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Abstract

We study a general class of interacting particle systems called kinet-
ically constrained models (KCM) in two dimensions. They are tightly
linked to the monotone cellular automata called bootstrap percolation.
Among the three classes of such models [§|, the critical ones are the
most studied.

Together with the companion paper by Maréché and the author
[21], our work determines the logarithm of the infection time up to
a constant factor for all critical KCM. This was previously known
only up to logarithmic corrections [22,23|33]. We establish that on
this level of precision critical KCM have to be classified into seven
categories. This refines the two classes present in bootstrap percolation
[7] and the two in previous rougher results [22,23,[33]. In the present
work we establish the upper bounds for the novel five categories and
thus complete the universality program for equilibrium critical KCM.
Our main innovations are the identification of the dominant relaxation
mechanisms and a more sophisticated and robust version of techniques
recently developed for the study of the Fredrickson-Andersen 2-spin
facilitated model [25].
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1 Introduction

Kinetically constrained models (KCM) are interacting particle systems. They
have challenging features including non-ergodicity, non-attractiveness, hard
constraints, cooperative dynamics and dramatically diverging time scales.
This prevents the use of conventional mathematical tools in the field.

KCM originated in physics in the 1980s [13,[14] as toy models for the
liquid-glass transition, which is still a hot and largely open topic for physicists
[3]. The idea behind them is that one can induce glassy behaviour without the
intervention of static interactions, disordered or not, but rather with simple
kinetic constraints. The latter translate the phenomenological observation
that at high density particles in a super-cooled liquid become trapped by
their neighbours and require a scarce bit of empty space in order to move at
all. We direct the reader interested in the motivations of these models and
their position in the landscape of glass transition theories to [3l/15]37].

Bootstrap percolation is the natural monotone deterministic counterpart
of KCM (see [36] for an overview). Nevertheless, the two subjects arose



for different reasons and remained fairly independent until the late 2000s.
That is when the very first rigorous results for KCM came to be [9], albeit
much less satisfactory than their bootstrap percolation predecessors. The
understanding of these two closely related fields did not truly unify until
the recent series of works [21-23}25,32-34] elucidating the common points,
as well as the serious additional difficulties in the non-monotone stochastic
setting. It is the goal of this series that is accomplished by the present paper.

1.1 Models

Let us introduce the class of Y-KCM introduced in [9]. In d > 1 dimensions
an update family is a nonempty finite collection of finite nonempty subsets of
ZN\{0} called update rules. The U-KCM is a continuous time Markov chain
with state space Q = {0,1}%". Given a configuration 7 € Q, we write 7, for
the state of x € Z% in n and say that z is infected (in n) if n, = 0. We
write 174 for the restriction of n to A < Z¢ and 04 for the completely infected
configuration with A omitted when it is clear from the context. We say that
the constraint at x € Z¢ is satisfied if there exists an update rule U € U such
that x + U = {x + y : y € U} is fully infected. We denote the corresponding
indicator by

cz(n) = Laveun, . v—o0- (1)

The final parameter of the model is its equilibrium density of infections
q € [0,1]. We denote by u the product measure such that u(n, = 0) = ¢ for
all z € Z% and by Var the corresponding variance. Given a finite set A < Z¢
and real function f : Q — R, we write pua(f) for the average uu(f(n)|nza ) of
f over the variables in A. We write Var4(f) for the corresponding conditional
variance, which is thus also a function from Qza 4 to R, where Qp = {0,1}”
for B < 74,

With this notation the /-KCM can be formally defined via its generator

L) = Y eln) - (ualf) = ) () (2)

xeZd

and its Dirichlet form reads

D(f) = ), nlca - Vary(f)),

x€Z4

where p, and Var, are shorthand for py,, and Varg,. Alternatively, the
process can be defined via a graphical representation as follows (see [30]
for background). Each site z € Z? is endowed with a standard Poisson
process called clock. Whenever the clock at z rings we assess whether its

4



constraint is satisfied by the current configuration. If it is, we update 7, to
an independent Bernoulli variable with parameter 1 — ¢ and call this a legal
update. If the constraint is not satisfied, the update is #llegal, so we discard
it without modifying the configuration. It is then clear that p is a reversible
measure for the process (there are others, e.g. the Dirac measure on the fully
non-infected configuration 1).

Our regime of interest is ¢ — 0, corresponding to the low temperature
limit relevant for glasses. A quantitative observable, measuring the speed of
the dynamics, is the infection time of 0

1o = inf {t = 0 :n(t) = 0},

where (1(t))i=0 denotes the U-KCM process. More specifically, we are inter-
ested in its expectation for the stationary process E,[7y], namely the process
with random initial condition distributed according to u. This quantifies the
equilibrium properties of the system and is closely related e.g. to the more
analytic quantity called relaxation time (i.e. inverse of the spectral gap of
the generator) that the reader may be familiar with.

U-bootstrap percolation is essentially the ¢ = 1 case of U-KCM started
out of equilibrium, from a product measure with ¢y — 0 density of infections.
More conventionally, it is defined as a synchronous cellular automaton, which
updates all sites of Z¢ simultaneously at each discrete time step, by infecting
sites whose constraint is satisfied and never removing infections. As the
process is monotone, it may alternatively be viewed as a growing subset of
the grid generated by its initial condition. We denote by [A]y the set of
sites eventually infected by the U/-bootstrap percolation process with initial
condition A < Z<, that is, the sites which can become infected in the U-
KCM in finite time starting from 7(0) = (Lyga)yeza. Strictly speaking, other
than this notation, bootstrap percolation does not feature in our proofs,
but its intuition and techniques are omnipresent. On the other hand, some
of our intermediate results can translate directly to recover some bootstrap
percolation results of [7,/8].

1.2 Universality setting

We direct the reader to the companion paper by Maréché and the author [21],
a monograph of Toninelli and the author [27] and the author’s PhD thesis
|20, Chap. 1|, for comprehensive background on the universality results for
two-dimensional KCM and their history. Instead, we provide a minimalist
presentation of the notions we need. The definitions in this section were pro-
gressively accumulated in [7,8,[16,[21123,33] and may differ in phrasing from
the originals, but are usually equivalent thereto (see [21] for more details).



Henceforth, we restrict our attention to models in two dimensions. The
Euclidean norm and scalar product are denoted by ||-| and (-, -), and distances
are w.r.t. | - |. Let S' = {z € R? : |z| = 1} be the unit circle consisting of
directions, which we occasionally identify with R/277Z in the standard way.
We denote the open half plane with outer normal v € S! and offset [ € R by

H,(l) = {z e R* : {z,u) < I} (3)

and omit [ if it is 0. We further denote its closure by H,(l), omitting zero
offsets. We often refer to continuous sets such as H,, but whenever talking
about infections or sites in them, we somewhat abusively identify them with
their intersections with Z? without further notice.

Fix an update family U.

Definition 1.1 (Stability). A direction u € S' is unstable if there exists
U € U such that U < H,, and stable otherwise.

It is not hard to see that unstable directions form a finite union of finite
open intervals in S [8, Theorem 1.10]. We say that a stable direction is
semi-isolated (resp. isolated) if it is the endpoint of a nontrivial (resp. trivial)
interval of stable directions.

Definition 1.2 (Criticality). Let C be the set of open semicircles of S*. An
update family is

e supercritical if there exists C' € C such that all u € C' are unstable;
e subcritical if every semicircle contains infinitely many stable directions;
e critical otherwise.
The following notion measures “how stable” a stable direction is.
Definition 1.3 (Difficulty). For u € S* the difficully o(u) of u is
e ( if u is unstable;
e o if u is stable, but not isolated;
e min{n: 37 < Z*|Z| = n,|[H, v Z],,\H,| = o0} otherwise.
The difficulty of U is

a = minmax a(u).
CeC ueC

We say that a direction u € St is hard if a(u) > a.



See Fig. [] for an example update family with o = 3 and its difficulties.
It can be shown that a(u) € [1,00) for isolated stable directions |7, Lemma
2.8]. Consequently, a model is critical iff 0 < o < oo and supercritical iff
a = 0, so difficulty is tailored for critical models and refines Definition
Furthermore, for supercritical models the notions of stable and hard direction
coincide. Finally, observe that the definition implies that for any critical
or supercritical update family there exists an open semicircle with no hard
direction.

Definition 1.4 (Refined types). A critical or supercritical update family is

rooted if there exist two non-opposite hard directions;

unrooted if it is not rooted;

unbalanced if there exist two opposite hard directions;

balanced if it is not unbalanced, that is, there exists a closed semicircle
containing no hard direction.

We further partition balanced unrooted update families into

o semi-directed if there is exactly one hard direction;

e isotropic if there are no hard directions.

We further consider the distinction between models with finite and infinite
number of stable directions. The latter being necessarily rooted, but possibly
balanced or unbalanced, we end up with a partition of all (two-dimensional
non-subcritical) families into the seven classes studied in detail below in the
critical case. We invite the interested reader to consult |21}, Fig. 1] for simple
representatives of each class with rules contained in the the lattice axes and
reaching distance at most 2 from the origin. Naturally, many more examples
have been considered in the literature (also see Fig. [1)).

Let us remark that models in each class may have one axial symme-
try, but non-subcritical models invariant under rotation by 7 are necessarily
either isotropic or unbalanced unrooted (thus with finite number of stable
directions), while invariance by rotation by 7/2 implies isotropy.

1.3 Results

Our result, summarised in Table [, together with the companion paper by
Maréché and the author [21], is the following complete refined classification
of two-dimensional critical KCM (for the classification of supercritical ones,
which only features the rooted /unrooted distinction, see [31-33)).
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Infinite stable directions %gr)ttee(sltable dlljrzizl(?tlje Z
Unbalanced | |(a)2,4,0 1,3,0 (d)[1,2,0
() 1,0,1
Balanced | |(b)|2,0,0 1,1,0 S.-dir, " Iso.
(8) 10,0

Table 1: Classification of critical UY-KCM with difficulty «. For each class
B 5
E,[70] = exp (@(1) (i) (log é)v (log log é) ) as ¢ — 0. The label of the

q(l
class and the exponents (3,7, are indicated in that order.

Theorem 1 (Universality classification of two-dimensional critical KCM).
Let U be a two-dimensional critical update family with difficulty o. We have
the following exhaustive alternatives as ¢ — 0 for the expected infection time
of the origin under the stationary U-KCM[Y| If U is

(a) unbalanced with infinite number of stable directions (so rooted), then

o <<1og<1/q>>4)>

I

q2a

E,[70] = exp (
(b) balanced with infinite number of stable directions (so rooted), then
o1
E,[70] = exp ( qga)) :

(¢) unbalanced rooted with finite number of stable directions, then

o <<log<1/q>>3)>

qOL

I

]EM[TO] = exp (

(d) unbalanced unrooted (so with finite number of stable directions), then

o ((10g<1/q>>2)>

q&

I

E,[70] = exp (

IWe write f = O(g) if there exist ¢, C' > 0 such that cg(q) < f(q) < Cg(q) for all q
small enough and use other standard asymptotic notation (see e.g. [21, Section 1.2]).



(e) balanced rooted with finite number of stable directions, thefﬂ

© (10g(1/Q)))

qOL

Y

E,[70] = exp (

(f) semi-directed (so balanced unrooted with finite number of stable direc-

tions), then
O (log 10g(1/q))>
qa

I

E,[70] = exp <

(g) isotropic (so balanced unrooted with finite number of stable directions),

then . (@(1))
ul70] = exp .

qOé

This theorem is the result of a tremendous amount of effort by a panel
of authors. It would be utterly unfair to claim that it is due to the present
paper and its companion [21] alone. Indeed, parts of the result (sharp up-
per or lower bounds for certain classes) were established by (subsets of)
Maréché, Martinelli, Morris, Toninelli and the author [22}23,33.134]. More-
over, particularly for the lower bounds, the classification of two-dimensional
critical U-bootstrap percolation models by Bollobas, Duminil-Copin, Morris
and Smith [7] (featuring only the balanced /unbalanced distinction) is heavily
used, while upper bounds additionally use prerequisites from [24,25]. Thus,
a fully self-contained proof of Theorem [I| from common probabilistic back-
ground is currently contained only in all the above references combined and
spans hundreds of pages. Our contribution is but the conclusive step.

More precisely, the lower bound for classes [(d)] and was deduced from
[7] in [34]; the lower bound for class [(b)] was established in [22], while the
remaining four were proved in [21]. Turning to upper bounds, the one for
class [(a)] was given in [33] and the one for class is due to |23]. The
remaining five upper bounds are new and those are the subject of our work.
The most novel and difficult ones concern classes @ and the latter
remaining quite mysterious prior to our work. Indeed, |23, Conjecture 6.2]
predicted the above result with the exception of this class, whose behaviour
was unclear. We should note that this conjecture itself rectified previous ones
from |33}36], which were disproved by the unexpected result of |23, and was
new to physicists, as well as mathematicians.

Remark 1.5. It should be noted that universality results including The-
orem [1] apply to KCM more general than the ones defined in Section

2See Remark




Namely, we may replace ¢, in Eq. by a fixed linear combination of the
constraints ¢, associated to any finite set of update families. For instance, we
may update vertices at rate proportional to their number of infected neigh-
bours. This and other models along these lines have been considered e.g. in
|2,5,/13]. For such mixtures of families, the universality class is determined
by the family obtained as their union. Indeed, upper bounds follow by direct
comparison of the corresponding Dirichlet forms, while lower bounds (e.g.
|21]) generally rely on deterministic bottlenecks, which remain valid.

Remark 1.6. Let us note that for reasons of extremely technical nature,
we do not provide a full proof of (the upper bound of) Theorem [I(e)] More
precisely, we prove it as stated for models with rules contained in the axes of
the lattice. We also prove a fully general upper bound of

exp (O(log(l/q)) log log log(l/q)) |

qa

(4)

Furthermore, with very minor modifications (see Remark , the error fac-
tor can be reduced from logloglog to log,, where log, denotes the number
of iterations of the logarithm before the result becomes negative (the inverse
of the tower function). Unfortunately, removing this minuscule error term
requires further work, which we omit for the sake of concision. Instead, we
provide a sketch of how to achieve this in Appendix [C|

1.4 Organisation

The paper is organised as follows. In Section [2| we begin by outlining all
the relevant relaxation mechanisms used by critical KCM, providing detailed
intuition for the proofs to come. This section is particularly intended for
readers unfamiliar with the subject, as well as physicists, for whom it may
be sufficiently convincing on its own. In Section |3| we gather various notation
and simple preliminaries.

In Section 4| we formally state the two fundamental techniques we use
to move from one scale to the next, namely East-extensions and CBSEP-
extensions, which import and generalise ideas of [25]. They are used in
various combinations throughout the rest of the paper. The proofs of the
results about those extensions, including the microscopic dynamics treated
by [19] are deferred to Appendix since they are quite technical and do
not require new ideas. The bounds arising from extensions feature certain
conditional expectations. We provide technical tools for estimating them in
Section [4.4f We leave the entirely new proofs of these general analogues of
|25, Appendix A| to Appendix
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Sections [l to[@ are the core of our work and use the extensions mentioned
above to prove the upper bounds of Theorem [I|for classes [(g)] [(d)] [(B)]
respectively. As we will discuss in further detail (see Section [2]and Table [2b)),
some parts of the proofs are common to several of these classes, making the
sections interdependent. Thus, they are intended for linear reading.

We conclude in Appendix [C] by explaining how to remove the correc-
tive logloglog(1/q) factor discussed in Remark to recover the result of
Theorem as stated in full generality. Due to their technical nature, we
delegate Appendices [A] to [C] to the arXiv version of the present work.

Familiarity with the companion paper [21] or bootstrap percolation |7]
is not needed. Inversely, familiarity with [23,25] is strongly recommended
for going beyond Section 2| and achieving a complete view of the proof of
the upper bounds of Theorem Nevertheless, we systematically state the
implications of intermediate results of those works for our setting in a self-
contained fashion, without re-proving them.

2 Mechanisms

In this section we attempt a heuristic explanation of Theorem [l from the
viewpoint of mechanisms, which is mostly related to upper bound proofs.
Yet, let us say a few words about the lower bounds. The proof of the lower
bounds in the companion paper [21] has the advantage and disadvantage of
being unified for all seven classes. This is undeniably practical and spotlights
the fact that all scaling behaviours can be viewed through the lens of the
same bottleneck (few energetically costly configurations through which the
dynamics has to go to infect the origin) on a class-dependent length scale.
However, the downside is that it provides little insight on the particularities
of each class, which turn out to be quite significant. To prove upper bounds
we need a clear vision of an efficient mechanism for infecting the origin in
each class. Since we work with the stationary process, efficient means that it
should avoid configurations which are too unlikely w.r.t. u. However, while
lower bounds only identify what cannot be avoided, they do not tell us how
to avoid everything else, nor indeed how to reach the unavoidable bottleneck.

Instead of outlining the mechanism used by each class, we focus on tech-
niques which are somewhat generic and then apply combinations thereof to
each class. In figurative terms, we develop several computer hardware com-
ponents (three processors, four RAMs, etc.), give a general scheme of how to
compose a generic computer out of generic components and, finally, assemble
seven concrete computer configurations, using the appropriate components
for each, sometimes changing a single component from a machine to the

11



Global Mesoscopic Internal
CBSEP East CBSEP | Fast, Stair | CBSEP East Unbal.
p51+o(1) pBO(log(l/pD)) eq—o(l) p];()(log(l/q)) eq—o(l) p];()(loglog(l/q)) p]SO(l)

(a) The relaxation time cost associated to each choice of dynamics mechanism
on each scale in terms of the probability of a droplet pp.

[ [ [ | [(c)] | [(d] | [e] | [E | [(g)
Global East* | East* | CBSEP | CBSEP* | CBSEP | CBSEP | CBSEP*
Mesoscopic Stair East East* CBSEP East* CBSEP CBSEP
Internal — East Unbal. Unbal.* East East* CBSEP

(b) The fastest mechanism available to each class of Theorem [l|on each scale.
The * indicates a leading contribution for the class (column).

Table 2: Summary of the mechanisms and their costs. The microscopic one
common to all classes and with negligible cost is not shown (see Section [2.2)).

other. Moreover, within each component type different instances are strictly
comparable, so, at the assembly stage, we might simply choose the best pos-
sible component fitting with the requirements of model at hand. This enables
us to highlight the robust tools developed and refined recently, which corre-
spond to the components and how they are manufactured, as well as give a
clean universal proof scheme into which they are plugged.

Our different components are called the microscopic, internal, mesoscopic
and global dynamics and correspond to progressively increasing length scales
on which we are able to relax, given a suitable infection configuration. As the
notion of “suitable,” which we call super good (SG), depends on the class and
lower scale mechanisms used, we mostly use it as a black box input extended
progressively over scales in a recursive fashion.

In order to guide the reader through Section [2and beyond, in Table [2] we
summarise the optimal mechanisms for each universality class on each scale
and its cost. While its full meaning will only become clear in Section the
reader may want to consult it regularly, as they progress through Section

The SG events concern certain convex polygonal geometric regions called
droplets. These events are designed so as to satisfy several conditions ensuring
that the configuration of infections inside the droplet is sufficient to infect the
entire droplet. The SG events defined by extensions from smaller to larger
scales require the presence of a lower scale droplet inside the large one (see
Fig. |2)) in addition to well-chosen more sparse infections called helping sets
in the remainder of the larger scale droplet (see Fig. . Helping sets allow
the smaller one to move inside the bigger one.

We say that a droplet relazes in a certain relazation time if the dynamics

12



restricted to the SG event and to this region “mixes” in this much time. For-
mally, this translates to a constrained Poincaré inequality for the conditional
measure, but this is unimportant for our discussion.

One should think of droplets as extremely unlikely objects, which are able
to move within a slightly favourable environment. Indeed, at all stages of our
treatment, we need to control the inverse probability of droplets being SG
and their relaxation times, keeping them as small as feasible. Furthermore,
due to their inductive definition, the favourable environment required for
their movement should not be too costly. Indeed, that would result in the
deterioration of the probability of larger scale droplets, as those incorporate
the lower scale environment in their internal structure. Hence, we seek a
balance between asking for many infections to make the movement efficient
and asking for few in order to keep the probability of droplets high enough.

2.1 Scales

Microscopic dynamics refers to modifying infections at the level of
the lattice along the boundary of a droplet, while respecting the KCM con-
straint.

Internal dynamics refers to relaxation on scales from the lattice level
to the internal scale (™ = C*log(1/q)/q*, where C is a large constant de-
pending on Y. This is the most delicate and novel step. Up to /™ we account
for the main contribution to the probability of droplets. That is, at all larger
scales the probability of a droplet essentially saturates at a certain value pp,
because finding helping sets becomes likely. Thus, on smaller scales, it is
important to only very occasionally ask for more than « infections to appear
close to each other in order to get the right probability pp. This means that
up to the internal scale hard directions are practically impenetrable, since
they require helping sets of more that « infections.

Mesoscopic dynamics refers to relaxation on scales from ¢ to the
mesoscopic scale (™ = 1/¢q°. As our droplets grow to the mesoscopic scale
and past it, it becomes possible to require larger helping sets, which we call
W -helping sets. These allow droplets to move also in hard directions of finite
difficulty, while nonisolated stable directions are still blocking.

Global dynamics refers to relaxation on scales from ™ to infinity.
The extension to infinity being fairly standard (and not hard), one should
rather focus on scales up to the global scale given by (8 = exp(1/¢>*), which

13



is notably much larger than all time scales we are aiming for, but otherwise
rather arbitrary.

Roughly speaking, on each of the last three scales, one should decide how
to move a droplet of the lower scale in a domain on the larger scale.

For simplicity, in the remainder of Section [2| we assume that the only four
relevant directions are the axis ones so that droplets have rectangular shape
(see Section [3.3). We further assume that all directions in the left semicircle
have difficulties at most «, while the down direction is hard, unless there are
no hard directions (isotropic class).

2.2 Microscopic dynamics

The microscopic dynamics (see Appendix is the only place where we
actually deal with the KCM directly and is the same, regardless of the size
of the droplet and the universality class. Roughly speaking, from the outside
of the droplet, we may think of it as fully infected, since it is able to relax
and, therefore, bring infections where they are needed. Thus, the outer
boundary of the droplet behaves like a 1-dimensional KCM with update
family reflecting that we view the droplet as infected. Hence, provided there
are enough helping sets at the boundary to infect it, we can apply results on
1-dimensional KCM supplied for this purpose by the author [19].

This way we establish that one additional column can relax in time
exp(O(log(1/g))?), similarly to the East model described in Section [2.3.2)
below. Assuming we know how to relax on the droplet itself, this allows us
to relax on a droplet with one column appended. However, applying this
procedure recursively line by line is not efficient enough to be useful for ex-
tending droplets more significantly.

2.3 One-directional extensions

We next explain two fundamental techniques beyond the microscopic dynam-
ics which we use to extend droplets on any scale in a single direction (see
Section [4)).

As mentioned above, our droplets are polygonal regions with a SG event
(presence of a suitable arrangement of infections in the droplet). An exten-
sion takes as input a droplet and produces another one. In terms of geometry,
it contains the original one and is obtained by extending it, say, horizontally,
either to the left or both left and right (see Fig. . The extended droplet’s
SG event requires that the smaller one is SG and, additionally, certain help-
ing sets appear in the remaining volume. The choice of where we position

14



the smaller droplet (at the right end of the bigger one, or anywhere inside it)
depends on the type of extension. The additional helping sets are required
in such a way that, with their help, the smaller droplet can, in principle,
completely infect the larger one and, therefore, make it relax (resample its
configuration within its SG event).

Thus, an extension is a procedure for iteratively defining SG events on
larger and larger scales. For each of our two types of extensions we need to
provide corresponding iterative bounds on the probability of the SG event
and on the relaxation time of droplets on this event. The former is a matter
of careful computation. For the latter task we intuitively use a large-scale
version of an underlying one-dimensional spin model, which we describe first.

2.3.1 CBSEP-extension

In the one-dimensional spin version of CBSEP [24,25] we work on {1, [}Z. At
rate 1 we resample each pair of neighbouring spins, provided that at least one
of them is 1. Their state is resampled w.r.t. the reference product measure,
which is reversible, conditioned to still have a 1 in at least one of the two
sites. In other words, 7 can perform coalescence, branching and symmetric
simple exclusion moves, hence the name. The relaxation time of this model
on volume V is roughly min(V, 1/¢)? in one dimension and min(V, 1/¢) in two
and more dimensions [24,25|, where ¢ is the equilibrium density of 1, which
we think of as being small.

For us 7 represent SG droplets, which we would like to move within a
larger volume. However, as we would like them to be able to move possibly
by an amount smaller than the size of the droplet, we need to generalise the
model a bit. We equip each site of a finite interval of Z with a state space
corresponding to the state of a column of the height of our droplet of interest
in the original lattice Z2. Then the event “there is a SG droplet” may occur on
a group of ¢ consecutive sites (columns). The long range generalised CBSEP,
which, abusing notation, we call CBSEP, is defined as follows. We fix some
range R > (¢ and resample at rate 1 each group of R consecutive sites, if
they contain a SG droplet. The resampling is performed conditionally on
preserving the presence of a SG droplet in those R sites. Thus, one move of
this process essentially delocalises the droplet within the range.

It is important to note (and this was crucial in [25]) that CBSEP does not
have to create an additional droplet in order to evolve. Since SG droplets
are unlikely, it suffices to move an initially available SG droplet through
our domain in order to relax. Since infection needs to be able to propagate
both left and right from the SG droplets, we will define (see Section and
particularly Definition [4.7 and Fig. CBSEP-extension by extending our
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domain horizontally and asking for the SG droplet anywhere inside with suit-
able “rightwards-pointing” helping sets on its right and “leftwards-pointing”
on its left.

While we now know that droplets evolve according to CBSEP, it remains
to see how one can reproduce one CBSEP move via the original dynamics.
This is done inductively on R by a bisection procedure, the trickiest part
being the case R = £+ 1. We then dispose with a droplet plus one column—
exactly the setting for microscopic dynamics. However, we not only want to
resample the state of the additional column, but also allow the droplet to
move by one lattice step. To achieve this, we have to look inside the structure
of the SG droplet and require for its infections (which have no rigid structure
and may therefore move around like the organelles of an amoeba) to be
somewhat more on the side we want to move towards (see e.g. Fig. 4| and also
Definitions 5.3} [6.5] [7.7] and [7.§)). Then, together with a suitable configuration
on the additional column provided by the microscopic dynamics, we easily
recover our SG event shifted by one step, since most of the structure was
already provided by the version of the SG event “contracted” towards the
new column.

This amoeba-like motion (moving a droplet, by slightly rearranging its
internal structure) leads to a very small relaxation time of the dynamics.
Indeed, the time needed to move the droplet is the product of three contri-
butions: the relaxation time of the 1-dimensional spin model; the relaxation
time of the microscopic dynamics; the time needed to see a droplet contract-
ing as explained above (see Proposition . The first of these is a power of
the volume (number of sites); the second is exp(O(log(1/q)))?); the third is
also small, as we discuss in Section

However, CBSEP-extensions can only be used for sufficiently symmetric
update families. That is, the droplet needs to be able to move indifferently
both left and right and its position should not be biased in one direction
or the other. Specifically, if we are working on a scale that requires the
use of helping sets of size «, these have to exist both for the left and right
directions, so the model needs to be unrooted (if instead we use larger helping
sets, having a finite number of stable directions suffices). The reason is that
otherwise the position of the SG droplet is biased in one direction instead of
being approximately uniform. This would break the analogy with the original
one-dimensional spin model, which is totally symmetric. When symmetry is
not available, we recourse to the East-extension presented next, which may
also be viewed as a totally asymmetric version of the CBSEP-extension.
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2.3.2 East-extension

The East model [28] is the one-dimensional KCM with & = {{1}}. That
is, we are only allowed to resample the left neighbour of an infection. An
efficient recursive mechanism for its relaxation is the following [35]. Assume
we start with an infection at 0. In order to bring an infection to —2"+1, using
at most n infections at a time (excluding 0), we first bring one to —2"71 + 1,
using n — 1 infections. We then place an infection at —2"~! and reverse the
procedure to remove all infections except 0 and —2" 1. Finally, start over
with n— 1 infections, viewing —2"~! as the new origin, thus reaching —2" +1.
It is not hard to check that this is as far as one can get with n infections [11].
Thus, a number of infections logarithmic in the desired distance is needed.
This is to be contrasted with CBSEP, for which only one infection is ever
needed, as it can be moved indefinitely by SEP moves. The relaxation time
of East on a segment of length L is ¢~ OUoemin(E1/a) |19/ /10|, where ¢ is the
equilibrium density of infections. This corresponds to the cost of n infections
when 2" ~ min(L, 1/q) is the typical distance to the nearest infection.

The long-range generalised version of the East model is defined similarly
to that of CBSEP. The only difference is that now R > ¢ consecutive columns
are resampled together if there is a SG droplet on their extreme right. It is
clear that this does not allow moving the droplet, but rather forces us to
recreate a new droplet at a shifted position before we can progress. The
associated Fast-extension of a droplet corresponds to extending its geometry
to the left (see Section 1.2 and particularly Definition [4.4] and Fig. [2a). The
extended SG event requires that the original SG droplet is present in the
rightmost position and “leftwards-pointing” helping sets are available in the
rest of the extended droplet.

The generalised East process goes back to 33|, while the long range ver-
sion is implicitly used in [23]. However, both works used a brutal strategy
consisting of creating the new droplet from scratch. Instead, in this work we
have to be much more careful, particularly for semi-directed models. Indeed,
take ¢ large and R = ¢ + 5. Then it is intuitively clear that the presence
of the original rightmost droplet overlaps greatly with the occurrence of the
shifted SG one we would like to craft. Hence, the idea is to take advantage of
this and only pay the conditional probability of the droplet we are creating,
given the presence of the original one.

This is not as easy as it sounds for several reasons. Firstly, we should make
the SG structure soft enough (in contrast with e.g. [23/33]) so that small shifts
do not change it much. Secondly, we need to actually have a quantitative
estimate of the conditional probability of a complicated multi-scale event,
given its translated version, which necessarily does not quite respect the
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same multi-scale geometry. To make matters worse, we do not have at our
disposal a very sharp estimate of the probability of SG events (unlike in
[25]), so directly computing the ratio of two rough estimates would yield a
very poor bound on the conditional probability. In fact, this problem is also
present when contracting a droplet in the CBSEP-extension—we need to
evaluate the probability of a contracted version of the droplet, conditionally
on the original droplet being present.

We deal with these issues in Section [£.4] (see also Appendix [B]). We estab-
lish that, as intuition may suggest, to create a droplet shifted by R —¢, given
the original one, we roughly only need to pay the probability of a droplet
on scale R — ¢ rather than ¢, which provides a substantial gain. Hence, the
time necessary for an East-extension of a droplet to relax is essentially the
product of the inverse probabilities of a droplet on scales of the form 2™ up
to the extension length (see Proposition [4.6)).

2.4 Internal dynamics

The internal dynamics (see Sections and is where most of

our work goes. This is not surprising, as the probability of SG events sat-
urates at its final value pp at the internal scale. The value of pp is given
by exp(—O(1)/q®) for balanced models and exp(—O(log(1/q))*/q*) for un-
balanced ones, as in bootstrap percolation [7]. However, relaxation times for
some classes keep growing past the internal scale, so the internal dynamics
does not necessarily give the final answer in Theorem [I] (see Table [2b).

2.4.1 Unbalanced internal dynamics

Let us begin with the simplest case of unbalanced models. If I/ is unbalanced
with infinite number of stable directions (class [(a)), droplets in [33] on the
internal scale consist of several infected consecutive columns, so that no re-
laxation is needed (the SG event is a singleton). The columns have size (™,
which justifies the value of pp = ¢ ™) = exp(—O(log(1/¢))?/q).

Assume U is unbalanced with finite number of stable directions (classes
and I@], see Section . Then droplets on the internal scale are fully
infected square frames of thickness O(1) and size /™. That is, the (* ball
of radius £™ minus the one of radius /™ — O(1) (see |23, Figs. 2-4] or
Fig. || for more general geometry). This frame is infected with probability
oo = ¢ 9@ In order to relax inside the frame, one can divide its interior
into groups of O(1) consecutive columns (see |23, Fig. 8]). We can then
view them as performing a CBSEP dynamics with 1 corresponding to a fully
infected group of columns. This is possible, because with the help of the frame
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each completely infected group is able to completely infect the neighbouring
ones. Here we are using that there are finitely many stable directions to
ensure both the left and right directions have finite difficulty, so finite-sized
helping sets, as provided by the frame, are sufficient to propagate our group
of columns. This was already done in [23] and the time necessary for this

o(1) (

relaxation is easily seen to be pp the cost for creating a group of infected

columns)—see Proposition [6.2]

2.4.2 CBSEP internal dynamics

If U is isotropic (class see Section , up to the conditioning problems
of Section described above, we need only minor adaptations of the strat-
egy of [25] for the paradigmatic isotropic model called FA-2f. Droplets on
the internal scale have an internal structure as obtained by iterating Fig.
(see also |25, Fig. 2|). Our droplets are extended little by little alternating
between the horizontal and vertical directions, so that their size is multiplied
essentially by a constant at each extension. Thus, roughly log(1/q) exten-
sions are required to reach ™. As isotropic models do not have any hard
directions, we can move in all directions and thus the symmetry required for
CBSEP-extensions is granted. Hence, this mechanism leads to a very fast
relaxation of droplets in time exp(g~°™"))—see Theorem .

Remark 2.1. Note that for CBSEP-extensions to be used, we need a very
strong symmetry. Namely, leftwards and rightwards pointing helping sets
should be the same up to rotation by 7. Yet, for a general isotropic model we
only know that there are no hard directions, so helping sets have the same
size (equal to the difficulty a of the model), but not necessarily the same
shape. We circumvent this issue by artificially symmetrising our droplets
and events. Namely, whenever we require helping sets in one direction, we
also require the helping sets for the opposite direction rotated by 7 (see Defi-
nitions and . Although these are totally useless for the dynamics,
they are important to ensure that the positions of droplets are indeed uni-
form rather than suffering from a drift towards an “easier” non-hard direction

(see Lemma [4.10)).
2.4.3 East internal dynamics

The most challenging case is the balanced non-isotropic one (classes [(b)] [(e]]
and [(f)). It is treated in Sections and but for the purposes of the

3Note that in [25, Proposition 4.7] a much larger internal relaxation time of order
exp(g~1/?*°(1)) was obtained, but the cost pp' of SG droplets was much smaller than the
one in the present work, so our treatment here is by no means as sharp for FA-2f as [25].

19



present section only Section is relevant. This is because we assume that
only the four axis directions are relevant and our droplets are rectangular.
The treatment of the general case for balanced rooted families is left to
Section [B.1] and Appendix [C] (recall Remark [1.6)).

For the internal dynamics the downwards hard direction prevents us from
using CBSEP-extensions. To be precise, for semi-directed models (class
it is possible to perform CBSEP-extensions horizontally (and not vertically),
but the gain is insignificant, so we treat all balanced non-isotropic models
identically up to the internal scale as follows.

We still extend droplets, starting from a microscopic one, by a constant
factor alternating between the horizontal and vertical directions (see Fig. [f]).
However, in contrast with the isotropic case (see Fig. , extensions are
done in an oriented fashion, so that the original microscopic droplet remains
anchored at the corner of larger ones. Thus, we may apply East-extensions
on each step and obtain that the cost is given by the product of conditional
probabilities from Section [2.3.2] over all scales and shifts of the form 2":

10g2 (Zint n
[]a%, (5)
=1

)
n m=0

where ') is the inverse of the conditional probability of a SG droplet of size

2™ being present at position 2™, given that a SG droplet of size 2" is present
at position 0. It is crucial that Eq. is not the straightforward bound
Hn(p]g" ))*”, with pl(; ) the probability of a droplet of scale n, that one would
get by direct analogy with the East model (recall from Section that
the relaxation time of East on a small volume L is ¢—©(°s L)), as that would
completely devastate all our results. Indeed, as mentioned in Section
the term a' in Eq. is approximately equal to (pl(jm))*l, rather than
(pgl))*l. This is perhaps one of the most important points to our treatment.
Hence, Eq. transforms into

In other words, a droplet of size 2™ needs to be paid for once per scale larger
than 2™ (see Eq. (44)). A careful computation shows that only droplets larger
than ¢~ provide the dominant contribution and those all have probability
essentially p]gm) = pp = exp(—0(1)/q*) (see Eq. ) Thus, the total cost
would be
logy (£™) n Ollenl ) .
H n 5’ = pp (loglog(1/9))* _ ,O(loglog(1/4))*/q ’ (6)

n=log,(1/q*) m=logy(1/q%)
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since there are O(loglog(1/q)) scales from ¢~ to /™, as they increase expo-
nentially.

Equation @ is unfortunately a bit too rough for the semi-directed class,
overshooting Theorem However, the solution is simple. It suffices to
introduce scales growing double-exponentially above ¢~ instead of exponen-
tially (see Eq. ), so that the product over scales n in Eq. @ becomes
dominated by its last term, corresponding to droplet size ¢, This gives the
optimal final cost

P logy(q™6™) _ pBO(loglog(l/q)) _ ¢O(loglog(1/q))/¢"
(see Theorem [7.3)).

2.5 Mesoscopic dynamics

For the mesoscopic dynamics (see Sections 5.1 and we are given

as input a SG event for droplets on scale (™ = C*log(1/¢)/q* and a bound
on their relaxation time and occurrence probability pp. We seek to output
the same on scale /™ = ¢~¢. Taking C' » W, once our droplets have size
(™ we are able to find W-helping sets (sets of W consecutive infections,
where W is large enough).

2.5.1 CBSEP mesoscopic dynamics

If U is unrooted (classes[(d)} [(f)] and see Sections[6.2) and [7.2)), recall that

the hard directions (if any) are vertical. Then we can perform a horizontal
CBSEP-extension directly from ¢ to ™ since ¢ = C?log(1/q)/q" makes
it likely for helping sets (of size «) to appear along all segments of length
¢ until we reach scale ™ = ¢~¢. The resulting droplet is very wide, but
short (see Fig. . However, this is enough for us to be able to perform a
vertical CBSEP-extension (see Fig. , requiring W-helping sets, since they
are now likely to be found. Again, CBSEP dynamics being very efficient,
its cost is negligible. Note that, in order to perform the vertical extension,
we are using that there are no nonisolated stable directions, so that W is
larger than the difficulty of the up and down directions, making W-helping
sets sufficient to induce growth in those directions. Thus, morally, there are
no hard directions beyond scale ™ for unrooted models.

2.5.2 East mesoscopic dynamics

If U is rooted (classes and [(e)] see Section [9.1), CBSEP-extensions
are still inaccessible. We may instead East-extend horizontally from ™t to
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™ in a single step. If the model is balanced or has a finite number of
stable directions (classes [(b)] and [(e))), we may proceed similarly in the
vertical direction, reaching a droplet of size in time p];o(log(l/ D) (here
we use the basic bound ¢~?(°¢ 1) for East dynamics recalled in Section [2.3.2]
which is fairly tight in this case, since droplets are small compared to the
volume: log £ ~ log(£™e /(™). For the unbalanced case (class|(c)) here we
require WW-helping sets along the long side of the droplet like in Section [2.5.1]
Another way of viewing this is simply as extending the procedure used for
the East internal dynamics all the way up to the mesoscopic scale (™ (see
Section [0.1).

It should be noted that a version of this mechanism, which coincides with
the above for models with rectangular droplets, but differs in general, was
introduced in [23|. Though their snail mesoscopic dynamics can be replaced
by our East one, for the sake of concision in Section we directly import
the results of [23] based on the snail mechanism.

Emes

2.5.3 Stair mesoscopic dynamics

For unbalanced families with infinite number of stable directions (class [(a))
the following stair mesoscopic dynamics was introduced in [33|. Recall from
Section that for unbalanced models the internal droplet is simply a
fully infected frame or group of consecutive columns. While moving the
droplet left via an East motion, we pick up W-helping sets above or below
the droplet. These sets allow us to make all droplets to their left shifted up
or down by one row. Hence, we manage to create a copy of the droplet far to
its left but also slightly shifted up or down (see |33, Fig. 6]). Repeating this
(with many steps in our staircase) in a two-dimensional East-like motion,
we can now relax on a mesoscopic droplet with horizontal dimension much
larger than ¢™ but still polynomial in 1/¢ and vertical dimension ¢™* in
time pBO(log(l/ 2 Here, one should again intuitively imagine we are using the
bound ¢~°U°eL) hut this time for the relaxation time of the 2-dimensional
East model.

2.6 Global dynamics
The global dynamics (see Sections , and receives as input

a SG event for a droplet on scale ¢™* with probability roughly pp and a
bound on its relaxation time, as provided by the mesoscopic dynamics. Its
goal is to move such a droplet efficiently to the origin from its typical initial
position at distance roughly pgl/ 2
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2.6.1 CBSEP global dynamics

If U has a finite number of stable directions (classes the mesoscopic
droplet can perform a CBSEP motion in a typical environment. Indeed,
the droplet is large enough for CBSEP-extensions with W-helping sets to
be possible in all directions. Therefore, the cost of this mechanism is given
by the relaxation time of CBSEP on a box of size (8! = exp(1/¢3**) with
density of 1T given by pp. Performing this strategy carefully and using the
2-dimensional CBSEP, this yields a relaxation time min((¢8")%,1/pp) = 1/pp

(recall Section and see Section [5.2)).

2.6.2 East global dynamics

If U has infinite number of stable directions (classes [(a)] and [(b))), the strat-
egy is identical to the CBSEP global dynamics, but employs an East dy-
namics. Now the cost becomes the relaxation time of an East model with

density of infections pp, which yields a relaxation time of pgo(log min(l=,1/pp)) _

ppUoE/PP)) (recall Section and see Section .

2.7 Assembling the components

To conclude, let us return to the summary provided in Table 2] In Table
we collect the mechanisms for each scale and their cost to the relaxation time.
The results are expressed in terms of the probability of a droplet pp, which
equals exp(—0(log(1/q))?/q®) for unbalanced models and exp(—O(1)/q®) for
balanced ones. The final bound on E,[7y] for each class then corresponds
to the product of the costs of the mechanism employed at each scale. To
complement this, in Table [2b] we indicate the fastest mechanism available for
each class on each scale. We further indicate which one gives the dominant
contribution to the final result appearing in Theorem|[T], once the bill is footed.

Finally, let us alert the reader that, for the sake of concision, the proof
below does not systematically implement the optimal strategy for each class
as indicated in Table 2D]if that does not deteriorate the final result. Similarly,
when that is unimportant, we may give weaker bounds than the ones in
Table In Section we tacitly import a weaker precursor of the CBSEP
global mechanism from [23| not listed above.
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3 Preliminaries

3.1 Harris inequality

Let us recall a well-known correlation inequality due to Harris [18]. It is used

throughout and we state some particular formulations that are useful to us.
For Section we fix a finite A = Z2. We say that an event A < Q, is
decreasing if adding infections does not destroy its occurrence.

Proposition 3.1 (Harris inequality). Let A, B < Qy be decreasing. Then
1A B) = p(A)u(B). (7)

Corollary 3.2. Let A,B,C,D < Qy be nonempty and decreasing events such
that B and D are independent, then

p(AIB N D) = u(AlB) = u(A), (8)
(AN CIB D) = u(AlB)u(C|D). (9)

Proof. The first inequality in Eq. is Eq. (9) for C = Qy, the second follows
from Eq. (7)) and pu(A|B) = u(A n B)/u(B), while Eq. (9) is

u(AnCnBnD) - u(An B)u(C nD)
uBnD) T uB)u(D)

using Eq. in the numerator and independence in the denominator. O

1(ANC|BAD) = = u(A|B)u(C|D),

We collectively refer to Eqgs. (7) to (9) as Harris inequality.

3.2 Directions

Throughout this work we fix a critical update family ¢ with difficulty . We
call a direction u € St rational if uR ~ Z? # {0}. It follows from Defini-
tion [1.1] that isolated and semi-isolated stable directions are rational [8, The-
orem 1.10]. Therefore, by Definition there exists an open semicircle with
rational midpoint ug such that all directions in the semicircle have difficulty
at most a. We may assume without loss of generality that the direction
up + 7/2 is hard unless U is isotropic. It is not difficult to show (see e.g.
[8, Lemma 5.3]) that one can find a nonempty set S’ of rational directions
such that:

e all isolated and semi-isolated stable directions are in S;

o uyeS’;
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e for every two consecutive directions u,v in S’ either there exists a rule
X € U such that X < H,, ~nH,, or all directions between u and v are stable.

We further consider the set S = &' + {0,7/2,m,37/2} obtained by making
S’ invariant by rotation by 7/2. It is not hard to verify that the three
conditions above remain valid when we add directions, so they are still valid
for S instead of S'. We refer to the elements of S as quasi-stable directions
or simply directions, as they are the only ones of interest to us. We label
the elements of § = (ui)i€[4k] clockwise and consider their indices modulo
4k (we write [n] for {0,...,n — 1}), so that u; o = —u; (the inverse being
taken in R? and not w.r.t. the angle) is perpendicular to ;. In figures we
take S = 2(Z/8Z) and ug = (—1,0). Further observe that if all U € U are

contained in the axes of Z2, then we may set S = (z/4AZ).

For i € [4k] we introduce p; = min{p > 0 : 3z € Z* (x,u;) = p} and
A; = min{\ > 0 : \u; € Z*}, which are both well-defined, as the directions
are rational (in fact p;A; = 1, but we use both notations for transparency).

3.3 Droplets

We next define the geometry of the droplets we use. Recall half planes from
Eq. .

Definition 3.3 (Droplet). A droplet is a nonempty closed convex polygon

of the form B
A = () Ha ()

1€[4k]

for some radii r € R (see the black regions in Fig. . For a sequence of
radii r we define the side lengths s = (8;)ie[ar] With s; the length of the side
of A(r) with outer normal w;.

We say that a droplet is symmetric if it is of the form = + A(r) with
2z € Z? and r; = 1y, for all i € [2k]. If this is the case, we call z the center
of the droplet.

Note that if all U € U are contained in the axes of Z2, then droplets are
simply rectangles with sides parallel to the axes.

We write (e;)iepar] for the canonical basis of RI** and we write 1 =
ZZG[M] e;, so that A(rl) is a polygon with inscribed circle of radius r and

(4]

sides perpendicular to S. Tt is often more convenient to parametrise dimen-
sions of droplets differently. For i € [4k] we set

i+k—1

T Cuiupe;. (10)

j=i—k+1
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This way A(r + v;) is obtained from A(r) by extending the two sides parallel
to u; by 1 in direction u; and leaving all other side lengths unchanged (see
Fig. [2a). Note that if A(r) is symmetric, then so is A(r + \v;) for i € [4k].

Definition 3.4 (Tube). Given i € [4k], r and [ > 0, we define the tube of
length 1, direction i and radii r (see the thickened regions in Fig.

T(r,l,i) = A(r + lv,)\A(r).

We often need to consider boundary conditions for our events on droplets
and tubes. Given two disjoint finite regions A, B < Z? and two configurations
ne s and we Qp, we define n-w e Qaup as

(- w)e = {m- re4, (11)

w, =€ B.

3.4 Scales

Throughout the work we consider the positive integer constants
1/e» 1/ > C » W.

Each one is assumed to be large enough depending on U and, therefore, S
and « (e.g. W > «), and much larger than any explicit function of the next
(e.g. e < ). These constants are not allowed to depend on g. Whenever
asymptotic notation is used, its implicit constants are not allowed to depend
on the above ones, but only on Y. Also recall Footnote [I}

The following are our main scales corresponding to the mesoscopic and
internal dynamics:

et _ =C 5, mes = ¢,
mes— — g=C /5. " = C?log(1/9) /g™

3.5 Helping sets

We next introduce various constant-sized sets of infections sufficient to in-
duce growth. As the definitions are quite technical in general, in Fig. [1| we
introduce a deliberately complicated example, on which to illustrate them.

26



3

(a) The five update rules U € U given as

dots. The cross marks the origin.
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(b) The four stable directions, which
coincide with S, and their difficulties.
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(c) Possible choice of u;-helping sets. The hatched region represents H,, n Z2.

Figure 1: An intricate isotropic example.
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3.5.1 Helping sets for a line

Recall (u;)iefar; and (\;)iepan) from Section and that for i € [4k], the
direction w;.y is obtained by rotating w; clockwise by /2.

Definition 3.5 (WW-helping set in direction w;). Let i € [4k]. A W-helping
set in direction u; is any set of W consecutive infeczed sites in H,,,\H,,, that
is, a set of the form = + [W]\;;ru;sx for some x € H,,\H,,.

The relevance of W-helping sets in direction u; is that, since W is large
enough, [Z U H,,Jy = H,, for any direction u; such that a(u;) < oo and Z a
W-helping set in direction u; (see [8, Lemma 5.2|).

We next define some smaller sets which are sufficient to induce such
growth but have the annoying feature that they are not necessarily contained
in H,, and do not necessarily induce growth in a simple sequential way like
W-helping sets in direction wu;. Let us note that except in Appendix
the reader will not lose anything conceptual by thinking that the sets Z;,
u;-helping sets and a-helping sets in direction u; defined below are simply
single infected sites in H,,\H,, and the period @ is 1

In words, the set Z; provided by the following lemma together with H,,
can infect a semi-sublattice of the first line outside H,, and only a finite
number of other sites.

Lemma 3.6. Let i € [4k] be such that 0 < a(u;) < . Then there exists a
set Z; < Z*\H,, and x; € Z*\{0} such that

(Ziuy =0, |Z]=a, [[ZioH,],\H,| <o, [Z uH,], >N,
where N = {0,1,...}.

Proof. Definition [L.3|supplies a set Z < Z*\H,,, such that Z = [H,,,u Z],,\H,,,
is infinite and |Z| = a(u;). Among all possible such Z, choose Z to min-
imise | = max{(z,u;) : 2z € Z}. Yet, u; is stable, since a(u;) # 0 (recall
Definition [1.3). Therefore, Z < H,,(1 )\Hu , because Z U H,, < H,,(I) (recall
Definition [1.1] and observe that it implies that [H,,(I)], = Hui (1)).

Then [7 Lemma 3.3] asserts that ZIH,, is either finite or contains ;N for
some x; € H,,\(H,, U{0}). Assume that |Z\H,,| < o0, so that |Z nH,,| = oo,
since |Z| = oo. Then we conclude by setting Z; equal to the union of Z with
o — a(u;) arbitrarily chosen elements of Z\Z, so that Z; = Z.

Assume for a contradiction that, on the contrary, |Z\H,,| = c. Set
7" = (Z — pu;)\H,, (i-e. shift Z one line closer to H,,) and observe that
7" o (Z\H,, — psu;) is still infinite. Therefore, by Definition au;) <
|Z'| < |Z| = a(u;). This contradicts our choice of Z minimising . O
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In the example of Fig. [T the us direction admits a set Z3 of cardinality 3
such that [ Z3UH.,, s only contains every second site of the line H,, \H,,, while
at least 4 sites are needed to infect the entire line. Thus, in order to efficiently
infect H,,\H,,, assuming H,, is infected, we may use two translates of Z3
with different parity. This technicality is reflected in the next definition.

Definition 3.7 (u;-helping set). For all i € [4k] such that 0 < a(u;) < a fix
a choice of Z; and x; as in Lemma [3.6]in such a way that the period

_ lal
Nitk
is independent of ¢ and sufficiently large so that the diameter of {0} U Z; is
much smaller than Q). A wu;-helping set is a set of the form

U (Zi + jhicrtivk + kjz;), (12)
JjelQl
for some integers k;. For i € [4k] with a(u;) = 0, we define u;-helping sets
to be empty. For i € [4k] with a(u;) > a there are no u;-helping sets.

Note that by Lemma|3.6|a u;-helping set Z is sufficient to infect a half-line,
but since that contains a WW-helping set in direction w;, we have [Z UH,, |y ©
H, .

We further incorporate the artificial symmetrisation alluded to in Re-
mark 2.1l in the next definition.

Definition 3.8 (a-helping set in direction ;). Let i € [4k].
o If a(u;) < o and a(u;r9r) < «, then a a-helping set in direction u; is a set

of the form H u H' with H a u;-helping set and —H' = {—h : he H'} a
Ui, or-helping set.

o If a(u;) < a and a(u;.9r) > a, then a a-helping set in direction u; is a
u;-helping set.

o If o < a(u;) < oo, there are no a-helping sets in direction u;.

If a(u;) < oo, any set which is either a TW-helping set in direction u; or a
a-helping set in direction u; is called helping set in direction u;. If a(u;) = oo,
there are no helping sets in direction u;.

In the example of Fig. 1| ug and wuy are both of difficulty o = 3, so
a-helping sets in direction ug correspond to (2 + {(0,0),(2,0),(3,0)}) u
(22 + {(0,0),(=2,1),(0,2)}) for some (z1,29) € ({0} x Z)%.. The set 2z, +
{(0,0),(—=2,1),(0,2)} is not a ug-helping set, but we include it in a-helping
sets in direction ug. We do so, in order for a-helping sets in direction ug
and uy to be symmetric. Namely, they satisfy that Z is a a-helping set in
direction wug if and only if —Z is a a-helping set in direction wus.
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3.5.2 Helping sets for a segment

For this section we fix a direction u; € S with a(u;) < oo and a discrete
segment S perpendicular to u; of the form

{z € Z?: (x,u;y = 0,{(x, upsi)/Nisk € [0, a]} (13)

for some integer a = W. The direction u; is kept implicit in the notation, so
it may be useful to view S as having an orientation.

Definition 3.9. For d > 0, we denote by H}'(S) the event that there is an
infected W-helping set in direction w; in S at distance at least d from its
endpoints:

HY(S) ={neQ:FxeZn[d/Nisr,a— (W —1) —d/N\is],
Nt WA spuiee = 0F-
We write HV (S) = HY(S).

For helping sets the definition is more technical, since they are not in-
cluded in S. We therefore require that they are close to S and at some
distance from its endpoints.

Definition 3.10. For d > 0, we denote by H4(S) < Q the event such that
n € Haq(S) if there exists Z a helping set in direction w; such that for all
z € Z, we have n, = 0,

(z,u;y € [0, Q], (zyuivgy € |dyadipy —d] . (14)

Given a domain A > S and a boundary condition w € {724 we define
HE(S) ={neQx:w-neHyS)}. We write H¥(S) = Hg(S) and H(S) =
Ho(S).

Note that in view of Definition [3.8] if a(u;) < oo, then H*(S) > H(S)
for any w with equality if a(w;) > a. The next observation bounds the
probability of the above events.

Observation 3.11 (Helping set probability). For any A > S and w € Qg5
we have: if a(u;) < oo, then

i (HA(9) = (HY(9)) 2 1= (1= ") = max (¢, 1 — e 1)
if a(u;) < a, then

pn(H(S)) = (1—(1- qa)ﬂ(\S\))O(l) > (1- e—q“|S|/O(1))O(1) '
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Proof. Assume a(u;) < 00. As already observed, by Definitions [3.8] to
H+(S) o HW(S), as W-helping sets in direction u; are helping sets in direc-
tion u;. For the second inequality follows by dividing S into disjoint groups
of W consecutive sites (each of which is a W-helping set in direction w;). The
final inequality follows since |S| = W and (1 — ")V < e=a"/@W) < o=a*"

The case o(u;) < « is treated similarly. Indeed, in order for H(S) to
occur, we need to find each of the @ = O(1) pieces of a u;-helping set in
Eq. , each of which has cardinality o. We direct the reader to |7, Lemma
4.2] for more details. O

3.6 Constrained Poincaré inequalities

We next define the (constrained) Poincaré constants of various regions. For
A < Z2, n,w € Q (or possibly 1 defined on a set including A and w on a
set including Z*\A) and z € Z?, we denote by ¢ (n) = c,(na - wzz\a) (recall
Eqs. (1)) and (11)) the constraint at  in A with boundary condition w. Given
a finite A = Z? and a nonempty event SG*(A) < Qy, let v(A) be the smallest
constant v € [1, o0] such that the inequality

Vara (FISG1(A)) <7 Y ux (e Var, () (15)

zeA
holds for all f : @ — R. Here we recall from Section that p denotes
both the product Bernoulli probability distribution with parameter ¢ and
the expectation with respect to it. Moreover, for any function ¢ : 2 — R,
pa(@) = p(é(n)nz2\a) is the average on the configuration 1 of law y in
A, conditionally on its state in Z*\A. Thus, ps(¢) is a function on Qzz,.

Similarly, Var,(f) = u(f*(n)nz2\a3) — 11 (f (1) |022\(23) and

Vary (f|SG'(A)) = (f2(n)| na € SGHA), nz20)
— 12 (f(n)|na € SGH(A), mz2\0) -

Remark 3.12. It is important to note that in the r.h.s. of Eq. we
average w.r.t. pp and not puy(|SG(A)) (the latter would correspond to the
usual definition of Poincaré constant, from which we deviate). In this respect
Eq. follows |23, Eq. (12)] and differs from [25, Eq. (4.5)]. Although this
nuance is not important most of the time, this choice is crucial for the proof
of Theorem R.5 below.
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3.7 Boundary conditions, translation invariance, mono-
tonicity

Let us make a few conventions in order to lighten notation throughout the
paper. As we already witnessed in Section it is often the case that much
of the boundary condition is actually irrelevant for the occurrence of the
event. For instance, in Definition H“(S) only depends on the restric-
tion of w to a finite-range neighbourhood of the segment S. Moreover, even
the state in w of sites close to S, but in H,, is of no importance. Such occa-
sions arise frequently, so, by abuse, we allow ourselves to specify a boundary
condition on any region containing the sites whose state actually matters for
the occurrence of the event.
We also need the following natural notion of translation invariance.

Definition 3.13 (Translation invariance). Let A = R% Consider a collection
of events £¥(A + z) for x € Z? and w € Qp2\(ayy). We say that E(A) is
translation invariant, if for all n € Q4, w € Qg2 4 and x € 7% we have

ne&¥A) en_, e (A+ux).

Similarly, we say that £“(A) is translation invariant, if the above holds for a
fixed w € Qz2\4.

We extend the events Hq(S), H4(S), HY (S) from Definitions[3.9/and [3.10]
in a translation invariant way. Similarly, 7 and ST events for tubes defined in
Section below and SG events for droplets defined throughout the paper
are translation invariant. Therefore, we sometimes only define them for a
fixed region, as we did in Section but systematically extended them in
a translation invariant way to all translates of this region.

We also use the occasion to point out that, just like the event H(S), all
our 7, 8T and S§G events are decreasing in both the configuration and the
boundary condition, so that we are able to apply Section as needed.

4 One-directional extensions

In this section we define our crucial one-directional CBSEP-extension and
East-extension techniques (recall Section [2.3).

4.1 Traversability

We first need the following traversability 7 and symmetric traversability ST
events for tubes (recall Definition requiring infected helping sets (recall
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Section [3.5.2)) to appear for each of the segments composing the tube. The
definition is illustrated in Fig. 2] Recall the constant C' from Section

Definition 4.1 (Traversability). Fix a tube T = T'(r,[,7). Assume that
i € [4k] is such that a(u;) < oo for all j € (i — k,i+ k). For m > 0 and
j € (i —k,i+ k) write Sj,, = Z° n A(r + my; + pje;)\A(r + my;). Note
that S, is a discrete line segment perpendicular to u; of length s; — O(1)
(recall from Definition [3.3|that s is the sequence of side lengths of A(r)). For
w € Qz2\A(r41v,) We denote by

M=) &2 va (Sim)

Jm:@#S; T

the event that T is (w, d)-traversable. We set T*(T) = T4°(T).
If moreover a(u;) < oo for all i € [4k], that is, U has a finite number of
stable directions, we denote by

STE(T) = T#(T) A N (A (Sim)

Jio(uj)<a<a(ujyor)) m:@#S; mcT
the event that T is (w, d)-symmetrically traversable.

Thus, if all side lengths of A(r) are larger than C? + d by a large enough
constant, the event 7;°(T(r,s,i)) decomposes each of the hatched parallel-
ograms in Fig. 2a into line segments parallel to its side that is not parallel
to u;. A helping set is required for each of these segments in the direction
perpendicular to them which has positive scalar product with u;. The last
boundedly many segments may also use the boundary condition w, but it is
irrelevant for the remaining ones, since it is far enough from them.

For symmetric traversability, we rather require W-helping sets for oppo-
sites of hard directions (recall from Definition that if the direction itself
is hard, helping sets are simply W-helping sets). In particular, if none of the
directions u; for j € [4k]\{i + k,7 — k} is hard (implying that I/ is unrooted),
we have ST (T (r,1,1)) = T;(T(r,l,7)). The reason for the name “symmet-
ric traversability” is that if &/ has a finite number of stable directions and
A(r) is a symmetric droplet (recall Section [3.3)), then, for any [ > 0, i € [4k],
w € Qza\r(r4) and 1 € Qp(4), we have

neSTE(T(r,1,4) < n e ST (T(r,1,i+ 2k)), (16)

denoting by W' € Qz2\7(r,1,i+2k) the boundary condition obtained by rotating
w by 7 around the center of A(r) and similarly for n'. To see this, recall
from Section that HY(S) > HW(S) with equality when a(u;) > o and
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note that the same symmetry as in Eq. holds at the level of the segment
Sjm and its symmetric one, 7, o, = Z* A1+ M, o + pjrok€;yon) AT+

mﬂi+2k)3

c Ué2+d(Sj,m) O‘(“j+2kz) Sa sie g2+d(5§'+2k,m) O‘(uj) S«
chud(sj,m) aujior) > Hg/'Qer(S}—i-Qk,m) aluy) > a,
all four cases following directly from Definitions to [3.10]

We next state a simple observation which is used frequently to modify
boundary conditions as we like at little cost.

Lemma 4.2 (Changing boundary conditions). Let A(r) be a droplet, | > 0
be a multiple of \; and i € [4k]. Assume that for any j € [4k\\{i — k,i + k}
the side length s; of A(r) satisfies s; = C®. Set T = T(r,l,i). Then there
exists a decreasing event W(T) < Qp such that u(OWV(T)) = ¢°W) for any
w € Qyavp and n e W(T) we have

neTYT)<neTHT).
Moreover, p(T%(T)) = ¢~°Wu(THT)) for all w € Qza\r. The same holds
with 8T instead of T .

Proof. Recall the segments S, from Definition [£.1] Let W(T) be the in-
tersection of Hy5(Sj,,) for the largest sufficiently large but fixed number of
values of m for each j € (i — k,i + k), such that @ # S;,, < T. By Observa-
tion p(W(T)) = ¢°W). Moreover, the boundary condition is irrelevant
for the remaining segments, so W(T') is indeed as desired. Finally, by Eq.

we have
1 o pOV(T) N T(T))
p (THD) < p(T(1) < P2 s

<qgu W) nTHT)) <" (THT)). O

Another convenient property allowing us to decompose a long tube into
smaller ones is the following.

Lemma 4.3 (Decomposing tubes). Let T' = T(r,1,i) be a tube, w € Qzap
be a boundary condition and s € [0,1] be a multiple of \;. Set Ty = T'(r, s, 1)
and Ty = su; + T(r,l — s,i). Then

neT(T(r,l,i) < (nr, € T(T2) and np, € T"2*(T1))
and the same holds for ST instead of T.

Proof. This follows immediately from Definition since for each of the
segments S;,, in Definition either S;,, < Ty or Sj,, 11 = @ and
similarly for Ty (see Fig. [2a]). O

34



T(r,s,1) T(r,s —x,i) +zu; T(r,z,i+2k)+ zu;
|

/
S
S

A(r)

(a) East-extension. The thickened tube (b) CBSEP-extension. Thickened tubes
is traversable (7). are symmetrically traversable (ST).

Figure 2: One-directional extensions. The black droplet is SG. Helping sets
appear on each line of the hatched parallelograms as indicated by the hatch-
ing direction. The white strips have width ©(C?).

4.2 East-extension
We start with the East-extension (see Fig. , which is simpler to state.

Definition 4.4 (East-extension). Fix ¢ € [4k], a droplet A(r), a multiple
[ > 0 of \; and an event SG'(A(r)) < Qu¢). Assume that afu;) < oo for
all j € (1 — k,i + k). We use the expression “we Fast-extend A(r) by 1 in
direction u;” to state that, for all s € (0, 1] multiple of \; and w € Qz2\p(r450,),
we define the event SG“(A(r + s5v;)) © Qp(r4s0,) to occur for 7 € Qpi,) if

I € STHAW) and  mrgen € T(T(z, 5.1).

In other words, given the event SG! for the droplet A(r), we define the
event SG¥ (in particular for w = 1, but not only) for the larger droplet
A(r + lv;) = A(r) u T(r,l,i). The event obtained on the larger droplet
requires for the smaller one to be 1-super good (SG) and for the remaining
tube to be w-traversable (recall Definition [£.1)). Note that these two events
are independent. Further observe that if SG'(A(r)) is translation invariant
(recall Definition [3.13), then so is SG(A(r + sv;)) for any s € (0,1] multiple
of \;, defined by East-extending A(r) by [ in direction u;. To get a grasp
on Definition let us note the following fact, even though it is not used
directly in the proof of Theorem

Lemma 4.5 (East-extension ergodicity). Let i € [4k], A(r) be a droplet, | be
a multiple of X; and SG*(A(r)) < Qay be an event. Assume that o(u;) < o
for all j € (i — k,i + k). Further assume that n € SG*(A(r)) implies that
the U-KCM with initial condition 1 - 125 can entirely infect A(r). If
we East-extend A(r) by [ in direction u;, then for any w € Qzapry10,) and
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n € SGY(A(r+1v,)) the U-KCM with initial condition w-n can entirely infect
A(r +lv;).

Proof. The proof is rather standard, so we only sketch the reasoning. Let
n e SGY(A(r+1v;)). Since nay € SG(A(r)) by Definition by hypothesis
we can completely infect A(r), starting from w - 7. We next proceed by
induction on s € [0, ] to show that we can infect A(r +sv;). When a new site
in Z? is added to this set, as we increase s, we actually add to it an entire
segment S ,,, as in Definition (at most one m for each j € (i — k,i + k)).
Since T'(r,1,4) is (w,0)-traversable, by Definitions and there is a
helping set (in direction u;) for this segment. As noted in Section [3.5.1]
helping sets in direction u; together with the half-plane H,; infect the entire
line ﬁuj\Huj on the boundary of the half-plane. Since the helping set in
our setting is only next to a finite fully infected droplet A(r + sv;), infection
spreads along its edge until it reaches a bounded distance from the corners
(see |7, Lemma 3.4]). However, by our choice of & (recall Section [3.2), for
each j € [4k] there is a rule X € U such that X < H,, n H,,,,. Using this
rule, we can infect even the remaining sites to fill up the corner between
directions w; and u;.; of the droplet A(r + s'v;) with s’ > s minimal such
that A(r + s'v,) \A(r + sv;) # @ (see |8, Lemma 5.5 and Fig. 6]). O

We next state a recursive bound on the Poincaré constant v from Sec-
tion |3.6| reflecting the recursive definition of SG events in an East-extension.
In rough terms, it states that in order to relax on the larger volume, we
need to be able to relax on the smaller one and additionally pay the cost of
creating logarithmically many copies of it shifted by exponentially growing
offsets, conditionally on the presence of the original droplet. We further need
to account for the cost of microscopic dynamics (see the elos*(1/4) term below),
but its contribution is unimportant. Recall ™" from Section [3.4]

Proposition 4.6 (East-extension relaxation). Let i € [4k] be such that for
all j € (i—k,i+k) we have a(u;) < oo. Let A(r) be a droplet with r = ¢~
and side lengths at least C3. Let | € (0,0™%] be a multiple of ;. Define
dm = N|(3/2)™] for m € [1,M) and M = min{m : \;(3/2)™ = l}. Let
dy =1, A" = ANr + dpnv;) and sy 1 = dp, — dyy 1 for m e |2, M].

Let SGY(A(r)) be a nonempty translation invariant decreasing event. As-
sume that we East-extend A(r) by | in direction u;. Then SG*(A(r + lv;)) is
also nonempty, translation invariant, decreasing and satisfies

M—-1

A+ 1) < max (YA, 1 (S (AW))) D T T a,
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with
U = 1 (Sgl (A™ + s,u;)

The proof is left to Appendix

SG'(A™)) . (17)

4.3 CBSEP-extension

We next turn our attention to CBSEP-extensions (see Fig. [2b). The defini-
tion differs from Definition (cf. Fig. in three ways. Firstly, we allow
the smaller SG droplet to be anywhere inside the larger one (the exact po-
sition is specified by the offset below). Secondly, we ask for traversability
on both sides of the smaller droplet in the direction away from it (so that
infection can spread, starting from it), rather than just on one side. Thirdly,
we require our tubes to be symmetrically traversable, instead of traversable.
This makes the position of the small SG droplet roughly uniform.

Definition 4.7 (CBSEP-extension). Assume that ¢/ has a finite number of
stable directions (equivalently, o(u;) < oo for all j € [4k]). Fix ¢ € [4k], a
droplet A(r) and a multiple [ of A;. Let SG'(A(r)) be a translation invariant
event. We use the expression “we CBSEP-extend A(r) by | in direction u;”
to state that, for all s € (0,!] multiple of \; and w € Qz2\A(r4s0,), We define
the event SG¥(A(r + sv;)) © Qa(rrsv,) as follows.

For offsets x € [0, s] divisible by \; we define n € SG¥(A(r + sv,)) if the
following all hold:

nT(g,s—x,i)-&-mui € STw (T(f, s—x, Z) + 13“1)7
NA@)+au; € SGHA(r) + zu;);
T]T(L:c,iJer)Jr:cui € STw (T(f, 1'72. + Qk) + CL’UZ)

We then set SG¥(A(r + sv;)) = U, SGZ (A(r + sv;)).

Note that CBSEP-extending in direction w; gives the same result as
CBSEP-extending in direction u;y9r. We further reassure the reader that,
in applications Definitions and are not used simultaneously for the
same droplet A(r), so no ambiguity arises as to whether SGY(A(r + lv;))
is obtained by CBSEP-extension or East-extension. However, as it is clear
from Table 2B it is sometimes necessary to CBSEP-extend a droplet itself
obtained by East-extending an even smaller one. But for the time being, let
us focus on a single CBSEP-extension.

The following analogue of Lemma holds for CBSEP-extension, which
is also not used directly in the proof of Theorem
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Lemma 4.8 (CBSEP-extension ergodicity). Assume thatU has a finite num-
ber of stable directions. Let i € [4k], A(r) be a droplet and | be a multiple
of Ni. Let SGY(A(r)) < Quqy be translation invariant. Further assume that
ne€ SGY(A(r)) implies that the U-KCM with initial condition 1 - 1z can
entirely infect A(r). If we CBSEP-extend A(r) by | in direction u;, then for
any w € Qzap(r410,) and 1 € SGY(A(r+lv;)) the U-KCM with initial condition
w - n can entirely infect A(r + lv,).

Proof. By Definition it suffices to prove that for each offset = € [0, s] the
conclusion holds for n € SG¥(A(r +lv;)). By Definition this implies that
the events SG* (zu; + A(r)) n ST (zu; + T(r, s —z,1)) and SG* (xu; + A(r)) n
ST*(xu; + T(r,x,i + 2k)) hold. Moreover, by Definition 4.1, ST (T) <
T« (T) for any tube T and boundary condition «w’. Therefore, we may apply
Lemma [4.5] to each of the droplets A(r + zv;) and zu; + A(r + (s — x)y;) (in
directions w; and u; o respectively) to obtain the desired conclusion. O

We next state the CBSEP analogue of Proposition [4.6] which is more
involved, but also more efficient. Roughly speaking, we show that the time
needed in order to relax on a CBSEP-extended droplet, is the product of
four contributions: the Poincaré constant of the smaller droplet; the inverse
probability of the symmetric traversability events in Definition [4.7} the cost
of microscopic dynamics; the conditional probability of suitable contracted
versions of the super good and symmetric traversability events, given the
original ones (recall Section [2.3.1). The last two contributions turn out to
be negligible, but the last one requires some care and make the statement
somewhat technical.

Proposition 4.9 (CBSEP-extension relaxation). Assume that U has a finite
number of stable directions. Let i € [4k]|. Let A(r) be a droplet with r =
q ) and side lengths at least C°. Let 1 € (0,0™%] be a multiple of ;. Let
SGY(A(r)) be a nonempty translation invariant decreasing event.

Denote Ay = T(r, \i,i+2k), Ay = A(r— N\v;) and Ay =T(r — N\, Aiy i),
so that A(r+ X v;) —Niu; = AyuAsuAs and AU Az = A(r) = (ATUA)+N\u;.
Consider some nonempty decreasing event SG(Ay) < Qn,, ST (A1) € Qy,
and ST ,,(A3) < Qu, for all ny € SG(Ay). Assume that

{77 “MA, € W-T]AZ (A1)> A, € @(AQ)a Nas € ﬁnAQ (AB)}
- Sgl(Al v A2) M Sgl(A2 v A3) (18)

Set SG(A1 U Az) = {n 11, € SG(A2),ma, € STy, (A1)}

*We use a bar to denote “contracted” versions of events (recall Section .
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If we CBSEP-extend A(r) by [ in direction u;, then SG(A(r + lv,)) is

nonempty, translation invariant, decreasing and satisfies

SGY(A(r . )
(gél(g/\((f 5__3)22))) X max (:“_ (Sg (A(£>)) aV(A(ZD)

c0(C?)log?(1/q)

“ U(EG(A U A)ISGI (A U A) MmN, 5g(ng) (ST 12 (A3)[STO(A3))

Y(A(r + 1)) < p

Proposition is proved in Appendix based on [25]. We referring
the reader to |25, Section 4.3| for the principles behind Proposition in a
less technical framework, but let us briefly discuss the contracted events.

Equation should be understood as follows. In the middle droplet
Ao, which has the shape of A(r), but contracted in direction u; by O(1), we
require an event SG(Ay). This event provides simultaneously as much of the
structure of SG'(A; U Ay) and SG*(Ay U A3) (these regions both have the
shape of A(r)), as one can hope for, given that we are missing a tube of length
O(1) of these regions. Once such a favourable configuration 17, € SG(A,)
is fixed, the events W,MQ (A1) and sz (A3) provide exactly the missing
part of SGY(A; U Ay) and SG*(Ay U A3) respectively. In applications, these
events necessarily need to be defined, taking into account the structure of
SG(A(r)), on which we have made no assumptions at this point.

4.4 Conditional probability tools

In both Propositions[d.6|and [4.9|our bounds feature certain conditional prob-
abilities of SG events. We now provide two tools for bounding them.

The next result generalises |25, Corollary A.3|, which relied on explicit
computations unavailable in our setting. It shows that the offset of the
core of a CBSEP-extended droplet (see Fig. 2bland recall the notation SG¥
from Definition is roughly uniform. This result is the reason for the
somewhat artificial Definition of helping sets and Definition of ST

(also see Remark [2.1).

Lemma 4.10 (Uniform core position). Assume that U has a finite number
of stable directions. Fiz i € [4k] and a symmetric droplet A = A(r + lv;)
obtained by CBSEP-extension by | in direction u;. Assume that | < (™S s
divisible by \; and that the side lengths of A(r) are at least C®. Then for all
s e [0,1] divisible by \; and w,w" € Qza\p

i (SG2 (NI SG (V) = 7.
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Figure 3: Illustration of the perturbation of Lemma [4.11] The two thickened
tubes are T"and T”. The regions concerned by their traversability are hatched
in different directions.

The proofs of Lemmas and are left to Appendix [Bl The latter
vastly generalises |25, Lemma A.4] and is proved by different means. Tt is
illustrated in Fig. Bl In words, Lemma [4.11] states in a quantitative way
that the conditional probability of a tube of “critical” size, ¢=**°()), being
traversable, given that a slightly perturbed version of it (shifted spatially,
with different boundary condition, width of the white strips in Fig. [2a] radii
and length) is traversable, is not very low. We note that sizes other than the
critical one are not important, so cruder bounds suffice.

Lemma 4.11 (Perturbing a tube). Let i € [4k] such that o(u;) < « for all
je (i—k,i+k). Let A(r) be a droplet with side lengths s and let T = T(r,1,1)
be a tube. Assume that | € [Q(1), ¢4 "], s = min;_pojipr 5, = ¢ >0 and
max; p—j<iskS; = ¢ W, For some A € [C?,s/W?], let ' and I' be such
that 0 < s;— s < O(A) forall j e (i—k,i+k) and 0 <1 —1' < O(A), where
s’ are the side lengths of the droplet A(r'). Further let v € R? be such that
|zl = O(A) and d,d" € [0,0(A)] with d < d'. Denoting T" = T(r',l',i) + z,

for any boundary conditions w € Qza\r and w' e Qzaqr, we have

u (7T

EW(T)> = qO(W) (1 _ (1 . qa)Q(s))O(A)

x (1-=WA/s — qlfo(l))o(l) .
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5 Isotropic models

For this section we assume U to be isotropic (class[(g)). In this case the rea-
soning closely follows and generalises [25]. We treat internal and mesoscopic
dynamics simultaneously, since for this class there is no difference between
the two.

5.1 Isotropic internal and mesoscopic dynamics

We start by defining the geometry of our droplets and the corresponding
length scales. They are all symmetric and every 2k-th droplet is twice larger.
Each such dilation is decomposed into 2k steps, so that their geometry fits
the setting of our CBSEP-extensions from Section (see Fig. dajand recall
Fig. .

Recall Section and the constant ¢ from Section 3.4 TLet 7@ be a

sequence of radii with r§0> = rﬁ)% for all i € [2k], such that for all i € [4k],

r§0> = O(1/e) and the corresponding side length SEO) = O(1/e) is a multiple
of 2X\; 1. For any integer m > 0, i € [2k] and n = 2km + r with r € [2k] we
define

S = ), = o0

2 <1
{ k<i<k+r (19)

1 otherwise

and A™ = A(r™) with (™ the sequence of radii associated to s satisfying
() = rl(i)% for all i € [2k]. Further set N™+ = 2k[log(e™*")/log 2] (recall
£mest from Section [3.4).

Note that, as claimed, A(™ are nested symmetric droplets extended in one
direction at each step satisfying A+ = 2mA0) Moreover, they are nested
so that we can define their SG events by extension (recall Definition
and Fig. 2D for CBSEP-extensions).

Definition 5.1 (Isotropic SG). Let U be isotropic. We say that A is SG
(SG*(A®) occurs), if all sites in A are infected. We then recursively define
SGY(APD) for n e [N™*] by CBSEP-extending A®™ in direction u, by
1 = 55:219 = O(2"% /¢) (recall from Section that indices of directions
and sequences are considered modulo 4k as needed and see Fig. .

Recall from Section [3.6] that once SG*(A™) is defined, so is v(A™). We
next prove a bound on y(A™).

Theorem 5.2. Let U be isotropic (class((g)). Then for all n < N™et

mes + ex 0g©/? “ 1 N _
7 (a0v) < SRELRE S (561 (A)) = exp (qa;).
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(a) A generic realisation of SGL(A(™) (b) The setting of Definition The
depicting the SG translates of tubes Ag”) and Ag”) of length )\, are
A(n), . ,A(n_%) involved in progres- hatched, Ag") — A(n)\Ag") is thickened,
sive shades of grey. Each extension . hije the symmetrically traversable tubes

is as in Fig. 2B} are in progressive shades of grey.

Figure 4: Geometry of isotropic SG and SG events.

The rest of Section [b.I] is devoted to the proof of Theorem [5.2l The
bound on u(SG*(A™)) is fairly standard in bootstrap percolation and could
essentially be attributed to , but we prove it in Lemma since we
also need some better bounds on intermediate scales. Bounding v(A®N"™)
is more demanding and is done by iteratively applying Proposition 4.9, as
suggested by Definition [5.1]

Note that v(A(®) = 1, since Eq. is trivial, because SGY(A®) is a
singleton. We seek to apply Proposition in order to recursively upper
bound v(A™) for all n < N™**. To that end, we need the following def-
inition of contracted events. Since, in the language of Proposition the
events ﬁ’w we define do not depend on 17,, we directly omit it from the
notation.

Definition 5.3 (Contracted isotropic events). For n = 2km+r € [N™*t +1]
with r € [2k], as in Proposition with r = 7™ [ =1 and i = r, let

A =T (K™ A\, + 2k)
AT = A () = A, (20)
Ag") =T (f(”) — AUy Apy 7“) )
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If n < 2k, we define ST(A), SG(ALY) and ST(AY) to oceur if A,
Ag") and Agn) is fully infected respectively.
For n > 2k, we define ST (A) < QA(n (resp. ﬁ(Ag”)) < Qm) to
3
be the event that for every segment S A1 (resp. Ag")) perpendicular to
some u; With j # 1 x k of length 2/(We) the event HY(S) occurs (recall

Definition . Finally, for n > 2k, we define SG ( ) as the intersection of
the follovvlng events (see Fig. .E]

° Sgl(A(n—Qk));
o STHT(r"=2),10=2R) /2 — X, 1)) A STHT (r=20), 1028 /2 — X v + 2k));
e for all i € (0,2k)

S’Tl ( ( n—2k+i) Ar(ﬁr + yr+2k)7l(nf2k+i)/2’r 4 2))
A ST (T (1255 — X (v, + 0, p00), 125 /2,0 + i+ 2K))

e for every i € [2k], j € [4k] and segment S Ag”), perpendicular to u; of
length 2™ /(We) at distance at most W from the wu;-side (parallel to S) of
A(=2k%D) “the event H" (S) holds.

In words, S_Q(Agn)) is close to being the event that the central copy
of A2k in Agn) is SG and several tubes are symmetrically traversable.
Namely, for each i € [2k], the two tubes of equal length around A2+ cor-
responding to a CBSEP-extension by [("~2%%) in direction u,., finally reaching
A" after 2k extensions. However, we have modified this event in the follow-
ing ways. Firstly, the first extension is shortened by 2., so that the final
result after the 2k extensions fits inside A ) and actually only its u,.,, and
u,_g-sides are shorter than those of Ag ") by A, (see Fig. . Secondly, the
symmetric traversability events for tubes are required to occur with segments
shortened by W (recall Definition on each side. Finally, we roughly re-
quire W helping sets for the last O(W) lines of each tube, as well as the first
O(W) outside the tube (without going out of Agn)).

Lemma 5.4 (CBSEP- extension relaxation condition). For all n € [N™t]
we have SG(A n)) xST( ) c Sgl( uA ) and similarly for A§”) instead
of A3

5Recall from Definition that STy refers to symmetric traversability with parallel-
ograms in Fig. shrunken by W, but not necessarily requiring W-helping sets. Further
recall from Section that for isotropic models 7 and ST events are the same.
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Proof. If n < 2k, this follows directly from Definition since @(Aé”)) X
ﬁ(/\gn)) is only the fully infected configuration and similarly for A™. We
therefore assume that n > 2k and set n = 2km + r with r € [2k].

We start with the first claim. Note that A{” U AY = A®. TLet n €
S_Q(Agn)) X ﬁ(/\g")). We proceed by induction on i to show that nym €
SGY(AD) for i e [n — 2k, n].

The base is part of Definition [5.3} Assume 1 € SG*(A®) for some i €
[n — 2k, n). Then by Definition it suffices to check that

ne ST (T (X', 19/2,0)) n ST (T (r,19/2,i + 2k)) . (21)

since then n € Sgll(i)/Q(A@m) c SGL(ALTD).
Let us first consider the case ¢ = n — 2k and assume for concreteness that
m is even (so that u; = u,). Then

7eSG (M) < ST (T (0,172 - 1),

so by Lemmal4.3]it suffices to check that i € ST (u; (17 /2—\,)+T(r®, X, i),
in order for the first symmetric traversability event in Eq. to occur. We
claim that this follows from 7 € ST(AYY) and the fourth condition in Def-
inition [5.3] To see this, notice that for each j € [4k] the uj-side length of
A(r®™) satisfies ng) = @(350)27”) » 2™ /(We) by Eq. . Further recall from
Section that H"(S) = H“(S) for any segment S of length at least C
and boundary condition w. Thus, for each of the segments in Definition
for the tube u;(1/2 — \,) + T(r®, \,,i) = A™ we have supplied not only
a helping set, but in fact several W-helping sets. FIor directions u; with
j e (r—k,r+k)\{r}, they are in Agn), while for j = r they are found in Aén),
if K =1 and m is even, and in Agn) otherwise (see Fig. . Hence, the claim
is established. For the second event in Eq. the reasoning is the same
except that when k > 1 or m is even, the tube T'(r(",1%) /2 i + 2k) is entirely
contained in AY”, so only SG(AYY) is needed.

We next turn to the case i € (n—2k,n), which is treated similarly. Indeed,

neSG (AQ”) < ST (T (£ = M(v, + v,000),19/2,7)) .

Comparing this tube to the desired one in Eq. R1)), T(r®,1%/2, i), we no-
tice that the lengths and positions of their sides differ by O(1) (see Fig. [3).
However, recalling Definition and Fig. 2a] decreasing the width of each
parallelogram there by Q(W) » O(1) (using the event ST;} rather than ST?)
is enough to compensate for this discrepancy (the shaded zones in Fig. 3| are
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empty in this case). It remains to ensure that the first and last O(1) seg-
ments in Definition also have helping sets. But this is guaranteed by the
fourth condition in Definition and (depending on the values of k, i and

m) ST(AY) exactly as in the case i = n — 2k.
Finally, the statement for Ag") is also proved analogously (with the offset
for ¢ = n — 2k modified by A, in Eq. ), so the proof is complete. n

By Lemma 5.4 Eq. holds, so we may apply Proposition This
gives

7 (APDY < max (' (SGT (A™)) |y (AM)) XEog1/a)

1AM o
MG (57 (A 570 (1)) 22

pt (ST (A7) 56 (A87)] sg* (A w ag"))

for n > 2k and y(A™) < Q€0 (/a) for n < 2k. We therefore assume that

> 2k. Recalling Definition note that both ST(A™) and ST(A{Y)
can be guaranteed by the presence of O(WW?) well chosen infected 7W-helping
sets, since only O(W) disjoint segments of length 2 /(WWe) perpendicular to
u; for a given j € (r — k, 7 + k) can be fit in A or A{” (see Fig. , S0 it
suffices to have a IW-helping set at each end of those. This and the Harris
inequality, Eqs. and (9), give

(57 ()57 (4) (T () 0. e
(57 () 039 ()9 (o)

= (S0 () ser (o))
To deal with the last term we prove the following.
Lemma 5.5 (Contraction rate). Setting m = |n/(2k)| = 1, we have
(59 (457)] 5" (4170 07))
Iz (E (A§”)>) 2m < 1/ (log”(1/9)¢”) ,
> { q0©) _SI0T) _ om > 10501 /g) /g, (25)

Ao (o)
exp (—2mg' W) otherwise.
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Proof. The first case follows from the Harris inequality Eq. (8).

For the other two cases we start by noting that A U AY = AM — )\ 4,
may be viewed as a 2k-fold CBSEP-extension of A ~2%), Recalling the offset
in Definition [4.7] set

SGy = SG* (A™ — \u,),

Sg; = ﬂ Sgll(n—j)/g (A(nijJrl) - Arur) s [17 2k — 1]7

7j=1

S8Gs5. =8G35,_1 N Sgll(ni%)/%kr (A(n72k+1) _ )\rur) :

so that SG; corresponds to fixing the position of the core, which is a translate
of A9 inside A — X\,u,, but leaving its internal offsets unconstraint (see

Fig. [4b)). Thus, Lemma applied 2k times gives
2%
p (858G (A7 v AL)) = [ msGr1sGt.) = 47
i=1

Expanding the definition of SG3;, via Definition we see that this event is
the intersection of SG*(A"~2%)) with some increasing events (symmetrically
traversable tubes) independent of the latter. Thus, the Harris inequality

Eq. (8) gives
(59 (3050 (470 42) > PO (T () s) e
> °©y (@ (Agn)) ‘ SGt (A(nf2k))) .

Taking into account that SG(AS”) < SG*(A(=2)) by Definition , this
concludes the proof of the second case of Eq. (25).

For the third case, our starting point is again Eq. (26). This time we
observe that SG3, can be written as the intersection of SG*(A~2*)) with
4k symmetric traversability events, each of which is a perturbed version (in
the sense of Lemma and Fig. [3)) of the ones appearing in Definition
of E(Ag‘)) Thus, the Harris inequality Eq. (@) allows us to lower bound

n(SG(AL”)|Ss,) by
T (t(ank)7 l(n72k)/2 . )\7"7 7’))
(T ([("_21“), l("_Qk)/Q + A\, T) — )\ruT))
<p (STH(T (r™=20, 120 /2 — X, 1 + 2K))
(T (r™=2P 10728 12 — X, e + 2k) — A\uy))
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2k—1 1

< [T e (ST (T (250 = A (v, + vpq0p) 1050 /2,0 4 4 2K¢))

i=1 £€=0

[STH(T (02900229 /2 4 4 2kE) — Ay )

where W is the event appearing in the last item of Definition
Firstly, each of the above conditional probabilities is bounded by

_ 1 0 o(2™m /e m 1—o
qO(W) log co( >(1/q) (1 4 (1)) (2m/e) > exp (_2 g (1)) 7

using Lemma, with A = C? and recalling that 2™ = ¢ *1log® ) (1/q)
and a = 1. Secondly, u(W) = """ as in Eq. , concluding the proof
of Eq. (25)). We direct the reader to [25, Appendix A| for the details of an
analogous argument in a simpler setting. 0

Iterating Eq. and plugging Egs. and gives that y(AN™")

is at most

O(C?)Nmes+ log2 1/q o Nmes+ 7 O0(1) Nmes+ _q
€ q

moarce i VO GG

n=2k

SG* (Ag’” o Ag”)))) .

Further recalling that N™** = O(log(¢™*")) = O(C'log(1/q)) and inserting
Eq. (25)), we obtain

. eq—a+1—o(1) 27”<1/(1ﬁ(1/‘0qu) - (n)
N (A(Nmeb )) < — H’_l <Sg (A2n ))
p(SGHANT)) n=2k

/L . @7)

Nmes+ _1 1 (n—2k)
S I
n:2mzlog®(1/q)/q® IU/(SQ(AQ ))

with m = |n/(2k)|. The final ingredient are the following probability bounds.

Lemma 5.6 (Probability of super good droplets). For n € [2k, N™*"] and
m = [n/(2k)|, the following bounds hold:

—{ n -1 . 1
(9 0) o0 (i) 77 gt

1(SG(AS)) o) om - log®(1/q)
((SGL(A(m=2R))) > q" if 2" = —qa , (29)
p(SG* (A(”))) > exp (q;;) : (30)
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Proof. Let us first bound p(SG*(A™)) for n < N™** by induction, starting
with the trivial bound

4 (SG* (AB)) 5 g4 5 005 1)

From Definition translation invariance and Eq. , for n € [2k, N™est —
1] we have

p(SGH (A"D)) >u( Gy (A"D))
n(sG* (A(”))) (STH(T (™1 ) (32)
> qo(l/s) H M (87'1 (T (K(i), l(i),z’))) 7

so we need to bound the last term. Applying Definition [{.1] Lemma and
the Harris inequality Eq. (7)) and then Observation we get

p (ST(T (2,10 n))) = " [ [ Her (Sjm)
J,m/

> qO(W) (1 _ equ‘Qm/O(E))O@m/E) (33)
aYym— C m m (0%

L o J @2 ) 2" <1/q

- exp (—2™exp (—¢*2™)) 2™ > 1/q¢°,

where the product runs over the segments Sj m' appearing in Definition [4.1]for
the event ST(T(r™, 1™ n)) = THT (r™, 1M n)) (the last equality holds,
since U is isotropic). Pluggmg Eq. (33) mto Eq. (32)) and iterating, we get

1 (S (A®)) = { P (—=1/ (log“*(1/q)g%)) 2™ <1/ (log”(1/q)q")
exp (=1/(¢°¢*)) 2m > 1/ (log”(1/9)q")
(34)
since N™% < O(C) log(1/q). This proves Eq. (30).
Recalling Definition [5.3] as in the proof of Lemma we have that for
any n € [2k, N™esTt]

(@ (A(n)>> = u(W)p (SG* (A=)

(ST(T (r™2P 128 )2 — N, r + 2k€)))

A
A1

2k—
1_[ STl (n—2k+i) _ A, (Qr 4 yr—&-?k) ’l(n*2k)/2, r+ 2/65))) )
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where W is the event from the last item of Definition and r =n — 2km.
As in the proof of Lemma , we have pu(W) = ¢"°" . while the factors
in the products can be bounded exactly as in Eq. (33), entailing Egs.
and (29)), since we already have Eq. (34). O

Proof of Theorem[5.3. The bound on u(SG*(A™)) was proved in Eqs

and . The one on y(AN") follows by plugging Egs. and (29 mto
Eq. (27). O

5.2 CBSEP global dynamics

For the global dynamics we need to recall the global CBSEP mechanism
introduced in [25]. It is useful not only for class [(g)| but also other unrooted
models—classes [(d)] and

Let A™*~ and A™*" be droplets with side lengths ©(¢™*~) and © (™)
respectively (recall Section . Consider a tiling of R? with square boxes
Qi = [0,0m) x |0, 7)) + ¢75(4, 5) for (i,7) € Z*.

Definition 5.7 (Good and super good boxes). We say that the box @), ; is
good if for every segment S < (@); ;, perpendicular to some u € S of length
at least 0™~ HW(S) occurs (recall Definition [3.9). We denote the cor-
responding event by G, ;. We further say that G(A™**) occurs if for every
segment S < A™** perpendicular to some u € S of length at least 3™~
the event H"(S) occurs.

Let SGY(A™*7)  Qpmes+ be a nonempty translation invariant event. We
say that Q;; is super good if it is good and SG'(z + A™*™) occurs for some
x € Z? such that z + A™*~ < @, ;. We denote the corresponding event by
SG; ;.

In words, good boxes @;; and droplets A™*" contain W-helping sets in
sufficient supply for a SG translate of A™*~ to be able to move inside the
box or droplet containing it. Our choice of /™~ makes being good so likely
that we are able to assume that all boxes and droplets are good at all times.
Finally, a box is SG, if it also contains a SG translate of A™*~ that we
wish to move around. Thus, when looking at SG boxes, we essentially see a
two-dimensional CBSEP dynamics, which leads to the following bound.

Proposition 5.8 (Global CBSEP relaxation). Let U be unrooted (classes
[(d) [(f) and[(g)). Let T = exp(log*(1/9)/q*). Assume that SG'(A™**) and

SGY(A™7) are nonempty translation invariant decreasing events such that
the following conditions hold:

(1) (1= p(SGHAmST))TT = o(1);
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(2) for all x € Z? such that v + A™*~ < A™% we have
Sgl(l’ + Amesf) A g(Ameer) c Sgl(AmeS+).
Then

log(1/u(SG*(A™7)))
79 :

EM[TO] < ~ (Ames+)

We omit the proof, which is identical to |25, Section 5|, given Defini-
tion [5.7l°| and turn to the proof of Theorem [1| for the isotropic class|(g)

Proof of Theorem Eﬂ@] Let U be isotropic. Recall the droplets A™ from
Section [5.1]  Set Amest = AW Nmes— — okflog (/™) /log 2] and
Ames— = AWNTST) - Thus, the side lengths of A™*~ and A™* are indeed
O(f™=7) and O(£™=T) respectively by Eq. (19). By Theorem condition

of Proposition [5.8]is satisfied:
(1 o M(sgl(Ames—)))TfZﬂ < (1 _ 6—1/(qa62))TT4 < T4e—elog4(1/Q)/qa_1/(qa‘52)
=o(1).

We next seek to verify condition [(2)] Proceeding by induction on n €
| Nmes= Nmest] it suffices to show that for any n € [N™~ N™**) and
z,y € Z? such that z + AW < y + A+ < A™e+ we have

G(A™H) A SGY(x + A™) < SG(y + ATY). (35)

Recalling Definitions [4.7] and we see that it suffices to show that for any
tube T of the form z + T(r™,1,j) for some | > 0, j € [4k] and z € Z?
satisfying 7' < y + A+ also verifies G(A™*) = ST(T). Further recalling
Definition [4.1] we see that it suffices to show that on G(A™*T), each segment
of length min ey 55.") — C? — O(1) perpendicular to u; for some j € [4k]
contains an infected W-helping set (recall from Section that HY (S)
H%(S)). Hence, Eq. follows from Definition since
min s — C% — O(1) = O(™7) = 3™~

j€E[4k]

4logt(1 a_log?(1/9)/(24%)
< etlog"(Va)/q% e

Thus, we may apply Proposition [5.8] Further plugging the bounds from
Theorem [5.2] we recover

exp(1/(log®?(1/q)q®)) 1
WSTIAT™)) z2q00)

%Due to the difference between Eq. and [25, Eq. (4.5)], the factor ua, ;(SG(As;))
in |25} last display of Section 5] cancels out with 7(S;)~" in |25, Eq. (5.11)] up to a ¢©(©)
factor, rather than compensating the conditioning in 25| last display of Section 5], which
is absent in our setting.

E, [10] <
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exp(1/(log“”*(1/q)q)) 1+ o(1)
S TSIy SO (W) |

concluding the proof. O

6 Unbalanced unrooted models

In this section we assume U is unbalanced unrooted (class [(d)). We deal
with the internal, mesoscopic and global dynamics separately. The internal
dynamics is very simple and already known since [23]. The mesoscopic and
global ones are similar to the ones of Section [5] with some adaptations needed
for the mesoscopic one.

6.1 TUnbalanced internal dynamics

For unbalanced unrooted U (class [(d)) the SG event on to the internal scale

consists simply in having an infected ring of thickness W (see Fig. . Recall
(™ from Section [3.41

Definition 6.1 (Unbalanced unrooted internal SG). Assume U is unbal-
anced unrooted. Let A® = A(r(®) be a droplet with side lengths SSO) =
2);[07/(2);)] for j e [4k]. We say that A is super good (SGY(A) oc-
curs) if all sites in AC\A(r® — W1) are infected.

The following result was proved in |23, Lemma 4.10] and provides the
main contribution to the scaling for this class (see Table 2b]).

Proposition 6.2. For unbalanced unrooted U (class we have

max (7 (A(())) ! (Sgl (A(O)))) < in(Wéim) < exp (C3 10g2(1/q)/qa) )

6.2 CBSEP mesoscopic dynamics

Since U is unbalanced unrooted, we may assume w.l.o.g. that a(u;) < «
for all j € [4k]\{k, —k}. We only use 4k scales for the mesoscopic dynamics.
Recall Sections[3.3/and [3.4] For i € [0,2k] let A®) = A(r®) be the symmetric
droplet centered at 0 with (¥ such that its associated side lengths are

RONENOIS {%‘W“/(?Ajﬂ i—k<j<k

i T Sjrok T 2)\j[€mes—/(2)\j)] -k<j<i—k.
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For i € (2k, 4k], we define A similarly by

S

W _ {2&[@%/(2&)1 i—3k<j<h )

;= Sj+2k = 2)\j[€mes+/(2)\j)] -k <] <1 — 3k.

These droplets are exactly as in Fig. except that the extensions are much
longer. More precisely, we have ACtY) = A(r® + (D (v, + v, ,,.)/2) with
10 = 0D 0 o that 1) = (1 — @ ete@ypmes—if j e [2k] and 1) =
(1—O(9))fmes+ if i € [2k, 4k). In particular, the droplets A™ for n € [4k+1]
are nested in such a way that allows us to define their SG events by extension,
as in Definition [5.1] (also recall Definition 6.1|for SG*(A(?)) and Definition
and Fig. 2D for CBSEP-extensions).

Definition 6.3 (Unbalanced unrooted mesoscopic SG). Let U be unbalanced
unrooted. For n e [4k] we define SG*(A(™+1Y)) by CBSEP-extending A™ by
1™ in direction u,,.

With this definition we aim to prove the following (recall v(A“®) from

Section [3.6)).
Theorem 6.4. Let U be unbalanced unrooted (class[(d)). Then

max (7 (A(4k)) ! (Sgl (A(Qk)))) < exp (log&(li/Q)) '

The remainder of Section is dedicated to the proof of Theorem [6.4
Naturally, Theorem results from 4k applications of Proposition and
using Proposition as initial input. The second step is somewhat special
(see Fig. [pa)), since there we need to take into account the exact structure of
SGY(A®) from Definition in the definition of the contracted events ap-
pearing in Proposition For the remaining steps the reasoning is identical
to the proof of Theorem but computations are simpler, since there are
only boundedly many scales. Following the proof of Theorem we start
by defining our contracted events (cf. Definition [5.3).

Definition 6.5 (Contracted unbalanced unrooted events). For n = 2km+r €
[4k + 1] and r € [2k], define A, AT ASY by Eq. (20).
Let ﬁ(/\ﬁ“) (resp. W’(Ago))) be the events that A" (resp. Ago)) is fully
infected and SG(AL) be the event that ANA(+® — 2W1) is fully infected.
Let @(Ag)) occur if the following all hold (see Fig. ) B

o STEH(T(r® — Xy, 19/2,0)) occurs,
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el

(a) Case n = 1. The tube Ag”) contains W-helping sets close to its boundaries
except the one perpendicular to uy.

(

)

(b) Case n = 2. Regions around all boundaries contain W-helping sets.

Figure 5: The events SG(AYY) and ST(A{Y) of Definition A s
thickened. Black regions are entirely infected. Shaded tubes are (1, W)-
symmetrically traversable.

d (A(E(O) + Wl)\/\(t(o) —2W1)) n Agl) is fully infected,
o STHT (' — Xuy, 19/2,2k)) oceurs,

e for all j # +k and segment S Ag), perpendicular to u; at distance at

most W from the u;-side of AV and of length ¢/, the event HW (S)
occurs.

Further let W‘(Agl)) oceur if the following both hold (see Fig. [5al):
o A©® + W1) A AW s fully infected,

e for all j # +k and segment S Agl) perpendicular to u; of length ¢ /W
the event H"(S) occurs.

We define ﬁ(AgI)) analogously.

Let i € [2,4k). We say that ﬁ'(Ag@) occurs (see Fig. if for all
j € [4k] and m € {i — 1,i} every segment S Agi) perpendicular to u; of
length ng) /W at distance at most W from the u;-side (parallel to S) of A(™)
the event H" (S) occurs. We define ﬁ(/\g)) similarly. Let @(Ag)) occur
if the following all hold (see Fig. [5b)):
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o SG'(AU=2) occurs;

e for each m € {0, 2k} the following occurs

Sﬂ}CrQ&JLN4V2—vﬁZi—2+nQ)
N ST (T (z(i_l) 4 (Qi + QH%) ,l(i_l)/Z —VW,i—1+ m)) :
o for all j € [4k], m e {i—2,i—1,i} and segment S c Agi), perpendicular to

u; of length ng) /W at distance at most W from the uj-side of AT, the
event H" (S) holds.

Before moving on, let us make a few comments on how Definition of
S_Q(Agn)) and W(Aén)) is devised. Recall that our goal is to satisfy Eq. 1)
that is, SG(AM) x ST(AL”)  SGH(A™), so as to apply Proposition
For that reason, for the various values of n, we have required the (more than)
parts of the event SG*(AM) which can be witnessed in each of A{"” and A{".
Since SG*(A() corresponds to an infected ring of width roughly W and
radius being fully infected (see Definition [6.1)), we have required for n € {0, 1}
a ring of the same radius, but three times thicker to be infected. Similarly to
Definition we have slightly reduced the length of traversable tubes present
in (recall Definition , but thinned the corresponding parallelograms in
Fig. We have further asked for W-helping sets around all boundaries so
as to compensate for the shortening of the tubes. The construction takes
advantage of the fact that for n > 2 the droplet A2 is far from the
boundaries of A (see Fig. [5b)), so the event SG'(A~?) can be directly
incorporated into E(Agn)), rather than being decomposed into one part in
Aé”) and one in A:(,)").

Lemma 6.6 (CBSEP-extension relaxation condition). For all n € [4k] we

have SG(AT) x ST(AM) = SGHAY U ALY and similarly for A instead
(n)

of Ay~.

Proof. The proof for n > 2 is essentially identical to the one of Lemma [5.4
and n = 0 is immediate from Definitions and [6.5l We therefore focus
on the case n = 1 and on Aél), since Agl) is treated analogously. Assume
S_Q(Aél)) and ﬁ([\g)) occur. Recalling Definition , it suffices to prove
that Sgll(o)/Q(A(l)) occurs.

Firstly, note that

STH(T (r™,19/2,2k)) o ST (T (r© — Awy, 19/2,2k))
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recalling from Eq. that (v;,e;) = 0 for all j € {k+1,...,3k — 1} and
(uy,e;) < O(1) « W for j € {k,3k}. Similarly, for any n € Q) we have

neSTrE (T (Z(O) — My, 5(0)/27 0)) —=ne ST\ L2200 (T),

where T = (r® 1®/2 — X\, /{uy,up),0). Furthermore, the fourth condi-
tion in the definition of @(Agl)) and the second condition in the defini-
tion of W(Agl)) (see Definition imply the occurrence of ST (ug(1V/2 —
A1/ ur, up)) + T(r®) Ay f{uy, up), 0)). Using Lemma [4.3] to combine these two
facts, we obtain that ST(r(®, 1 /2 0) occurs.

Thus, it remains to show that SG*(A®) occurs. But, in view of Defini-
tion this is the case by the second condition in the definition of @(Ag))
and the first condition of ﬁ(AgD) (see Definition . O

Proof of Theorem[6.4} By Lemma [6.6, Eq. holds, so we may apply
Proposition Together with the Harris inequality Eq. (§), this gives

5 (A69) < (M) exp(O(C?) log”(1/q)) o
[Tiepay HSGHACDN (ST (A (SGAD) (ST (AS))

(37)
In view of Proposition in order to prove Theorem [6.4] it suffices to
prove that each of the terms in the denominator of Eq. is at least
exp(—C?Mlog?(1/g)/q%).

Inspecting Definitions and , we see that each SG, SG and ST event
in Eq. requires at most C/™ fixed infections, WO W -helping sets and
O(1) (1, W)-symmetrically traversable tubes. We claim that the probability
of each tube being (1, W)-symmetrically traversable is ¢°"). Assuming this,
the Harris inequality Eq. and the above give that, for all i € [4k + 1],

i (8G* (AD)) = ¢ gV O™ = exp (=M 1og(1/9)/4”)

and similarly for the other events.
To prove the claim, let us consider for concreteness and notational con-
venience the event

E=8Ty (T (r™,19,1)),

all tubes being treated identically. As in Eq. (33), applying Definition
Lemma [1.2] and Observation [3.11] we get

. (eY] (1)
p(€) 2 W) (1 oo T (1 gt iomn P (g

Here we noted that in directions i € (—k + 2,k — 1) symmetric traversability
only requires helping sets (since the only hard directions are assumed to
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be u; and u_;) and the corresponding side lengths of AM are /™ + O(1),
while for i = k it requires W-helping sets, but the u;-side of A has length
™= +O(1). Recalling Section [3.4]and the fact that IV = @(£™*~), Eq.
becomes (€) = ¢, as claimed. O

6.3 CBSEP global dynamics
With Theorem [6.4] established, we are ready to conclude the proof of Theo-

rem as in Section [5.2]

Proof of Theorem |f(d). Let U be unbalanced unrooted. Recall the droplets
A™ from Section Set Amest — AGR) and Ames— = AR Condition
of Proposition [5.8]is satisfied by Theorem [6.4] while condition [(2)]is verified
as in Section

Thus, Proposition applies and, together with Theorem [6.4] it yields

o1/}

E,[70] < exp ( pows

concluding the proof. O

7 Semi-directed models

In this section we aim to treat semi-directed update families U (class [(T))).
The internal dynamics (Section based on East extensions is the most
delicate. The mesoscopic and global dynamics (Sections and use the
CBSEP mechanism along the same lines as in Sections [5| and [6]

7.1 East internal dynamics

In view of Remark [I.6] in Section we work not only with semi-directed
models (class , but slightly more generally, in order to also treat balanced
rooted models with finite number of stable directions (class [@D, whose up-
date rules are contained in the axes of the lattice (in which case k = 1—recall
Section[3.2)). In either case we have that «(u;) < a for all j € [4k]\{3k—1, 3k}
and this is the only assumption on / we use.

Recalling Section [3.4] set

N =min{n: W" = ¢} = |alog(1/q)/log W],
Nint — min {n . I'Wexp(an“)/qa'l > gintg} ,
= N +logloglog(1/q) + O(loglog W), (39)
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[(1+3/4) Figure 6: Geometry of the nested
A®@  droplets A for k = 2 in the set-
ting of Section [7.1] For n € N
droplets are symmetric and homo-
1(1+2/4) thetic to the black A©.  Inter-
mediate ones AU+ - AO0+2/4) and
AU+3/% obtained by East-extensions
(see Fig. in directions ug, u; and
A®M  wy respectively are drawn in progres-
A©  sive shades of grey.

1a+1/49)

ey

o) _ wn n <N,
[y jge] - Ner < < Nin
Remark 7.1. Note that despite the extremely fast divergence of ¢(M¢q®, for
n e (N, N™] it holds that W < ¢1) /¢ < (¢("¢*)? < log*(1/q). The
sharp divergence ensures that some error terms below sum to the largest
one. This prevents additional factors of the order of N — N in the final
answer, particularly for the semi-directed class (recall Section . This
technique was introduced in |26, Eq. (16)], while the geometrically increasing
scale choice relevant for small n originates from [17]. It should be noted
that this divergence can be further amplified up to a tower of exponentials
of height linear in n — N. In that case the logloglog(1/q) error term in
Theorem [8.5]and Eq. (4)) below becomes log, (1/¢), but is, alas, still divergent.

Recall Section . Let (0 = (rg-o))je[%] be a symmetric sequence of radii
such that r = ©(1/e), the vertices of A(r(?)) are in 2Z2 and the correspond-
ing side lengths s are also ©(1/¢). For n € N and j € [4k], we define
sgn) = sgo)ﬁ(”). We denote A = A(r(™), where (™ is the sequence of radii
corresponding to s such that rg;) = ré(,? and T:(»,Z)_1 = ré(,?_l (see Fig. EI)

For j € [2k], we write [("3/(2k) — sg.ﬂl) — sg.i)k = O+ /g) and set
rHGHD/RR) — . (nt5/(2K) —i—l(”*j/(%))yj, which is consistent with the definition
of 71 above. Thus, denoting A*7/(R) = A(r(n+i/CkDY for n € N and
j € (0,2k) (see Fig.[6), we may define SG events of these droplets by extension
(recall Definition [4.4] and Fig. [2a] for East-extensions).

Definition 7.2 (Semi-directed internal SG). Let U be semi-directed or bal-
anced rooted with finite number of stable directions and £ = 1. We say
that A is SG (SG(A©®) occurs), if all sites in A are infected. We then
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recursively define SG*(AM+U+D/CR)) for n e [N™] and j € [2k], by East-
extending A*/0) in direction u; by (/%) (see Fig. @

As usual, we seek to bound the probability of SGY(AN™)) and associated
F(AN™)Y (recall Section [3.6).

Theorem 7.3. Let U be semi-directed (class or balanced rooted with
finite number of stable directions (class[(e)) and k = 1. Then

7 (40) < exp (PESECA) (507 (A0)) 2 e ()

The rest of Section is dedicated to the proof of Theorem [7.3] The
probability bound is fairly easy, as in Eq. , while the relaxation time is
bounded by iteratively using Proposition and then carefully estimating
the product appearing there with the help of Lemma 4.11

Note that y(A©®) = 1, since Eq. is trivial, as SG*(A®) is a singleton.
For n e 1/(2k)N, j € [2k] and m > 1, such that n < N™ and n — j/(2k) e N
set

aly) = =t (SG (A + (|(3/2)™ ] = 1(3/2)™]) Ajuy)| SG* (A™)) . (40)
We further let

M®™ =min {m: \;(3/2)™" = 1"} =logi™/log(3/2) + O(1).  (41)

For the sake of simplifying expressions we abusively assume that [ =
A;1(3/2)M™+1]. Without this assumption, one would need to treat the term
corresponding to m = M) below separately, but identically.

We next seek to apply Proposition with 7 = ™ and [ = (™. Let
us first analyse the term a,, in Eq. (I7). By Definition and the Harris
inequality Eq. @D, we have

o o
S LT+ (G2 - 3R D) [THD) b
using Lemma in the equality and setting
T =T ("™, \1(3/2)"], 5)
b5 = (TH(T (™, (13/2)™ ] = 13/2)™]) As» 4)))
Moreover, by Lemmas [4.2] and [4.3] we have

M)

n bﬁ? = q*O(WM(”))Iu (7-1 (T (f(n)7 l("),j)))

m=1

(42)
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_ qfO(WM(")) M(Sgl(/\(nﬂ/@k))))
p(SGHAM)) 7

where the second equality uses Definitions [£.4 and [7.2]

Applying Proposition [4.6] successively and using Egs. and ({12), we
get

(43)

Nint_1/(2k) , M) a(n)
A(Nmt)) < max /L Sgl A(n 60(02)10g (1/q) i
( n<Nint ( ( )) JL_L 7]r;[1 bm

1 0 02 Nmt o 1 Nmt 1/(2k) M(ﬂ)

11(SGY(A®)) 0PN log?(1/a) T O T o

12(SGL (AN 14 L

O(l) Nmt 1/ 2]€) M(n)
< expllog™/(1/q)) H 1—[ ol (44)

where in the second inequality we used Eq. and the fact that u(SG*(AM™))
is non-increasing in n (recall Definitions 4.4 and [7.2)); in the third inequality

we used N'™ < log(1/q) by Eq. and M™ < O(log(1/q)) by Egs.
and ([41)). Note that in Eq. and below products on n run over 1/(2k)N
To evaluate the r.h.s. of Eq. we need the following lemma.

Lemma 7.4. Let n € 1/(2k)N be such that n < N™ and m > 1. Then
afy) < (8 (A)) < min ((0g" W)W HED) - (45)
Moreover, if
=1/ (¢ 1og" (1/g)),  M™z=m+W, (32" <1/¢*, (46)
setting

Ny = min {n' eN: (™) >1/ (¢*log" (1/q)) M) = m o+ W} <n, (47)

the following improvements hold

3/2)™
o < exp <( /54)‘ <(N i )? 4 Lz e log?? log(l/Q))> (48)
— o alo w
e (1 (e log" °M(1 /q))) m <l o 1/a)
— o o w
exp (1/ (¢ log" °® log(1 /q))) m > s o (1/a)),

Let us finish the proof of Theorem [7.3] before proving Lemma
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Proof of Theorem 7.3 The second inequality in Theorem [7.3]is contained in
Eq. (43)), so we focus on v(AN™)) based on Eq. . Set

M., = [log(1/q*)/1og(3/2)]. (49)

Using the trivial bound aj < exp(1/(e2q®)) from Eq. and then Eqs.
and , we get

Nint_1/(2k) M) Nint_1/(2k)

1_[ H a(") < exp 832(]& Z (M(”) - M, + 1)

n=N°—[1/e] m=Mq n=Ncr

Nint_1/(2k) ([n+1/(2K)])
< eXp Zn:Ncr O(]' + log(g q /8))
£°q«
Nint n+1—-N°r
< exp Z"ZN;; >
loglog(1
< exp (%M) ’ o0

which is the main contribution. Note that by Eqgs. and (1)), n < N —
1/ implies M™ < M,, so Eq. exhausts the terms in Eq. with
m = M,.
Next set
Ny = [— log (qa logw(l/q)) /log W] . (51)

Using the first bound on a'® from Eq. 1} and Eq. , we obtain

Ny M)

TTTT ﬁ (6P W) ~OUsE/aW /=)

n=0 m=1
Nw
< exp (— log®M(1/q) Z W")

<exp (1/(g” 1ng_o<1§(1/q)>> . (52)

We next turn to the range Ny < n < n,, with m < M,. Recalling
Eqgs. , and , we get that Ny < n < n,, implies M™ < m + W
and therefore (™ < O((3/2)™*"), so W™ < (3/2)™. Plugging this into the

first bound on a$” from Eq. , we get

Mla_[mm ﬁ(%) o < exp (_ % (3/2)m10g<5qa(3/2>m>> < e, (53)

3
n=Ny m=1 €
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It remains to treat the range n,, < n < N with m < M,. Note that by
Eqgs. (39), and Ny < n,, for any m and set

My = |log (1/ (¢"1og" (1/q))) /log(3/2)] . (54)
Then Eq. gives

Mo—1 N™—1/(2k) of Ma=1 ‘
D logal) < =5 D (3/2)" (N — np)(N™ — N + N7 —n,,)
9

m=1 N="Nmm m=1

+ 2F (i e 1og¥ og(1/g) az_ (3/2)"

m=1

2k M, N 2h(M,, — My ) (N™ — Nyy)
- W—0(1) + o)
¢ log (1/q) q- log Jlog(1/q)

Mq—1

< Wlogloglog(1/a) 3. (8/2)" (N — )

m=1

54

. log*? log(1/q) loglog log(1/q)
€5qa
+ L + !
¢ log" =W (1/q)  ¢olog" W log(1/q)’

(55)

where we used that N™ — N < 210g10g10g(1/q) by Eq. (39), M, <
log?(1/g) by Eq. (49) N“”‘t < log W(1/q) by Eq. BY), Mo — My <
log®™ log(1/q) by Egs. (49) and (54) and N™ — Ny, < < logPW log(1/q) by
Eqs. (39) and (51). In order to bound the last sum in Eq. (55)), we note
that by Eqs. (39), (47), (49) and (54), for any m € [My, M,) we have
N —n,, < (M, —m)/e. Plugging this back into Eq. (53], we get

Mo —1 Nt —1/(2k)

S togaly < EREOBU) (i (32)0)

m=1 N="Nm

log**1og(1/q)

+ -

2q“
 log¥log(1/g)
qOé

Plugging the last result and Eqs. , (62) and (B3) in Eq , we conclude
the proof of Theorem m, since ,u(Sgl( Wmt))) > 6*1/ *q) by Eq O
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Proof of Lemma[7.4l Let us fix m and n as in the statement for Eq. (45).
The bound a'? < 1~ (SGY(AM)) follows from the Harris inequality Eq. @)
To upper bound the latter term we note that by Definitions [4.4 and [7.2]

n—1/(2k)

p(SG (AM)) = u(8G* (A”)) T w(T (T (™,1%,5(p))), (56)

p=0

setting j(p) € [2k] such that p— j(p)/(2k) € N and letting products on p run
over 1/(2k)N. Clearly,

1 (8G (D)) = g = g0/, (57)

Let us fix p € 1/(2k)N, p < N™. Then, using Lemma [£.2] Definition
Observation [3.11] and the Harris inequality Eq. (7)), we get

m (7’1 (T (Z(p)7 l(p),j(p))))

(p)
> ¢ (1~ eqﬂfﬂpl)/O(a))O“ )
a P/(ée cr 58
< 0(W) (6gWP)W/() p< N, (58)
exp( 1/ (q exp (WeXp Ncr)/5))) p> N,

In the last inequality we took into account 1/e » 1/§ » W » 1, é (N9) =

WO /g and the explicit expressions Eq. . From Egs. (56) to it is
not hard to check Eq. (45) recalling Section

We next turn to proving Eq. , s0 we fix n < N‘nt and m > 1 satisfying
Eq. (46). Denote s, = ([(3/2)”””“] —1(3/2)")Aju; for j = j(n), so that

Eq. spells
al? = p' (SGT (A™ + 5,)| SG (A™)) .
By the Harris inequality, Eqs. and @, Definitions and we have

al <t (SGH (M) (59)
n—1/(2k)
< [T e (THE EPAP 5 0) + ) [ THT P19, 50)))

Our goal is then to bound the last factor, using Lemma[4.TT] which quantifies
the fact that “small perturbations s,, do not modify traversability much.”
Let us fix p € [n,,n) » (1/2k)N and denote

T=TT (P07, j@)) T =T (T "1%,5(p) + sn)
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In order to apply Lemma with A = max(C?, |sm]), we check that
W3(3/2)™ < (IPD /e (50 that the sides of A®) are large enough). If ((IPD) >
1/¢~, this follows from the assumption (3/2)™ < 1/¢* of Lemma [7.4 Other-

wise, by Egs. and

W3(3/2)m < (3/2)M<"’")—W/2 < l(nm)/eQ(W) =0 (g(nm—&-l)) / (SGQ(W))
where in the last but one inequality we used that (= +1) < WOM () gince
Ny < p and £P) < 1/¢* (recall Eq. ) The remaining hypotheses of

Lemma [4.11| are immediate to verify.

For ||s,,/| = ©((3/2)™) < C?, Lemma gives
2 (»)
m (7—/| T) > qO(C ) (1 _ ql—o(l))O(l ) > exp (_q—a+1/2) 7

as 1) < (V™) /e < g o) If, on the contrary, ||s,,| = C?, Lemma m
gives

. o((3/2™)
PTIT) 2 g0 (1 (1= g7 000) (60)

(Ipl+1) /¢
% (1— O(We)(3/2)m/elD — gl-o) O/

_ O(W) y (5anp)O((3/2)m) p < Ner
~ exp (—(3/2)™ exp (—WePWPI=N") /5))  p > N
{exp (_q—a+1/2—0(1)) (3/2)™ < q—a+1/2—o(1)

exp (—W2(3/2)m ) (3/2)" > g/,

in view of Eq. (39). Further notice that if (3/2)™ < ¢ *+"/27°() or p > N,

the third term dominates, while otherwise the second one does. Moreover, if

p = N + [¥]| with

log loglog(1/q)
3logW 7

then the Harris inequality Eq. (§)), translation invariance and Eq. directly

give the bound

p(T'T) = p(T') = i(T) = exp (=1/ (¢* log" log(1/q))) . (62)

Finally, we can plug Egs. (45), and in Eq. to obtain the
following bounds. If (3/2)™ < ¢—**1/2=°(1) then

ag:) < exp (1/ (qa IOgW<1/Q))) ’

U = log (61)
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because the contribution from Eq. is negligible, since n < N™ <

log(1/q), while by Egs. and (47), W = () < W/ (q*1log" (1/q)).
If, on the contrary, (3/2)™ > ¢~ +1/27°(1) then

o) < {GXP (1/ (qa logW’O(”(l/Q))) (3/2)™ <1/ (¢*log" (1/q9))

(SqeTymm )@/ (3/2)™ > 1/ (4" log™ (1/9))
min(n,N)
o H (5anp)*O((3/2)m)
p=nm
1 n < N&
{eXp (3/2ym W2 5) > N

exp (1/ (410" 2V (1/)) ) (3/2)" <1/ (a*10g™ (1/a)

exp (1/ (¢710g" W 10g(1/9)))  (3/2)" > 1/ (4% 10g" (1/a))

the terms corresponding to u~(SG*(A))) and to values of p in the intervals
[P, N, (N, N + [U]) and [N + [¥], N™) respectively. Indeed, in the
last term for small m we used Eq. , while for large m, we directly applied

Eq. (62). Observing that the product of the second case for the first term,
the second term and the third term can be bounded by

exp ((3/8# ((Ncr — nn)? + Lo e log?? log(l/q)>) ,

we obtain the desired Eq. (48). O

X

7.2 CBSEP mesoscopic dynamics

In this section we assume that U is semi-directed (class and w.l.o.g.
a(u;) < a for all i € [4k]\{3k}. The approach to the mesoscopic dynamics
is very similar to the one of Section [6.2] employing a bounded number of
CBSEP-extensions to go from the internal to the mesoscopic scale. Once
again, the geometry of our droplets is as in Fig. but extensions are much
longer so that we go from scale £"* to (™~ in 2k extensions and then to
(™t in another 2k extensions.

Recall from Section that we defined AT g symmetric droplet with
side lengths s™V'™) equal to @(LN™) /), as well as SGHAN"™)) in Defini-
tion Further recall Section [3.4] Following Section for i € [1,2k] we
define

SUTN™) _ (4N Sg'Nmt) i—k<j<k,
7 g2k N[ J(20)] —k<j<i—k,

64



while for i € (2k, 4k], we set
S("i-ﬁ-Nint) — ("i+Nim) — 2)\.7 [€m687/(2)\])-| Z - 3k < ] < k (63)
7 Jrak N [emest J(2X)] —k < j <i—3k.

We then define AN™+) = A(r(V™+9) with r™V™+) the sequence of radii
associated to sV 9 satisfying

JINBEri1) (NP (N 4i-1) {(1 —o(1))eme= de[l,2k],

= g — S
kel kel (1 —O(@8))mest e (2k, 4k].

We then define the corresponding SG events by CBSEP-extension as in Def-
inition

Definition 7.5 (Semi-directed mesoscopic SG). Let U be semi-directed. For
i € [4k] we define SG (AN ++1)) by CBSEP-extending AN +9) by [(N"+9)
in direction wu;.

We then turn to bounding y(AN™+4)) (recall Section [3.6).
Theorem 7.6. Let U be semi-directed (class[(f)). Then

int loglog(1
~ (A(N +4k)) < exp ( og log( /Q)) 7

gO(l)qa

[ (Sgl (A(Ni“t+2k))) > exp (ﬁ) .

The rest of Section is dedicated to the proof of Theorem [7.6] The
proof proceeds exactly like Theorem [6.4] except that the first two steps are
much more delicate. Namely, they require taking into account the internal
structure of SGL(AN™) on all scales down to 0. This structure is, alas,
rather complex (recall Fig. @ and also not symmetric w.r.t. the reflection
interchanging ug and us,. This is not unexpected and is, to some extent, the
crux of semi-directed models.

As before, we define A, A%, A by Eq. for i € [N, Nt 4 4).
The next definitions are illustrated in Fig. [7| and are the analogue of Def-
inition [6.5] but taking into account Definition Correspondingly, the
intuition behind them is the same, the only difference being that we need to

modify traversability events at all scales, because A® touches the boundary
of A™) for all i < N™ (compare Figs. 4a|and @)
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7/ \

AY
(a) Case i = N'™ of Definition

AP

(b) Case i = N 4+ 1 of Definition

Figure 7: The events ST (A), SG(AY) and ST(AY). The microscopic
black regions are entirely infected. Shaded tubes are (1, W)-traversable. W-
helping sets are required close to all boundaries.
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Definition 7.7 (Contracted semi-directed events on scale N™*). Let us de-
fine ﬁ(AgNmt)) to be the event that for all j € [-k + 1,k — 1] and, for

)

every segment S AgNmt , perpendicular to u; of length SS-NM) /W, the event

HY(S) occurs.

Let S_T(AgNmt)) be the event that for all j € [k + 1,3k — 2] every segment
S c A§N“’t>, perpendicular to u; of length sgNmt)/W, the event H" (S) occurs
and all sites in AgNim) at distance at most /I /e from the origin are infected.

For n € [0, N™] such that 2kn € N let A'™ = A(r™ — \o(vy + vsy)).
Define SG'(A™) recursively exactly like SG*(A™) in Definition [7.2| with all
droplets replaced by their contracted versions A’ and all traversability events
required in East-extensions (see Definition replaced by the corresponding
(1, W)-traversability events® (7}, see Definition [4.1)). Let W' be the event
that for every n € [0, N™], j € [4k] and segment S < AgNmt), perpendicular
to u; of length sgn)/W at distance at most W from the u;-side of A, the
event HW(S) holds. Let Z' be the event that all sites in AgNim) at distance
at most W /e from the origin are infected. Finally, set

S (AgN"“)) = S¢' (A’<N““>) AW AT

Definition 7.8 (Contracted semi-directed events on scale N™ + 1). We
define ﬁ(AgNth)) to be the event that for all j € [k + 2,3k — 1] and every

int+1)

segment S < AgN , perpendicular to u; of length s§-Nim)/W, the event

HW(S) occurs and all sites in AgNth) at distance at most /W /e from the
origin are infected.

Let ﬁ'(AgNimH)) be the event that for all j € [4k], m € {N™ N"® 4 1}

and every segment S < AéNimH), perpendicular to u; of length sgm)/W at

distance at most W from the u;-side of A, the event H"(S) occurs.
For n € [0, N'™] such that 2kn € N let

A//(n) - A (f//(n)) - A (Z(n) . )\1 (21 + 22k+1))
and define SG"(A"(™) like SG'(A'™) in Definition [7.7. Further let

SG" (A//(N“‘°+1)) — SG" (A//(N“lt)) A ﬂ STMI/ (T (K//(Ni“")7 Z(N“‘t)/27j)) .

Jje{0,2k}

Let W" (resp. Z") be defined like W' (resp. Z') in Definition with A’/
replaced by A” and N'™ replaced by N™ + 1. Finally, we set

SG (AgNi’““)) — SG" (A”<N"“+1>) AW AT
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Notice that Definition for ¢ € [2,4k) does not inspect the internal
structure of SG*(A) (see Fig. . Thus, we may use the exact same
definition for ﬁ(A&N”’t“)), E(AgNth)) and W'(A;(;Nmtﬂ)) with i € |2, 4k).

We may now turn to the analogue of Lemma

Lemma 7.9. For all n € [N™ N™ 4+ 4k) we have SG(AYY) x ST(AI) =
SGHAM U A and similarly for A instead of AJY.

Proof. For n = N™ + 2 the proof is the same as in Lemmas and [6.6]

Assume that @(Ag\[mt)) and ﬁ(AéNim)) occur. We seek to prove by
induction that for all n < N™ the event SG*(A™) occurs. For n = 0 this

is true, since Z' and the corresponding part of ﬁ(AéNm“)) in Definition
give that A is fully infected. By Definitions and , it remains to show
that for all n < N™ the event 7 = TY(T(r™, 1™ )) occurs, where j € [4k]
is such that n — j/(2k) € N. But by Definition [7.7) the corresponding event
T = TEH(T ('™, 1™ 7) occurs, where A'™ = A(r'™). It therefore remains
to observe that W', the W-helping sets in the definition of ﬁ(AgNmt)) and
T" imply 7. Indeed, W-helping sets ensure the occurrence of H}.(S) for the
first and last ©(W) segments S in Definition [4.1| for 7, while the remaining
ones are provided by 77, since '™ and r™ only differ by O(1) « W. We
omit the details, which are very similar to those in the proof of Lemma
(see Fig. [a)).

The remaining three cases (AgNmt) instead of A:())Nmt) and/or N™+1 instead
of N') are treated analogously (see Fig. 7). O

Proof of Theorem[7.6, By Lemma [7.9, Eq. holds, so we may apply
Proposition Together with the Harris inequality, Eqgs. and (), this

gives

~ (A(Ni"t+4k))

_ Y(AN™) exp(O(C?) log?(1/q))
= ONIt 41

[T wSG AN u(STA)(SGAD))uST(AY))

j=/Nint

(64)

In view of Theorem it remains to bound each of the terms in the denom-
inator by exp(—1/(s°Mg®)) in order to conclude the proof of Theorem (7.6
Notice that a total of e=M fixed infections and WOWM Nt — go1) 1y
helping sets are required in all the events in Eq. . This amounts to a
negligible factor. The probability of SG'(A'™™)) and SG"(A"™™)) can be
bounded exactly like SGH(AM™)) in Lemma . This yields a contribution
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of exp(1/(e°M¢*)). Finally, the remaining bounded number of S7;} events
are treated as in Theorem to give a negligible ¢-°") factor. Hence, the
proof of Theorem [7.0]is complete. O

7.3 Global CBSEP dynamics

The global dynamics is also based on the CBSEP mechanism and proceeds
as in Sections and [6.3]

Proof of Theorem [§(f)} Let U be semi-directed. Recall the droplets A
for i € [4k + 1] from Section Set Amest — AWNTHE) apd Ames— —
AN™+2) - Condition |(1)| of Proposition [5.8|is satisfied by Theorem while
condition [(2)]is verified as in Section [5.2]

Thus, Proposition applies and, together with Theorem it yields

log log(1/ q))

EM[TO] < eXp < €O(l)qa

concluding the proof. O

8 Balanced rooted models with finite number
of stable directions

In this section we deal with balanced rooted models with finite number of
stable directions (class[(e)). The internal dynamics (Section uses a two-
dimensional version of East-extensions. As usual, it requires the most work,
but applies directly also to balanced models with infinite number of stable
directions (class [@) The mesoscopic and global dynamics are imported
from [23] in Section (8.2

8.1 East internal dynamics

In this section we simultaneously treat balanced rooted models (classes
and [(e)). We may therefore assume that a(u;) < « for all j € [k + 1,k]
and this is the only assumption on U we use.

Let us start by motivating the coming two-dimensional East-extension
we need. By the above assumption on the difficulties, we are allowed to use
East-extensions in directions uy and u;. Indeed, recalling Definition we
see that for these directions the traversability events (recall Definition
only require helping sets and not W-helping sets. In principle, one could al-
ternate East-extensions in these two directions similarly to what we did e.g.

69



Figure 8: Geometry of the droplets used for
balanced rooted models in Section R.I]in the
case k = 2. The nested black, grey and
white polygons are the droplets A®, A®)
and A® respectively.

in Section for directions uq, ..., us_1. However, this would not work,
because extensions in directions ug and u; only increase the length of the
sides parallel to ug and u;, while all others remain unchanged (see Fig. .
Thus, the traversability events would be too unlikely, since they would re-
quire helping sets also for the other sides, e.g. the one with outer normal
Us_k, which are too small. This would make the probability of the SG event
too large. Notice that this issue does not arise when k = 1, as we saw in
Section [l

For k > 1, however, we therefore need to make the u;-sides of our succes-
sive droplets grow for all j € [-k + 1, k]. A natural way to achieve this is as
depicted in Fig. 8] The drawback is that we can no longer achieve this di-
rectly with one-directional East-extensions as in Definition [4.4]and Fig.[2a] so
we need some more definitions. However, morally, one such two-dimensional
extension can be achieved by two East-extensions in the sense that, East-
extending in direction ug and then wu; yields a droplet which contains the
desired droplet as in Fig. [§] Unfortunately, our approach heavily relies on
not looking at the configuration outside the droplet itself. For that reason
we instead need to find for each point in the droplet appropriate lengths of
the East-extensions in directions ug and uq, so as to cover the point without
going outside the target droplet (see Fig. @

Following Section we define N, Nt ¢(") by Eq. . In this section
there are no fractional scales, so n is an integer. Further let A(®) be as in
Section [7.1| with radii r(®) and side lengths 5. For n e [N™™] set

o _ [P —k<j<k
S =
J sO 0 k+1<j<3k

and 5(_",2 and 51(321 as required for s to be the side lengths of a droplet. Let
(™ be the corresponding radii such that 7"(_",3 = 7’(_0,3 and 7’1(:31 = 7’1(221- Finally,
set A = A(r(™) as usual (see Fig. .

Fix n € [N™]. Observe that we can cover A+ with droplets (D,.)xex]
so that the following conditions all hold (see Fig. @

e Forall k€ [K], D, = Al"+Y;
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K—lD

Kr=2 K

= A(n+D),

K = O(é(”ﬂ)/f(")),

e any segment of length (" /(Ce) perpendicular to u; for some j € [4k]
intersects at most O(1) of the D;

e droplets are assigned a generation g € {0,1,2}, so that only Dy = A™ is
of generation g = 0, only D; = A(r™ 4 l1v,) is of generation g = 1, where
T](;H_l) . T](cn)

I, =
! <U17 Uk>

so that D; spans the uj-side of A+1);

e if Kk > 2, then D, is of generation g = 2, and is of the form
D, =y.u; + A (z(”) + l,iyo)
for certain [,, > 0 and y, € [0, [;] multiple of A;.

To construct the D, of generation 2, it essentially suffices to increment y,
by ©(¢™ /¢) and define I, to be the largest possible, so that D, < A+,
Finally, we add to our collection of droplets the ones with y, corresponding
to a corner of A1) and again take [, maximal (see Fig. @) Note that one
is able to get K = O(/*Y/¢() thanks to the fact that 3&”13 and 35}21 are
O(¢™ /g). We direct the interested reader to [4, Appendix E| for the explicit
details of a similar construction in arbitrary dimension.

Definition 8.1 (n-traversability). Fix n € [N™] and let R = A be a
region of the form

Jtine\ U o (65)

IeT \ kel ke[ K\

for some family Z of subsets of [K]|. We say that R is n-traversable (T,(R)
occurﬂ) if for all j € (—k, k) and every segment S R perpendicular to u;
of length at least 5¢(™ /e the following two conditions hold.

e If S is at distance at least W from the boundary of all D,, then the event
H(S) occurs.

"The n-traversability 7, should not be confused with (w,d)-traversability 73 from
Definition which only features with d = 0 and w = 1 in the present section.
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(a) The droplets D, corresponding to (b) All droplets Ds. In the second
corners of A1) The generation 0 generation, for visibility, droplets al-
droplet Dy is given in black, while D; ternate between shaded, thickened and
of generation 1 is shaded. hatched.

Figure 9: Geometry of the droplets (D,{)RE[K] used in the two-dimensional
East-extension in Definition Also recall Fig. [8]

e If S is at distance at most W from a side of a D,, parallel to .S for some
k € [K], but S does not intersect any non-parallel side of any D,., then
the event H"(S) occurs.

Roughly speaking, R must be one of the polygonal pieces into which the
boundaries of all D, cut A, It is n-traversable, if segments of the size
slightly smaller than A(™ contain helping sets for the directions in (—k, k).
However, we only require this slightly away from the boundaries of D, and
instead add W-helping sets close to boundaries, so that we can still cross
them but keep the following independence.

Remark 8.2. Note that n-traversability events are product over the disjoint

regions into which all the boundaries of (D,.).e[x] partition A1),

Definition 8.3 (Two-dimensional East-extension). For n € [N'™] we say
that we Fast-extend A™ to A+ if SGY(D,) is defined by East-extending
A™ by I; in direction u; and SGH(A™*Y) = SGY(D;) N T, (A™TV\Dy).

Indeed, Definition [8.1] gives 7,,(A™+\D1), since Eq. (65) is satisfied:
A"I\D, = | ] DADy = (] (ﬂ DH\UDH> .
re[K] IC[KI\0,1} \wel  wgl

Armed with this notion, we are ready to define our SG events up to the
internal scale for our models of interest.
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Definition 8.4 (Balanced rooted internal SG). Let U be balanced rooted.
We say that A©) is SG (SG*(A© occurs), if all sites in A(?) are infected. We
then recursively define SG*(A*V) for n € [N™] by East-extending A™ to
AP+ (see Definition [8.3)).

We are now ready to state our bound on the probability of SGH(ADN™)
and v(AN™) (recall Section .

Theorem 8.5. Let U be balanced rooted (classes|(b) and|(e)). Then

log(1/q) log log log(1
5 <A<N >) < oxp ( 0g(1/q) log log log( /q))j

53qa
s (A -1
(s (1) =0 (51)
€°q
The rest of Section is dedicated to the proof of Theorem As
usual, the probability bound is not hard (see Lemma below), while the
relaxation time is bounded recursively. However, we need to obtain such a
recursive relation, using Proposition twice (see Lemma below). Yet,
thanks to the additional log(1/q) factor as compared to Theorem (and
the logloglog(1/q) one, see Remark [1.6)), the computations need not be as
precise and, in particular, do not rely on Lemma [4.11
Note that y(A©®) = 1, since Eq. is trivial, as SG*(A®)) is a singleton.
For m > 1 and n € [N'*] denote

aﬁ,’j) = max j (Sgl (A(”) + ([(3/2)’””] — [(3/2)"‘]) /\juj)‘Sgl (A("))) .

je{0,1}
(66)
For the sake of simplifying expressions we abusively assume that for all x €
[K] the length I, is of the form A¢|(3/2)™| with integer m. Without this
assumption, one would need to treat the term corresponding to m = M — 1
in Proposition separately, but identically. We next deduce Theorem
from the following two lemmas.

Lemma 8.6. For n < N™ we have
y( A(n))eo(c2)1og2(1/q) ]\ﬁ) .
a\,
S L

v (A(n+1)) <

where M™ = [1/¢] + [log £V /1og(3/2)].
Lemma 8.7. For any n < N'™ and m > 1 we have
o < i (SGT (AM)) < 7t (SGH (AD)) ™ (Tocs (AD)
< min ((5an")_Wn/62 ,el/(52qa)) : (67)
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Proof of Theorem (8.5 From Lemmas[8.6/and 8.7 and the explicit expressions
Eq. (39), we get

Nint _q M)

7 (AC) s e T (9 (A0 (7 () [

Nmt 1

log? M (1/g) H Sgl A(n+1))) [ (7;1 (A(n+1))))_o(log(1/q))

< oxp (log(l/q) 10g log log(l/q))

g3q

Since the second inequality in Theorem [8.5]is contained in Lemma [8.7] this
concludes the proof of the theorem modulo Lemmas [8.6] and [8.7] O

Proof of Lemma[8.6, Let us start by recalling a general fact about product
measures. Consider two disjoint regions A, B < Z? and a product measure v
on {24 x Qp. The law of total variance and convexity give

Vary,,, (f) = v (Var,,,(f))+Var,, (va(f)) < v(Var,, (f)+Var,, (f)). (68)

Fix n € [N'"*]. Applying Eq. several times (in view of Remark
and Definition [8.3)), we obtain

Varyeen (fISG* (AD)) (69)

Sgl (A(n-i-l)))

< HA(n+1) (VarDl ( |Sg D1 Z VarRK ))

K-
Z pacsy (Varp o, (FISGH(D1), Tu(DA\D1)) | SG* (AT+D))

where R, = D\UJ5_ 11 D,,. Since the terms above are treated identically
(except k = 1, which is actually simpler), without loss of generality we focus
on Kk = 2.

Recall from Definition that SG'(D;) was defined by East-extending
Dyq in direction uy. Further East-extend Dy by Iy (recall that Dy = youy +
A(r™ + Iyv,)) in direction ug, so that SG*(D,) is also defined. Let V =
Dy U D, (that is a - shaped region in Fig. [9) and

sgl(v) = Sgl(Dl) N Ta(D2\D1). (70)

Using a two-block dynamics (see e.g. Lemma [A.1)), we have
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Vary (f|SG*(V))
<uv(Varnl(fI«?gl(Dl))+15VaYV\D1(f| n(VAD1))ISGH (V)
h Qu(€lsGH (V)

, (1)
where
&= Sgl ( + y2U1) T (Dl e Dz) e QD1- (72)

Recalling Definitions [4.1] u and-, Eq. (72) and the fact that each segment
of length ¢(") /(eC) » 60 /e intersects at most O(1) droplets, we see that

€N To(V\D1) © SG* (A™ + your) A T (D2\ (A™ + your))
= SG(D,). (73)

By Eq. and convexity of the variance, we obtain

pv (e Varyp, (fIT.(VAD1))| SGH(V))
(Sg(l() ))PJV (Varp, (fI€ T, (VAD1)))

u(E)(SG (D)) py (Varp, (f|SG (D))
u(SGH(V))u(€ n T (V\Dy))
pv (Varp, (f1SG' (Ds)))
12 (T (ACHD))

Indeed, in the last line we recalled the definitions of SG*(Ds), SG*(V') and &
(see Definition and Eqs. and (72))), while in the second one we took
into account that for any events A < B with p(A) > 0 it holds that

(74)

o 2 p((f = p(f18))°La) _ pu(B)
Var(f[A) = min u ((f = ¢)*| A) < o) A< oA Var(f|i)5)

and Eq. (73).

We plug Eq. . in Eq. and note that by the Harris inequality,
Egs. (7) and (), u(€lSG*(V )) (&) = u(SGHAM))u(Ty(ATHD)). This
ylelds

Oy (Varp, (FISG(Dy)) + Varp, (FISGH(DL)
Vary (fISG° (V) < == SGr A a (S (V) (T, (AC )
_ Oy (Varp, (/1SG* (D) + Varp, (£1SG* (D))
< RSO (A0 0)) i (T (A1)

(76)

where the second inequality uses Eq. and Definition
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As in Egs. and (43), Proposition [£.6| gives

(Da) < max (v (AM) | 5=t (SGT (AM))) 0108 (1/a) =0 )

L HSGHAM) 1
#(SG1(Dz)) L

m=1

with M = min{m : \o(3/2)""! = I} < M®™. Plugging Egs. and
(and their analogues for D;) into Eq. (76), we obtain

(77)

(A0 10g*(1/a) mfg o™

V) < SGIACTD) (T, (D)) i, u(SGT(D,)

7 (A O log(1/a) [TM) )
= M4 (Sg1 (A(n+1))) M4(7:1(A(n+1)))’

where the last inequality uses Eq. and that SG*(D;) o SG*(A™+1)) by

Definition [8.3] Plugging this into Eq. (69)), concludes the proof of Lemmal[8.6]
since K = O£ /() < O(log*(1/q)), as noted in Remark O

Proof of Lemma[8.7. The first inequality in Eq. follows from the Harris
inequality Eq. , while the second one is trivial. Therefore, we turn to the
last one and fix n € [N™]. Note that by Definitions [4.4] [8.1] and

p(8GH (AT*V)) = (8GH (A™)) p (T (A™*9)) (T (D\Dy)) . (78)
We therefore proceed by induction starting with
1 (SGH (A®)) = ¢ A1 = 20/, (79)

We observe that from Definition in order to ensure the occurrence
of T,(A™1), it suffices to have O(W K ¢("+1)) /(¢(™§) well-placed W-helping
sets and O((£("+1))2) /(£ §e) helping sets for segments of length /(™ /(3¢).
Indeed, we may split lines perpendicular to each u; for j € (—k, k) into suc-
cessive disjoint segments of length 6¢("/(3¢) with a possible smaller leftover.
It is then sufficient to place W-helping sets or helping sets depending on
whether the segment under consideration is close to a parallel boundary of
one of the D, or not. Note that here we crucially use the assumption that
cach segment of length ¢ /(Ce) » 6™ /e intersects only O(1) droplets.

Recall that 1/e » 1/6 » W » 1, (V) = WOWge | = O+ /e <
logo(l)(l/q), the explicit expressions Eq. and Observation Then
the Harris inequality Eq. (7)), yields
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(T, (A00)

> qO(WQKe(TH'I))/(f(n)(S) (1 . efqa(;g(n)/O(E)) O((€(7L+1))2/(€(7L)56))

« n W”/(525) cr (80)
> eflogo(l)(l/q) « {(5q W ) n<N

exp (—1/ (¢® exp (WoPC=NDY)) - > Ner,

Essentially the same computation leads to the same bound for (7 (D1\Dy))
(see Eq. (B8)). The only difference is that only O(1) W-helping sets and
O(¢™+1) /) helping sets are needed. Further recalling Eqs. and , it
is not hard to check Eq. (67). O

8.2 FA-1f global dynamics

We next import the global FA-1f dynamics together with much of the meso-
scopic multi-directional East one simultaneously from [23].

Proposition 8.8. Let U have a finite number of stable directions, T =
exp(log*(1/q)/q®) and r™ be such that the associated side lengths satisfy
C < s < O(™) for all j € [4k]. Assume that for all I € [0, (] multi-
ple of \o the event SG(A(r™ + lv,)) is nonempty, decreasing, translation
invariant and satisfies

(1 1 (SG* (A (7™ + 1)) " T = o(1).
Then,

maxgepo,emes] Y(A(r™ + lvg))
(¢*/° mingefg gmes (SGL(A(TIM + luy))))lest/a)/e”

E, [10] <

The proof is as in [23], up to the following minor modifications. Firstly,
one needs to replace the base of the snail by A™® = A(r™ + X\o[£™/\o]v,),
which has a similar shape by hypothesis. Secondly, the event that the base is
super good on 23| should be replaced by SG*(A™*). Finally, |23, Proposition
4.9] is substituted by the definition Eq. of y(A™). As Proposition
is essentially the entire content of [23] (see particularly Proposition 4.12 and
Remark 4.8 there), we refer the reader to that work for the details.

Proof of Theorem . Let U be balanced rooted with finite number of sta-
ble directions. Recall AN™) = A(rV™) with #(N™) =: ¢ from Section
if k = 1 and from Section if k > 2. Fix [ € [0,™%] multiple of A
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and East-extend AO™) by [ in direction ug. It is not hard to check from
Definition [£.4] and Observation 3.11] that

p(SGHA ™ + ) 1 int oW)
. =pu (T (T (r'™, 1,0 =q
(see Eq. (38)). Then, by Proposition [£.6 Theorems and and the

Harris inequality Eq. , we obtain

1 (SGH (A (1™ + 1vy))) = exp ( - >

€2qa
exp (M) k=1,

53qa

v (A (™ + 1)) <

exp <2log(1/q) i%gq}loglog(l/q)) k> 2.

Plugging this in Proposition we obtain

Eu[TO] < exp 31log(1/q) L%gqioglog(l/@) k= 2, (81)

which concludes the proof of Theorem @‘ in the case £ = 1 and of Eq.
for £ = 2. The full result of Theorem m@] for k£ > 2 is proved identically,
replacing Theorem [8.5] by the stronger Theorem O

9 Balanced models with infinite number of sta-
ble directions

We finally turn to balanced models with infinite number of stable directions
(class [(B)). The internal dynamics was already handled in Section The
mesoscopic one (Section is essentially the same as the the internal one,
using two-dimensional East-extensions. The global dynamics (Section
also uses an East mechanism analogous to the FA-1f one from [23] used in
Section B2l

9.1 East mesoscopic dynamics

Given that the bound we are aiming for in Theorem [1[(b)|is much larger than
those in previous sections, there is a lot of margin and our reasoning is far
from tight for the sake of simplicity.

Recall N™ and ¢ for n < N™ from Eq. , the droplets A™ from
Section [8.1] their SG events from Definition For n > N™, we set (") =
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Wr=N" ) and define s, ™ A®™ as in Section Recall Section
Further let N™ = inf{n : ((W/c > (™ = ¢} = O(Clog(1/q)/log W)
and assume for simplicity that /(™) = ¢=C<. We are only be interested in
n < N™* and extend Definitions 8.1} [8.3] and [8.4] to such n without change.
With these conventions, our goal is the following.

Theorem 9.1. Let U be a balanced model with infinitely many stable direc-
tions (class[(b)). Then

v (AN") < exp <M) ;o u(SGH (AN = exp < _QQ) .

€3qa 52(]

Proof of Theorem[9.1. The proof is essentially identical to the one of Theo-
rem [8.5] so we only indicate the necessary changes. To start with, Lemma 8.6
applies without change for n € [N™ N™*). Also, the Harris inequality

Eq. still implies that al < pH(SGHAM)) < Y (SGHAN")). There-
fore,

(AN los® M (1/g)
(H(SGT(A)) iy T (A1) OO0

v (A(Nm)) <

Recalling the bound on y(A®™™) established in Theorem [8.5] together with
the fact that N™ < C'log(1/q) and MN"* =1 < O(C'log(1/q)), it suffices
to prove that

p(SGH (A)) min (T, (V) 2 e (<2/ (P07)). (82

ne[ Nmes]

in order to conclude the proof of Theorem

Once again, the proof of Eq. proceeds similarly to the one of Eq.
in Lemma Indeed, the same computation as Eq. in the present
setting gives that for n € [N N™) we have

o (To (A7) = 0 exp (a0 (240 /(52)) ) (83)

and similarly for u(7*(D:\Dy)) (as in the proof of Lemma [8.7 also see
Eq. (58)). From Eq. it follows that

1 (SGY (AN™)) = (Sgl (A(N““)»
Nmes

< |1 w(THDN\Do)) g (To (ATNAM)Y)

n=/Nint

Plugging Eqgs. and in the r.h.s., this yields Eq. as desired. [
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1 = O(m)

A Qit1 Qi

Figure 10: Tllustration of the East global dynamics (Section. The shaded
droplet A™ inscribed in the box @ is extended by 2/ to the thickened one
A.

9.2 East global dynamics

For the global dynamics we use a simpler version of the procedure of [23|
Section 5| with East dynamics instead of FA-1f.

Proof of Theorem . Let U be balanced with infinite number of stable
directions and recall Section (9.1 Set T' = exp(1/¢>*), sm = s(N™) | pmes =
™) and Ames = A In particular, sP = ©(0™) for j € [—k, k + 1]
and s = O(1/e) for j € [k + 2,3k — 1]. We East-extend A™* by 2] =
2(Ao+r+r5e) in direction ug to obtain A = A(r™*+2lv,). Proposition[4.6]
Theorem and Definition the Harris inequality Eq. (8) and the simple
fact that u(7(T(r™,21,0))) = ¢°") (by Observation é and Lemma

as usual) give

v(A) < exp (%) , 1 (SGH(A)) = exp < = ) . (84)

52 qa

A similar argument to the rest of the proof was already discussed thor-
oughly in [23, Section 5| and then in |25, Section 5|, so we only provide a
sketch. The adapted approach of [23], Section 5| proceeds as follows.

(1) Denoting t, = exp(—1/(e"¢**)), by the main result of [33] it suffices to
show that TP, (9 > t.) = o(1), in order to deduce E,[70] < t. + o(1).

(2) By finite speed of propagation we may work with the /-KCM on a large
discrete torus of size T > t,.

(3) We partition the torus into strips and the strips into translates of the box
Q = H,y (Ao +75°) nHy, (pr + ) 0 H,,_, (7™%) 0 H,,, (r5°) as shown
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in Fig. We say @ is good (G(Q) occurs) if for each segment S < @
perpendicular to some u € S of length 0™ the event " (S) occurs.
Further define SG(Q) to occur if the only (integer) translate of A™
contained in @ is SG. We say that the environment is good (€ occurs) if
all boxes are good and in each strip at least one box is super good. The
sizes are chosen so that it is sufficiently likely for this event to always
occur up to time t,. Indeed, we have (1 — u(SG*(A™)))TTY = o(1) by
Theorem 9.1 and (1 — yp(G))T" = o(1) by Observation [3.11]

(4) By a standard variational technique it then suffices to prove a Poincaré
inequality, bounding the variance of a function conditionally on & by the
Dirichlet form on the torus. Moreover, since y and £ are product w.r.t.
the partition of Fig. [I0] it suffices to prove this inequality on a single
strip.

(5) Finally, we prove such a bound, using an auxiliary East dynamics for the
boxes and the definition of v to reproduce the resampling of the state of
a box by moves of the original U/-KCM.

Let us explain the last step above in more detail, as it is the only one that
genuinely differs from [23].

Let Q; = Q + ilug and T = Uiem Q; be our strip of interest (indices are
considered modulo T, since the strip is on the torus). As explained above,
our goal is to prove that for all f : Qr — R it holds that

Varp(f|€) < exp (1/ (50(1)(12”)) Z pr (" Vary(f)), (85)

zeT

where cI'! takes into account the periodic geometry of T.
By [33 Proposition 3.4] on the generalised East chain we have

Varr(f1€) < exp (1/ (£°¢**)) D pr (Lsgq. ) Varg, (£1G (@) €),  (86)

i€[T]

since Theorem [9.1] and the Harris inequality Eq. (8) give u(SG(Q)|G(Q)) =
exp(~2/ ()

Next observe that A; > @Q;, where A; = A + (i — 1)lug (see Fig. [10).
Let G(ANQ:) < G(Qi1) N G(Q; 1) be the event that H"(S) holds for all
segments S < A;\@Q; of length 220™* perpendicular to some u € S. Hence,
by convexity of the variance and the fact that u(€) =1 — o(1) we have

8Strictly speaking [33] does not deal with the torus conditioned on having an infection,
but this issue is easily dealt with by the method of [6].
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pr (Lsg(qu_) Varg, (£19(Q))| €)
< (1+ o())pr (Vary, (f186(Qi1) 0 G(Q0) 0 G(ANQ1))
< (L+o0(1))pr (Vara, (fSG'(A))) -

Here we used Eq. and SG(Qi_1) N G(Q;) N G(A\Q;) = SGH(A;) (recall
Definition for the second inequality. Finally, recalling Eqs. (15]), (84)

and , we obtain Eq. as desired. O

As already noted, all lower bounds in Theorem [I] are known from [21] and
the upper ones for classes|(a)|and [(c)| were proved in [33] and [23] respectively.
Thus, the proof of Theorem (1] is complete.
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A Extensions

This appendix aims to prove our main building blocks—Propositions
and for the East- and CBSEP-extensions.

A.1 Auxiliary two-block chain

We begin with a non-product variant of the standard two-block technique for
the purposes of the proof of the East-extension Proposition Let (2, m)
and (€29, m2) be finite positive probability spaces, (€2, 7) denote the associated
product space and v = 7(-|H) for some event H < ). For w € ) we write
w; € §; for its i™" coordinate. Consider an event F < Q; and set

D(f) = v (Var,(f|w2) + 15 Var, (flw:))

for any f : H — R. Observe that D is the Dirichlet form of the continuous
time Markov chain on H in which w; is resampled at rate one from v(-|ws)
and, if w; € F, then w, is resampled with rate one from v(-|w;). This chain
is reversible w.r.t. v.
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Lemma A.1. Assume that F x Qg c H. Then, for all f : H — R we have

Var, (f) < O(1) max v~ (Flws)D(f).
w2 2

Proof. We follow |25, Proposition 3.5]. Consider the Markov chain (w(t)):=o
described above. Given two arbitrary initial conditions w(0) an w’(0) we con-
struct a coupling of two of such chains with these initial conditions such that
with probability Q(1) we have w(t) = w'(t) for t > T = max,,eq, v (Flws).
Standard arguments [29] then prove that the mixing time of the chain is
O(T') and the lemma follows.

To construct our coupling, we use the following representation of the
Markov chain. We are given two independent Poisson clocks with rate one
and the chain transitions occur only at the clock rings. When the first clock
rings, a Bernoulli variable £ with probability of success v(F|wsy) is sampled.
If £ = 1, then wy is resampled w.r.t. the measure 7 (:|F) = v(-|F,ws), while if
¢ =0, then w; is resampled w.r.t. the measure v(-|F¢ wy). Clearly, in doing
so wy is resampled w.r.t. v(-|ws). If the second clock rings, we resample wy
from 79 if wy € F and ignore the ring otherwise.

Both chains use the same clocks. When the first clock rings and the
current couple of configurations is (w,w’), we first maximally couple the two
Bernoulli variables &, &’ corresponding to w, w’ respectively. Then:

o if ¢ = ¢ =1, weupdate both w; and w] to the same 1, € F with probability
7(m|F);

e otherwise, we resample w; and w] independently from their respective laws,
given &, &',

When the second clock rings, the two chains attempt to update to two max-
imally coupled configurations with the corresponding distributions.
Suppose now that two consecutive rings occur at times t; < ty at the
first and second clocks respectively and the Bernoulli variables at time ¢; are
both 1. Then the two configurations are clearly identical at 5. To conclude
the proof, observe that for any time interval A of length one the probability
that there exist ¢; <ty in A as above is at least 1/(47"). O

A.2 Microscopic dynamics

We next turn to the microscopic dynamics (recall Section [2.2).
Recall Definition Let A = A(r) be a droplet with side lengths at least
C?. Given w € Qzza and i € [4k], we define A < AY < A(r + O(1)y;) by
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AY = A if a(u;) = 0 or a(u;) > a. If au;) € (0, ], we rather set

_AUU (1Zi v Hy, ], \H,) +2)\{y € Z\A : w, = 0},

the union being over z € A such that w234 = 0 and z is at distance
at least C' from all sides of A except the w;-side. In words, we essentially
look at pieces of u;-helping sets for the last few lines of the droplet sticking
out of it and add to A the sites which each piece can infect. The reason for
introducing this is that helping sets may need to infect a few sites outside A
before creating their periodic infections on the corresponding line and it is
those sites that we wish to include in AY. We set A} = | J,.; AY for I < [4k].
Let i € [4k] be such that o(u;) < oo forallje I = {i—k+1,...,i+k—1}. Fix
A = A(r) with side lengths at least C® and at most ¢~9(). Let [ € [0,0(1)]
be a multiple of A\, w € Qzo\a(r410)), AT = (A(r+1y;))7 and T = T(r,1,4). Our
goal is to provide a relaxation mechanism for an East-extension of bounded
length.

Lemma A.2. In the above setting we have

pasa (Vary (fT4(T))) < Q" (/a) Z [A+\A ( g oA Varx(f)>
zeAT\A
(87)
and the same holds for ST instead of T.

Though it is possible to prove this directly via canonical paths, we rather
deduce it from the main result of [19] proved much more elegantly. That
work was developed for the purpose of its present application.

Proof. We only treat T, the proof for ST being identical. Let us denote by
E¥ the event that the U-KCM restricted to A™\A with boundary condition
04 - wz2\p+ is able to fully infect A¥\A. As in the proof of Lemma , we
see that 7%(T') < £“. Moreover, recalling Lemma [£.2] we have u(7%(T)) >
pW(T)) = ¢°M), since T has bounded length. Hence, by Egs. and ,

pinna (Varg (fF|T9(T))) < Vargna (f]T7%(T)) < M) Varyna (fI€9).

We next observe that the process defining £ is in fact a one-dimensional
inhomogeneous KCM of the type considered in [19] and called general KCM
there (enumerate the sites of A*\A so that neighbouring sites remain at
bounded distance, e.g. in lexicographical order for (-, u; ), {-,u;))). There-
fore, |19, Theorem 1] yields Eq. as desired, taking into account that
H(E) > u(T(1) = *0V). 0
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Corollary A.3. In the same setting as above, we have

pa+ (Vare(f|T(T))] SGH(A))
< £000g(1/9)) 1 o< (V(A),M_l (Sgl(A))) Z e (cfvﬁ’w Varx(f)> (88)

xeEAT
and the same holds with ST instead of T.
Proof. By Lemma it suffices to bound
+ Wy
e (&7 V()| 56 ) )

from above by the r.h.s. of Eq. for any x € AT\A. By Eq. this is at

most
ATANAOp w2 5+

A+ (Cx VarAU{I} (f|$gl(A))) .
By the two-block Lemma we have
VarAu{:r} (f|Sgl(A))
< ¢ “Wpaoiay (Var (FISGH(A)) + 1z Var,(f)| SGH (M) ,

where 7 is the event that all sites in A at distance at most some large

constant from x are infected. Putting this together and observing that

A+\A,OA 'LUZQ\A+
T

+
1z-¢c <A we get

pin+ (Varg (| T(T))|SGH(A)) < Ollos”1/a)

A*\Alpas (Vara (f1SGHA) + Y] pas (e Var (/)] SG* (1)

zeAT\A
Finally, recalling Eq. and [A*| < ¢ we recover Eq. . ]

A.3 Proofs of the one-directional extensions

We require a more technical version of Eq. accounting for a boundary
condition. For a droplet A = A(r), boundary condition w € {2\, nonempty
event SG¥(A) < Oy and set of directions I < [4k], let ¥ (A) be the smallest
constant v € [1, o0] such that

pag (Vara (156 (A) <7 D5 uay (27 Var(f)) . (89)

w
zeAY
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holds for all f: Q2 — R.

For the rest of the section we recall the following notation from Proposi-
tion Let i € [4k] be such that a(u;) < oo for all j € (i — k,i + k). Let
A = A(r) be a droplet with r = ¢~9) and side lengths at least C°. Let
[ € (0,0™*%] be a multiple of \;. Let d,, = A\;|(3/2)™] for m € [1, M) and
M = min{m : \;(3/2)™ = I}. Let dpy =1, A™ = A(r + dpp;) for m e [1, M]
and s, = d,, — dy,_1 for m € [2, M].

Lemma A.4. Set [ = {i—k+1,...,i+k—1}. Let SG*(A(r)) be a nonempty
translation invariant decreasing event. Assume that we East-extend A(r) by
[ in direction u;. Then

ow)

M
y (AM) < maxny (Al)

m=

1 4
where ay, is defined in Eq. (17).

Proof. We loosely follow [25, Eq. (4.10)]. Note that by Egs. and
YHAM) = 4(AM). Proceeding by induction it then suffices to prove that for
any m € [1, M) and w € Qg2 ym+1

am

vy (Am“) <  max 'y;f (A™) W.

W/EQz2\Am

(90)

Fix such m and w and partition A =V} L V5 1 V5 so that
ViuVe=A", Vou Vs =A"+ s,u;.

That is, set Vi = spu; + T(r, S, i + 2k), Vo = sy, + A(r + (dy, — sm)v;) and
Vs = dpu; + T(r, Sm, 1)-

In order to apply Lemma we define Q; = Qpm, Qy = T¥(V3) and
equip them with m = pam and m = py,(-|T7¥(V3)) respectively. We set
H = SG¥(A™1) and F = SGYH(A™) n SG*(V5). Note that these these SG
events were defined when East-extending A(r) by [ in direction u;, since
0 < dp—58n < dp < dpy1 < dy =1 (for Vo we also use translation
invariance). Notice that F x Qy < H, since, by Definition SGH(A™) =
SGH(A(r)) n THT(r, dm, 7)) and

THT(r, dpy i) 0 T (Va) € T(T(r, dms1,4))
by Lemma [4.3] We may therefore apply Lemma to get

Varyme (f|SGY (A™1)) < O(1) max  p (FISGY(A™ ), )
vz €T (V3)
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x ppmer (Varam (f|H,mvy) + 15 Vary, (f[H, nam)| SG¥ (A™F1)) . (91)
Note that by Definition [4.4] for any ny, € T%(V3) we have
Mam - Ny € SG (A1) & 1pm € SGMs(A™),
which implies that

Varym (f|H,nv,) = Varym (f|SG™5™(A™))
p(FISG? (A™) ymvs) = p (FISG™(A™)).

Further note that by Definitions and

F =8G" (smu; + A1) n T (s + T (1, dyy — 5, 7))
N SGHA() A Tl (T (2 50,1,

the second SG event being implied by SG"s“(A™) again by Definition
Applying Lemma [£.2) and Eq. (9), we get that for any w’ € Qzz\m

H(FISG (A™))
> M(Sgl(Vz) A Tt Tdm=en) (T, $m, 1))
AW (T (1, 50,1)) [5G (A™))
1 (SGH(V2) A TO (T (2, 5, 1) 0 W (T2, 500, 1))] G (A™))
i (SGH 1) AW (T (1, 5.00) SG' (A™))
0©Wp (G (V)| SG¥ (Am))

A\

where in the second inequality we used that T°(T(r, s,,1)) > SG¥(A™),
using Definition [4.4] and s, < d,,. Moreover, since F x Qy < ‘H and F <
SG(Vy), we have

Lr Vaer (f|H’ TIAm) < IL«991(\/'2) Vaer (f|Tw(V3)) .
Plugging the above back into Eq. yields
Varymes (f1SG% (A1) < ¢ O max ! (sgl(vg)\ SG~' (Am)) (92)
X hpm+1 (VarAm (f|Sg”V3'w (Aerl))
+ Lsgi(v) Vary, (f|T%(V3)) [SG* (A™F1) ).
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From Eq. we have

Hiaemsnyg (Varan (f1SG™ (A1)
< max V;JI (A™) Z Jh(Am+1ye (C;AMH)LIJ’UJ Varx(f)) .

pe(AmH+1)w

On the other hand, recalling by Definition |4.4] that SG¥(A™ ) < T*(V3),

A G+ ye (Lsg) Varvg(f|7w(‘/é))‘ SG¥ (A1)
_ Hamyg (Lsgr vy L7y Var, (F[T(V5)))
= SGw(Am+1)
e TS ey (Vo (FIT 0 SG1 (V) A T(1)
1(SG (smus + A™)) prgamiye (Varam i, (F1SG (Va) 0 T¥(V3)))
u(SGHA)) (THT (1, Sy D)) (T (Smtw; + T'(1, din, )

 prgameyg (Varam 0, (F1ISGH(Va) 0 T (V3)))

n(T*(V3))
_ AT (sti + Tr, diy ) riams1yg (Varam 1,0, (fISG2 (smui + A™)))
(T (s + T(r, di = S, 1)) (T (dmtts + T (1, 5m,2)))(TH(V3))

'Y;J(Am) (A™+5mu; )% w
<T@ oty (T Van ()

ze(A™+smu;)¥

~

where we used Definition Lemma [£.3| and Eq. in the second in-
equality; translation invariance and Definition in the second equality;
Eq. , Definition and Lemma in the third inequality; and Lem-
mas and and Eq. in the last one. Plugging these bounds into
Eq. (92)), we obtain

w (AMH) < maX. 7%/(Am) .
) S OO )) min 1(SG (VR)ISG ()

It remains to transform the denominator in the last expression, fixing
some w’. Note that

p (THV5) 0 SGH (V) . SG (A™))

> u (T (V) n SG (Vo) n W (st + T (1, din — S, 3)) 0 SGH (A™))
1 (SG* (smui + A™) AW (s + T (1, dp, — 5m,3)) 0 SG'(A™))
My (SG* (smu; + A™) 0 SG (A™))

\

A\
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using that SG is decreasing in the boundary condition, then Lemmas
and [4.3] and Definition [£.4 and finally Lemma [4.2] and the Harris inequality
Eq. (7). Moreover, by Definition [£.4] and Lemma [£.2]

n(897(m) < a2 (SGHA™).
so that we recover
1 (TH03) 1 (8 (V2| ST+ (A™)) = ¢°™ fan,

completing the proof of Eq. and Lemma . O]

Proof of Proposition[{.6 The fact that SG(A(r + lv;)) is nonempty, trans-
lation invariant and decreasing follows directly from Definition 4.4 By
Lemmal[A.4]it suffices to relate max,, ¥ (A!) and y(A(r)), using Corollary [A.3]
Notice that by Definition [4.4] we have

SG¥ (AY) = SG (A(r)) x T*(T(r, i, i)). (93)
Therefore, (see e.g. [23, Lemma 3.9] or Eq. (68))
Varp (fISG” (A')) < pa) (Varre,i (f|7'w( (’f’ i i) \591 (A1)
+ i) (Varae) (f|591 )| T2 (T(r, Ai 1)) - (94)

The former term is treated by Corollary [A.3] which gives

pn+ (Varg, i (FIT (T(r, )\u ‘Sgl A(r)))
< 000y (y(A(r)), i~ ) X s (e Vary(f))

zeAt

where AT = (A(r + \,;)¥). For the second term in Eq. (94)), Eq. and
pren iy (TO(T (1, Ay 1)) = ¢°Y) (see the proof of Lemma [4.2) give

b (Vara (FISGH (M) T (T'(r, A, 1))
<q O "Y(AD) D] pawiawy (A Vary(f)) .

zeA(r)
Plugging these into Eq. and recalling Eq. (89), we get
7 (A1) < 20D max (v(AW), 1 (SGH(AW)))).

which concludes the proof of Proposition [4.6] together with Lemma[A.4] since
M = O(log(¢™=")) < O(C) log(1/q). O
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We next turn to CBSEP-extensions.

Lemma A.5. Assume that U has a finite number of stable directions. Set
J = [4k|\{i + k,i — k}. Let SG*(A(r)) be a nonempty translation invariant
decreasing event. Assume we CBSEP-extend A(r) by | in direction u;. Then

USG A+ Avy))) oo/
u(SGYH(A(r + lv;))) .

Proof. Asin [25, Eq. (4.10)] (with minor amendments as in Lemma |A.4)), we
have

v(A(r +lv,)) < max*yj (A(r + \w;))

v (AY) < maXny (A1) (SQESAQM O(MW) n bm (95)

with

b = max i, 2 (G2 | SG) max pih. (S5 SG*)

Let us mention that the only difference of Eq. w.r.t. [25] is the fraction
in the r.h.s. It comes from the absence of the conditioning in the r.h.s. of
Eq. as compared to |25, Eq. (4.5)] pointed out in Remark [3.12] This
leads to 25, Eq. (4.16)] being slightly simpler in our setting. Namely, there
one should use the fact that for any finite A ¢ B < Z%, A c Qu, B c Qp
and f: Qp — [0,00) we have

pp(Lalppa(f)) _ ps(Lapa(f)) — p(A)

pn(Lana())8) = P24 oasll) < RECAR Al By, 00

Using this yields

MHI SGHA™ T pSGA™)  u(SGTAY)
SGO( Am+1 S L 391 Am+1)gOW) ) (SGL(AM))qOMW)’

using Lemma [4.2] Up to this modification the proof is the same as in [25],
so we do not repeat it.

Given Eq. , we are left with proving b,, < ¢ 9 for all m. The last
statement is simply Lemma, the analogue of |25, Corollary A.3|, so we
are done. O]

Proof of Proposition[{.9 The fact that SG(A(r + lv,)) is nonempty, trans-
lation invariant and decreasing follows directly from Definition 4.4 By
Lemma it suffices to relate v4(A') and ~ (A(r)). This is done exactly as
in |25, Lemma 4.10] (see particularly Eqs. (4.20) and (4.22) there), replacing
[25] Eq. (4.30)] by Corollary and using Eq. and Lemma [4.2] as in
the proof of Proposition

[
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B Conditional probabilities

The goal of this appendix is to prove Lemmas [4.10| and 4.11, Recall Sec-
tion [4.4l and Definition

Proof of Lemma [{.10. We prove that for all s, s € [0,[] divisible by A; and
w,w" € Qg2 we have

n(SGy (M)
Once this is established, we note that by Definition

MSGIAN) _ oy (97)

myxp (SG7/(1) < 11 (8G°(8)) = (U 575 (A))
< O(l) max p (sg;i’ (A)) .

Further recalling from Section that | < (et < ¢ 9 and W « O, we

get
' 1(SG5(A)) -o(C
SGY(N)|SGY (N)) = L2l > (=0@)
p(SGHNISG () = Tz = a
since SGH(A) = SG'(A) = SG¥(A). Thus, it remains to prove Eq. (97).
Moreover, it clearly suffices to establish Eq. for s =0 and W' = 1.
To prove Eq. in that case, let us first observe that by translation

invariance, Definition and Eq. ,

pSGE(A) _ (ST () (ST (Ti_,)) -
1(SGg (M) wW(STHT)) ’

where for z € {s,l —s,l}, T, = T(r,x,i) and the w, is a boundary condition

that can be expressed in terms of w and z. Applying Lemmas and to

Eq. (98)), we obtain Eq. as desired. O

Our next goal is to treat certain perturbations of traversability events. To
do that we not only require the Harris inequality but also the van den Berg—
Kesten [38] one. We should note that the BK inequality is not natural to use
for an upper bound in our setting and has not been employed to this purpose
until now. Nevertheless, since we aim to bound conditional probabilities, it
will prove useful.

Definition B.1 (Disjoint occurrence). Given A = Z? and two decreasing
events A, B < (1), we say that A and B occur disjointly in w € Qy if there
exist disjoint sets X, Y < A, such that wx_y = 0; w% = 0 implies w’' € A for
w' € Qy; and wi = 0 implies w’ € B for w' € Q4.
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Proposition B.2 (BK inequality). For any decreasing events A, B < Qj,
(A and B occur disjointly) < u(A)u(B).

We may now start building conditional probability bounds up progres-
sively for segments, parallelograms and, eventually, tubes. For segments,
recall Section B.5

Lemma B.3 (Perturbing a segment). Fiz i € [4k] such that a(u;) < a.
Let S be a discrete segment perpendicular to u; and S',S" < S be discrete
segments partitioning S. Assume that |S| = Q(W)|S"| and |S| = q—*°W.
Then

W1/3|S”|

1—o(1)
q .
5]

p(H(SHIH(S)) = 1

Proof. Let us note that a stronger version of this result can be proved more
easily by counting circular shifts of the configuration in a O(1) neighbour-
hood of S such that a given helping set remains at distance at least some
constant from S” (see the proof of |12, Proposition 3.2(3)| for a subsequent
implementation of this technique). We prefer to give the proof below as a
preparation for Lemma |B.4

By translation invariance, we may assume that S is of the form in Eq. .
In view of Definition we need to distinguish cases, depending on whether
a(uipor) > a. We first assume that o(u;9r) > . Thus, helping sets are just
u;-helping sets or W-helping sets. By Definition if a(u;) = 0, there is
nothing to prove, since w;-helping sets are empty, so H(S") always occurs. We
therefore assume that a(u;) > 0. We further assume S” # &, since otherwise
the statement is trivial.

Recall from Definition [3.7]that a u;-helping set is composed of () translates
of the set Z;. For r € [Q] we denote by Hy(S) the event that there is an
infected translate of Z; by a vector of the form (r + k,.Q)\; yu;x with k, € Z
satisfying Eq. (for d = 0). Similarly define Hy(S’). In words, we look
for the part of the helping set with a specified reminder r modulo ). In
particular, by Definitions [3.9 and we have

H(S) =HY(S) U [] Hin(S) (99)
re[Q]

and similarly for 5.

Since |S| = ¢=**°() the probability that there are a + 1 infected sites at
distance O(1) from each other and from S is ¢' =), Furthermore, if this does
not happen, but 7(S) occurs, then all H,(S) for r € [Q] occur disjointly.

92



Therefore, by the BK inequality Proposition

p(H(S) < ¢ V4 [T n(Hw(9) < 1+ D) T 1 (Hw(S)) . (100)

re[Q]
since, as in Observation [3.11] we have
P(HE(S)) =1 — (1 —¢)D = g, (101)
Using Egs. and (100) and applying the Harris inequality Eq. (7)), we get
p(s) DM ) ey 7T 400 (5)
p(H(S)) — (14 ") [ e #(Hi(9)) g HHo(S)

For r € [Q] and j € Z, let us denote by I(jr) the indicator of the event
that Z; + (r + jQ)Ni+xtiy is fully infected and denote by Ji;y(S) the set of
values of j such that this set satisfies Eq. (L4)). Since Z; has diameter (much)
smaller than @, for all r € [Q], the random variables I(jr) are 1.i.d. for j € Z

(and therefore exchangeable). Further noting that J,)(S) o Ji)(S'), and

setting 3 = ZjeJ(r)(S) I(jT), we obtain

p(Hn (S)) i
=u ]r >11Y>1
IL‘L(H(T)(S)) jEJ(;)(S') ( )
1y (S)] ,
_ (Z)l M(E—S HIM \Jo(S)I—l
s=1 u( |J(T | _l

|J (S’>| "%“ (S =5) _ (S _ |8'1-0(1)
S uEEY Vel s

Recalling that |S| = Q(W)[S”| and W » @ = O(1), this entails that

! " Q
WH(SIS) = P00 = (1= =) (1 O

|51
_ ey O@)15]
|sI

concluding the proof for the case a(u; ox) > av.

Turning to the case, a(u; o) < «, there is little to change. Firstly, if
a(u;9r) = 0, the proof above applies, since a-helping sets in direction u;
are the same (since u;ox-helping sets are empty). Moreover, if —Z; o =
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Zi + x\iyru; g for some x € Z, there is nothing more to prove either, since
a-helping sets and w;-helping sets coincide again. We may therefore assume
this is not the case. If a(u;) = 0, then the proof proceeds as above, but with
Z; replaced by —Z; 9. Finally, if 1 < a(u;), a(uiror) < a, then the proof
proceeds as above, but one needs to consider not only #,(S), but also their
analogues with Z; replaced by —Z;, 9. O

In the next lemma, we next focus on a parallelogram, which plays the role
of one of the hatched ones in Fig. [3l Informally, the statement is as follows.
The w;-side of the parallelogram is of critical size, so that each segment S, ,,,
into which it is decomposed in Definition is also of critical size, allowing
us to apply Lemma to it. The other dimension of the parallelogram is
left unconstrained. The lemma provides a bound on the probability that a
parallelogram of slightly smaller u;-side is traversable (has helping sets for
each segment S, ,,, given that the original one is.

Lemma B.4 (Perturbing a parallelogram). Let i,j € [4k] be such that j ¢
{i,i + 2k} and a(u;) < . Consider the parallelogram

R = R(l> h) = ﬁuz(l) A ﬁuj (h) a Euj+2k (0) a EUH% (O)

forl e |ps, e‘fo(l)] and h = g~ We say that R is traversable in direction
w; (T(R) occurs), if for each nonempty segment of the form

S =7 R~ H,(h)\H,, ()

the event HEZQQ\R(HW’M(S) occurs. Let R' = R(I, 1) with1 = h'/h = 1—-1/V.
Then

w7 > (1-viv (1) - qlom)O(” |

Proof. We start by noting that if «(u;) = 0, there is nothing to prove, since
T(R') always occurs, so we assume a(u;) > 0. Furthermore, we may assume
that h—h' > Q(1), since otherwise either RnZ? = R'nZ* or R'nZ* = R"nZ?
for some R" = R(l,h — Q(1)). Let M = 1+ |l/p;], so that R consists
of M segments perpendicular to u;. Let us emphasise that the boundary
condition is irrelevant for 7(R), as it is imposed far from the boundary
of the domain concerned. Therefore, this event may also depend on the
configuration outside R.

We partition R into its first and second halves Ry = R(pi|l/(2p:)], h)
and Ry = R\R;. Thus, R, and R, consist of [M /2] and |M /2| segments
perpendicular to w; respectively. Recalling Definition [3.7, we see that if
T (R) occurs, then one of the following must occur.
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e The parallelograms R; and R, are disjointly traversable.

e There is a set of o+ 1 infections at distance O(1) from each other and from
both R; and Rs. Furthermore, the parallelograms R} and R}, formed
by removing in each of Ry and R, the ) lines closest to their common
boundary, are both traversable.

Using the BK inequality Proposition this gives

T (R) < p(T(R)u(T(Rs)) + ¢' P (T(R))) i (T(Ry))
= (T (R)(T (R2)) (1 +¢" ). (102)
The last estimate follows as in Eq. from the fact that traversing the

O(1) lines at the boundary of R, and R, happens with probability ¢°(")
together with the Harris inequality Eq. (7).

Let us write simply #,, for HéZ;\R(”W’h) (R ~ H(mp;)\H,, (mp;)) and sim-
ilarly define H], for R'. Iterating Eq. (102)), we obtain

TR)< (1+¢"W) [] w(Hm),

me[M]
since [ = e? “. Hence, by the Harris inequality Eq.

(T (R)) 7 0(1 1 7‘[/
WTE) ) 11

me[M] p(H

The last fraction can be bounded, using Lemma to obtain

! :N(T(R/)) . 1/3 _El _1—0(1) "
1w (T(R)|T(R)) —M(T(R))>(1 oW )(1 h) g ) O

Turning to the proof of Lemma [4.11] recall Fig. There the regions
introduced in the proof below are depicted as follows. The parallelograms
R; are North-West hatched, while R are North-East hatched. Thus, R}
are double hatched. The shaded parallelograms are R, while R} are the
remainder of the area which is North-East but not double hatched.

Proof of Lemma [[.11. Recalling Definition [1.1] it is clear that 7;*(T') is the
intersection of 2k — 1 independent traversability events for parallelograms of

length [ in the sense of Lernrna Let us denote them by (R;)~!  and,

Jj=i—k+
similarly, (R );Jr’f 11+1 for T" with R; and R} having sides perpendicular to u;

(see Fig. ). Thus, fixing j € (i — k,i + k), the role of ¢ and j in Lemma
is played by j and ¢ + k here.
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Further set RY = R; n R, = R(l — O(A),s; — O(A + Cz)).ﬂ Notice that
(see Fig. B) R;\R consists of two disjoint possibly empty parallelograms
R; = R(O(A),s; — O(A + C?)) and R} = R(l — O(A),0(A)) with the
notation of Lemma (up to translation). Note that here we used that R/
has smaller length and height than R;, because s; > s, [ > " and d’ = d.

By Lemma [4.2] and Eq. (7)) we have

ol HOV(T) A TalT) A W(T) A Ta ()
p (75 @) T (1)) = O
¢ W u(Ta(T))
> " (To (T TU(T)),

where T;(T) denotes the event that 7" is (-, d)-traversable without boundary
condition (also depending on the states of sites outside T') and similarly for
T'. Moreover,

To(T') = (YT > (YT(R) A TR TaT) = (| T(Ry),

J

so the Harris inequality Eq. @D gives
u (T TUT) = [ [ (T () (T (B))|[ T(Ry))-
J

We may then conclude, using Lemma and that by Observation

n(T(RD) = (1= (1= g*)2e) 7). 0

C The surplus factor for balanced rooted mod-
els with finite number of stable directions.

To conclude, let us briefly sketch how to remove the log loglog(1/q) factor ap-
pearing in Theorem [8.5 which would also propagate to pollute Theorem [1ffe)]

(see Eq. (B1)).

Theorem C.1. Let U be balanced rooted classes and . Let A(Mnt) be
as in Section . Instead of Definition one can define Sgl(AUV““)) m

such a way that

A o(1) ; -
N (A(Nmt)) < exp <log log(l/q)) 7 M(sgl(A(N”)) > exp( = ) .

€2qa

9This equality only holds up to translation, but for simplicity we leave out the transla-
tion vector. Note that, although we stated Lemma for parallelograms with an integer
point at one of their corners, analogous bounds hold for non-integer translates thereof.
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Sketch proof of Theorem [C.1. To prove this, one should combine the tech-

niques of Sections and . More precisely, a bound on a'™ less crude

than Eq. should be established along the lines of Eq. (48). As in Eq. (59),
we may further decompose a™ into a product over scales p < n.

The relevant values of the parameters correspond to m such that (3/2)™ <
1/(log" (1/q)q®), say, and p € [N, n], as other cases can be dealt with using
the crude bound Eq. . Further, as in Eq. , we can also discard
p = N 4+ V. Hence, we need to focus for the remaining values of m and p

on lower bounding
i (Tp (APND) + ) | T, (AP \D)) (103)

and p(T1((D1\Do) + sm)|T*(D1\Dy)), the latter being treated exactly like
w(T'|T) in Eq. (60). Equation (103)) can be further decomposed as a product
over elementary regions delimited by the boundaries of the (D, ),efx] (recall

Fig. 0l Remark and Eq. (9)).

Unfortunately, for such (non-convex) polygonal regions R, bounding
e (Tp (B + sm)| To(R))

is no easy feat. Indeed, Lemma[4.11]only treats tubes and, more importantly
deals, with helping sets for one direction only in each part of the tube (recall
Fig. 2a), while 7,(R) requires helping sets in various directions, which are
all dependent. To make matters worse, for certain families ¢/ it may happen
that a single set of « infections is simultaneously a helping set for different
directions and this would create complex and heavy dependency among dif-
ferent directions, which could, a priori, make boundary regions attract such
sets.

To deal with this issue, one could further elaborate Definition In-
deed, we may split A®*\ D, into disjoint horizontal strips (recall Fig.
of width ¢P)/(We). Each strip is assigned a direction u;, j € (—k,k) and
we only ask for helping sets for this direction to be present. These require-
ments are again cut at a small distance from the boundaries of all D, into
parallelograms like the ones treated in Lemma We further demand W-
helping sets on segments close to the boundaries of the various D, as in
Definition [8.I] Naturally, some leftover regions remain without helping sets
as in Definition [8.3] but they are unimportant like in Section [8.1]

By doing this, we make the event 7,(R) the intersection of traversability
events of parallelograms in the sense of Lemma [B.4] so that its result can
be applied as in the proof of Lemma [4.11] leading to a calculation similar
to the one in Theorem The only significant change is that now there
are O(W¢P+1) /{®P)) parallelograms instead of a constant number. This is not
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really a problem. However, if we wish to avoid careful computations, given
that we are interested in the range p € (N, N 4+ W), we can brutally bound
Wew D) /¢®) by its maximum, which is log®® log(1/¢) by the definition of ¥,
Eq. . 0
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