � 2km�r P
r4k � 1s and r P r2ks, de�ne Λ

pnq
1 ,Λ

pnq
2 ,Λ

pnq
3 by Eq. (20).

Let ST pΛp0q
1 q (resp. ST pΛp0q

3 q) be the events that Λ
p0q
1 (resp. Λ

p0q
3 ) is fully

infected and SGpΛp0q
2 q be the event that Λ

p0q
2 zΛprp0q � 2W1q is fully infected.

Let SGpΛp1q
2 q occur if the following all hold (see Fig. 5a):5

• ST 1
W pT prp0q � λ1v1, l

p0q{2, 0qq occurs,
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(a) Case n � 1. The tube Λ
pnq
3 contains W -helping sets close to its boundaries

except the one perpendicular to uk.

(b) Case n � 2. Regions around all boundaries contain W -helping sets.

Figure 5: The events SGpΛpnq
2 q and ST pΛpnq

3 q of De�nition 6.5. Λ
pnq
3 is

thickened. Black regions are entirely infected. Shaded tubes are p1,W q-
symmetrically traversable.

• pΛprp0q �W1qzΛprp0q � 2W1qq X Λ
p1q
2 is fully infected,

• ST 1
W pT prp0q � λ1v1, l

p0q{2, 2kqq occurs,
• for all j � �k and segment S � Λ

p1q
2 , perpendicular to uj at distance at

most W from the uj-side of Λ
p1q
2 and of length `int{W , the event HW pSq

occurs.

Further let ST pΛp1q
1 q occur if the following both hold (see Fig. 5a):

• Λprp0q �W1q X Λ
p1q
1 is fully infected,

• for all j � �k and segment S � Λ
p1q
1 perpendicular to uj of length `

int{W
the event HW pSq occurs.

We de�ne ST pΛp1q
3 q analogously.

Let i P r2, 4kq. We say that ST pΛpiq
1 q occurs (see Fig. 5b) if for all

j P r4ks and m P ti � 1, iu every segment S � Λ
piq
1 perpendicular to uj of

length s
pmq
j {W at distance at mostW from the uj-side (parallel to S) of Λpmq,

the event HW pSq occurs. We de�ne ST pΛpiq
3 q similarly. Let SGpΛpiq

2 q occur
if the following all hold (see Fig. 5b):
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• SG1pΛpi�2qq occurs;
• for each m P t0, 2ku the following occurs

ST 1
W

�
T
�
rpi�2q, lpi�2q{2�

?
W, i� 2�m

		
X ST 1

W

�
T
�
rpi�1q �

?
W

�
vi � vi�2k

�
, lpi�1q{2�

?
W, i� 1�m

		
;

• for all j P r4ks, m P ti� 2, i� 1, iu and segment S � Λ
piq
2 , perpendicular to

uj of length s
pmq
j {W at distance at most W from the uj-side of Λpmq, the

event HW pSq holds.
Before moving on, let us make a few comments on how De�nition 6.5 of

SGpΛpnq
1 q and ST pΛpnq

3 q is devised. Recall that our goal is to satisfy Eq. (18),

that is, SGpΛpnq
2 q � ST pΛpnq

3 q � SG1pΛpnqq, so as to apply Proposition 4.9.
For that reason, for the various values of n, we have required the (more than)

parts of the event SG1pΛpnqq which can be witnessed in each of Λ
pnq
2 and Λ

pnq
3 .

Since SG1pΛp0qq corresponds to an infected ring of width roughly W and
radius being fully infected (see De�nition 6.1), we have required for n P t0, 1u
a ring of the same radius, but three times thicker to be infected. Similarly to
De�nition 5.3, we have slightly reduced the length of traversable tubes present
in (recall De�nition 6.3), but thinned the corresponding parallelograms in
Fig. 2b. We have further asked for W -helping sets around all boundaries so
as to compensate for the shortening of the tubes. The construction takes
advantage of the fact that for n ¥ 2 the droplet Λpn�2q is far from the
boundaries of Λpnq (see Fig. 5b), so the event SG1pΛpn�2qq can be directly

incorporated into SGpΛpnq
2 q, rather than being decomposed into one part in

Λ
pnq
2 and one in Λ

pnq
3 .

Lemma 6.6 (CBSEP-extension relaxation condition). For all n P r4ks we
have SGpΛpnq

2 q � ST pΛpnq
3 q � SG1pΛpnq

2 Y Λ
pnq
3 q and similarly for Λ

pnq
1 instead

of Λ
pnq
3 .

Proof. The proof for n ¥ 2 is essentially identical to the one of Lemma 5.4
and n � 0 is immediate from De�nitions 6.1 and 6.5. We therefore focus
on the case n � 1 and on Λ

p1q
3 , since Λ

p1q
1 is treated analogously. Assume

SGpΛp1q
2 q and ST pΛp1q

3 q occur. Recalling De�nition 4.7, it su�ces to prove
that SG1

lp0q{2
pΛp1qq occurs.

Firstly, note that

ST 1
�
T
�
rp0q, lp0q{2, 2k�� � ST 1

W

�
T
�
rp0q � λ1v1, l

p0q{2, 2k�� ,
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recalling from Eq. (10) that xv1, ejy � 0 for all j P tk � 1, . . . , 3k � 1u and
xv1, ejy ¤ Op1q ! W for j P tk, 3ku. Similarly, for any η P ΩΛp1q we have

η P ST 1
W

�
T
�
rp0q � λ1v1, l

p0q{2, 0��ñ η P ST ηΛp1qzT
�1Z2zΛp1q pT q,

where T � prp0q, lp0q{2 � λ1{xu1, u0y, 0q. Furthermore, the fourth condi-

tion in the de�nition of SGpΛp1q
2 q and the second condition in the de�ni-

tion of ST pΛp1q
3 q (see De�nition 6.5) imply the occurrence of ST 1pu0plp0q{2�

λ1{xu1, u0yq�T prp0q, λ1{xu1, u0y, 0qq. Using Lemma 4.3 to combine these two
facts, we obtain that ST 1prp0q, lp0q{2, 0q occurs.

Thus, it remains to show that SG1pΛp0qq occurs. But, in view of De�ni-

tion 6.1, this is the case by the second condition in the de�nition of SGpΛp1q
2 q

and the �rst condition of ST pΛp1q
3 q (see De�nition 6.5).

Proof of Theorem 6.4. By Lemma 6.6, Eq. (18) holds, so we may apply
Proposition 4.9. Together with the Harris inequality Eq. (8), this gives

γ
�
Λp4kq

� ¤ γpΛp0qq exppOpC2q log2p1{qqq±
iPr4ks µpSG1pΛpi�1qqqµpST pΛpiq

1 qqµpSGpΛpiq
2 qqµpST pΛpiq

3 qq
.

(37)
In view of Proposition 6.2, in order to prove Theorem 6.4, it su�ces to
prove that each of the terms in the denominator of Eq. (37) is at least
expp�COp1q log2p1{qq{qαq.

Inspecting De�nitions 6.3 and 6.5, we see that each SG, SG and ST event
in Eq. (37) requires at most C`int �xed infections, WOp1q W -helping sets and
Op1q p1,W q-symmetrically traversable tubes. We claim that the probability
of each tube being p1,W q-symmetrically traversable is qOpW q. Assuming this,
the Harris inequality Eq. (7) and the above give that, for all i P r4k � 1s,

µ
�
SG1

�
Λpiq

�� ¥ qC`
int

qW
Op1q

qOpW q � exp
��COp1q log2p1{qq{qα�

and similarly for the other events.
To prove the claim, let us consider for concreteness and notational con-

venience the event
E � ST 1

W

�
T
�
rp1q, lp1q, 1

��
,

all tubes being treated identically. As in Eq. (33), applying De�nition 4.1,
Lemma 4.2, and Observation 3.11, we get

µpEq ¥ qOpW q
�

1� e�q
α`int{Op1q

	Oplp1qq �
1� e�q

W `mes�{OpW q
	Oplp1qq

. (38)

Here we noted that in directions i P p�k� 2, k� 1q symmetric traversability
only requires helping sets (since the only hard directions are assumed to
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be uk and u�k) and the corresponding side lengths of Λp1q are `int � Op1q,
while for i � k it requires W -helping sets, but the uk-side of Λp1q has length
`mes��Op1q. Recalling Section 3.4 and the fact that lp1q � Θp`mes�q, Eq. (38)
becomes µpEq ¥ qOpW q, as claimed.

6.3 CBSEP global dynamics

With Theorem 6.4 established, we are ready to conclude the proof of Theo-
rem 1(d) as in Section 5.2.

Proof of Theorem 1(d). Let U be unbalanced unrooted. Recall the droplets
Λpnq from Section 6.2. Set Λmes� � Λp4kq and Λmes� � Λp2kq. Condition (1)
of Proposition 5.8 is satis�ed by Theorem 6.4, while condition (2) is veri�ed
as in Section 5.2.

Thus, Proposition 5.8 applies and, together with Theorem 6.4, it yields

Eµrτ0s ¤ exp

�
log2p1{qq
εqα



,

concluding the proof.

7 Semi-directed models

In this section we aim to treat semi-directed update families U (class (f)).
The internal dynamics (Section 7.1) based on East extensions is the most
delicate. The mesoscopic and global dynamics (Sections 7.2 and 7.3) use the
CBSEP mechanism along the same lines as in Sections 5 and 6.

7.1 East internal dynamics

In view of Remark 1.6, in Section 7.1 we work not only with semi-directed
models (class (f)), but slightly more generally, in order to also treat balanced
rooted models with �nite number of stable directions (class (e)), whose up-
date rules are contained in the axes of the lattice (in which case k � 1�recall
Section 3.2). In either case we have that αpujq ¤ α for all j P r4kszt3k�1, 3ku
and this is the only assumption on U we use.

Recalling Section 3.4, set

N cr � mintn : W n ¥ q�αu � rα logp1{qq{ logW s,

N int � min
 
n :

P
W exppn�Ncrq{qαT ¥ `intε

(
,

� N cr � log log logp1{qq �Oplog logW q, (39)
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lp1q

lp1�1{4q

lp1�2{4q

lp1�3{4q

Λp2q

Λp1q

Λp0q

Figure 6: Geometry of the nested
droplets Λpnq for k � 2 in the set-
ting of Section 7.1. For n P N
droplets are symmetric and homo-
thetic to the black Λp0q. Inter-
mediate ones Λp1�1{4q, Λp1�2{4q and
Λp1�3{4q obtained by East-extensions
(see Fig. 2a) in directions u0, u1 and
u2 respectively are drawn in progres-
sive shades of grey.

`pnq �
#
W n n ¤ N cr,P
W exppn�Ncrq{qαT N cr   n ¤ N int.

Remark 7.1. Note that despite the extremely fast divergence of `pnqqα, for
n P pN cr, N ints it holds that W ¤ `pn�1q{`pnq   p`pnqqαq2   log4p1{qq. The
sharp divergence ensures that some error terms below sum to the largest
one. This prevents additional factors of the order of N int � N cr in the �nal
answer, particularly for the semi-directed class (f) (recall Section 2.4.3). This
technique was introduced in [26, Eq. (16)], while the geometrically increasing
scale choice relevant for small n originates from [17]. It should be noted
that this divergence can be further ampli�ed up to a tower of exponentials
of height linear in n � N cr. In that case the log log logp1{qq error term in
Theorem 8.5 and Eq. (4) below becomes log�p1{qq, but is, alas, still divergent.

Recall Section 3.3. Let rp0q � prp0qj qjPr4ks be a symmetric sequence of radii

such that r � Θp1{εq, the vertices of Λprp0qq are in 2Z2 and the correspond-
ing side lengths sp0q are also Θp1{εq. For n P N and j P r4ks, we de�ne

s
pnq
j � s

p0q
j `pnq. We denote Λpnq � Λprpnqq, where rpnq is the sequence of radii

corresponding to spnq such that r
pnq
3k � r

p0q
3k and r

pnq
3k�1 � r

p0q
3k�1 (see Fig. 6).

For j P r2ks, we write lpn�j{p2kqq � s
pn�1q
j�k � s

pnq
j�k � Θp`pn�1q{εq and set

rpn�pj�1q{p2kqq � rpn�j{p2kqq�lpn�j{p2kqqvj, which is consistent with the de�nition
of rpn�1q above. Thus, denoting Λpn�j{p2kqq � Λprpn�j{p2kqqq for n P N and
j P p0, 2kq (see Fig. 6), we may de�ne SG events of these droplets by extension
(recall De�nition 4.4 and Fig. 2a for East-extensions).

De�nition 7.2 (Semi-directed internal SG). Let U be semi-directed or bal-
anced rooted with �nite number of stable directions and k � 1. We say
that Λp0q is SG (SG1pΛp0qq occurs), if all sites in Λp0q are infected. We then
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recursively de�ne SG1pΛpn�pj�1q{p2kqqq, for n P rN ints and j P r2ks, by East-
extending Λpn�j{p2kqq in direction uj by l

pn�j{p2kqq (see Fig. 6).

As usual, we seek to bound the probability of SG1pΛpN intqq and associated
γpΛpN intqq (recall Section 3.6).

Theorem 7.3. Let U be semi-directed (class (f)) or balanced rooted with
�nite number of stable directions (class (e)) and k � 1. Then

γ
�

ΛpN intq
	
¤ exp

�
log logp1{qq

ε6qα



, µ

�
SG1

�
ΛpN intq

		
¥ exp

� �1

ε2qα



.

The rest of Section 7.1 is dedicated to the proof of Theorem 7.3. The
probability bound is fairly easy, as in Eq. (30), while the relaxation time is
bounded by iteratively using Proposition 4.6 and then carefully estimating
the product appearing there with the help of Lemma 4.11.

Note that γpΛp0qq � 1, since Eq. (15) is trivial, as SG1pΛp0qq is a singleton.
For n P 1{p2kqN, j P r2ks and m ¥ 1, such that n   N int and n� j{p2kq P N
set

apnqm � µ�1
�
SG1

�
Λpnq � �Xp3{2qm�1

\� tp3{2qmu
�
λjuj

���SG1 �Λpnq
��
. (40)

We further let

M pnq � min
 
m : λjp3{2qm�1 ¥ lpnq

( � log lpnq{ logp3{2q �Op1q. (41)

For the sake of simplifying expressions we abusively assume that lpnq �
λjtp3{2qMpnq�1u. Without this assumption, one would need to treat the term
corresponding to m �M pnq below separately, but identically.

We next seek to apply Proposition 4.6 with r � rpnq and l � lpnq. Let
us �rst analyse the term am in Eq. (17). By De�nition 4.4 and the Harris
inequality Eq. (9), we have

am ¤ a
pnq
m

µpT 1pT � ptp3{2qm�1u� tp3{2qmuqλjujq|T 1pT qq �
a
pnq
m

b
pnq
m

, (42)

using Lemma 4.3 in the equality and setting

T � T
�
rpnq, λjtp3{2qmu, j

�
bpnqm � µ

�
T 1

�
T
�
rpnq,

�Xp3{2qm�1
\� tp3{2qmu

�
λj, j

���
Moreover, by Lemmas 4.2 and 4.3 we have

Mpnq¹
m�1

bpnqm � q�OpWMpnqqµ
�
T 1

�
T
�
rpnq, lpnq, j

���
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� q�OpWMpnqqµpSG1pΛpn�1{p2kqqqq
µpSG1pΛpnqqq , (43)

where the second equality uses De�nitions 4.4 and 7.2.
Applying Proposition 4.6 successively and using Eqs. (41) and (42), we

get

γ
�

ΛpN intq
	
¤ max

n¤N int
µ�1

�
SG1

�
Λpnq

��N int�1{p2kq¹
n�0

eOpC
2q log2p1{qq

Mpnq¹
m�1

a
pnq
m

b
pnq
m

¤ µpSG1pΛp0qqqeOpC2qN int log2p1{qq

µ2pSG1pΛpN intqqq
N int�1{p2kq¹

n�0

q�OpWMpnqq
Mpnq¹
m�1

apnqm

¤ expplogOp1qp1{qqq
µ2pSG1pΛpN intqqq

N int�1{p2kq¹
n�0

Mpnq¹
m�1

apnqm , (44)

where in the second inequality we used Eq. (43) and the fact that µpSG1pΛpnqqq
is non-increasing in n (recall De�nitions 4.4 and 7.2); in the third inequality
we used N int ¤ logp1{qq by Eq. (39) and M pnq ¤ Oplogp1{qqq by Eqs. (39)
and (41). Note that in Eq. (44) and below products on n run over 1{p2kqN.

To evaluate the r.h.s. of Eq. (44) we need the following lemma.

Lemma 7.4. Let n P 1{p2kqN be such that n ¤ N int and m ¥ 1. Then

apnqm ¤ µ�1
�
SG1

�
Λpnq

�� ¤ min
�
pδqαW nq�Wn{ε2 , e1{pε2qαq

	
. (45)

Moreover, if

`ptnuq ¥ 1{ �qα logW p1{qq� , M pnq ¥ m�W, p3{2qm ¤ 1{qα, (46)

setting

nm � min
!
n1 P N : `pn

1q ¥ 1{ �qα logW p1{qq� ,M pn1q ¥ m�W
)
¤ n, (47)

the following improvements hold

apnqm ¤ exp

�p3{2qm
ε4

�
pN cr � nmq2 � 1n¥Ncr log2{3 logp1{qq

	

(48)

�
$&%exp

�
1{

�
qα logW�Op1qp1{qq

		
m ¤ logp1{pqα logW p1{qqqq

logp3{2q

exp
�

1{
�
qα logW�Op1q logp1{qq

		
m ¡ logp1{pqα logW p1{qqqq

logp3{2q
.

Let us �nish the proof of Theorem 7.3 before proving Lemma 7.4.
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Proof of Theorem 7.3. The second inequality in Theorem 7.3 is contained in
Eq. (45), so we focus on γpΛpN intqq based on Eq. (44). Set

Mα � rlogp1{qαq{ logp3{2qs . (49)

Using the trivial bound a
pnq
m ¤ expp1{pε2qαqq from Eq. (45) and then Eqs. (39)

and (41), we get

N int�1{p2kq¹
n�Ncr�r1{εs

Mpnq¹
m�Mα

apnqm ¤ exp

�� 2

ε3qα

N int�1{p2kq¸
n�Ncr

�
M pnq �Mα � 1

��

¤ exp

�°N int�1{p2kq
n�Ncr Op1� logp`prn�1{p2kqsqqα{εqq

ε3qα

�

¤ exp

�°N int

n�Ncr en�1�Ncr

ε4qα

�

¤ exp

�
log logp1{qq

ε5qα



, (50)

which is the main contribution. Note that by Eqs. (39) and (41), n   N cr �
1{ε implies M pnq   Mα, so Eq. (50) exhausts the terms in Eq. (44) with
m ¥Mα.

Next set
NW � P� log

�
qα logW p1{qq� { logW

T
. (51)

Using the �rst bound on a
pnq
m from Eq. (45) and Eq. (41), we obtain

NW¹
n�0

Mpnq¹
m�1

apnqm ¤
NW¹
n�0

pδqαW nq�Oplogp1{qqWn{ε2q

¤ exp

�
� logOp1qp1{qq

NW̧

n�0

W n

�
¤ exp

�
1{

�
qα logW�Op1qp1{qq

		
. (52)

We next turn to the range NW ¤ n   nm with m   Mα. Recalling
Eqs. (39), (41) and (47), we get that NW ¤ n   nm implies M pnq   m �W
and therefore lpnq ¤ Opp3{2qm�W q, so W n ¤ p3{2qm. Plugging this into the

�rst bound on a
pnq
m from Eq. (45), we get

Mα�1¹
m�1

nm�1{p2kq¹
n�NW

apnqm ¤ exp

�
�

Mα̧

m�1

p3{2qm logpδqαp3{2qmq
ε3

�
¤ e1{pqαε4q. (53)
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It remains to treat the range nm ¤ n   N int with m  Mα. Note that by
Eqs. (39), (47) and (51) NW ¤ nm for any m and set

MW � X
log

�
1{ �qα logW p1{qq�� { logp3{2q\ . (54)

Then Eq. (48) gives

Mα�1¸
m�1

N int�1{p2kq¸
n�nm

log apnqm ¤ 2k

ε4

Mα�1¸
m�1

p3{2qmpN cr � nmq2pN int �N cr �N cr � nmq

� 2k

ε4
pN int �N crq log2{3 logp1{qq

Mα�1¸
m�1

p3{2qm

� 2kMαN
int

qα logW�Op1qp1{qq �
2kpMα �MW qpN int �NW q

qα logW�Op1q logp1{qq

¤ 8k

ε4
log log logp1{qq

Mα�1¸
m�1

p3{2qmpN cr � nmq3

� log2{3 logp1{qq log log logp1{qq
ε5qα

� 1

qα logW�Op1qp1{qq �
1

qα logW�Op1q logp1{qq ,
(55)

where we used that N int � N cr ¤ 2 log log logp1{qq by Eq. (39), Mα ¤
logOp1qp1{qq by Eq. (49), N int ¤ logOp1qp1{qq by Eq. (39), Mα � MW ¤
logOp1q logp1{qq by Eqs. (49) and (54) and N int � NW ¤ logOp1q logp1{qq by
Eqs. (39) and (51). In order to bound the last sum in Eq. (55), we note
that by Eqs. (39), (47), (49) and (54), for any m P rMW ,Mαq we have
N cr � nm ¤ pMα �mq{ε. Plugging this back into Eq. (55), we get

Mα�1¸
m�1

N int�1{p2kq¸
n�nm

log apnqm ¤ log log logp1{qq
εOp1q

�
M4

αp3{2qMW � p3{2qMα
�

� log3{4 logp1{qq
2qα

¤ log3{4 logp1{qq
qα

.

Plugging the last result and Eqs. (50), (52) and (53) in Eq. (44), we conclude
the proof of Theorem 7.3, since µpSG1pΛpN intqqq ¥ e�1{pε2qαq by Eq. (45).
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Proof of Lemma 7.4. Let us �x m and n as in the statement for Eq. (45).

The bound a
pnq
m ¤ µ�1pSG1pΛpnqqq follows from the Harris inequality Eq. (8).

To upper bound the latter term we note that by De�nitions 4.4 and 7.2,

µ
�
SG1

�
Λpnq

�� � µ
�
SG1

�
Λp0q

�� n�1{p2kq¹
p�0

µ
�
T 1

�
T
�
rppq, lppq, jppq��� , (56)

setting jppq P r2ks such that p� jppq{p2kq P N and letting products on p run
over 1{p2kqN. Clearly,

µ
�
SG1

�
Λp0q

�� � q|Λ
p0q| � qΘp1{ε2q. (57)

Let us �x p P 1{p2kqN, p   N int. Then, using Lemma 4.2, De�nition 4.1,
Observation 3.11, and the Harris inequality Eq. (7), we get

µ
�
T 1

�
T
�
rppq, lppq, jppq���
¥ qOpW q

�
1� e�q

α`ptpuq{Opεq
	Oplppqq

¥ qOpW q

#
pδqαW pqW p{pδεq p ¤ N cr,

exp
��1{ �qα exp

�
W expptpu�Ncrq{δ��� p ¡ N cr.

(58)

In the last inequality we took into account 1{ε " 1{δ " W " 1, `pN
crq �

WOp1q{qα and the explicit expressions Eq. (39). From Eqs. (56) to (58) it is
not hard to check Eq. (45) (recalling Section 3.4).

We next turn to proving Eq. (48), so we �x n ¤ N int and m ¥ 1 satisfying
Eq. (46). Denote sm � ptp3{2qm�1u � tp3{2qmuqλjuj for j � jpnq, so that
Eq. (40) spells

apnqm � µ�1
�
SG1

�
Λpnq � sm

���SG1 �Λpnq
��
.

By the Harris inequality, Eqs. (8) and (9), De�nitions 4.4 and 7.2 we have

apnqm ¤ µ�1
�
SG1

�
Λpnmq

��
(59)

�
n�1{p2kq¹
p�nm

µ�1
�
T 1

�
T
�
rppq, lppq, jppq�� sm

��� T 1
�
T
�
rppq, lppq, jppq��� .

Our goal is then to bound the last factor, using Lemma 4.11, which quanti�es
the fact that �small perturbations sm do not modify traversability much.�

Let us �x p P rnm, nq X p1{2kqN and denote

T � T 1
�
T
�
rppq, lppq, jppq�� T 1 � T 1

�
T
�
rppq, lppq, jppq�� sm

�
.
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In order to apply Lemma 4.11 with ∆ � maxpC2, }sm}q, we check that
W 3p3{2qm ¤ `ptpuq{ε (so that the sides of Λppq are large enough). If `ptpuq ¥
1{qα, this follows from the assumption p3{2qm ¤ 1{qα of Lemma 7.4. Other-
wise, by Eqs. (41) and (47)

W 3p3{2qm ¤ p3{2qMpnmq�W {2 ¤ lpnmq{eΩpW q � Θ
�
`pnm�1q

� { �εeΩpW q
�

¤ `pnmq{ε ¤ `ptpuq{ε,

where in the last but one inequality we used that `pnm�1q ¤ WOp1q`pnmq, since
nm ¤ p and `ppq ¤ 1{qα (recall Eq. (39)). The remaining hypotheses of
Lemma 4.11 are immediate to verify.

For }sm} � Θpp3{2qmq ¤ C2, Lemma 4.11 gives

µ pT 1| T q ¥ qOpC
2q
�
1� q1�op1q

�Oplppqq ¥ exp
��q�α�1{2

�
,

as lppq ¤ `pN
intq{ε ¤ q�α�op1q. If, on the contrary, }sm} ¥ C2, Lemma 4.11

gives

µpT 1|T q ¥ qOpW q �
�

1� p1� qαq`ptpuq{Opεq
	Opp3{2qmq

(60)

� �
1�OpWεqp3{2qm{`ptpuq � q1�op1q

�Op`ptpu�1q{εq

¥ qOpW q �
#
pδqαW pqOpp3{2qmq p ¤ N cr

exp
��p3{2qm exp

��W expptpu�Ncrq{δ�� p ¡ N cr

�
#

exp
��q�α�1{2�op1q

� p3{2qm ¤ q�α�1{2�op1q

exp
�
�W 2p3{2qm `ptpu�1q

`ptpuq

	
p3{2qm ¡ q�α�1{2�op1q,

in view of Eq. (39). Further notice that if p3{2qm ¤ q�α�1{2�op1q or p ¡ N cr,
the third term dominates, while otherwise the second one does. Moreover, if
p ¥ N cr � rΨs with

Ψ � log
log log logp1{qq

3 logW
, (61)

then the Harris inequality Eq. (8), translation invariance and Eq. (58) directly
give the bound

µpT 1|T q ¥ µpT 1q � µpT q ¥ exp
��1{ �qα logW logp1{qq�� . (62)

Finally, we can plug Eqs. (45), (60) and (62) in Eq. (59) to obtain the
following bounds. If p3{2qm ¤ q�α�1{2�op1q, then

apnqm ¤ exp
�
1{ �qα logW p1{qq�� ,
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because the contribution from Eq. (60) is negligible, since n ¤ N int ¤
logp1{qq, while by Eqs. (39) and (47), W nm � `pnmq ¤ W {pqα logW p1{qqq.
If, on the contrary, p3{2qm ¡ q�α�1{2�op1q, then

apnqm ¤
#

exp
�

1{
�
qα logW�Op1qp1{qq

		
p3{2qm ¤ 1{ �qα logW p1{qq�

pδqαW nmq�p3{2qm{ε3 p3{2qm ¡ 1{ �qα logW p1{qq�
�

minpn,Ncrq¹
p�nm

pδqαW pq�Opp3{2qmq

�
#

1 n ¤ N cr

exp
�p3{2qmW 2 exppΨq{δ� n ¡ N cr

�
$&%exp

�
1{

�
qα logW�Op1qp1{qq

		
p3{2qm ¤ 1{ �qα logW p1{qq�

exp
�

1{
�
qα logW�Op1q logp1{qq

		
p3{2qm ¡ 1{ �qα logW p1{qq� ,

the terms corresponding to µ�1pSG1pΛpnmqqq and to values of p in the intervals
rnm, N crs, pN cr, N cr � rΨsq and rN cr � rΨs, N intq respectively. Indeed, in the
last term for small m we used Eq. (60), while for large m, we directly applied
Eq. (62). Observing that the product of the second case for the �rst term,
the second term and the third term can be bounded by

exp

�p3{2qm
ε4

�
pN cr � nmq2 � 1n¥Ncr log2{3 logp1{qq

	

,

we obtain the desired Eq. (48).

7.2 CBSEP mesoscopic dynamics

In this section we assume that U is semi-directed (class (f)) and w.l.o.g.
αpuiq ¤ α for all i P r4kszt3ku. The approach to the mesoscopic dynamics
is very similar to the one of Section 6.2, employing a bounded number of
CBSEP-extensions to go from the internal to the mesoscopic scale. Once
again, the geometry of our droplets is as in Fig. 4a, but extensions are much
longer so that we go from scale `int to `mes� in 2k extensions and then to
`mes� in another 2k extensions.

Recall from Section 7.1 that we de�ned ΛpN intq, a symmetric droplet with
side lengths spN

intq equal to Θp`pN intq{εq, as well as SG1pΛpN intqq in De�ni-
tion 7.2. Further recall Section 3.4. Following Section 6.2, for i P r1, 2ks we
de�ne

s
pi�N intq
j � s

pi�N intq
j�2k �

#
s
pN intq
j i� k ¤ j   k,

2λjr`
mes�{p2λjqs �k ¤ j   i� k,
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while for i P p2k, 4ks, we set

s
pi�N intq
j � s

pi�N intq
j�2k �

#
2λjr`

mes�{p2λjqs i� 3k ¤ j   k

2λjr`
mes�{p2λjqs �k ¤ j   i� 3k.

(63)

We then de�ne ΛpN int�iq � ΛprpN int�iqq with rpN
int�iq the sequence of radii

associated to spN
int�iq satisfying

Λ
�
rpNi�iq

� � Λ
�
rpN

int�i�1q � lpN
int�i�1q

�
vi�1 � vi�2k�1

� {2	 ,
lpN

int�i�1q � s
pN int�iq
i�k�1 � s

pN int�i�1q
i�k�1 �

#
p1� op1qq`mes� i P r1, 2ks,
p1�Opδqq`mes� i P p2k, 4ks.

We then de�ne the corresponding SG events by CBSEP-extension as in Def-
inition 6.3.

De�nition 7.5 (Semi-directed mesoscopic SG). Let U be semi-directed. For
i P r4ks we de�ne SG1pΛpN int�i�1qq by CBSEP-extending ΛpN int�iq by lpN

int�iq

in direction ui.

We then turn to bounding γpΛpN int�4kqq (recall Section 3.6).

Theorem 7.6. Let U be semi-directed (class (f)). Then

γ
�

ΛpN int�4kq
	
¤ exp

�
log logp1{qq
εOp1qqα



,

µ
�
SG1

�
ΛpN int�2kq

		
¥ exp

� �1

εOp1qqα



.

The rest of Section 7.2 is dedicated to the proof of Theorem 7.6. The
proof proceeds exactly like Theorem 6.4, except that the �rst two steps are
much more delicate. Namely, they require taking into account the internal
structure of SG1pΛpN intqq on all scales down to 0. This structure is, alas,
rather complex (recall Fig. 6) and also not symmetric w.r.t. the re�ection
interchanging u0 and u2k. This is not unexpected and is, to some extent, the
crux of semi-directed models.

As before, we de�ne Λ
piq
1 ,Λ

piq
2 ,Λ

piq
3 by Eq. (20) for i P rN int, N int � 4kq.

The next de�nitions are illustrated in Fig. 7 and are the analogue of Def-
inition 6.5, but taking into account De�nition 7.2. Correspondingly, the
intuition behind them is the same, the only di�erence being that we need to
modify traversability events at all scales, because Λpiq touches the boundary
of ΛpN intq for all i ¤ N int (compare Figs. 4a and 6).
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Λ
piq
3

Λ
piq
1

(a) Case i � N int of De�nition 7.7.

Λ
piq
3

Λ
piq
1

(b) Case i � N int � 1 of De�nition 7.8.

Figure 7: The events ST pΛpiq
1 q, SGpΛpiq

2 q and ST pΛpiq
3 q. The microscopic

black regions are entirely infected. Shaded tubes are p1,W q-traversable. W -
helping sets are required close to all boundaries.
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De�nition 7.7 (Contracted semi-directed events on scale N int). Let us de-

�ne ST pΛpN intq
3 q to be the event that for all j P r�k � 1, k � 1s and, for

every segment S � Λ
pN intq
3 , perpendicular to uj of length s

pN intq
j {W , the event

HW pSq occurs.
Let ST pΛpN intq

1 q be the event that for all j P rk� 1, 3k� 2s every segment

S � Λ
pN intq
1 , perpendicular to uj of length s

pN intq
j {W , the event HW pSq occurs

and all sites in Λ
pN intq
1 at distance at most

?
W {ε from the origin are infected.

For n P r0, N ints such that 2kn P N let Λ1pnq � Λprpnq � λ0pv0 � v2kqq.
De�ne SG 1pΛ1pnqq recursively exactly like SG1pΛpnqq in De�nition 7.2 with all
droplets replaced by their contracted versions Λ1 and all traversability events
required in East-extensions (see De�nition 4.4) replaced by the corresponding
p1,W q-traversability events5 (T 1

W , see De�nition 4.1). Let W 1 be the event

that for every n P r0, N ints, j P r4ks and segment S � Λ
pN intq
2 , perpendicular

to uj of length s
pnq
j {W at distance at most W from the uj-side of Λpnq, the

event HW pSq holds. Let I 1 be the event that all sites in Λ
pN intq
2 at distance

at most
?
W {ε from the origin are infected. Finally, set

SG
�

Λ
pN intq
2

	
� SG 1

�
Λ1pN intq

	
XW 1 X I 1.

De�nition 7.8 (Contracted semi-directed events on scale N int � 1). We

de�ne ST pΛpN int�1q
1 q to be the event that for all j P rk� 2, 3k� 1s and every

segment S � Λ
pN int�1q
1 , perpendicular to uj of length s

pN intq
j {W , the event

HW pSq occurs and all sites in Λ
pN int�1q
1 at distance at most

?
W {ε from the

origin are infected.

Let ST pΛpN int�1q
3 q be the event that for all j P r4ks, m P tN int, N int � 1u

and every segment S � Λ
pN int�1q
3 , perpendicular to uj of length s

pmq
j {W at

distance at most W from the uj-side of Λpmq, the event HW pSq occurs.
For n P r0, N ints such that 2kn P N let

Λ2pnq � Λ
�
r2pnq

� � Λ
�
rpnq � λ1

�
v1 � v2k�1

��
and de�ne SG2pΛ2pnqq like SG 1pΛ1pnqq in De�nition 7.7. Further let

SG2
�

Λ2pN int�1q
	
� SG2

�
Λ2pN intq

	
X

£
jPt0,2ku

ST 1
W

�
T
�
r2pN

intq, lpN
intq{2, j

		
.

Let W2 (resp. I2) be de�ned like W 1 (resp. I 1) in De�nition 7.7 with Λ1

replaced by Λ2 and N int replaced by N int � 1. Finally, we set

SG
�

Λ
pN int�1q
2

	
� SG2

�
Λ2pN int�1q

	
XW2 X I2.
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Notice that De�nition 6.5 for i P r2, 4kq does not inspect the internal
structure of SG1pΛp0qq (see Fig. 5b). Thus, we may use the exact same

de�nition for ST pΛpN int�iq
1 q, SGpΛpN int�iq

2 q and ST pΛpN int�iq
3 q with i P r2, 4kq.

We may now turn to the analogue of Lemma 6.6.

Lemma 7.9. For all n P rN int, N int � 4kq we have SGpΛpnq
2 q � ST pΛpnq

3 q �
SG1pΛpnq

2 Y Λ
pnq
3 q and similarly for Λ

pnq
1 instead of Λ

pnq
3 .

Proof. For n ¥ N int � 2 the proof is the same as in Lemmas 5.4 and 6.6.

Assume that SGpΛpN intq
2 q and ST pΛpN intq

3 q occur. We seek to prove by
induction that for all n ¤ N int the event SG1pΛpnqq occurs. For n � 0 this

is true, since I 1 and the corresponding part of ST pΛpN intq
3 q in De�nition 7.7

give that Λp0q is fully infected. By De�nitions 4.4 and 7.2, it remains to show
that for all n   N int the event T � T 1pT prpnq, lpnq, jqq occurs, where j P r4ks
is such that n � j{p2kq P N. But by De�nition 7.7 the corresponding event
T 1 � T 1

W pT pr1pnq, lpnq, jq occurs, where Λ1pnq � Λpr1pnqq. It therefore remains

to observe that W 1, the W -helping sets in the de�nition of ST pΛpN intq
3 q and

T 1 imply T . Indeed, W -helping sets ensure the occurrence of H1
C2pSq for the

�rst and last ΘpW q segments S in De�nition 4.1 for T , while the remaining
ones are provided by T 1, since r1pnq and rpnq only di�er by Op1q ! W . We
omit the details, which are very similar to those in the proof of Lemma 6.6
(see Fig. 7a).

The remaining three cases (Λ
pN intq
1 instead of Λ

pN intq
3 and/orN int�1 instead

of N int) are treated analogously (see Fig. 7).

Proof of Theorem 7.6. By Lemma 7.9, Eq. (18) holds, so we may apply
Proposition 4.9. Together with the Harris inequality, Eqs. (7) and (8), this
gives

γ
�

ΛpN int�4kq
	

¤ γpΛpN intqq exppOpC2q log2p1{qqq
N int�4k�1¹
i�N int

µpSG1pΛpi�1qqqµpST pΛpiq
1 qqµpSGpΛpiq

2 qqµpST pΛpiq
3 qq

. (64)

In view of Theorem 7.3, it remains to bound each of the terms in the denom-
inator by expp�1{pεOp1qqαqq in order to conclude the proof of Theorem 7.6.

Notice that a total of ε�Op1q �xed infections and WOp1qN int � qop1q W -
helping sets are required in all the events in Eq. (64). This amounts to a
negligible factor. The probability of SG 1pΛ1pN intqq and SG2pΛ2pN intqq can be
bounded exactly like SG1pΛpN intqq in Lemma 7.4. This yields a contribution
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of expp1{pεOp1qqαqq. Finally, the remaining bounded number of ST 1
W events

are treated as in Theorem 6.4 to give a negligible q�OpW q factor. Hence, the
proof of Theorem 7.6 is complete.

7.3 Global CBSEP dynamics

The global dynamics is also based on the CBSEP mechanism and proceeds
as in Sections 5.2 and 6.3

Proof of Theorem 1(f). Let U be semi-directed. Recall the droplets ΛpN int�iq

for i P r4k � 1s from Section 7.2. Set Λmes� � ΛpN int�4kq and Λmes� �
ΛpN int�2kq. Condition (1) of Proposition 5.8 is satis�ed by Theorem 7.6, while
condition (2) is veri�ed as in Section 5.2.

Thus, Proposition 5.8 applies and, together with Theorem 7.6 it yields

Eµrτ0s ¤ exp

�
log logp1{qq
εOp1qqα



,

concluding the proof.

8 Balanced rooted models with �nite number

of stable directions

In this section we deal with balanced rooted models with �nite number of
stable directions (class (e)). The internal dynamics (Section 8.1) uses a two-
dimensional version of East-extensions. As usual, it requires the most work,
but applies directly also to balanced models with in�nite number of stable
directions (class (b)). The mesoscopic and global dynamics are imported
from [23] in Section 8.2.

8.1 East internal dynamics

In this section we simultaneously treat balanced rooted models (classes (b)
and (e)). We may therefore assume that αpujq ¤ α for all j P r�k � 1, ks
and this is the only assumption on U we use.

Let us start by motivating the coming two-dimensional East-extension
we need. By the above assumption on the di�culties, we are allowed to use
East-extensions in directions u0 and u1. Indeed, recalling De�nition 4.4, we
see that for these directions the traversability events (recall De�nition 4.1)
only require helping sets and not W -helping sets. In principle, one could al-
ternate East-extensions in these two directions similarly to what we did e.g.
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Λp2q

Λp1q

Λp0q

Figure 8: Geometry of the droplets used for
balanced rooted models in Section 8.1 in the
case k � 2. The nested black, grey and
white polygons are the droplets Λp0q, Λp1q

and Λp2q respectively.

in Section 7.1 for directions u0, . . . , u2k�1. However, this would not work,
because extensions in directions u0 and u1 only increase the length of the
sides parallel to u0 and u1, while all others remain unchanged (see Fig. 2a).
Thus, the traversability events would be too unlikely, since they would re-
quire helping sets also for the other sides, e.g. the one with outer normal
u2�k, which are too small. This would make the probability of the SG event
too large. Notice that this issue does not arise when k � 1, as we saw in
Section 7.1.

For k ¡ 1, however, we therefore need to make the uj-sides of our succes-
sive droplets grow for all j P r�k � 1, ks. A natural way to achieve this is as
depicted in Fig. 8. The drawback is that we can no longer achieve this di-
rectly with one-directional East-extensions as in De�nition 4.4 and Fig. 2a, so
we need some more de�nitions. However, morally, one such two-dimensional
extension can be achieved by two East-extensions in the sense that, East-
extending in direction u0 and then u1 yields a droplet which contains the
desired droplet as in Fig. 8. Unfortunately, our approach heavily relies on
not looking at the con�guration outside the droplet itself. For that reason
we instead need to �nd for each point in the droplet appropriate lengths of
the East-extensions in directions u0 and u1, so as to cover the point without
going outside the target droplet (see Fig. 9).

Following Section 7.1 we de�ne N cr, N int, `pnq by Eq. (39). In this section
there are no fractional scales, so n is an integer. Further let Λp0q be as in
Section 7.1 with radii rp0q and side lengths sp0q. For n P rN ints set

s
pnq
j �

#
s
p0q
j `pnq �k   j ¤ k

s
p0q
j k � 1   j   3k

and s
pnq
�k and s

pnq
k�1 as required for spnq to be the side lengths of a droplet. Let

rpnq be the corresponding radii such that r
pnq
�k � r

p0q
�k and r

pnq
k�1 � r

p0q
k�1. Finally,

set Λpnq � Λprpnqq as usual (see Fig. 8).
Fix n P rN ints. Observe that we can cover Λpn�1q with droplets pDκqκPrKs

so that the following conditions all hold (see Fig. 9).

• For all κ P rKs, Dκ � Λpn�1q;
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•
�K�1
κ�2 Dκ � Λpn�1q;

• K � Op`pn�1q{`pnqq;
• any segment of length `pnq{pCεq perpendicular to uj for some j P r4ks
intersects at most Op1q of the Dκ;

• droplets are assigned a generation g P t0, 1, 2u, so that only D0 � Λpnq is
of generation g � 0, only D1 � Λprpnq� l1v1q is of generation g � 1, where

l1 � r
pn�1q
k � r

pnq
k

xu1, uky ,

so that D1 spans the uk�1-side of Λpn�1q;

• if κ ¥ 2, then Dκ is of generation g � 2, and is of the form

Dκ � yκu1 � Λ
�
rpnq � lκv0

�
for certain lκ ¥ 0 and yκ P r0, l1s multiple of λ1.

To construct the Dκ of generation 2, it essentially su�ces to increment yκ
by Θp`pnq{εq and de�ne lκ to be the largest possible, so that Dκ � Λpn�1q.
Finally, we add to our collection of droplets the ones with yκ corresponding
to a corner of Λpn�1q and again take lκ maximal (see Fig. 9). Note that one

is able to get K � Op`pn�1q{`pnqq thanks to the fact that s
pnq
�k and s

pnq
k�1 are

Θp`pnq{εq. We direct the interested reader to [4, Appendix E] for the explicit
details of a similar construction in arbitrary dimension.

De�nition 8.1 (n-traversability). Fix n P rN ints and let R � Λpn�1q be a
region of the form ¤

IPI

��£
κPI

Dκz
¤

κPrKszI

Dκ

�
 (65)

for some family I of subsets of rKs. We say that R is n-traversable (TnpRq
occurs7) if for all j P p�k, kq and every segment S � R perpendicular to uj
of length at least δ`pnq{ε the following two conditions hold.

• If S is at distance at least W from the boundary of all Dκ, then the event
HpSq occurs.
7The n-traversability Tn should not be confused with pω, dq-traversability T ω

d from
De�nition 4.1, which only features with d � 0 and ω � 1 in the present section.
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lκ

l1
D1

D0

(a) The droplets Dκ corresponding to
corners of Λpn�1q. The generation 0
droplet D0 is given in black, while D1

of generation 1 is shaded.

(b) All droplets Dκ. In the second
generation, for visibility, droplets al-
ternate between shaded, thickened and
hatched.

Figure 9: Geometry of the droplets pDκqκPrKs used in the two-dimensional
East-extension in De�nition 8.3. Also recall Fig. 8.

• If S is at distance at most W from a side of a Dκ parallel to S for some
κ P rKs, but S does not intersect any non-parallel side of any Dκ1 , then
the event HW pSq occurs.
Roughly speaking, R must be one of the polygonal pieces into which the

boundaries of all Dκ cut Λpn�1q. It is n-traversable, if segments of the size
slightly smaller than Λpnq contain helping sets for the directions in p�k, kq.
However, we only require this slightly away from the boundaries of Dκ and
instead add W -helping sets close to boundaries, so that we can still cross
them but keep the following independence.

Remark 8.2. Note that n-traversability events are product over the disjoint
regions into which all the boundaries of pDκqκPrKs partition Λpn�1q.

De�nition 8.3 (Two-dimensional East-extension). For n P rN ints we say
that we East-extend Λpnq to Λpn�1q if SG1pD1q is de�ned by East-extending
Λpnq by l1 in direction u1 and SG1pΛpn�1qq � SG1pD1q X TnpΛpn�1qzD1q.

Indeed, De�nition 8.1 gives TnpΛpn�1qzD1q, since Eq. (65) is satis�ed:

Λpn�1qzD1 �
¤
κPrKs

DκzD1 �
¤

I�rKszt0,1u

�£
κPI

Dκz
¤
κRI

Dκ

�
.

Armed with this notion, we are ready to de�ne our SG events up to the
internal scale for our models of interest.
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De�nition 8.4 (Balanced rooted internal SG). Let U be balanced rooted.
We say that Λp0q is SG (SG1pΛp0q occurs), if all sites in Λp0q are infected. We
then recursively de�ne SG1pΛpn�1qq for n P rN ints by East-extending Λpnq to
Λpn�1q (see De�nition 8.3).

We are now ready to state our bound on the probability of SG1pΛpN intqq
and γpΛpN intqq (recall Section 3.6).

Theorem 8.5. Let U be balanced rooted (classes (b) and (e)). Then

γ
�

ΛpN intq
	
¤ exp

�
logp1{qq log log logp1{qq

ε3qα



,

µ
�
SG1

�
ΛpN intq

		
¥ exp

� �1

ε2qα



.

The rest of Section 8.1 is dedicated to the proof of Theorem 8.5. As
usual, the probability bound is not hard (see Lemma 8.7 below), while the
relaxation time is bounded recursively. However, we need to obtain such a
recursive relation, using Proposition 4.6 twice (see Lemma 8.6 below). Yet,
thanks to the additional logp1{qq factor as compared to Theorem 7.3 (and
the log log logp1{qq one, see Remark 1.6), the computations need not be as
precise and, in particular, do not rely on Lemma 4.11.

Note that γpΛp0qq � 1, since Eq. (15) is trivial, as SG1pΛp0qq is a singleton.
For m ¥ 1 and n P rN ints denote
apnqm � max

jPt0,1u
µ�1

�
SG1

�
Λpnq � �

tp3{2qm�1u� tp3{2qmu
�
λjuj

���SG1 �Λpnq
��
.

(66)
For the sake of simplifying expressions we abusively assume that for all κ P
rKs the length lκ is of the form λ0tp3{2qmu with integer m. Without this
assumption, one would need to treat the term corresponding to m � M � 1
in Proposition 4.6 separately, but identically. We next deduce Theorem 8.5
from the following two lemmas.

Lemma 8.6. For n   N int we have

γ
�
Λpn�1q

� ¤ γpΛpnqqeOpC2q log2p1{qq

pµpSG1pΛpn�1qqqµpTnpΛpn�1qqqqOp1q
Mpnq¹
m�1

apnqm ,

where M pnq � r1{εs� rlog `pn�1q{ logp3{2qs.
Lemma 8.7. For any n ¤ N int and m ¥ 1 we have

apnqm ¤ µ�1
�
SG1

�
Λpnq

�� ¤ µ�1
�
SG1

�
Λpnq

��
µ�1

�
Tn�1

�
Λpnq

��
¤ min

�
pδqαW nq�Wn{ε2 , e1{pε2qαq

	
. (67)
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Proof of Theorem 8.5. From Lemmas 8.6 and 8.7 and the explicit expressions
Eq. (39), we get

γ
�

ΛpN intq
	
¤ elogOp1qp1{qq

N int�1¹
n�0

�
µ
�
SG1

�
Λpn�1q

��
µ
�
Tn

�
Λpn�1q

����Op1q Mpnq¹
m�1

apnqm

¤ elogOp1qp1{qq
N int�1¹
n�0

�
µ
�
SG1

�
Λpn�1q

��
µ
�
Tn

�
Λpn�1q

����Oplogp1{qqq

¤ exp

�
logp1{qq log log logp1{qq

ε3qα



.

Since the second inequality in Theorem 8.5 is contained in Lemma 8.7, this
concludes the proof of the theorem modulo Lemmas 8.6 and 8.7.

Proof of Lemma 8.6. Let us start by recalling a general fact about product
measures. Consider two disjoint regions A,B � Z2 and a product measure ν
on ΩA � ΩB. The law of total variance and convexity give

VarνAYBpfq � νB pVarνApfqq�VarνB pνApfqq ¤ νpVarνApfq�VarνBpfqq. (68)
Fix n P rN ints. Applying Eq. (68) several times (in view of Remark 8.2

and De�nition 8.3), we obtain

VarΛpn�1q

�
f |SG1 �Λpn�1q

��
(69)

¤ µΛpn�1q

�
VarD1

�
f |SG1pD1q

�� K�1̧

κ�2

VarRκ pf |Tn pRκqq
�����SG1 �Λpn�1q

��

¤
K�1̧

κ�1

µΛpn�1q

�
VarDκYD1

�
f |SG1pD1q, TnpDκzD1q

���SG1 �Λpn�1q
��
,

where Rκ � Dκz
�κ�1
κ1�1Dκ1 . Since the terms above are treated identically

(except κ � 1, which is actually simpler), without loss of generality we focus
on κ � 2.

Recall from De�nition 8.3 that SG1pD1q was de�ned by East-extending
D0 in direction u1. Further East-extend D0 by l2 (recall that D2 � y2u1 �
Λprpnq � l2v0q) in direction u0, so that SG1pD2q is also de�ned. Let V �
D1 YD2 (that is a % shaped region in Fig. 9) and

SG1pV q � SG1pD1q X TnpD2zD1q. (70)

Using a two-block dynamics (see e.g. Lemma A.1), we have
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VarV pf |SG1pV qq

¤ µV pVarD1pf |SG1pD1qq � 1E VarV zD1pf |TnpV zD1qq|SG1pV qq
ΩpµpE |SG1pV qqq , (71)

where
E � SG1 �Λpnq � y2u1

�X Tn pD1 XD2q � ΩD1 . (72)

Recalling De�nitions 4.1, 8.1 and 8.3, Eq. (72) and the fact that each segment
of length `pnq{pεCq " δ`pnq{ε intersects at most Op1q droplets, we see that

E X TnpV zD1q � SG1
�
Λpnq � y2u1

�X T 1
�
D2z

�
Λpnq � y2u1

��
� SG1pD2q. (73)

By Eq. (73) and convexity of the variance, we obtain

µV
�
1E VarV zD1pf |TnpV zD1qq

��SG1pV q�
¤ µpEq
µpSG1pV qqµV pVarD2 pf |E X Tn pV zD1qqq

¤ µpEqµpSG1pD2qqµV pVarD2pf |SG1pD2qqq
µpSG1pV qqµpE X TnpV zD1qq

¤ µV pVarD2pf |SG1pD2qqq
µ2pTnpΛpn�1qqq .

(74)

Indeed, in the last line we recalled the de�nitions of SG1pD2q, SG1pV q and E
(see De�nition 4.4 and Eqs. (70) and (72)), while in the second one we took
into account that for any events A � B with µpAq ¡ 0 it holds that

Varpf |Aq � min
cPR

µ
�pf � cq2��A� ¤ µppf � µpf |Bqq21Aq

µpAq ¤ µpBq
µpAq Varpf |Bq

(75)
and Eq. (73).

We plug Eq. (74) in Eq. (71) and note that by the Harris inequality,
Eqs. (7) and (8), µpE |SG1pV qq ¥ µpEq ¥ µpSG1pΛpnqqqµpTnpΛpn�1qqq. This
yields

VarV
�
f |SG1pV q� ¤ Op1qµV pVarD1pf |SG1pD1qq � VarD2pf |SG1pD2qqq

µpSG1pΛpnqqqµpSG1pV qqµ3pTnpΛpn�1qqq
¤ Op1qµV pVarD1pf |SG1pD1qq � VarD2pf |SG1pD2qqq

µ2pSG1pΛpn�1qqqµ3pTnpΛpn�1qqq
(76)

where the second inequality uses Eq. (70) and De�nition 8.3.
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As in Eqs. (42) and (43), Proposition 4.6 gives

γpD2q ¤ max
�
γ
�
Λpnq

�
, µ�1

�
SG1

�
Λpnq

���
eOpC

2q log2p1{qqq�OpWMq

� µpSG1pΛpnqqq
µpSG1pD2qq

M¹
m�1

apnqm (77)

with M � mintm : λ0p3{2qm�1 ¥ l2u ¤ M pnq. Plugging Eqs. (15) and (77)
(and their analogues for D1) into Eq. (76), we obtain

γpV q ¤ γpΛpnqqeOpC2q log2p1{qq
±Mpnq

m�1 a
pnq
m

µ3pSG1pΛpn�1qqqµ3pTnpΛpn�1qqqminκ µpSG1pDκqq

¤ γ
�
Λpnq

�
eOpC

2q log2p1{qq
±Mpnq

m�1 a
pnq
m

µ4 pSG1 pΛpn�1qqqµ4pTnpΛpn�1qqq ,

where the last inequality uses Eq. (73) and that SG1pD1q � SG1pΛpn�1qq by
De�nition 8.3. Plugging this into Eq. (69), concludes the proof of Lemma 8.6,
since K � Op`pn�1q{`pnqq ¤ Oplog4p1{qqq, as noted in Remark 7.1.

Proof of Lemma 8.7. The �rst inequality in Eq. (67) follows from the Harris
inequality Eq. (8), while the second one is trivial. Therefore, we turn to the
last one and �x n P rN ints. Note that by De�nitions 4.4, 8.1 and 8.3

µ
�
SG1

�
Λpn�1q

�� ¥ µ
�
SG1

�
Λpnq

��
µ
�
Tn

�
Λpn�1q

��
µ
�
T 1 pD1zD0q

�
. (78)

We therefore proceed by induction starting with

µ
�
SG1

�
Λp0q

�� � q|Λ
p0q| � qΘp1{ε2q. (79)

We observe that from De�nition 8.1, in order to ensure the occurrence
of TnpΛpn�1qq, it su�ces to have OpWK`pn�1qq{p`pnqδq well-placed W -helping
sets and Opp`pn�1qq2q{p`pnqδεq helping sets for segments of length δ`pnq{p3εq.
Indeed, we may split lines perpendicular to each uj for j P p�k, kq into suc-
cessive disjoint segments of length δ`pnq{p3εq with a possible smaller leftover.
It is then su�cient to place W -helping sets or helping sets depending on
whether the segment under consideration is close to a parallel boundary of
one of the Dκ or not. Note that here we crucially use the assumption that
each segment of length `pnq{pCεq " δ`pnq{ε intersects only Op1q droplets.

Recall that 1{ε " 1{δ " W " 1, `pN
crq � WOp1qqα, K � Op`pn�1q{`pnqq ¤

logOp1qp1{qq, the explicit expressions Eq. (39) and Observation 3.11. Then
the Harris inequality Eq. (7), yields
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µ
�
Tn

�
Λpn�1q

��
¥ qOpW

2K`pn�1qq{p`pnqδq
�

1� e�q
αδ`pnq{Opεq

	Opp`pn�1qq2{p`pnqδεqq

¥ e� logOp1qp1{qq �
#
pδqαW nqWn{pδ2εq n ¤ N cr

exp
��1{ �qα exp

�
W exppn�Ncrq

���
n ¡ N cr.

(80)

Essentially the same computation leads to the same bound for µpT 1pD1zD0qq
(see Eq. (58)). The only di�erence is that only Op1q W -helping sets and
Op`pn�1q{εq helping sets are needed. Further recalling Eqs. (78) and (79), it
is not hard to check Eq. (67).

8.2 FA-1f global dynamics

We next import the global FA-1f dynamics together with much of the meso-
scopic multi-directional East one simultaneously from [23].

Proposition 8.8. Let U have a �nite number of stable directions, T �
expplog4p1{qq{qαq and rint be such that the associated side lengths satisfy
C ¤ sint

j ¤ Op`intq for all j P r4ks. Assume that for all l P r0, `mess multi-
ple of λ0 the event SG1pΛprint � lv0qq is nonempty, decreasing, translation
invariant and satis�es�

1� µ
�
SG1

�
Λ
�
rint � lv0

����T
TW � op1q.

Then,

Eµrτ0s ¤
maxlPr0,`mess γpΛprint � lv0qq

pq1{δ minlPr0,`mess µpSG1pΛprint � lv0qqqqlogp1{qq{δ
.

The proof is as in [23], up to the following minor modi�cations. Firstly,
one needs to replace the base of the snail by Λmes � Λprint � λ0r`

mes{λ0sv0q,
which has a similar shape by hypothesis. Secondly, the event that the base is
super good on [23] should be replaced by SG1pΛmesq. Finally, [23, Proposition
4.9] is substituted by the de�nition Eq. (15) of γpΛmesq. As Proposition 8.8
is essentially the entire content of [23] (see particularly Proposition 4.12 and
Remark 4.8 there), we refer the reader to that work for the details.

Proof of Theorem 1(e). Let U be balanced rooted with �nite number of sta-
ble directions. Recall ΛpN intq � ΛprpN intqq with rpN intq �: rint from Section 7.1
if k � 1 and from Section 8.1 if k ¥ 2. Fix l P r0, `mess multiple of λ0
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and East-extend ΛpN intq by l in direction u0. It is not hard to check from
De�nition 4.4 and Observation 3.11 that

µpSG1pΛprint � lv0qqq
µpSG1pΛprintqqq � µ

�
T 1

�
T
�
rint, l, 0

��� � qOpW q

(see Eq. (38)). Then, by Proposition 4.6, Theorems 7.3 and 8.5 and the
Harris inequality Eq. (7), we obtain

µ
�
SG1

�
Λ
�
rint � lv0

��� ¥ exp

� �2

ε2qα




γ
�
Λ
�
rint � lv0

�� ¤
$&%exp

�
logp1{qq
ε3qα

	
k � 1,

exp
�

2 logp1{qq log log logp1{qq
ε3qα

	
k ¥ 2.

Plugging this in Proposition 8.8, we obtain

Eµrτ0s ¤
$&%exp

�
2 logp1{qq
ε3qα

	
k � 1,

exp
�

3 logp1{qq log log logp1{qq
ε3qα

	
k ¥ 2,

(81)

which concludes the proof of Theorem 1(e) in the case k � 1 and of Eq. (4)
for k ¥ 2. The full result of Theorem 1(e) for k ¥ 2 is proved identically,
replacing Theorem 8.5 by the stronger Theorem C.1.

9 Balanced models with in�nite number of sta-

ble directions

We �nally turn to balanced models with in�nite number of stable directions
(class (b)). The internal dynamics was already handled in Section 8.1. The
mesoscopic one (Section 9.1) is essentially the same as the the internal one,
using two-dimensional East-extensions. The global dynamics (Section 9.2)
also uses an East mechanism analogous to the FA-1f one from [23] used in
Section 8.2.

9.1 East mesoscopic dynamics

Given that the bound we are aiming for in Theorem 1(b) is much larger than
those in previous sections, there is a lot of margin and our reasoning is far
from tight for the sake of simplicity.

Recall N int and `pnq for n ¤ N int from Eq. (39), the droplets Λpnq from
Section 8.1, their SG events from De�nition 8.4. For n ¡ N int, we set `pnq �
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W n�N int
`pN

intq and de�ne spnq, rpnq,Λpnq as in Section 8.1. Recall Section 3.4.
Further let Nmes � inftn : `pnq{ε ¥ `mes � q�Cu � ΘpC logp1{qq{ logW q
and assume for simplicity that `pN

mesq � q�Cε. We are only be interested in
n ¤ Nmes and extend De�nitions 8.1, 8.3 and 8.4 to such n without change.
With these conventions, our goal is the following.

Theorem 9.1. Let U be a balanced model with in�nitely many stable direc-
tions (class (b)). Then

γ
�
ΛpNmesq

� ¤ exp

�
log2p1{qq
ε3qα



, µ

�
SG1

�
ΛpNmesq

�� ¥ exp

� �2

ε2qα



.

Proof of Theorem 9.1. The proof is essentially identical to the one of Theo-
rem 8.5, so we only indicate the necessary changes. To start with, Lemma 8.6
applies without change for n P rN int, Nmesq. Also, the Harris inequality

Eq. (8) still implies that a
pnq
m ¤ µ�1pSG1pΛpnqqq ¤ µ�1pSG1pΛpNmesqqq. There-

fore,

γ
�
ΛpNmq

� ¤ γpΛpN intqqelogOp1qp1{qq

pµpSG1pΛpNmesqqqminnPrNmess µpTnpΛn�1qqqOpNmesMpNmes�1qq
.

Recalling the bound on γpΛpN intqq established in Theorem 8.5, together with
the fact that Nmes ¤ C logp1{qq and M pNmes�1q ¤ OpC logp1{qqq, it su�ces
to prove that

µ
�
SG1

�
ΛpNmesq

��
min

nPrNmess
µ
�
Tn

�
Λn�1

�� ¥ exp
��2{ �ε2qα

��
, (82)

in order to conclude the proof of Theorem 9.1.
Once again, the proof of Eq. (82) proceeds similarly to the one of Eq. (67)

in Lemma 8.7. Indeed, the same computation as Eq. (80) in the present
setting gives that for n P rN int, Nmesq we have

µ
�
Tn

�
Λpn�1q

�� ¥ qOpW
3{δq exp

�
�e�qαδ`pnq{OpεqO �

W 2`pnq{pδεq�	 (83)

and similarly for µpT 1pD1zD0qq (as in the proof of Lemma 8.7, also see
Eq. (58)). From Eq. (78) it follows that

µ
�
SG1

�
ΛpNmesq

�� ¥ µ
�
SG1

�
ΛpN intq

		
�

Nmes�1¹
n�N int

µ
�
T 1pD1zD0q

�
µ
�
Tn

�
Λpn�1qzΛpnq

��
.

Plugging Eqs. (67) and (83) in the r.h.s., this yields Eq. (82) as desired.
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Qi�1 Qi

Qi�1

Λmes

l � Θp`mesq

Λ

Figure 10: Illustration of the East global dynamics (Section 9.2). The shaded
droplet Λmes inscribed in the box Q is extended by 2l to the thickened one
Λ.

9.2 East global dynamics

For the global dynamics we use a simpler version of the procedure of [23,
Section 5] with East dynamics instead of FA-1f.

Proof of Theorem 1(b). Let U be balanced with in�nite number of stable
directions and recall Section 9.1. Set T � expp1{q3αq, smes � spN

mesq, rmes �
rpN

mesq and Λmes � ΛpNmesq. In particular, smes
j � Θp`mesq for j P r�k, k � 1s

and smes
j � Θp1{εq for j P rk � 2, 3k � 1s. We East-extend Λmes by 2l �

2pλ0�rmes
0 �rmes

2k q in direction u0 to obtain Λ � Λprmes�2lv0q. Proposition 4.6,
Theorem 9.1, and De�nition 4.4, the Harris inequality Eq. (8) and the simple
fact that µpT 1pT prmes, 2l, 0qqq � qOpW q (by Observation 3.11 and Lemma 4.2
as usual) give

γpΛq ¤ exp

�
log2p1{qq
εOp1qqα



, µ

�
SG1pΛq� ¥ exp

� �3

ε2qα



. (84)

A similar argument to the rest of the proof was already discussed thor-
oughly in [23, Section 5] and then in [25, Section 5], so we only provide a
sketch. The adapted approach of [23, Section 5] proceeds as follows.

(1) Denoting t� � expp�1{pεW q2αqq, by the main result of [33] it su�ces to
show that TPµpτ0 ¡ t�q � op1q, in order to deduce Eµrτ0s ¤ t� � op1q.

(2) By �nite speed of propagation we may work with the U -KCM on a large
discrete torus of size T " t�.

(3) We partition the torus into strips and the strips into translates of the box
Q � Hu0pλ0 � rmes

0 q XHukpρk � rmes
k q XHu�kprmes

�k q XHu2k
prmes

2k q as shown
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in Fig. 10. We say Q is good (GpQq occurs) if for each segment S � Q

perpendicular to some u P pS of length ε`mes the event HW pSq occurs.
Further de�ne SGpQq to occur if the only (integer) translate of Λmes

contained in Q is SG. We say that the environment is good (E occurs) if
all boxes are good and in each strip at least one box is super good. The
sizes are chosen so that it is su�ciently likely for this event to always
occur up to time t�. Indeed, we have p1� µpSG1pΛmesqqqTTW � op1q by
Theorem 9.1 and p1� µQpGqqTW � op1q by Observation 3.11.

(4) By a standard variational technique it then su�ces to prove a Poincaré
inequality, bounding the variance of a function conditionally on E by the
Dirichlet form on the torus. Moreover, since µ and E are product w.r.t.
the partition of Fig. 10, it su�ces to prove this inequality on a single
strip.

(5) Finally, we prove such a bound, using an auxiliary East dynamics for the
boxes and the de�nition of γ to reproduce the resampling of the state of
a box by moves of the original U -KCM.

Let us explain the last step above in more detail, as it is the only one that
genuinely di�ers from [23].

Let Qi � Q� ilu0 and T � �
iPrT sQi be our strip of interest (indices are

considered modulo T , since the strip is on the torus). As explained above,
our goal is to prove that for all f : ΩT Ñ R it holds that

VarTpf |Eq ¤ exp
�
1{ �εOp1qq2α

��¸
xPT

µT
�
cT,1x Varxpfq

�
, (85)

where cT,1x takes into account the periodic geometry of T.
By [33, Proposition 3.4] on the generalised East chain we have

VarTpf |Eq ¤ exp
�
1{ �ε5q2α

�� ¸
iPrT s

µT
�
1SGpQi�1q VarQi pf |G pQiqq

�� E� , (86)

since Theorem 9.1 and the Harris inequality Eq. (8) give µpSGpQq|GpQqq ¥
expp�2{pε2qαqq.8

Next observe that Λi � Qi, where Λi � Λ � pi � 1qlu0 (see Fig. 10).
Let GpΛizQiq � GpQi�1q X GpQi�1q be the event that HW pSq holds for all
segments S � ΛizQi of length 2ε`mes perpendicular to some u P pS. Hence,
by convexity of the variance and the fact that µpEq � 1� op1q we have

8Strictly speaking [33] does not deal with the torus conditioned on having an infection,
but this issue is easily dealt with by the method of [6].
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µT
�
1SGpQi�1q VarQipf |GpQiqq

�� E�
¤ p1� op1qqµT pVarΛipf |SGpQi�1q X GpQiq X GpΛizQiqqq ,
¤ p1� op1qqµT

�
VarΛi

�
f |SG1pΛiq

��
.

Here we used Eq. (75) and SGpQi�1q X GpQiq X GpΛizQiq � SG1pΛiq (recall
De�nition 4.4) for the second inequality. Finally, recalling Eqs. (15), (84)
and (86), we obtain Eq. (85) as desired.

As already noted, all lower bounds in Theorem 1 are known from [21] and
the upper ones for classes (a) and (c) were proved in [33] and [23] respectively.
Thus, the proof of Theorem 1 is complete.
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A Extensions

This appendix aims to prove our main building blocks�Propositions 4.6
and 4.9 for the East- and CBSEP-extensions.

A.1 Auxiliary two-block chain

We begin with a non-product variant of the standard two-block technique for
the purposes of the proof of the East-extension Proposition 4.6. Let pΩ1, π1q
and pΩ2, π2q be �nite positive probability spaces, pΩ, πq denote the associated
product space and ν � πp�|Hq for some event H � Ω. For ω P Ω we write
ωi P Ωi for its i

th coordinate. Consider an event F � Ω1 and set

Dpfq � ν pVarνpf |ω2q � 1F Varνpf |ω1qq

for any f : H Ñ R. Observe that D is the Dirichlet form of the continuous
time Markov chain on H in which ω1 is resampled at rate one from νp�|ω2q
and, if ω1 P F , then ω2 is resampled with rate one from νp�|ω1q. This chain
is reversible w.r.t. ν.
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Lemma A.1. Assume that F � Ω2 � H. Then, for all f : HÑ R we have

Varνpfq ¤ Op1q max
ω2PΩ2

ν�1pF |ω2qDpfq.

Proof. We follow [25, Proposition 3.5]. Consider the Markov chain pωptqqt¥0

described above. Given two arbitrary initial conditions ωp0q an ω1p0q we con-
struct a coupling of two of such chains with these initial conditions such that
with probability Ωp1q we have ωptq � ω1ptq for t ¡ T � maxω2PΩ2 ν

�1pF |ω2q.
Standard arguments [29] then prove that the mixing time of the chain is
OpT q and the lemma follows.

To construct our coupling, we use the following representation of the
Markov chain. We are given two independent Poisson clocks with rate one
and the chain transitions occur only at the clock rings. When the �rst clock
rings, a Bernoulli variable ξ with probability of success νpF |ω2q is sampled.
If ξ � 1, then ω1 is resampled w.r.t. the measure πp�|Fq � νp�|F , ω2q, while if
ξ � 0, then ω1 is resampled w.r.t. the measure νp�|F c, ω2q. Clearly, in doing
so ω1 is resampled w.r.t. νp�|ω2q. If the second clock rings, we resample ω2

from π2 if ω1 P F and ignore the ring otherwise.
Both chains use the same clocks. When the �rst clock rings and the

current couple of con�gurations is pω, ω1q, we �rst maximally couple the two
Bernoulli variables ξ, ξ1 corresponding to ω, ω1 respectively. Then:

• if ξ � ξ1 � 1, we update both ω1 and ω
1
1 to the same η1 P F with probability

πpη1|Fq;
• otherwise, we resample ω1 and ω

1
1 independently from their respective laws,

given ξ, ξ1.

When the second clock rings, the two chains attempt to update to two max-
imally coupled con�gurations with the corresponding distributions.

Suppose now that two consecutive rings occur at times t1   t2 at the
�rst and second clocks respectively and the Bernoulli variables at time t1 are
both 1. Then the two con�gurations are clearly identical at t2. To conclude
the proof, observe that for any time interval ∆ of length one the probability
that there exist t1   t2 in ∆ as above is at least 1{p4T q.

A.2 Microscopic dynamics

We next turn to the microscopic dynamics (recall Section 2.2).
Recall De�nition 3.7. Let Λ � Λprq be a droplet with side lengths at least

C3. Given ω P ΩZ2zΛ and i P r4ks, we de�ne Λ � Λω
i � Λpr � Op1qviq by

83



Λω
i � Λ if αpuiq � 0 or αpuiq ¡ α. If αpuiq P p0, αs, we rather set

Λω
i � ΛY

¤
x

��rZi YHuisU zHui

�� x
� z  y P Z2zΛ : ωy � 0

(
,

the union being over x P Λ such that ωpx�ZiqzΛ � 0 and x is at distance
at least C from all sides of Λ except the ui-side. In words, we essentially
look at pieces of ui-helping sets for the last few lines of the droplet sticking
out of it and add to Λ the sites which each piece can infect. The reason for
introducing this is that helping sets may need to infect a few sites outside Λ
before creating their periodic infections on the corresponding line and it is
those sites that we wish to include in Λω

i . We set Λω
I �

�
iPI Λω

i for I � r4ks.
Let i P r4ks be such that αpujq   8 for all j P I � ti�k�1, . . . , i�k�1u. Fix
Λ � Λprq with side lengths at least C3 and at most q�OpCq. Let l P r0, Op1qs
be a multiple of λi, ω P ΩZ2zΛpr�lviq

, Λ� � pΛpr�lviqqωI and T � T pr, l, iq. Our
goal is to provide a relaxation mechanism for an East-extension of bounded
length.

Lemma A.2. In the above setting we have

µΛ�zΛ pVarT pf |T ωpT qqq ¤ eOplog2p1{qqq
¸

xPΛ�zΛ

µΛ�zΛ

�
c

Λ�zΛ,0Λ�ωZ2zΛ�

x Varxpfq



(87)
and the same holds for ST instead of T .

Though it is possible to prove this directly via canonical paths, we rather
deduce it from the main result of [19] proved much more elegantly. That
work was developed for the purpose of its present application.

Proof. We only treat T , the proof for ST being identical. Let us denote by
Eω the event that the U -KCM restricted to Λ�zΛ with boundary condition
0Λ � ωZ2zΛ� is able to fully infect Λ�zΛ. As in the proof of Lemma 4.5, we
see that T ωpT q � Eω. Moreover, recalling Lemma 4.2, we have µpT ωpT qq ¥
µpWpT qq ¥ qOpW q, since T has bounded length. Hence, by Eqs. (68) and (75),

µΛ�zΛ pVarT pf |T ωpT qqq ¤ VarΛ�zΛ pf |T ωpT qq ¤ q�OpW q VarΛ�zΛ pf |Eωq .
We next observe that the process de�ning Eω is in fact a one-dimensional

inhomogeneous KCM of the type considered in [19] and called general KCM
there (enumerate the sites of Λ�zΛ so that neighbouring sites remain at
bounded distance, e.g. in lexicographical order for px�, ui�ky, x�, uiyq). There-
fore, [19, Theorem 1] yields Eq. (87) as desired, taking into account that
µpEωq ¥ µpT ωpT qq ¥ qOpW q.
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Corollary A.3. In the same setting as above, we have

µΛ�

�
VarT pf |T ωpT qq|SG1pΛq

�
¤ eOplog2p1{qqq max

�
γpΛq, µ�1

�
SG1pΛq�� ¸

xPΛ�

µΛ�

�
cΛ�,ω
x Varxpfq

	
(88)

and the same holds with ST instead of T .

Proof. By Lemma A.2, it su�ces to bound

µΛ�

�
c

Λ�zΛ,0Λ�ωZ2zΛ�

x Varxpfq
����SG1pΛq


from above by the r.h.s. of Eq. (88) for any x P Λ�zΛ. By Eq. (68) this is at
most

µΛ�

�
c

Λ�zΛ,0Λ�ωZ2zΛ�

x VarΛYtxu

�
f |SG1pΛq�
 .

By the two-block Lemma A.1 we have

VarΛYtxu

�
f |SG1pΛq�

¤ q�Op1qµΛYtxu

�
VarΛ

�
f |SG1pΛq�� 1I Varxpfq

��SG1pΛq� ,
where I is the event that all sites in Λ at distance at most some large
constant from x are infected. Putting this together and observing that

1I � cΛ�zΛ,0Λ�ωZ2zΛ�

x ¤ cΛ�,ω
x , we get

µΛ�pVarT pf |T ωpT qq|SG1pΛqq ¤ eOplog2p1{qqq���|Λ�zΛ|µΛ�

�
VarΛ

�
f |SG1pΛq��� ¸

xPΛ�zΛ

µΛ�

�
cΛ�,ω
x Varxpfq

���SG1pΛq	
�
.

Finally, recalling Eq. (15) and |Λ�| ¤ q�OpCq, we recover Eq. (88).

A.3 Proofs of the one-directional extensions

We require a more technical version of Eq. (15) accounting for a boundary
condition. For a droplet Λ � Λprq, boundary condition ω P ΩZ2zΛ, nonempty
event SGωpΛq � ΩΛ and set of directions I � r4ks, let γωI pΛq be the smallest
constant γ P r1,8s such that

µΛωI
pVarΛ pf |SGω pΛqqq ¤ γ

¸
xPΛωI

µΛωI

�
c

ΛωI ,ω
x Varxpfq

	
. (89)
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holds for all f : Ω Ñ R.
For the rest of the section we recall the following notation from Proposi-

tion 4.6. Let i P r4ks be such that αpujq   8 for all j P pi � k, i � kq. Let
Λ � Λprq be a droplet with r � q�OpCq and side lengths at least C3. Let
l P p0, `mes�s be a multiple of λi. Let dm � λitp3{2qmu for m P r1,Mq and
M � mintm : λip3{2qm ¥ lu. Let dM � l, Λm � Λpr � dmviq for m P r1,M s
and sm�1 � dm � dm�1 for m P r2,M s.
Lemma A.4. Set I � ti�k�1, . . . , i�k�1u. Let SG1pΛprqq be a nonempty
translation invariant decreasing event. Assume that we East-extend Λprq by
l in direction ui. Then

γ
�
ΛM

� ¤ max
ω

γωI
�
Λ1

�M�1¹
m�1

am
qOpW q

where am is de�ned in Eq. (17).

Proof. We loosely follow [25, Eq. (4.10)]. Note that by Eqs. (15) and (89)
γ1I pΛMq � γpΛMq. Proceeding by induction it then su�ces to prove that for
any m P r1,Mq and ω P ΩZ2zΛm�1

γωI
�
Λm�1

� ¤ max
ω1PΩZ2zΛm

γω
1

I pΛmq am
qOpW q

. (90)

Fix such m and ω and partition Λm�1 � V1 \ V2 \ V3 so that

V1 Y V2 � Λm, V2 Y V3 � Λm � smui.

That is, set V1 � smui � T pr, sm, i� 2kq, V2 � sm � Λpr � pdm � smqviq and
V3 � dmui � T pr, sm, iq.

In order to apply Lemma A.1, we de�ne Ω1 � ΩΛm , Ω2 � T ωpV3q and
equip them with π1 � µΛm and π2 � µV3p�|T ωpV3qq respectively. We set
H � SGωpΛm�1q and F � SG1pΛmq X SG1pV2q. Note that these these SG
events were de�ned when East-extending Λprq by l in direction ui, since
0 ¤ dm � sm ¤ dm ¤ dm�1 ¤ dM � l (for V2 we also use translation
invariance). Notice that F � Ω2 � H, since, by De�nition 4.4, SG1pΛmq �
SG1pΛprqq X T 1pT pr, dm, iqq and

T 1pT pr, dm, iqq X T ωpV3q � T ωpT pr, dm�1, iqq
by Lemma 4.3. We may therefore apply Lemma A.1 to get

VarΛm�1

�
f |SGω �Λm�1

�� ¤ Op1q max
ηV3

PT ωpV3q
µ�1

�
F |SGωpΛm�1q, ηV3

�
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� µΛm�1

�
VarΛmpf |H, ηV3q � 1F VarV3 pf |H, ηΛmq|SGω

�
Λm�1

��
. (91)

Note that by De�nition 4.4 for any ηV3 P T ωpV3q we have

ηΛm � ηV3 P SGω
�
Λm�1

�ô ηΛm P SGηV3
�ωpΛmq,

which implies that

VarΛm pf |H, ηV3q � VarΛm pf |SGηV3
�ωpΛmqq

µ
�
F |SGω �Λm�1

�
, ηV3

� � µ pF |SGηV3
�ωpΛmqq .

Further note that by De�nitions 4.1 and 4.4,

F � SG1 psmui � Λprqq X T 1 psmui � T pr, dm � sm, iqq
X SG1pΛprqq X T ηsmui�T pr,dm�sm,iq�1 pT pr, sm, iqq ,

the second SG event being implied by SGηV3
�ωpΛmq again by De�nition 4.4.

Applying Lemma 4.2 and Eq. (9), we get that for any ω1 P ΩZ2zΛm

µpF |SGω1pΛmqq
¥ µ

�
SG1pV2q X T ηsmui�T pr,dm�sm,iq�1 pT pr, sm, iqq

XW pT pr, sm, iqq
��SGω1pΛmq

	
� µ

�
SG1pV2q X T 0 pT pr, sm, iqq XW pT pr, sm, iqq

��SGω1pΛmq
	

� µ
�
SG1pV2q XW pT pr, sm, iqq

��SGω1pΛmq
	

¥ qOpW qµ
�
SG1pV2q

��SGω1pΛmq
	
,

where in the second inequality we used that T 0pT pr, sm, iqq � SGω1pΛmq,
using De�nition 4.4 and sm ¤ dm. Moreover, since F � Ω2 � H and F �
SG1pV2q, we have

1F VarV3 pf |H, ηΛmq ¤ 1SG1pV2q VarV3 pf |T ωpV3qq .

Plugging the above back into Eq. (91) yields

VarΛm�1

�
f |SGω �Λm�1

�� ¤ q�OpW q max
ω1

µ�1
�
SG1pV2q

��SGω1pΛmq
	

(92)

� µΛm�1

�
VarΛm

�
f |SGηV3

�ω
�
Λm�1

��
� 1SG1pV2q VarV3 pf |T ωpV3qq

��SGω �Λm�1
� �
.
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From Eq. (89) we have

µpΛpm�1qqωI

�
VarΛm

�
f |SGηV3

�ω
�
Λm�1

���
¤ max

ω1
γω

1

I pΛmq
¸

xPpΛm�1qωI

µpΛm�1qωI

�
c
pΛm�1qωI ,ω
x Varxpfq

	
.

On the other hand, recalling by De�nition 4.4 that SGωpΛm�1q � T ωpV3q,

µpΛpm�1qqωI

�
1SGpV2q VarV3pf |T ωpV3qq

��SGω �Λm�1
��

¤ µpΛm�1qωI
p1SG1pV2q1T ωpV3q VarV3pf |T ωpV3qqq

SGωpΛm�1q
� µpSG1pV2q X T ωpV3qq

SGωpΛm�1q µpΛm�1qωI

�
VarV3pf |T ωpV3qq|SG1pV2q X T ωpV3q

�
¤ µpSGωpsmui � ΛmqqµpΛm�1qωI

pVarΛm�smuipf |SG1pV2q X T ωpV3qqq
µpSG1pΛprqqqµpT 1pT pr, sm, iqqqµpT ωpsmui � T pr, dm, iqqq

� µpΛm�1qωI
pVarΛm�smuipf |SG1pV2q X T ωpV3qqq

µpT 1pV3qq
¤ µpT ωpsmui � T pr, dm, iqqqµpΛm�1qωI

pVarΛm�smuipf |SGωpsmui � Λmqqq
µpT 1psmui � T pr, dm � sm, iqqqµpT ωpdmui � T pr, sm, iqqqµpT 1pV3qq

¤ γωI pΛmq
µpT 1pV3qqqOpW q

¸
xPpΛm�smuiqωI

µpΛm�1qωI

�
c
pΛm�smuiq

ω
I ,ω

x Varxpfq
	
,

where we used De�nition 4.4, Lemma 4.3, and Eq. (68) in the second in-
equality; translation invariance and De�nition 4.4 in the second equality;
Eq. (75), De�nition 4.4, and Lemma 4.3 in the third inequality; and Lem-
mas 4.2 and 4.3 and Eq. (89) in the last one. Plugging these bounds into
Eq. (92), we obtain

γωI
�
Λm�1

� ¤ maxω1 γ
ω1

I pΛmq
qOpW qµpT 1pV3qqminω1 µpSG1pV2q|SGω1pΛmqq .

It remains to transform the denominator in the last expression, �xing
some ω1. Note that

µ
�
T 1pV3q X SG1pV2q X SGω1 pΛmq

	
¥ µ

�
T 1pV3q X SG1pV2q XW psmui � T pr, dm � sm, iqq X SG1 pΛmq� ,

¥ µ
�
SG1 psmui � Λmq XW psmui � T pr, dm � sm, iqq X SG1 pΛmq�

¥ qOpW qµ
�
SG1 psmui � Λmq X SG1 pΛmq�
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using that SG is decreasing in the boundary condition, then Lemmas 4.2
and 4.3 and De�nition 4.4 and �nally Lemma 4.2 and the Harris inequality
Eq. (7). Moreover, by De�nition 4.4 and Lemma 4.2,

µ
�
SGω1pΛmq

	
¤ q�OpW qµ

�
SG1pΛmq� ,

so that we recover

µ
�
T 1pV3q

�
µ
�
SG1pV2q

��SGω1 pΛmq
	
¥ qOpW q{am

completing the proof of Eq. (90) and Lemma A.4.

Proof of Proposition 4.6. The fact that SGpΛpr � lviqq is nonempty, trans-
lation invariant and decreasing follows directly from De�nition 4.4. By
Lemma A.4 it su�ces to relate maxω γ

ω
I pΛ1q and γpΛprqq, using Corollary A.3.

Notice that by De�nition 4.4 we have

SGω
�
Λ1

� � SG1pΛprqq � T ωpT pr, λi, iqq. (93)

Therefore, (see e.g. [23, Lemma 3.9] or Eq. (68))

VarΛ1

�
f |SGω �Λ1

�� ¤ µΛprq

�
VarT pr,λi,iq pf |T ω pT pr, λi, iqqq

��SG1 pΛ prqq�
� µT pr,λi,iq

�
VarΛprqpf |SG1 pΛprqq

�� T ω pT pr, λi, iqq� . (94)

The former term is treated by Corollary A.3, which gives

µΛ�

�
VarT pr,λi,iq pf |T ω pT pr, λi, iqqq

��SG1 pΛ prqq�
¤ eOplog2p1{qqq max

�
γpΛprqq, µ�1

�
SG1pΛprqq�� ¸

xPΛ�

µΛ�

�
cΛ�,ω
x Varxpfq

	
,

where Λ� � pΛpr � λiviqωI q. For the second term in Eq. (94), Eq. (15) and
µT pr,λi,iqpT ωpT pr, λi, iqqq ¥ qOpW q (see the proof of Lemma 4.2) give

µT pr,λi,iq
�

VarΛprqpf |SG1 pΛprqq
�� T ω pT pr, λi, iqq�

¤ q�OpW qγpΛprqq
¸

xPΛprq

µΛpr�λiviq

�
cΛprq,1
x Varxpfq

�
.

Plugging these into Eq. (94) and recalling Eq. (89), we get

γω
�
Λ1

� ¤ eOplog2p1{qqq max
�
γpΛprqq, µ�1

�
SG1pΛprqq�� ,

which concludes the proof of Proposition 4.6 together with Lemma A.4, since
M � Oplogp`mes�qq ¤ OpCq logp1{qq.
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We next turn to CBSEP-extensions.

Lemma A.5. Assume that U has a �nite number of stable directions. Set
J � r4kszti � k, i � ku. Let SG1pΛprqq be a nonempty translation invariant
decreasing event. Assume we CBSEP-extend Λprq by l in direction ui. Then

γ pΛpr � lviqq ¤ max
ω

γωJ pΛpr � λiviqq
µpSG1pΛpr � λiviqqq
µpSG1pΛpr � lviqqq

eOpC
2q log2p1{qq.

Proof. As in [25, Eq. (4.10)] (with minor amendments as in Lemma A.4), we
have

γ
�
ΛM

� ¤ max
ω

γωJ
�
Λ1

� µpSG1pΛ1qq
µpSG1pΛMqqqOpMW q

M�1¹
m�1

bm (95)

with
bm � max

ω
µ�2

Λm�1

�
SG1sm

��SGω�max
ω

µ�1
Λm�1 pSGω0 |SGωq .

Let us mention that the only di�erence of Eq. (95) w.r.t. [25] is the fraction
in the r.h.s. It comes from the absence of the conditioning in the r.h.s. of
Eq. (15) as compared to [25, Eq. (4.5)] pointed out in Remark 3.12. This
leads to [25, Eq. (4.16)] being slightly simpler in our setting. Namely, there
one should use the fact that for any �nite A � B � Z2, A � ΩA, B � ΩB

and f : ΩB Ñ r0,8q we have

µBp1AµApfq|Bq � µBp1A1BµApfqq
µpBq ¤ µBp1AµApfqq

µpBq � µpAq
µpBqµBpfq. (96)

Using this yields

M�1¹
m�1

SG1pΛmq
SG0pΛm�1q ¤

M�1¹
m�1

µpSG1pΛmqq
µpSG1pΛm�1qqqOpW q

� µpSG1pΛ1qq
µpSG1pΛMqqqOpMW q

,

using Lemma 4.2. Up to this modi�cation the proof is the same as in [25],
so we do not repeat it.

Given Eq. (95), we are left with proving bm ¤ q�OpCq for all m. The last
statement is simply Lemma 4.10�the analogue of [25, Corollary A.3], so we
are done.

Proof of Proposition 4.9. The fact that SGpΛpr � lviqq is nonempty, trans-
lation invariant and decreasing follows directly from De�nition 4.4. By
Lemma A.5 it su�ces to relate γωJ pΛ1q and γ pΛprqq. This is done exactly as
in [25, Lemma 4.10] (see particularly Eqs. (4.20) and (4.22) there), replacing
[25, Eq. (4.30)] by Corollary A.3 and using Eq. (96) and Lemma 4.2 as in
the proof of Proposition 4.6.
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B Conditional probabilities

The goal of this appendix is to prove Lemmas 4.10 and 4.11. Recall Sec-
tion 4.4 and De�nition 4.7.

Proof of Lemma 4.10. We prove that for all s, s1 P r0, ls divisible by λi and
ω, ω1 P ΩZ2zΛ we have

µpSGωs pΛqq
µpSGω1s1 pΛqq

� qOpW q. (97)

Once this is established, we note that by De�nition 4.7,

max
s1

µ
�
SGω1s1 pΛq

	
¤ µ

�
SGω1pΛq

	
� µ

�¤
s1

SGω1s1 pΛq
�

¤ Oplqmax
s1

µ
�
SGω1s1 pΛq

	
.

Further recalling from Section 3.4, that l ¤ `mes� ¤ q�OpCq and W ! C, we
get

µ
�
SGωs pΛq|SGω

1pΛq
	
¥ µpSG1s pΛqq
µpSGω1pΛqq ¥ q�OpCq,

since SG1s pΛq � SG1pΛq � SGω1pΛq. Thus, it remains to prove Eq. (97).
Moreover, it clearly su�ces to establish Eq. (97) for s1 � 0 and ω1 � 1.

To prove Eq. (97) in that case, let us �rst observe that by translation
invariance, De�nition 4.7 and Eq. (16),

µpSGωs pΛqq
µpSG10 pΛqq

� µpST ωspTsqqµpST ωl�spTl�sqq
µpST 1pTlqq , (98)

where for x P ts, l � s, lu, Tx � T pr, x, iq and the ωx is a boundary condition
that can be expressed in terms of ω and x. Applying Lemmas 4.2 and 4.3 to
Eq. (98), we obtain Eq. (97) as desired.

Our next goal is to treat certain perturbations of traversability events. To
do that we not only require the Harris inequality but also the van den Berg�
Kesten [38] one. We should note that the BK inequality is not natural to use
for an upper bound in our setting and has not been employed to this purpose
until now. Nevertheless, since we aim to bound conditional probabilities, it
will prove useful.

De�nition B.1 (Disjoint occurrence). Given Λ � Z2 and two decreasing
events A,B � ΩΛ, we say that A and B occur disjointly in ω P ΩΛ if there
exist disjoint sets X, Y � Λ, such that ωXYY � 0; ω1X � 0 implies ω1 P A for
ω1 P ΩΛ; and ω

1
Y � 0 implies ω1 P B for ω1 P ΩΛ.
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Proposition B.2 (BK inequality). For any decreasing events A,B � ΩΛ,

µpA and B occur disjointlyq ¤ µpAqµpBq.

We may now start building conditional probability bounds up progres-
sively for segments, parallelograms and, eventually, tubes. For segments,
recall Section 3.5.

Lemma B.3 (Perturbing a segment). Fix i P r4ks such that αpuiq ¤ α.
Let S be a discrete segment perpendicular to ui and S

1, S2 � S be discrete
segments partitioning S. Assume that |S| ¥ ΩpW q|S2| and |S| � q�α�op1q.
Then

µ pHpS 1q|HpSqq ¥ 1� W 1{3|S2|
|S| � q1�op1q.

Proof. Let us note that a stronger version of this result can be proved more
easily by counting circular shifts of the con�guration in a Op1q neighbour-
hood of S such that a given helping set remains at distance at least some
constant from S2 (see the proof of [12, Proposition 3.2(3)] for a subsequent
implementation of this technique). We prefer to give the proof below as a
preparation for Lemma B.4.

By translation invariance, we may assume that S is of the form in Eq. (13).
In view of De�nition 3.8, we need to distinguish cases, depending on whether
αpui�2kq ¡ α. We �rst assume that αpui�2kq ¡ α. Thus, helping sets are just
ui-helping sets or W -helping sets. By De�nition 3.7, if αpuiq � 0, there is
nothing to prove, since ui-helping sets are empty, soHpS 1q always occurs. We
therefore assume that αpuiq ¡ 0. We further assume S2 � ∅, since otherwise
the statement is trivial.

Recall from De�nition 3.7 that a ui-helping set is composed ofQ translates
of the set Zi. For r P rQs we denote by HprqpSq the event that there is an
infected translate of Zi by a vector of the form pr�krQqλi�kui�k with kr P Z
satisfying Eq. (14) (for d � 0). Similarly de�ne HprqpS 1q. In words, we look
for the part of the helping set with a speci�ed reminder r modulo Q. In
particular, by De�nitions 3.9 and 3.10, we have

HpSq � HW pSq Y
£
rPrQs

HprqpSq (99)

and similarly for S 1.
Since |S| � q�α�op1q, the probability that there are α� 1 infected sites at

distance Op1q from each other and from S is q1�op1q. Furthermore, if this does
not happen, but HpSq occurs, then all HprqpSq for r P rQs occur disjointly.
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Therefore, by the BK inequality Proposition B.2,

µpHpSqq ¤ q1�op1q�
¹
rPrQs

µ
�
HprqpSq

� ¤ �
1� q1�op1q

� ¹
rPrQs

µ
�
HprqpSq

�
, (100)

since, as in Observation 3.11, we have

µpHprqpSqq ¥ 1� p1� qαqΩp|S|q ¥ qop1q. (101)

Using Eqs. (99) and (100) and applying the Harris inequality Eq. (7), we get

µpHpS 1qq
µpHpSqq ¥

µp�rPrQsHprqpS 1qq
p1� q1�op1qq±rPrQs µpHprqpSqq ¥

�
1� q1�op1q

� ¹
rPrQs

µpHprqpS 1qq
µpHprqpSqq .

For r P rQs and j P Z, let us denote by Ijprq the indicator of the event

that Zi � pr � jQqλi�kui�k is fully infected and denote by JprqpSq the set of
values of j such that this set satis�es Eq. (14). Since Zi has diameter (much)
smaller than Q, for all r P rQs, the random variables Ijprq are i.i.d. for j P Z
(and therefore exchangeable). Further noting that JprqpSq � JprqpS 1q, and
setting Σ � °

jPJprqpSq
Ijprq, we obtain

µpHprqpS 1qq
µpHprqpSqq � µ

�� ¸
jPJprqpS1q

Ijprq ¥ 1

������Σ ¥ 1

�

�

|JprqpSq|¸
s�1

µpΣ � sq
µpΣ ¥ 1q

�
1�

s�1¹
l�0

|JprqpSqzJprqpS 1q| � l

|JprqpSq| � l

�

¥ |JprqpS 1q|
|JprqpSq|

|JprqpSq|¸
s�1

µpΣ � sq
µpΣ ¥ 1q �

|JprqpS 1q|
|JprqpSq| ¥

|S 1| �Op1q
|S| .

Recalling that |S| ¥ ΩpW q|S2| and W " Q � Op1q, this entails that

µpHpS 1q|HpSqq � HpS 1q
µpHpSqq ¥

�
1� q1�op1q

��
1� |S2| �Op1q

|S|

Q

¥ 1� q1�op1q � OpQq|S2|
|S| ,

concluding the proof for the case αpui�2kq ¡ α.
Turning to the case, αpui�2kq ¤ α, there is little to change. Firstly, if

αpui�2kq � 0, the proof above applies, since α-helping sets in direction ui
are the same (since ui�2k-helping sets are empty). Moreover, if �Zi�2k �
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Zi � xλi�kui�k for some x P Z, there is nothing more to prove either, since
α-helping sets and ui-helping sets coincide again. We may therefore assume
this is not the case. If αpuiq � 0, then the proof proceeds as above, but with
Zi replaced by �Zi�2k. Finally, if 1 ¤ αpuiq, αpui�2kq ¤ α, then the proof
proceeds as above, but one needs to consider not only HprqpSq, but also their
analogues with Zi replaced by �Zi�2k.

In the next lemma, we next focus on a parallelogram, which plays the role
of one of the hatched ones in Fig. 3. Informally, the statement is as follows.
The ui-side of the parallelogram is of critical size, so that each segment Si,m,
into which it is decomposed in De�nition 4.1, is also of critical size, allowing
us to apply Lemma B.3 to it. The other dimension of the parallelogram is
left unconstrained. The lemma provides a bound on the probability that a
parallelogram of slightly smaller ui-side is traversable (has helping sets for
each segment Si,m, given that the original one is.

Lemma B.4 (Perturbing a parallelogram). Let i, j P r4ks be such that j R
ti, i� 2ku and αpuiq ¤ α. Consider the parallelogram

R � Rpl, hq � Huiplq XHujphq XHuj�2k
p0q XHui�2k

p0q

for l P rρi, eq�op1qs and h � q�α�op1q. We say that R is traversable in direction
ui (T pRq occurs), if for each nonempty segment of the form

S � Z2 XR XHuiph1qzHuiph1q

the event H
1Z2zRpl�W,hq

C2 pSq occurs. Let R1 � Rpl, h1q with 1 ¥ h1{h ¥ 1� 1{W .
Then

µ pT pR1q|T pRqq ¥
�

1�
?
W

�
1� h1

h



� q1�op1q


Oplq

.

Proof. We start by noting that if αpuiq � 0, there is nothing to prove, since
T pR1q always occurs, so we assume αpuiq ¡ 0. Furthermore, we may assume
that h�h1 ¡ Ωp1q, since otherwise either RXZ2 � R1XZ2 or R1XZ2 � R2XZ2

for some R2 � Rpl, h � Ωp1qq. Let M � 1 � tl{ρiu, so that R consists
of M segments perpendicular to ui. Let us emphasise that the boundary
condition is irrelevant for T pRq, as it is imposed far from the boundary
of the domain concerned. Therefore, this event may also depend on the
con�guration outside R.

We partition R into its �rst and second halves R1 � Rpρitl{p2ρiqu, hq
and R2 � RzR1. Thus, R1 and R2 consist of rM{2s and tM{2u segments
perpendicular to ui respectively. Recalling De�nition 3.7, we see that if
T pRq occurs, then one of the following must occur.
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• The parallelograms R1 and R2 are disjointly traversable.

• There is a set of α�1 infections at distance Op1q from each other and from
both R1 and R2. Furthermore, the parallelograms R1

1 and R1
2, formed

by removing in each of R1 and R2 the Q lines closest to their common
boundary, are both traversable.

Using the BK inequality Proposition B.2, this gives

µpT pRqq ¤ µ pT pR1qqµpT pR2qq � q1�op1qµ pT pR1
1qqµ pT pR1

2qq
� µpT pR1qqµpT pR2qq

�
1� q1�op1q

�
. (102)

The last estimate follows as in Eq. (101) from the fact that traversing the
Op1q lines at the boundary of R1 and R2 happens with probability qop1q

together with the Harris inequality Eq. (7).

Let us write simply Hm for H
1Z2zRpl�W,hq

C2 pRXHpmρiqzHuipmρiqq and sim-
ilarly de�ne H1

m for R1. Iterating Eq. (102), we obtain

T pRq ¤ �
1� q1�op1q

� ¹
mPrMs

µpHmq,

since l � eq
�op1q

. Hence, by the Harris inequality Eq. (7)

µpT pR1qq
µpT pRqq ¥

�
1� q1�op1q

� ¹
mPrMs

µpH1
mq

µpHmq .

The last fraction can be bounded, using Lemma B.3, to obtain

µ pT pR1q|T pRqq � µpT pR1qq
µpT pRqq ¥

�
1�O

�
W 1{3

��
1� h1

h



� q1�op1q


M

.

Turning to the proof of Lemma 4.11, recall Fig. 3. There the regions
introduced in the proof below are depicted as follows. The parallelograms
Rj are North-West hatched, while R1

j are North-East hatched. Thus, R2
j

are double hatched. The shaded parallelograms are R2
j , while R

1
j are the

remainder of the area which is North-East but not double hatched.

Proof of Lemma 4.11. Recalling De�nition 4.1, it is clear that T ωd pT q is the
intersection of 2k� 1 independent traversability events for parallelograms of
length l in the sense of Lemma B.4. Let us denote them by pRjqi�k�1

j�i�k�1 and,

similarly, pR1
jqi�k�1
j�i�k�1 for T

1 with Rj and R
1
j having sides perpendicular to uj

(see Fig. 3). Thus, �xing j P pi� k, i� kq, the role of i and j in Lemma B.4
is played by j and i� k here.
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Further set R2
j � Rj X R1

j � Rpl � Op∆q, sj � Op∆ � C2qq.9 Notice that
(see Fig. 3) R1

jzR2
j consists of two disjoint possibly empty parallelograms

R1
j � RpOp∆q, sj � Op∆ � C2qq and R2

j � Rpl � Op∆q, Op∆qq with the
notation of Lemma B.4 (up to translation). Note that here we used that R1

j

has smaller length and height than Rj, because sj ¥ s1j, l ¥ l1 and d1 ¥ d.
By Lemma 4.2 and Eq. (7) we have

µ
�
T ω1d1 pT 1q

��� T ωd pT q	 ¥ µpWpT q X TdpT q XWpT 1q X Td1pT 1qq
q�OpW qµpTdpT qq

¥ qOpW qµ pTd1pT 1q| TdpT qq ,
where TdpT q denotes the event that T is p�, dq-traversable without boundary
condition (also depending on the states of sites outside T ) and similarly for
T 1. Moreover,

Td1pT 1q �
£
j

T pR1
jq �

£
j

pT pR2
j q X T pR1

j qq TdpT q �
£
j

T pRjq,

so the Harris inequality Eq. (9) gives

µ pTd1pT 1q| TdpT qq ¥
¹
j

µ
�
T
�
R1
j

��
µ
�
T
�
R2
j

��� T pRjq
�
.

We may then conclude, using Lemma B.4 and that by Observation 3.11

µ
�
T
�
R1
j

�� ¥ �
1� p1� qαqΩpsjq�Op∆q

.

C The surplus factor for balanced rooted mod-

els with �nite number of stable directions.

To conclude, let us brie�y sketch how to remove the log log logp1{qq factor ap-
pearing in Theorem 8.5, which would also propagate to pollute Theorem 1(e)
(see Eq. (81)).

Theorem C.1. Let U be balanced rooted (classes (b) and (e)). Let ΛpN intq be
as in Section 8.1. Instead of De�nition 8.4, one can de�ne SG1pΛpN intqq in
such a way that

γ
�

ΛpN intq
	
¤ exp

�
logOp1q logp1{qq

qα

�
, µpSG1pΛpN iqqq ¥ exp

� �1

ε2qα



.

9This equality only holds up to translation, but for simplicity we leave out the transla-
tion vector. Note that, although we stated Lemma B.4 for parallelograms with an integer
point at one of their corners, analogous bounds hold for non-integer translates thereof.
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Sketch proof of Theorem C.1. To prove this, one should combine the tech-
niques of Sections 7.1 and 8.1. More precisely, a bound on a

pnq
m less crude

than Eq. (67) should be established along the lines of Eq. (48). As in Eq. (59),

we may further decompose a
pnq
m into a product over scales p ¤ n.

The relevant values of the parameters correspond tom such that p3{2qm ¤
1{plogW p1{qqqαq, say, and p P rN cr, ns, as other cases can be dealt with using
the crude bound Eq. (67). Further, as in Eq. (62), we can also discard
p ¥ N cr � Ψ. Hence, we need to focus for the remaining values of m and p
on lower bounding

µ
�
Tp

��
Λpp�1qzD1

�� sm
��� Tp �Λpp�1qzD1

��
(103)

and µpT 1ppD1zD0q � smq|T 1pD1zD0qq, the latter being treated exactly like
µpT 1|T q in Eq. (60). Equation (103) can be further decomposed as a product
over elementary regions delimited by the boundaries of the pDκqκPrKs (recall
Fig. 9, Remark 8.2, and Eq. (9)).

Unfortunately, for such (non-convex) polygonal regions R, bounding

µ pTp pR � smq| TppRqq
is no easy feat. Indeed, Lemma 4.11 only treats tubes and, more importantly
deals, with helping sets for one direction only in each part of the tube (recall
Fig. 2a), while TppRq requires helping sets in various directions, which are
all dependent. To make matters worse, for certain families U it may happen
that a single set of α infections is simultaneously a helping set for di�erent
directions and this would create complex and heavy dependency among dif-
ferent directions, which could, a priori, make boundary regions attract such
sets.

To deal with this issue, one could further elaborate De�nition 8.1. In-
deed, we may split Λpp�1qzD1 into disjoint horizontal strips (recall Fig. 9b)
of width `ppq{pWεq. Each strip is assigned a direction uj, j P p�k, kq and
we only ask for helping sets for this direction to be present. These require-
ments are again cut at a small distance from the boundaries of all Dκ into
parallelograms like the ones treated in Lemma B.4. We further demand W -
helping sets on segments close to the boundaries of the various Dκ as in
De�nition 8.1. Naturally, some leftover regions remain without helping sets
as in De�nition 8.3, but they are unimportant like in Section 8.1.

By doing this, we make the event TnpRq the intersection of traversability
events of parallelograms in the sense of Lemma B.4, so that its result can
be applied as in the proof of Lemma 4.11, leading to a calculation similar
to the one in Theorem 7.3. The only signi�cant change is that now there
are OpW`pp�1q{`ppqq parallelograms instead of a constant number. This is not
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really a problem. However, if we wish to avoid careful computations, given
that we are interested in the range p P pN cr, N cr�Ψq, we can brutally bound
W`pp�1q{`ppq by its maximum, which is logOp1q logp1{qq by the de�nition of Ψ,
Eq. (61).
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