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Abstra
t

Bootstrap per
olation is a wide 
lass of monotone 
ellular automata with

random initial state. In this work we develop tools for studying in full

generality one of the three `universality' 
lasses of bootstrap per
olation

models in two dimensions, termed sub
riti
al. We introdu
e the new notion

of `
riti
al densities' serving the role of `di�
ulties' for 
riti
al models [12℄,

but adapted to sub
riti
al ones. We 
hara
terise the 
riti
al probability

in terms of these quantities and su

essfully apply this link to prove new

and old results for 
on
rete models su
h as DTBP and Spiral as well as a

general non-trivial upper bound. Our approa
h establishes and exploits a

tight 
onne
tion between sub
riti
al bootstrap per
olation and a suitable

generalisation of 
lassi
al oriented per
olation, whi
h will undoubtedly be

the sour
e of more results and 
ould provide an entry point for general

per
olationists to bootstrap per
olation.

Furthermore, we prove that above a 
ertain 
riti
al probability there is

exponential de
ay of the probability of a one-arm event, while below it the

event has positive probability and the expe
ted infe
tion time is in�nite.

We also identify this as the transition of the spe
tral gap and mean infe
tion

time of the 
orresponding kineti
ally 
onstrained model. Finally, we essenti-

ally 
hara
terise the noise sensitivity properties at �xed density for the two

natural one-arm events.

In doing so we answer fully or partially most of the open questions asked

by Balister, Bollobás, Przyku
ki and Smith [4℄�namely we are 
on
erned

with their Questions 11, 12, 13, 14 and 17.
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1 Introdu
tion

1.1 Ba
kground

The bootstrap pe
olation (BP) pro
ess is a deterministi
 monotone 
ellular auto-

maton �rst introdu
ed in 1979 by Chalupa, Leath and Rei
h [18℄ (see [55℄ for a

review). Given a set A ⊂ Z
d
or (Z/nZ)d of initially infe
ted verti
es (sites), we de-


lare more verti
es to be infe
ted on ea
h (dis
rete) time step a

ording to a lo
al

rule. For a given initial state A, we say that BP o

urs if every vertex eventually

be
omes infe
ted. In the �rst examples 
onsidered a site be
omes infe
ted if at

least r of its nearest neighbours are already infe
ted. These models are motivated

by several di�erent fa
ets of statisti
al physi
s (see e.g. [1, 2℄). For instan
e, they


an represent nu
leation or ex
itation of a metastable material. Moreover, they

are tightly related to the zero-temperature dynami
s of the Ising model [26, 54℄,

as well as kineti
ally 
onstrained models for the liquid-glass transition [14, 41℄. In

these appli
ations and the vast majority of BP literature the initial set A is 
hosen

randomly a

ording to a produ
t Bernoulli measure with density of infe
tions q,
whi
h we denote Pq. A quantity of major interest for this model is its 
riti
al

probability de�ned by

qc = qc(Z
2) = inf

{

q,Pq([A] = Z
2) > 1/2

}

(1)

on Z
2
and similarly for other graphs. We denote the parameter q instead of the

standard p, as it will be
ome 
lear that a more natural des
ription of the model

is in terms of a 
ertain in�nite `
luster' of healthy sites, whose density is 1 − q.
We will use the term per
olation for a random subset of Z

2
with law Pp for any p

(without ne
essarily referring to a BP pro
ess).

The �rst results on BP due to van Enter [63℄ and S
honmann [59℄ proved the

triviality of the phase transition for all values of the parameters r and d. However,
Aizenmann and Lebowitz [3℄ showed that when the dynami
s is 
onsidered on a

�nite box {1, . . . , n}d instead of Zd
, the 
riti
al probability s
ales likeΘ

(

(logn)1−d
)

for the nearest neighbour model with d > r = 2. As it was noti
ed by Balogh and

Bollobás [6℄ the phase transition is sharp owing to the general result of Friedgut

and Kalai[28℄. The position of the sharp threshold for d = r = 2 was determined

in a breakthrough of Holroyd [45℄. His results were then improved further and now

the s
aling of the se
ond term of the 
riti
al probability is exa
tly known [33, 43℄

in this setting. For d > r > 2 the 
orre
t s
aling was determined by Cerf and

Cirillo [16℄ and Cerf and Manzo [17℄. The 
orresponding sharp threshold was

established by Balogh, Bollobás and Morris and the same authors together with

Duminil-Copin [7, 8℄.

However, the methods of those works remained highly model-dependent, while

many more models had been studied in the literature and some exhibited very dif-
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ferent behaviour [30,56,59,64℄. A relatively general 
lassi�
ation was �rst attemp-

ted by Gravner and Gri�eath [30,32℄. It was mu
h later substantially generalised,

re
ti�ed and universality results were rigorously proved by Bollobás, Smith and

Uzzell [13℄ and Balister, Bollobás, Przyku
ki and Smith [4℄. It is this vast 
lass

of models that we introdu
e now. Although mu
h of our work easily 
arries over

to higher dimensions, we restri
t ourselves to models on Z
2
, as the universality

pi
ture is 
urrently only established in this setting.

1.2 Models

Bootstrap per
olation A BP model is parametrised by an update family�a

�nite family U of �nite non-empty subsets of Z
2 \ {0} 
alled rules. The initial

set of infe
tions A = A0 in Z
2
or (Z/nZ)2 is taken at random a

ording to the

produ
t Bernoulli measure with parameter q, Pq, and we de�ne the evolution of

the dynami
s by

At+1 = At ∪ {x ∈ Z
2, ∃U ∈ U , x+ U ⊂ At},

so that a site be
omes infe
ted if any of the rules is entirely infe
ted already. We

denote by [A] =
⋃

t>0At the 
losure of A and extend this notation to A ⊂ R
2
by

setting [A] := [A ∩ Z
2]. The 
riti
al probability is de�ned as in (1) for Z

2
and

(Z/nZ)2.
The result of [4, 13℄ is a partition of these models into three 
lasses. The


lassi�
ation is based on the notion of stable dire
tions�a dire
tion u ∈ S1 =
{x ∈ R

2, ‖x‖2 = 1} is unstable if there exists U ∈ U entirely 
ontained in the

half-plane Hu = {x ∈ R
2, 〈x, u〉 < 0} and stable otherwise, where 〈·, ·〉 denotes

the 
anoni
al s
alar produ
t of R
2
. In terms of the BP pro
ess u ∈ S1

is stable

i� [Hu] = Hu ∩ Z
2
and unstable i� [Hu] = Z

2
(see [13, Lemma 3.1℄). With this

terminology BP models are 
lassi�ed as follows.

• Super
riti
al if there exists an open semi-
ir
le of unstable dire
tions. In this


ase qc((Z/nZ)
2) = n−Θ(1)

[13℄.

• Criti
al if there exists a semi-
ir
le with a �nite number of stable dire
tions,

but it is not super
riti
al. In this 
ase qc((Z/nZ)
2) = (log n)−Θ(1)

[13℄.

• Sub
riti
al otherwise, i.e. if every semi-
ir
le 
ontains in�nitely many stable

dire
tions. In this 
ase on Z
2
we have qc > 0 [4℄.

It is not hard to 
he
k (see [13, Theorem 1.10℄) that, sin
e the update family and

rules are �nite, the set of stable dire
tions forms a �nite union of 
losed intervals of

S1
, with rational endpoints, a dire
tion u ∈ S1

being rational if there exists x ∈ Z
2
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su
h that x = λu for some λ ∈ R \ {0}. In parti
ular, the above 
lassi�
ation is

indeed equivalent to [13, De�nition 1.3℄.

Before dis
ussing further results, let us give a few examples to digest these

de�nitions. Turning ba
k to the r-neighbour models, one 
an embed them in

this setting by 
onsidering U 
onsisting of all r-element subsets of the set of the

4 nearest neighbours of 0. The 
ase r = 1 is super
riti
al, as it has no stable

dire
tions; r = 2 is 
riti
al, as only the four latti
e dire
tions are stable; r ∈ {3, 4}
are sub
riti
al, as they have no unstable dire
tions.

Trivial sub
riti
al models Models with no unstable dire
tions, whi
h we 
all

trivial sub
riti
al models, are not parti
ularly relevant for us. It 
an be shown

that they are exa
tly the models su
h that qc = 1 or, equivalently, su
h that there

exist �nite sets of healthy sites, whi
h 
annot be infe
ted by the rest of Z
2
[4℄.

Therefore, it is useful to introdu
e more interesting sub
riti
al models, whi
h will

be investigated further in this work.

Oriented site per
olation OP 
an be viewed as the BP model with U =
{{(1, 1), (−1, 1)}}. It is easy to 
he
k (and was noti
ed already by S
honmann

[59℄) that x 6∈ [A] if and only if there exists an in�nite oriented path (with North-

East and North-West steps) starting at x of initially healthy sites. In parti
ular,

qc for this model is equal to 1− pOP
c , where pOP

c is the usual 
riti
al probability of

OP parametrised in terms of the density of healthy sites (this is one of the reasons

for denoting our parameter q). Up to applying an invertible linear transformation

to Z
2
, any family with one rule 
onsisting of two non-
ollinear sites is equivalent

to OP, so we will abusively also 
all them OP. Furthermore, one may 
onsider

bidire
tional OP with U ′ = {{(1, 1), (−1, 1)}, {(−1,−1), (1,−1)}}, for whi
h the

surviving healthy sites are those initially belonging to a bi-in�nite oriented path,

so that the 
riti
al probability is again 1 − pOP
c . OP is a very 
lassi
al and well-

understood model, for ba
kground on whi
h we dire
t the reader to [24℄ in addition

to Se
tion 5.

One-rule families and generalised oriented per
olation More generally, it

is natural to 
onsider all update families with only one rule, U = {U}. There are
three types of them. If the origin is 
ontained in the 
onvex envelope of U , then
U is trivial sub
riti
al. If the rule is 
ontained in a half-line starting at the origin,

the model is super
riti
al. All remaining one-rule families give rise to non-trivial

sub
riti
al models and their rule is 
ontained in an open half plane. We refer to

these models as generalised oriented site per
olation (GOP). Spe
i�
 
ases of these


orrespond to well-known probabilisti
 
ellular automata (see [44℄).
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Spiral model The Spiral model of Toninelli, Biroli and Fisher [62℄ is de�ned by

U = {U1, U2, U3, U4}, where

U1 = {(1,−1), (1, 0), (1, 1), (0, 1)} U2 = {(1,−1), (1, 0), (−1,−1), (0,−1)}
U3 = −U1, U4 = −U2.

(2)

This model was introdu
ed to witness the somewhat surprising fa
t that sub
riti
al

BP 
an have a dis
ontinuous phase transition in the sense that θ(qc) = Pqc(0 6∈
[A]) > 0. This was established rigorously by Toninelli and Biroli [61℄ based on a


lose relationship with OP, whi
h we will dis
uss further in Se
tion 6.

Dire
ted triangular bootstrap per
olation DTBP was introdu
ed by Ba-

lister, Bollobás, Przyku
ki and Smith [4℄ as an example of a simple, but somewhat

generi
, sub
riti
al model. Its main feature is its la
k of symmetry and it should

be viewed as a ben
hmarking example. It 
an be de�ned as 2-neighbour BP on a

dire
ted triangular latti
e, but 
an also be embedded in Z
2
by

U = {{(1, 0), (0, 1)}, {(1, 0), (−1,−1)}, {(0, 1), (−1,−1)}}. (3)

As for most sub
riti
al models not mu
h is known about it. As a quantitative

illustration of their result, the authors of [4℄ established that for DTBP

10−101
6 qc 6 1− pOP

c 6 0.3118,

invoking Gray, Weirman and Smythe [34℄ for the last inequality.

Kineti
ally 
onstrained models KCM are sto
hasti
 generalisations of BP,

although they were introdu
ed independently to model the liquid-glass transition

[27℄. A KCM is de�ned by an update family U and a parameter q as in BP. It

is a Markov pro
ess on {0, 1}Z2

reversible w.r.t. Pq with the following graphi
al

representation (see e.g. [48℄ for ba
kground on intera
ting parti
le systems). We


onsider independent standard Poisson pro
esses on ea
h site and at ea
h point of

those pro
esses the state of the 
orresponding site is resampled from its equilibrium

Bernoulli measure with parameter q if it would be
ome infe
ted on the next step

in the BP pro
ess with the same update family and remains un
hanged otherwise.

Can
rini, Martinelli, Roberto and Toninelli [14℄ proved that the 
riti
al probability

of a KCM (above whi
h 0 is a simple eigenvalue of the Markov generator) is

equal to qc for the 
orresponding BP. Furthermore they proved, using a general

halving te
hnique, that the spe
tral gap of the Markov generators of spe
i�
 KCM


onsidered in the physi
s literature is stri
tly positive (see e.g. [39℄ for a variational

de�nition).
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Super
riti
al models Certain 
lasses of super
riti
al BP were studied exten-

sively in the 90s by Gravner and Gri�eath (see [31℄), mainly from the point of

view of limit shapes and minimal per
olating sets, whi
h are usually �nite for su
h

models. Their KCM 
ounterparts o�er additional 
omplexity, but were su

ess-

fully studied in general by Marê
hé, Martinelli, Morris and Toninelli in di�erent


ombinations [50�52℄.

Criti
al models For general 
riti
al BP the most notable results are due to

Bollobás, Duminil-Copin, Morris and Smith [12℄. They introdu
ed a notion of

`di�
ulty' of a (topologi
ally) isolated stable dire
tion, 
ounting the number of

additional infe
tions needed for an infe
ted half-plane to grow and used it to de-

termine the exa
t s
aling (up to a 
onstant fa
tor) of qc((Z/nZ)
2) for all 
riti
al

models. Although it will not be used dire
tly, this notion is an important inspira-

tion for our work. Sharper results generalising the one of Holroyd [45℄ were also

proved in a more restri
tive but still somewhat general framework by Duminil-

Copin and Holroyd [20℄.

Very re
ently, an equaly 
omplete understanding of 
riti
al KCM was a
hieved

in a series of works by Marê
hé, Martinelli, Morris, Toninelli and the author in

various 
ombinations [37�41,52℄, establishing a more 
omplex behaviour.

Sub
riti
al models The fo
us of our work are the least understood of the three


lasses of update families�sub
riti
al ones. For them the only result in full gene-

rality to date is the one of Balister, Bollobás, Przyku
ki and Smith [4℄ stating that

qc > 0. The te
hnique behind it is a fairly involved multi-s
ale renormalisation,

whi
h has little hope of providing more results than what Peierls arguments give for

standard per
olation models (see Grimmett's 
lassi
al monograph on per
olation

theory [36, Chapter 1℄). We should note that providing a simple analyti
 expres-

sion for the 
riti
al probability qc of sub
riti
al models does not seem plausible

even for the simplest one�OP.

1

Ordinary site per
olation Finally, SP is one of the most 
lassi
al per
olation

models (see [36℄), whi
h will also be useful for us, although it is not a parti
ular 
ase

of BP. Similarly to OP, it 
onsists in de
laring ea
h site of Z
2
open independently

with probability p and looking for in�nite paths of open sites with respe
t to the

usual nearest neighbour graph stru
ture of Z
2
instead of the oriented one for OP.

We denote pSPc the 
riti
al probability of appearan
e of su
h in�nite paths.

1

To quote Grimmett [36℄ in the setting of standard per
olation, but also valid e.g. for OP, �It

is highly unlikely that there exists a useful representation of pc [...℄ although su
h values may be


omputed with in
reasing degrees of a

ura
y with the aid of larger and faster 
omputers.�
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2 De�nitions and notation

In this se
tion we gather most of the notation used throughout the arti
le. We

invite the reader familiar with per
olation to skip ahead to Se
tion 3 and go ba
k

to this se
tion as needed. As some of the notions will be used relatively lo
ally,

let us indi
ate that the 
entral notion of the present work is the one in De�nition

2.1.

Criti
al probability Re
all that 0 < q < 1 is the density of infe
ted sites and

Pq is the asso
iated Bernoulli produ
t law of the random set A ⊂ Z
2
and that

[·] denotes the 
losure with respe
t to the BP pro
ess de�ned by a non-trivial

update family U , that we keep impli
it when there is no risk of 
onfusion. Also,

Bx = [−x, x]2 ∩ Z
2
for all x ∈ [0,∞). De�ne

θn(q) = Pq(0 6∈ [A ∩ Bn]),

θ(q) = lim
n
θn(q) = Pq(0 6∈ [A]).

The 
riti
al probability is given by

qc = inf
{

q ∈ [0, 1],Pq([A] = Z
2) = 1

}

= sup {q, θ(q) > 0} ,

the �rst equality following from ergodi
ity and the se
ond one resulting from in-

varian
e by translation as for SP (see e.g. [36℄). We also introdu
e another 
riti
al

probability

q̃c = inf

{

q ∈ [0, 1],
∑

n

nθn(q) <∞
}

, (4)

whi
h is a
tually the only relevant one for our proofs, only noting that q̃c > qc.
Several other equivalent de�nitions will be proved in Theorem 3.5, so that q̃c is

in parti
ular the 
riti
al probability of exponential de
ay of θn(q). We emphasise

that working with q̃c instead of qc will only lead to stronger results in appli
ations.

Dire
tions and half-planes In order to de�ne the 
entral notion of this work,


riti
al densities, we will need some 
onventions and notation 
on
erning dire
tions

and half-planes, whi
h will mostly follow previous authors. We identify the unit


ir
le S1 ⊂ R
2
with the torus R/2πZ via

(cos θ, sin θ)←→ θ mod 2π.

Despite the identi�
ation we shall preferentially use the letters u, v for dire
tions

and θ for angles. For n ∈ N dire
tions u1, . . . un ∈ S1
we write u1 < . . . < un if

8



one 
an �nd θ1 < . . . < θn < θ1 + 2π and θ in R su
h that for ea
h i we have

ui ←→ (θi − θ) mod 2π.
Re
all that 〈·, ·〉 and S1

are the 
anoni
al s
alar produ
t on R
2
and its unit

sphere (
ir
le). Furthermore, for u ∈ S1
and a ∈ R set

H
a
u = {v ∈ R

2, 〈v, u〉 < a},
Hu = H

0
u and H

a+
u = {v ∈ R

2, 〈v, u〉 6 a}. We denote by Vu,v = Hu ∩ Hv the


one de�ned by the dire
tions u, v ∈ S1
. We also re
all the standard notation

a ∨ b = max(a, b) and a ∧ b = min(a, b).

Criti
al densities We are now ready to introdu
e the new notion of `
riti
al

densities' adapted to sub
riti
al BP (for 
riti
al and super
riti
al ones they will

turn out to be identi
ally 0). Let us note that this is not an extension, but rather

a 
omplement, of the `di�
ulties' of [12℄, whi
h are trivial for sub
riti
al models.

Before we frighten the reader with the de�nition, let us say that the 
riti
al

density in a dire
tion u is morally the 
riti
al probability of the model with infe
ted

boundary 
ondition in Hu. The de�nition we give di�ers from this one in two

ways�it 
on
erns the 
riti
al probability for 
ertain de
ay of θn(q) and it is de�ned
in a region whose shape approa
hes a half-plane. Nevertheless, this distin
tion will

only be of major importan
e for Se
tion 4.2. That is be
ause in appli
ations we will

always rely on simple OP-like models, in whi
h we know that there is exponential

de
ay above 
riti
ality and that the 
riti
al density is 
ontinuous in the shape of

the region, so that the two notions 
oin
ide. Finally, we a
tually 
onje
ture that

they are always equal. With this in mind, let us state the de�nition we shall use.

De�nition 2.1. For u ∈ S1
and θ ∈ [−π, π] de�ne

dθu = inf

{

q ∈ [0, 1],
∑

n

nPq (0 6∈ [((A ∪ Vu,u+θ) ∩Bn)]) <∞
}

.

Taking the (monotone) limit of this quantity, we set

d±u = lim
θ→0±

dθu

and we 
all d−u and d+u the left and right 
riti
al densities of u respe
tively. The


riti
al density of u is then given by du = d+u ∨ d−u . We 
all u 7→ du the 
riti
al

density fun
tion of the model (of U).
It is 
lear from the de�nition that this quantity is somewhat of the same 
om-

plexity as qc, so that it is not feasible to be able to 
ompute the 
riti
al densities

for all u even for the simplest of sub
riti
al models�OP.

The next observation dire
tly follows from De�nition 2.1, but will be the base

for our upper bounds on qc.
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Observation 2.2. Let U be an update family. Let u ∈ S1
be a dire
tion and

U ′ ⊂ U be a subfamily of rules. Then

du(U) 6 du(U ′).

One-arm events Generally in per
olation theory, a one-arm event is an event


orresponding to `a point being 
onne
ted to in�nity' or its �nite-size trun
ations.

In BP there is one very natural in�nite volume one-arm event�{0 6∈ [A]}, whi
h

orresponds to the presen
e of an in�nite 
luster (set) of healthy sites ensuring the

o

urren
e of the event. There are several natural ways to trun
ate this event. In

parti
ular, we have

{0 6∈ [A]} =
⋂

n

{τ0 > n} =
⋂

n

{0 6∈ [A ∩Bn]},

et
., where τ0 is the infe
tion time of the origin. We interpret this event as 0→∞
(0 `looks at' in�nity) and its trun
ated version {0 6∈ [A ∩ Bn]} as 0 → ∂Bn (∂
stands for the boundary). In models involving some kind of dire
tionality, like BP,

one may need to distinguish between `point-to-in�nity' and `in�nity-to-point' and

similarly for trun
ated versions. The se
ond one, whi
h we de�ne next, turns out

to be more tra
table, albeit less natural.

For n ∈ N and x ∈ Bn we denote the infe
tion time of x in Bn with healthy

boundary 
ondition by

τBn

x = inf
{

t, x ∈ (A ∩ Bn)
Bn

t

}

,

where the dynami
s only a�e
ts the 
on�guration in Bn. More formally, for any

sets X ⊂ Z
2
and A0 ⊂ Z

2
, we indu
tively de�ne

AX
t+1 = AX

t ∪
{

x ∈ X, ∃U ∈ U , x+ U ⊂ AX
t

}

.

De�nition 2.3. Fix a large 
onstant C > 0 depending on U . Denote by En ⊂
{0, 1}Bn

the event that there exists an integer N and a sequen
e (xi)
N
0 of sites in

Bn su
h that

• xN is at distan
e at most C from the boundary ∂Bn of Bn.

• x0 = 0

• xi−1 ∈ xi +X for all 1 6 i 6 N , where X =
⋃

U∈U U

• τBn
xi

> i.

Also set θ̃n(q) = Pq(En) and θ̃(q) = limn θ̃n(q).

10



Note that the healthy boundary 
ondition does not in�uen
e this event too

mu
h. Indeed, it is 
lear that some xi is 
lose to ∂Bn/2, so the o

urren
e of

En implies the existen
e of a site `in the bulk' (far from the boundary) with

large infe
tion time. We will use this observation to obtain information on the

distribution of the infe
tion time τ0 below q̃c.
The events En, whi
h we interpret as ∂Bn → 0, have the notable advantage of

being `re�exive' in the sense that, when exploring a 
on�guration to 
he
k if En

holds, looking ba
k at the explored region from its boundary, one sees the event

itself o

urring in a smaller domain, whi
h is 
ru
ial for the argument of Duminil-

Copin, Raou� and Tassion [22℄ that we will use. Also very importantly, this event

is de�ned in terms of a path rather than a `
luster', although it does require the

existen
e of `
lusters' of healthy sites. Of 
ourse, the main disappointment is that

although very 
losely related to (and only di�ering by at most polynomial fa
tors

from) the natural events {0 6∈ [A∩Bn]} or {τ0 > n}, it does not allow us to prove

that q̃c = qc, but only provides additional 
onstraints on the phase [qc, q̃c). The

reason is that we may have

⋂

nEn 6= {0 6∈ [A]}, meaning that in BP the `0→∞'

and `∞→ 0' events are di�erent.

Randomised algorithms and revealment We will need the natural notion of

algorithm determining a random variable Y on Ω0 = {0, 1}Bn
endowed e.g. with

the measure Pq. Roughly speaking, this is an algorithm whi
h reveals the state of

one bit (the value of ω0 ∈ Ω0 on one site x ∈ Bn) at a time possibly depending on

knowledge of the 
on�guration already explored. It keeps exploring bits one at a

time until the value of Y is witnessed by the explored sites (determined regardless

of the state of the remaining unexplored sites).

More formally, an algorithm is a rooted stri
t binary tree T dire
ted away from

the root. Its internal nodes are labelled by sites of Bn indi
ating the state of whi
h

site is being revealed. For ea
h su
h internal node labelled by x, the two out-edges
are labelled by the two possible values of the 
orresponding bit, so that given

ω0 ∈ Ω0, the algorithm with input ω0 
ontinues along the edge labelled by ω0(x).
The leaves of the tree are labelled by the possible values of Y (with repetition)

indi
ating whi
h value of Y is witnessed (guaranteed) by the states indi
ated by

the edges from the root to the leaf. More pre
isely, let Pl denote the path from

the root to a leaf l labelled by a possible value y of Y . Then the verti
es of Pl all

have distin
t labels (ea
h site is revealed at most on
e) and for any ω0 ∈ Ω0 su
h

that for all internal nodes v ∈ Pl we have ω0(xv) = ǫv it holds that Y (ω0) = y,
where xv is the label of v and ǫv is the label of the out-edge of v belonging to Pl.

Clearly, given an algorithm and an input ω0 ∈ Ω0, there exists a unique leaf lω0

su
h that for every internal node in v ∈ Plω0
we have ω0(xv) = ǫv. This simply


orresponds to what the algorithm a
tually does for the spe
i�
 realisation of the

11



random input�whi
h sites it 
he
ks, in what order, what values it �nds for their

states and, �nally, what value of the random variable Y it determines based on

those states.

A randomised algorithm is an algorithm-valued random variable. As we will

apply these algorithms to inputs whi
h are random themselves, we need to de�ne

them on a 
ommon probability spa
e (Ω,P), so that the random algorithm is in-

dependent from the random input. For a randomised algorithm de�ne its maximal

revealment

δ = max
x∈Bn

P(∃v ∈ Plω0
, xv = x),

i.e. the maximal probability that any �xed site is explored by the algorithm.

Noise sensitivity We next de�ne noise sensitivity, although our proofs will

mostly use bla
k-box theorems based on Fourier analysis instead of the de�nition.

De�nition 2.4. Let Gn ⊂ {0, 1}Bn
be a sequen
e of events. For every ω0 ∈

{0, 1}Bn
let Nε(ω0) be the 
on�guration obtained when ea
h bit of ω0 is resampled

independently with probability ε and un
hanged otherwise. Resampled bits are

taken to be independently infe
ted with probability q as originally.
We say that the sequen
e Gn is noise sensitive, if for every ε > 0

lim
n→∞

Cov
(

1ω0∈Gn
,1Nε(ω0)∈Gn

)

V ar(1Gn
)

= 0.

Let us note that this de�nition following [9℄ is stronger than the original one

from [10℄, whi
h is trivial for events with probabilities tending to 0 and equivalent,

if the probabilities are bounded away from 0.

3 Results

Our goal is to provide a toolbox for studying sub
riti
al models in full generality.

Although our results will apply also to super
riti
al and 
riti
al models, most

of them are either empty or relatively easy for su
h families. Unless expli
itly

mentioned we do not 
onsider trivial sub
riti
al models.

Criti
al densities and upper bounds on qc Let C = {[u, u + π], u ∈ S1}
be the set of 
losed semi-
ir
les of S1

. The most 
entral result of our work is the

following dire
tional de
omposition of the 
riti
al probability.

Theorem 3.1. Let U be any update family. Then

q̃c = sup
u∈S1

du = inf
C∈C

sup
u∈C

du. (5)

12



If U is not sub
riti
al, then q̃c = 0.

Combining Theorem 3.1 with Observation 2.2, we obtain the following upper

bound on qc.

Corollary 3.2. Let U be an update family. Then for any set of subfamilies Ui ⊂ U
we have

qc(U) 6 q̃c(U) 6 inf
C∈C

sup
u∈C

min
i
du(Ui).

Criti
al densities of OP In order to make use of Corollary 3.2 and obtain

a 
on
rete non-trivial upper bound in relative generality, we express the 
riti
al

densities of OP in terms of a 
lassi
al quantity 
alled `edge speed'. This is done

in Se
tion 5 by 
ombining many standard fa
ts about OP re
alled there together

with the de�nition of the `edge speed'.

Appli
ation to DTBP Though simple, the bound in Corollary 3.2 is very

versatile and 
an lead to non-trivial results for the right 
hoi
e of subfamilies we

have information for. Of 
ourse, in some 
ases it will redu
e to the trivial bound

qc(U) 6 minU∈U qc({U}) (sin
e it is sometimes sharp already), whi
h has not been

brought up expli
itly in the literature, but was mentioned for DTBP in [4℄, taking

only U1 = {U} for some rule U ∈ U (they are all isomorphi
). There it was

observed that qc 6 1 − pOP
c < 0.312, the se
ond inequality being due to Gray,

Weirman and Smythe [34℄.

As an exemplary appli
ation of our result, we improve this bound on DTBP,

answering Question 17 of [4℄ (of 
ourse, the question may now be reiterated). We

prove the following by 
ombining Corollary 3.2, the expression of 
riti
al densities

of OP and a variant of the argument from [34℄.

Theorem 3.3. For DTBP

qc 6 q̃c 6 dOP
arctan(−1/3) < 0.2452,

where dOP
is the 
riti
al density of OP.

Appli
ation to Spiral Another appli
ation 
on
erns the Spiral model. For that

model Toninelli and Biroli [61℄ proved that qc = 1−pOP
c , there is exponential de
ay

for q > qc and its transition is dis
ontinuous, as well as providing bounds on the

exponentially diverging 
orrelation length. It turns out that our method exa
tly

re
overs the �rst two assertions, giving a new proof of the following.

Theorem 3.4 (Theorem 3.3. of [61℄). For the Spiral model qc = q̃c = 1− pOP
c .

This is a 
onsequen
e of Corollary 3.2 together with an adaptation of a straig-

htforward but fundamental lemma from [61℄, whi
h inputs a 
ru
ial feature of the

model identi�ed by Jeng and S
hwarz [46℄.
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Exponential de
ay In the proof of Theorem 3.1 we a
tually prove that θn(q)
de
ays exponentially fast in n for q > q̃c. We provide a se
ond proof of this fa
t,

whi
h also gives additional information on the phase q < q̃c.

Theorem 3.5. Re
alling De�nition 2.3, for any update family the following holds.

• If q > q̃c, then there exists c(q) > 0 su
h that

max
(

θn(q), θ̃n(q)
)

6 exp(−c(q) · n).

• There exists c > 0 su
h that for q < q̃c

θ̃(q) > c · (q̃c − q) > 0.

• If q < q̃c, then there exists c(q) > 0 su
h that

Pq(τ0 > n) > c(q)/n

and in parti
ular Eq[τ0] =∞.

Although we expe
t that qc = q̃c, this implies that if qc 6= q̃c, then the expe
ted

infe
tion time is in�nite at qc (Question 11 of [4℄).

The proof relies heavily on the new simple but powerful method of Duminil-

Copin, Raou� and Tassion [22℄ based on randomised algorithms. With some ad-

ditional work on their only model-dependent Lemma 3.2, somewhat surprisingly

the te
hnique applies to BP, whi
h is a rather un
onventional setting for su
h

arguments from SP.

Finally, we answer Question 12 of [4℄ on exponential de
ay for q < qc in the

negative and provide satisfa
tory information 
on
erning Question 14 of the same

paper on the relationship between BP and SP.

Noise sensitivity Exploiting the algorithm we devise in order to prove Theorem

3.5, we obtain the following relatively 
omplete information about noise sensitivity.

Theorem 3.6. Re
alling De�nition 2.3, for any update family and any q ∈ (0, 1)
the following hold.

• θ̃(q) = 0 if and only if the events En are noise sensitive and if and only if

there is an algorithm with vanishing revealment determining their o

urren
e.

• If θ(q) > 0, then the events {0 6∈ [A ∩ Bn]} are not noise sensitive.

• If θ(q) = θ̃(q) = 0, then the events {0 6∈ [A ∩ Bn]} are noise sensitive and

there is an algorithm with vanishing revealment determining their o

urren
e.
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The proof relies on fundamental results of Benjamini, Kalai and S
hramm [10℄

and S
hramm and Steif [60℄.

In parti
ular, this proves that Spiral is not noise sensitive at 
riti
ality, while

OP is, so that the 
onditions on 
ontinuity of the transition are indeed relevant

for noise sensitivity. Let us also mention that proving that the missing 
ase�

θ̃(q) > 0 = θ(q)�never o

urs is only slightly stronger than proving Conje
ture 8.1

stating that qc = q̃c. If it indeed does not o

ur, then Theorem 3.6 provides

the �nal answer to Question 13 of [4℄ as far as one-arm events are 
on
erned.

Furthermore, Theorem 3.6 suggests some limitations for the intuition given by

Bartha and Pete [9℄ (see Question 1.3 therein). Namely, Theorem 3.6 indi
ates

that noise sensitivity non-trivially depends on the 
ontinuity of the transition,

while [9℄ suggests that it should only depend on whether the model is sub
riti
al

or not, though for a more restrained 
lass of models. Therefore, if a variant of

Question 1.3 of [9℄ is to hold in general, additional rami�
ations should be needed.

Spe
tral gap and mean infe
tion time of KCM Another appli
ation of our

exponential de
ay results 
on
erns KCM. We extend to full generality the s
ope

of the main result of Can
rini, Martinelli, Roberto and Toninelli [14℄ using their

method together with exponential de
ay.

Theorem 3.7. Consider any KCM. If q < q̃c, then the spe
tral gap of its generator

is 0 and the mean infe
tion time of the origin in the stationary pro
ess (with initial

law Pq) is in�nite. If q > q̃c, then the spe
tral gap is stri
tly positive and the mean

infe
tion time of the origin in the stationary pro
ess is �nite.

In other words, q̃c is the phase transition of the spe
tral gap of the asso
iated

KCM, so that it 
an be dire
tly read o� the asso
iated BP as is the 
ase of the

non-ergodi
ity transition o

urring at qc [14℄.
We should note that the statement in the 
ase of super
riti
al and 
riti
al

models (for whi
h q̃c = 0 by Theorem 3.1) is also a trivial 
onsequen
e of the

quantitative result of [52℄. We are parti
ularly indebted to Cristina Toninelli for

dis
ussions around this theorem and its proof.

4 Criti
al densities

In this se
tion, after some short preparatory work of establishing basi
 properties

of 
riti
al densities, we 
hara
terise q̃c in terms of them, whi
h 
an be viewed as

the most 
entral result of the paper.

15



4.1 Preliminaries

We start with a few observations whi
h follow trivially from De�nition 2.1, but

are essential nonetheless.

Observation 4.1. For all u, θ ∈ S1
one has

dθu 6 q̃c

and therefore the same holds for du and d±u . Moreover, θ 7→ dθu is non-de
reasing

for θ ∈ [0, π] and non-in
reasing for θ ∈ [−π, 0] and d±π
u = q̃c.

Observation 4.2. For all u, θ ∈ S1
one has

dθu = d−θ
u+θ.

The following fundamental lemma is based on a 
lassi
al topologi
al tri
k.

Lemma 4.3. Let ε > 0 and I 6= S1
be a 
losed interval of S1

, whi
h we identify

with an interval [u, v] of R. Then there exists n ∈ N and a �nite sequen
e u =
u0 < u1 < . . . < un = v of dire
tions in I su
h that

∀i ∈ [1, n], 0 6 dui−ui−1

ui−1
−
(

d+ui−1
∨ d−ui

)

< ε. (6)

Proof. Re
all that by Observation 4.2 for u′, v′ ∈ S1
with 0 < v′ − u′ < π we have

dv
′−u′

u′ = d
−(v′−u′)
v′ . Then by Observation 4.1 one always has dv

′−u′

u′ > d+u′ ∨ d−v′ , so
we need only establish the se
ond inequality.

Set

I0 =
{

v′ ∈ [u, v], ∃n∃(ui) ∈ (S1)n+1, u = u0 < . . . < un = v′, satisfying (6)

}

,

and v0 = sup I0, whi
h we shall prove to be v. To do this we prove that I0 is open
to the right:

∀v′ ∈ I0 ∃δ > 0, [v′, v′ + δ] ∩ I ⊂ I0

and 
losed to the right:

∃v′ ∈ I, (vi) ∈ IN0 , vi ր v′ ⇒ v′ ∈ I0,
whi
h su�
es as I is an interval and u ∈ I0.

For the �rst part, �x v′ ∈ I0 \ {v}, n and (ui)
n
0 , un = v′ as provided by the

de�nition of I0. By Observation 4.1 there exists (v− v′)∧ π > δ > 0 small enough

so that dδv′ − d+v′ < ε, whi
h proves that [v′, v′ + δ] ⊂ I0.
The proof of I0 being 
losed goes along the same lines looking to the left instead

of to the right. More pre
isely, let vi form an in
reasing sequen
e of elements of

I0 
onverging to v′ ∈ I. By de�nition for i su�
iently large v′ − vi < δ, where
0 < δ < (v′− u)∧ π is su
h that d−δ

v′ − d−v′ < ε. Hen
e, taking a sequen
e given by

the de�nition of vi ∈ I0 and appending v′ to it, we obtain v′ ∈ I0, whi
h 
on
ludes

the proof.
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Remark 4.4. One 
an use the te
hnique of quasi-stable dire
tions [12℄ to deal

more easily with intervals of unstable and isolated stable dire
tions. We do not do

this as our 
onstru
tion works for the more di�
ult stable intervals and trivially

also applies to unstable ones.

Also noti
e that if one knew that (u, θ) 7→ dθu is 
ontinuous, this would follow

by uniform 
ontinuity on a 
ompa
t set.

We shall in fa
t need the following variant whi
h follows immediately.

Corollary 4.5. With the notation of Lemma 4.3 there also exist two dire
tions

su
h that v < v′ < u′ < u and

du
′−u

u − d−u < ε,

dv
′−v

v − d+v < ε.

Proof. Given a sequen
e as in Lemma 4.3 we apply one step of the reasoning to

the right of v, obtaining v′ su�
iently 
lose to v and one step to the left of u. We

simply observe that the inequalities we obtained in the proof of the Lemma were

in fa
t the stronger ones in the statement of the 
orollary.

4.2 Criti
al density 
hara
terisation of q̃c�proof of Theo-

rem 3.1

In order to prove Theorem 3.1 we will �rst need to show that above the maximal


riti
al density in a semi-
ir
le a 
ertain well-
hosen big droplet of infe
tion grows

inde�nitely in that dire
tion with high probability. We thus start by de�ning our

droplets (see Figure 1).

De�nition 4.6. Let n > 3, u = u0 < . . . < un+1 = v be dire
tions with un = u1+π
and un < v < u < u1 and let L be in R+. We then de�ne the droplet of size L by

DL =
n+1
⋂

i=0

H
L
ui
− xL, DL+ =

⋂

L′>L

DL′ =

(

n
⋂

i=1

H
L+
ui
− xL

)

∩ Vu,v, (7)

where xL ∈ R
2
is su
h that 〈xL, u〉 = 〈xL, v〉 = L, so that droplets are ins
ribed in

Vu,v.

It is 
ru
ial for the reasoning to follow that all sides of this droplet are of length

Θ(L) for large L when the dire
tions are �xed.

The growth me
hanism is, of 
ourse, quite di�erent from the one en
ountered

for 
riti
al and super
riti
al models (�nding an infe
tion somewhere on the side of

a droplet and relying on quasi-stable dire
tions to make sure that the sides expand
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Figure 1: The droplet DL of size L for the dire
tions u0, . . . un+1 de�ned in (7).

The left `half-side', hn−1 of ln−1 is thi
kened. The shaded box is x+BL/C for some

x ∈ hn−1.

to �ll the 
orners as well). Our strategy is to infe
t sites one by one by inspe
ting

an area of size Ω(L) to have su�
iently small probability that the site remains

uninfe
ted in that zone. We 
an then use the union bound to infe
t a new row on

one side of the droplet. We use this pro
edure to make the droplet grow, making

sure that ea
h side grows linearly, so that we 
an �nally sum the probabilities

using the de
ay provided by the de�nition of 
riti
al densities.

The next lemma roughly tells us that on
e a set of dire
tions is �xed as in

Corollary 4.5, a large infe
ted droplet is highly likely to grow to infe
t the 
one

it is ins
ribed in if given a su�
iently high (
ompared to the 
riti
al densities)

additional density of infe
tions.

Lemma 4.7. Let n > 2 and let (ui)
n+1
0 be dire
tions su
h that

u = u0 < u1 < . . . < un < un+1 = v,

and u1 + π = un < un+1 < u0 < u1. Fix C large enough depending on the

dire
tions. Let q > max d
ui−ui−1

ui−1 for all 1 6 i 6 n + 1 and let δ > 0. Then for L
large enough and for any Λ > CL

Pq

(

[DL ∪ (A ∩ BCΛ)] ⊃ Vu,v ∩ BΛ/C

)

> 1− δ.

Proof. Let (ui)
n
i=0, C, q and δ be as in the statement of the lemma.

Consider L su
h that Z
2 ∩ (DL+ \ DL) 6= ∅ and let L′ = sup{l, Dl ∩ Z

2 =
DL+ ∩ Z

2}. Consider the (possibly empty) new line of DL′ \ DL in dire
tion ui,
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li = Z
2 ∩DL′ ∩

((

H
L′

ui
\HL

ui

)

− xL
)

, for 1 6 i 6 n. Let hi = {x ∈ li, 〈ui + π/2, x+
xL〉 > 0} be the left half-side of li (looking from inside the droplet), see Figure 1.

For ea
h site x ∈ hi and Λ > CL we have

Pq (x 6∈ [DL ∪ (A ∩ BCΛ)]) 6 Pq

(

x 6∈
[

(A ∪DL) ∩ (x+BL/C)
])

6 Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩ BL/C

])

,

sin
e inside a box of size L/C around x the droplet lo
ally looks like (at least)

Vui,ui+1
, see Figure 1. Then the union bound over all sites in all half-sides gives

Pq ([DL ∪ (A ∩BCΛ)] 6⊃ DL′) 6

n
∑

i=1

|li|
(

Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩BL/C

])

+ Pq

(

0 6∈
[(

A ∪ Vui−1,ui

)

∩ BL/C

])

)

.

We now iterate this bound. Let L0 be large enough (depending on C, δ and

(ui)
n+1
i=0 ) and su
h that su
h that Z

2∩(DL0+\DL0
) 6= ∅. De�ne Lj+1 = sup{l, Dl∩

Z
2 = DLj+ ∩ Z

2} for all j > 0. Again by the union bound for any L > L0 and

Λ > CL we have

Pq ([DL ∪ (A ∩BCΛ)] 6⊃ DΛ) 6

n
∑

i=1

∞
∑

j=0

|lji |
(

Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩ BLj/C

])

+ Pq

(

0 6∈
[(

A ∪ Vui−1,ui

)

∩BLj/C

])

)

,

where lji = Z
2 ∩DLj+1

∩
((

H
Lj+1

ui \HLj
ui

)

− xLj

)

.

Let us upper bound the �rst term for i = 1 for 
on
reteness. Let jk =
min{j, Lj > Ck}. Then for any k > ⌊L0/C⌋
jk+1−1
∑

j=jk

|lj1|Pq

(

0 6∈
[

(A ∪ Vu1,u2
) ∩BLj/C

])

6 Pq (0 6∈ [(A ∪ Vu1,u2
) ∩Bk])

jk+1−1
∑

j=jk

|lj1|.

Finally, the last sum is easily seen to be at most C3k (it is essentially equal to the

area 
overed by the ui side while growing from DCk to DC(k+1)), so in total we get

Pq ([DL ∪ (A ∩ BCΛ)] 6⊃ DΛ) 6
∞
∑

k=⌊L0/C⌋
C3k

n
∑

i=0

Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩Bk

])

6 δ

by De�nition 2.1 and the 
hoi
e of q. This 
on
ludes the proof, sin
e DΛ ⊃
Vu,v ∩BΛ/2 (by 
onstru
tion the u, v-se
tor of the Eu
lidean ball of radius Λ/C is


ontained in DΛ).
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Observation 4.1 we have

q̃c > sup
u∈S1

du > inf
C∈C

sup
u∈C

du,

so we are left with proving q̃c 6 infC∈C supu∈C du.
Fix ε > 0 su�
iently small and C ∈ C su
h that

ε+ inf
C′∈C

sup
u∈C′

du > sup
u∈C

du.

Also �x a set of dire
tions as required by Lemma 4.7 with C = [u1, un] and
satisfying

∀i ∈ [2, n], dui−ui−1

ui−1
− (d+ui−1

∨ d−ui
) < ε

d−(u1−u0)
u1

− d−u1
< ε

dun+1−un
un

− d+un
< ε,

as provided by Corollary 4.5. Without loss of generality (after rotating the latti
e)

we assume un = (0, 1). Fix δ > 0 su�
iently small depending on the dire
tions

(ui) and ε. Let q′ = 2ε + supu′∈C du′
, so that q = q′ − ε satis�es the 
ondition

q > max d
ui−ui−1

ui−1 of Lemma 4.7.

We sample (a part of) the infe
ted sites as the union of two independent

per
olations�one with probability ε and another one with probability q. At this
point one 
an easily obtain q′ > qc using Lemma 4.7 to prove that a droplet of

size L grows with high probability in the se
ond per
olation and �nd su
h a large

droplet in the �rst one. However, in order to avoid using qc = q̃c, we give a slightly
more involved but fairly standard renormalisation pro
edure to prove the desired

inequality for q̃c. Furthermore, we will be able to dedu
e that q̃c is also the 
riti
al
probability of exponential de
ay.

Let L be large enough for the assertion of Lemma 4.7 to hold. Also �x N
su�
iently large depending on L su
h that Pε(∃x ∈ BN , A∩BN ⊃ DL+x) > 1−δ.
Finally, let c ∈ N be large enough depending only on the dire
tions (ui) (and on

the 
onstant C in Lemma 4.7), but not on δ. Consider a renormalised latti
e

L = Z
2
and say X ∈ L is open if N.X + BN ⊂ [A ∩ (N.X + BcN)]. This pro
ess

is 
learly only 2c-dependent2 and we 
laim that ea
h site is open with probability

at least 1 − 2δ. Indeed, N(X − (⌊√c⌋, 0)) + BN 
ontains a droplet of size L in

the per
olation pro
ess with parameter ε with probability at least 1 − δ and this

droplet grows to infe
t NX +BN with probability at least 1− δ in the per
olation

pro
ess with parameter q only using infe
tions inside NX +BcN by Lemma 4.7.

2

Ea
h site is independent from the states of sites at distan
e more than 2c from it.
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Hen
e, by the Liggett�S
honmann�Sta
ey theorem [49℄ the renormalised pro-


ess sto
hasti
ally dominates an independent site per
olation with parameter 1−δ′
with δ′ whi
h 
an be made arbitrarily small by 
hoosing δ su�
iently small. In

parti
ular, it is known (from the standard Peierls argument, see e.g. [36℄) that

the probability that there is no 
ontour (self-avoiding 
losed path) of open sites

around 0 de
ays exponentially. Yet, if su
h a 
ontour exists in a renormalised box

of size a > c, we know that 0 ∈ [A ∩ B2aN ]. Indeed, sin
e the family is not trivial

sub
riti
al, the renormalised site NX +BN for X in the 
ontour be
omes infe
ted

using A∩(NX+BcN ) and the union of these sets for allX in the 
ontour is enough

to infe
t the origin. To see this, simply use the fa
t that there exists an unstable

dire
tion and that the BP pro
ess inside the infe
ted 
ontour behaves as though

everything outside the 
ontour is infe
ted. Thus, θm(q
′) de
ays exponentially in

m, sin
e N is a 
onstant. Hen
e, q′ > q̃c, 
on
luding the proof of (5).

Let us now 
onsider a non-sub
riti
al family and show that q̃c = 0. Fix q > 2ε.
It is not hard to see (e.g. by repeating the proof from [13℄) that a su�
iently large

droplet is very likely to grow using a density ε of infe
tions to infe
t an entire 
one

of �xed opening depending only on ε and U (see Figure 7 of [13℄). We 
an then

repeat the renormalisation above using this input instead of Lemma 4.7 to obtain

that there is exponential de
ay at q and thereby q̃c = 0.

Remark 4.8. Note that we also proved that q̃c is the 
riti
al probability of expo-
nential de
ay: for ea
h q > q̃c

lim inf
n

− log θn(q)

n
> 0,

while this fails for q < q̃c. Moreover, sin
e the family is not trivial, the exponential

de
ay of the absen
e of a renormalised 
ontour of radius n implies also exponential

de
ay of Pq(τ0 > n) for q > q̃c.

Remark 4.9. In fa
t, using droplets 
ontained between two parallel lines (see

Figures 5 and 7 of [13℄) instead of a 
one with stri
tly positive opening one 
an

obtain a slightly stronger 
hara
terisation of q̃c only involving one of the left or

right 
riti
al densities at ea
h endpoint of the semi-
ir
le.

5 Criti
al densities of oriented per
olation

In this se
tion we determine the 
riti
al densities of the simplest sub
riti
al BP

model�OP. This is established in order to be used in 
onjun
tion with Theorem 3.1

in the next se
tion to dedu
e information about other models. Interestingly, alt-

hough determining 
riti
al densities 
orresponds to studying the phase transition

of OP with an absorbing boundary 
ondition (in a restri
ted region), this problem
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does not seem to have been thoroughly studied. The only 
ase whi
h we are aware

of that has been 
onsidered [29℄ is the symmetri
 one�u = π, for whi
h the result,

as we shall see, is that the transition is the same as on the entire plane.

Let us re
all a few 
lassi
al results from OP theory all of whi
h 
an be found

up to minor modi�
ations in Durrett's review [24℄ (see also [23, 25, 34, 48℄). We

will not redo most of the proofs, as they will be dis
ussed in more detail for GOP

in an up
oming work by Szabó and the author [44℄ and sin
e they have appeared

numerous times in the literature in slightly modi�ed forms.

Re
all that OP is de�ned by U = {U} = {{(−1, 1), (1, 1)}}. For the sake of


onvenien
e, in this se
tion we parametrise in terms of p = 1 − q�the density of

healthy (open) sites, so that Pp still denotes the produ
t Bernoulli measure su
h

that ea
h site is open with probability p. For the rest of this se
tion we 
onsider

only the sublatti
e of Z
2
generated by U without further mention. Denote by

x→ y for x and y in Z
2
the event that there exist x0, . . . , xN with x0 = x, xN = y,

xi − xi−1 ∈ U and xi open for 0 < i 6 N , that we 
all an OP path (from x to y).
Let

rn = sup {x ∈ Z, ∃y 6 0, (y, 0)→ (x, n)}
be the right edge with the 
onvention sup∅ = −∞.

Lemma 5.1. There exists a fun
tion α : [0, 1] → [−∞, 1] 
alled edge speed with

the following properties.

1. For any p we have Pp-a.s.

rn/n→ α(p) = inf
n
Ep[rn/n] = lim

n
Ep[rn/n].

2. α is stri
tly in
reasing on

[

pOP
c , 1

]

.

3. α and 
ontinuous on

[

pOP
c , 1

]

with α
(

pOP
c

)

= 0, α(1) = 1 and α(p) = −∞
for p < pOP

c .

The �rst equalities and the a.s. limit are proved as in [48℄, following [23, 24℄.

The other assertions are proved exa
tly as in [24℄. We will use this de�nition of

α in the remainder of the paper. The 
ontour argument used in [24℄ to prove

the 
ontinuity of α (together with the Borel-Cantelli lemma) a
tually gives the

following.

Lemma 5.2. For all p > pOP
c and a < α(p) we have that with positive probability

there exists an in�nite OP path ((ai, i))i∈N with a0 = 0 and infn an/n > a.

The next Lemma 
an be proved exa
tly like Theorem 7 of [35℄ (see also [24℄).
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Lemma 5.3. If a > α(p), then for some γ > 0

Pp(rn > an) 6 e−γn.

The following bound on α will only be used in the next se
tion.

Lemma 5.4. For all p ∈ [0, 1] we have

α(p) 6
p3 + p− 1

p3 − 2p2 + 3p− 1
.

Proof. The two-paragraph argument of Se
tion 2 of [34℄ adapts immediately to

give that α−1(a) is larger than the root of the equation

(p3 − p2 + 2p− 1)/(p− p2) = 1 + a

1− a.

Rephrasing this we obtain exa
tly the desired inequality.

Let ψ be the 
omposition of the tangent, the inverse of α and �nally 1− ·

ψ : [−π,−3π/4] ∪ [−π/4, 0] | tan |−−−→ [0, 1]
α−1

−−→
[

pOP
c , 1

] 1−·−−→ [0, qc].

Putting the pre
eding fa
ts together we obtain the 
riti
al densities of OP.

Theorem 5.5. The 
riti
al density of U = {U} = {{(1, 1), (−1, 1)}} is given by

du(U) =











0, u ∈ [−3π/4,−π/4]
1− pOP

c = qc, u ∈ [0, π]

ψ(u), otherwise.

For bidire
tional OP U ′ = {U,−U}, where −U = {(−1,−1), (1,−1)}, the 
riti
al

densities are du(U ′) = du(U) ∧ d−u(U). One also has d0u = d±u = du for all u in

both 
ases.

Remark 5.6. If the OP rule is rather Ũ = {(x, y), (z, t)} with the two linearly in-

dependent ve
tors (sites), let L ∈ GL2(R) be su
h that L·Ũ = U = {(−1, 1), (1, 1)}
and detL > 0. Then the 
riti
al densities are also transformed via d

{Ũ}
u = d

{U}
u′ ,

where u′ is the dire
tion of (L(u− π/2)) + π/2.

Proof of Theorem 5.5. If u ∈ (−3π/4,−π/4) we have nothing to prove, as the

dire
tions are unstable. By symmetry it su�
es to treat u ∈ [−π/4, π/2], so �x

one su
h dire
tion and let q̃ = qc if u ∈ (0, π/2] and ψ(u) otherwise. Noti
e that
α(1− q̃) = − tan(u) in the latter 
ase and 0 in the former one.
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Let q < q̃. By Lemmas 5.1 and 5.2 we know that with positive probability

there exists an in�nite OP path of healthy sites starting at 0 not interse
ting Hu.

This proves that q 6 dθu for all θ, so q 6 d0u 6 d±u 6 du and the same inequalities

hold for q̃.
Conversely, let q > q̃. Then by Lemmas 5.1 and 5.3

Pq(0 6∈ [(A ∩Bn) ∪ Vu−θ,u+θ])

de
ays exponentially for θ > 0 small enough, so that d0u 6 d±u 6 du 6 q. Thus,

with the inequalities from the previous 
ase we obtain

du = d±u = d0u = q̃.

Now 
onsider bidire
tional OP. It is 
lear that 0 remaining healthy for this

pro
ess is equivalent to 0 remaining healthy for the family {U} and for the family

{−U}, both of whi
h are simply OP. Moreover, these two events are independent


onditionally on the state of 0 (as the oriented paths o

ur in the upper and

lower half-planes respe
tively). Thus, the 
riti
al densities are indeed obtained as


laimed.

Remark 5.7. In order to be able to usefully apply Corollary 3.2 in full generality

to any sub
riti
al model, we require a generalisation of Theorem 5.5 to GOP.

Indeed, every non-trivial sub
riti
al model 
ontains rules 
orresponding to GOP

as explained in Se
tion 1.2. The proof of Theorem 5.5 remains un
hanged for GOP,

provided we have all the ingredients needed, Lemmas 5.1�5.3. In an up
oming work

Szabó and the author [44℄ explain how those are established.

6 Appli
ations of the upper bound for bootstrap

per
olation

The most natural and easy way to use Corollary 3.2, whi
h we 
all basi
 bound, is

for subfamilies 
onsisting of only one rule:

qc(U) 6 q̃c(U) 6 inf
C∈C

supmin
U∈U

du({U}), (8)

sin
e the r.h.s. terms 
orrespond to OP treated in the previous paragraph or simi-

larly behaved GOP. In prin
iple this approa
h in
ludes the trivial one 
onsisting

of using qc(U) 6 minU∈U q
{U}
c , but also allows better estimates.

We give two illustrative appli
ations of the general bound of Corollary 3.2. The

�rst one follows from the basi
 bound given by single rule subfamilies as outlined

above, while the se
ond one is more subtle.
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5π/4π3π/4π/2π/4
0

1− α−1(1/3)

1− pOP
c

Figure 2: A s
hemati
 representation of the 
riti
al densities of the three OP rules

in DTBP. For symmetry reasons we only depi
t the domain u ∈ [π/4, 5π/4].

6.1 The basi
 bound�the DTBP model

Our �rst example is DTBP. We improve the upper bound of [4℄ as asked in their

Question 17 by proving Theorem 3.3.

Proof of Theorem 3.3. Our starting point is (8). Let Ui be the three rules in the

update family U of DTBP de�ned in (3). We 
an then use Theorem 5.5 and

Remark 5.6 to determine the r.h.s. We spare the reader the tedious details, but it

is elementary to see (see Figure 2) that by symmetry there are three lo
al maxima

of u 7→ mini du({Ui})�the one at π/4 being the global maximum in [−π/4, 3π/4].
Hen
e, Theorem 5.5 and Remark 5.6 give

qc(U) 6 dOP
L(−π/4)+π/4 = dOP

arctan(−1/3) = 1− α−1(1/3),

where L(x, y) = (x, y − x) transforms the DTBP rule {(−1,−1), (0, 1)} into

{(−1, 0), (0, 1)}, whi
h is OP rotated by π/4.
In fa
t, the other two maxima are also easily determined to be at π−arctan(1/2)

and arctan(1/2)− π/2. They turn out to give the same value as the one at π/4,
but we did not need that for establishing the upper bound. Finally, Lemma 5.4

provides the desired bound α−1(1/3) > 0.7548.

It should be noted that the numeri
al bound is not optimised, but merely given

to testify that the gain is signi�
ant. For 
omparison, based on a re�nement of

the same method in [34℄ in 
onjun
tion with the trivial bound qc(U) 6 1− pOP
c =

1− α−1(0) the authors of [4℄ obtain qc(U) < 0.312. Even if the exa
t value of pOP
c

were known, it follows from rigorous upper bounds that the trivial bound 
annot

go beyond 0.274 [5℄. Numeri
al studies indi
ate that in fa
t 1− pOP
c ≈ 0.2945 [58℄.

Unfortunately, we have been unable to �nd appropriate numeri
al estimates for α

25



for values far from qc in the literature, so we 
annot provide a 
orresponding result

for our bound 1−α−1(1/3). Finally, all these values are also to be 
ompared with

the numeri
al estimate qc(U) ≈ 0.118 suggested in [4℄, whi
h indi
ates that there

is mu
h room for further improvements.

6.2 Motivation of the se
ond-level bound

Unfortunately, the basi
 bound (8) is not tight. Something more, it is possible

to �nd two rules U1 and U2, su
h that d({U1, U2}) is nowhere equal to d({U1}) ∧
d({U2}). Even worse, 
hanging U2 may lead to a 
hange in d({U1, U2}) while

d({U2}) remains the same. We give the following instru
tive 
ounterexample,

along whose lines many 
an be 
onstru
ted.

Proposition 6.1. Let Un = {U1, Un} = {{(1, 1), (−1, 1)}, {(n, n), (−n, n)}} for
n ∈ N. Then as n→∞

qc(Un) 6 1− inf
{

p, pOP
c 6 θOP (p)

}

+ o(1),

where θOP (p) = P1−p

(

0 6∈ [A]{U1}
)

is the probability that 0 is never infe
ted in OP.

Proof. Let B′
n = (−n, n]× (0, n) and denote by L = {n.(m−k,m+k), m, k ∈ N}

the sites 
on
erned by the se
ond rule. Note that for all x ∈ L the boxes x + B′
n

are disjoint and disjoint from L.
Fix ε > 0 and p = 1− q su
h that θOP (p) < pOP

c − ε. Let n be large enough so

that

Pq (x 6∈ [A ∩ (x+B′
n)]) 6

θOP (p) + ε

p
.

Su
h an n exists, be
ause the pro
ess with initial infe
tion in x + B′
n is identi
al

to the one under the family {U1}, whi
h is OP and for whi
h we know that the

probability 
onverges to θOP (p)/p.
Then we 
an asso
iate to ea
h site of x ∈ L an independent Bernoulli(θOP(p)+

ε) random variable�the indi
ator of the event Gx = {x 6∈ A; x 6∈ [A∩ (x+B′
n)]}.

Furthermore, {x 6∈ [A]} ⊂ Gx for all x. But then in order for 0 to remain uninfe
ted

at all times it is ne
essary to have an in�nite path with steps in Un starting at 0 of
sites x su
h that Gx o

urs and the probability of this event is θ

OP (θOP (p)+ε) = 0,
sin
e θOP (p) 6 pOP

c − ε.

This example shows where the main di�
ulty of the sub
riti
al models resi-

des on
e GOP is well understood. The division into three universality 
lasses is

based on the unstable dire
tions of a model, whi
h 
an be dire
tly obtained by

superimposing the ones for ea
h rule, whi
h are very easy to determine [4, 13℄. In

the re�ned result based on `di�
ulties' for 
riti
al models [12℄ Bollobás, Duminil-

Copin, Morris and Smith only require information in the �nitely many isolated
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stable dire
tions�their di�
ulty. In their 
ase, like here, there is no easy way

of 
al
ulating the di�
ulty of an isolated stable dire
tion without looking at the

entire update family. However, in the simple 
ase of 
riti
al models the di�
ulty

happens to be a �nite dis
rete quantity, whi
h invites dire
t exhaustive 
omputa-

tion (whi
h for simple models is readily done by hand), and indeed [12℄ does not

provide a re
ipe for determining di�
ulties (it turns out that determining them is

NP-hard [42℄). This is essentially the same problem that we are fa
ing here, but

the 
riti
al densities of sub
riti
al models being mu
h ri
her, they are even harder

to de
ompose and analyse.

On the bright side the bound from Corollary 3.2 need not be applied to sub-

families with a single rule. Hen
e, if we have information on the joint 
riti
al

densities of, say, all pairs of rules in the family U , then we 
an extra
t a (better)

upper bound for qc(U). We next turn our attention to an example where this ap-

proa
h works brilliantly, while to apply the basi
 bound (and obtain worse results)

we would need an understanding of GOP.

6.3 Spiral model

Indeed, in the Spiral model the subfamilies with two rules happen to be simpler

than the single-rule ones when restri
ted to appropriate half-planes. Re
all the

de�nition of its update family U = {U1, U2, U3, U4} from (2). We will use Corol-

lary 3.2 to provide a new proof of one of the main results of [61℄�Theorem 3.4.

The proof is nearly 
omplete at this point, but we need one last ingredient�a

variant of Lemma 4.11 of [61℄, whi
h is a
tually more naturally expressed in the

language of 
riti
al densities. This is where one uses the �no parallel 
rossing�

property, whi
h Jeng and S
hwarz [46℄ identi�ed as essential, as without it the

pairs of rules do not simplify to OP.

Lemma 6.2 (Adaptation of Lemma 4.11 of [61℄). Let u ∈ (π/2, 5π/4). Then

du({U1, U2}) = du(U ′),

where U ′ = {{(0, 1), (1, 1)}, {(0,−1), (−1,−1)}} is a bidire
tional OP.

Sin
e there are a few additional te
hni
alities, we give the proof, fo
using on

the new parts, so the reader is also invited to 
onsult [61℄ for more details.

Proof of Lemma 6.2. Let u ∈ I = (π/2, 5π/4) and π/2 − u < θ < 5π/4 − u.
We 
laim that dθu({U1, U2}) = dθu(U ′), whi
h 
learly implies the desired result.

Let B = [−n, n] × [0, cn] for some �xed n ∈ N su�
iently large and 0 6 c 6 1
su�
iently small (c < tan(u − π/2) if u ∈ (π/2, π) and the same with u repla
ed
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Figure 3: An example of the healthy path used in the proof of Lemma 6.2. The

shaded region is entirely infe
ted.

with u+ θ) and de�ne the events

E1 =
{

0 6∈ [(A ∪ Vu,u+θ) ∩B]U ′

}

E2 =
{

0 6∈ [(A ∪ Vu,u+θ) ∩ B]{U1,U2}

}

.

We argue that E1 ⊃ E2. Fix a realisation of A su
h that E2 \ E1 holds and 
all the

sites in

B \ [(A ∪ Vu,u+θ) ∩B]{U1,U2}

survivors. Consider the rightmost path P of survivors starting at 0 with steps in

{(0, 1), (1, 1)} (performing the step (1, 1) whenever possible and (0, 1) only when

(1, 1) is not possible) and denote x its endpoint. Indeed, P 
annot rea
h the

(top) boundary ∂B of B, sin
e E1 does not hold (survivors are ne
essarily initially

healthy). Sin
e x is a survivor and both x+(0, 1) and x+(1, 1) are not (otherwise
x is not the end of the path), there needs to be a survivor y among x+ (1, 0) and
x + (1,−1) (see Figure 3). In parti
ular, x 6= 0, as both (0, 1) and (1,−1) are in
Hu ∩Hu+θ.

Sin
e y is a survivor, there has to exist a path of survivors starting at y with

steps in U2 rea
hing ∂B. However, it is easy to see (see Figure 3) that su
h a

path 
annot rea
h ∂B without interse
ting Vu,u+θ or P . The former possibility is

ex
luded, sin
e Vu,u+θ are not survivors and the latter one 
ontradi
ts the 
hoi
e

of P to be the rightmost path of survivors from 0.
Hen
e, E2 ⊂ E1. A similar reasoning applies with B tilted by 3π/4. Finally, re-


alling that the region Vπ/2,5π/4 is entirely infe
ted for all values of (u, θ) 
onsidered,
we obtain that

0 6∈ [(A ∪ Vu,u+θ) ∩ Bn]{U1,U2} =⇒ 0 6∈ [(A ∪ Vu,u+θ) ∩Bcn]U ′ .
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The same impli
ation with U ′
and {U1, U2} swapped is 
lear from the fa
t that

U1 ⊃ {(0, 1), (1, 1)} and U2 ⊃ {(0,−1), (−1,−1)}, so we are done by De�nition

2.1.

Proof of Theorem 3.4. First note that if q < 1−pOP
c , then with probability 1 there

exists a bidire
tional U ′
path of healthy sites, whi
h remains healthy also for U .

Therefore, qc(U) > 1− pOP
c .

We apply Corollary 3.2 to U and the families U1 = {U1, U2}, U2 = {U2, U3},
U3 = {U3, U4} and U4 = {U4, U1}. We simply bound du(U1) by 1 for u ∈ (−π, π/2]
and apply Lemma 6.2 and Theorem 5.5 with Remark 5.6 to obtain a bound on

du(U1) for all u. By symmetry the same applies to the other three families up to

rotation by π/2. Hen
e,

qc(U) 6 q̃c(U) = sup
u∈S1

du 6 sup
u∈(π/2,π]

du(U1) = sup
u∈(π/2,π]

du(U ′) 6 sup
u∈S1

du(U ′) = 1−pOP
c .

Remark 6.3. It is important to note that Lemma 6.2 does not hold for all di-

re
tions u. It is 
lear, for example, that when u = 0 it su�
es to have an in�nite

uni-dire
tional healthy path with steps {(1, 0), (1,−1)} starting at 0, whi
h o

urs

for q < 1 − pOP
c 6= 0 = du(U ′). Moreover, the 
omplete Spiral model is not equi-

valent to any (uni- or bi-dire
tional) OP, as it is 
lear from the fa
t that it has a

dis
ontinuous phase transition [61℄, while the phase transition of OP is 
ontinu-

ous [11℄�BP o

urs for both bidire
tional OP involved, but not for Spiral. Thus,

it is 
ru
ial to restri
t the pro
ess to half-planes where it is equivalent to OP. This

idea also underlies the reasoning of [61℄.

7 Exponential de
ay and appli
ations

In Se
tion 4 we 
hara
terised q̃c in terms of 
riti
al densities and proved that it is

the 
riti
al probability of exponential de
ay. We now give a se
ond proof of the

latter, whi
h makes the 
on
lusions slightly stronger and more manipulable. For

instan
e, if we assume that θn(q) de
ays like a power law, (4) gives that for q < q̃c
the exponent is at least −2, whi
h is what we will prove here without assuming

that the de
ay is a power law. Moreover, this method will grant us a

ess to noise

sensitivity as well as proving that a one-arm event has stri
tly positive probability

below q̃c, so that this is indeed a phase transition regardless of whether qc = q̃c or
not. Finally, we give a straightforward but important appli
ation of exponential

de
ay to the spe
tral gap and mean infe
tion time of KCM.

As a motivation we start by answering Questions 12 and 14 of Balister, Bol-

lobás, Przyku
ki and Smith [4℄. We then reprove exponential de
ay and all the

results gathered in Theorem 3.5 using the method developed by Duminil-Copin,
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Raou� and Tassion [22℄ and then use a modi�
ation of the algorithm we made for

the proof of exponential de
ay to also dedu
e the results 
on
erning noise sensiti-

vity in Theorem 3.6.

7.1 Answers to Questions 12 and 14 of [4℄

Let us begin this se
tion by explaining why, 
ontrary to the expe
tations of the

authors of [4℄, one should expe
t exponential de
ay above 
riti
ality rather than

below it, thus answering Question 12 of that paper. As the reasoning will be

identi
al, we also answer Question 14, but before that we will need to establish

the following straightforward fa
t that will serve as a sour
e of examples.

Proposition 7.1. For every ε > 0 there exists a GOP model with qc > 1− ε.

Proof. Fix 1 − q = ε > 0 and let N = N(ε) ∈ N be large enough. Consider the

following GOP update family

U = {U} = {H−π/2 ∩B8N}.

We perform the following renormalisation. We 
all a renormalised site X ∈ Z
2

good if there is a healthy site in 4N.X + BN . The renormalised pro
ess 
learly

yields a per
olation with parameter larger than pOP
c for N large enough. Indeed,

sites are good independently (as (4NX+BN)∩(4NY +BN) = ∅ for X 6= Y ∈ Z
2
)

with probability 1 − q|BN |
. In parti
ular, for N large enough there is a positive

probability that the renormalised site 0 belongs to an in�nite OP path of good

renormalised sites. But this implies that the ordinary site 0 belongs to an in�nite

oriented path of healthy verti
es in the graph stru
ture on Z
2
de�ned by U , i.e. 0

remains healthy forever with positive probability. Hen
e, BP does not o

ur a.s.

and 1− ε = q 6 qc as desired.

7.1.1 Question 14

The authors of [4℄ ask for whi
h sub
riti
al models below 
riti
ality there is no

in�nite path (non-oriented with nearest neighbour steps) of sites in [A] and seem

to be in favour of a positive answer for all sub
riti
al BP models. On the one

hand, it is indeed possible for this s
enario to o

ur and that is the 
ase for the

simplest sub
riti
al model�OP.

Proposition 7.2. Consider OP and let q < qc. Then a.s. there is no in�nite path

in [A].

Proof. Let q < qc. Re
all that the edge speed from Lemma 5.1 satis�es α(1−q) > ε
for some ε > 0. It then follows from Lemma 5.2 that with positive probability there
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exists an in�nite initially healthy oriented path (ai, i)i∈N (i.e. with |ai+1 − ai| = 1
for all i) starting at 0 with inf ai/i > ε. Re�e
ting this event, we see that with

positive probability there exists a bi-in�nite oriented path (ai, i)i∈Z 
ontaining 0
su
h that inf i 6=0 ai/|i| > ε. By ergodi
ity and symmetry a.s. there exist two bi-

in�nite oriented paths of initially healthy verti
es (ai)i∈Z and (bi)i∈Z su
h that

a0 < 0, b0 > 0, lim inf |i|→∞ ai/|i| > ε and lim sup|i|→∞ bi/|i| 6 −ε. As these are

oriented paths of healthy sites, they never be
ome infe
ted in the BP pro
ess.

Moreover, the two paths interse
t both in the upper and lower half-planes, H−π/2

and Hπ/2, forming a 
ontour of sites in Z
2\[A] around the origin. In parti
ular, a.s.

there is no in�nite non-oriented path with nearest neighbour steps in [A] 
ontaining
the origin, whi
h 
on
ludes the proof by ergodi
ity.

On the other hand, it is obvious that any sub
riti
al model with qc > pSPc is

an example of the opposite behaviour. Minimal su
h examples are provided by

large enough GOP as in Proposition 7.1, but also by any trivial sub
riti
al model.

Indeed, for any pSPc < q < qc we a.s. have an in�nite non-oriented path of initially

infe
ted sites.

As we do not give the 
hara
terisation asked for in [4℄, let us explain why we

believe the question to be somewhat extrinsi
 in the light of the above example

and 
ounter-examples. Indeed, the graph stru
ture of Z
2
, whi
h de�nes the in�nite

path in [A] that [4℄ asks for, is not relevant to the model itself, de�ned only by U .
For example if one is to repla
e U by 2U (e.g. in the above examples) the problem

is 
hanged non-trivially, while the bootstrap pro
ess is really the same. Finally, let

us note that we do not expe
t that qc > pSPc (or qc > pSPc ) is a ne
essary 
ondition.

7.1.2 Question 12

With the previous reasoning in mind, let us go ba
k to Question 12 of [4℄ about

exponential de
ay. The question is whether at q < qc there would be exponential

de
ay in n of the probability of 0 being 
onne
ted by sites in [A] to the boundary of
Bn, to quote [4℄ �Here we mean `
onne
ted' in the site per
olation sense, although

other notions of 
onne
tedness are also interesting�.

This is not the 
ase, sin
e in many models there is even no de
ay at all (the

probability of being 
onne
ted in the non-oriented nearest neighbour sense by sites

in [A] to the boundary of Bn may remain bounded away from 0 as n → ∞ for

some q < qc), let alone exponential one. For example 
onsider any sub
riti
al

model with qc > pSPc . Obviously, for pOP
c < q < qc there is positive probability for

0 to be initially 
onne
ted to in�nity by an infe
ted non-oriented nearest neighbour

path, but also with probability 1 BP does not o

ur, so some (positive density of)

sites remain healthy forever. This is by no means 
ontradi
tory, sin
e, e.g. in the

example of Proposition 7.1, a path, in the graph sense given by the GOP rule
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and not the non-oriented nearest neighbour one, of healthy sites witnessing that

0 never be
omes infe
ted 
an easily jump over an in�nite infe
ted non-oriented

nearest neighbour path in the usual Z
2
sense.

7.2 Exponential de
ay�proof of Theorem 3.5

Even though exponential de
ay below qc is not always present, we prove that there
is exponential de
ay above qc, as it is well known to be the 
ase for OP (this follows

e.g. from Lemmas 5.1 and 5.3). We shall use the re
ent method of Duminil-Copin,

Raou� and Tassion [22℄ in order to prove the exponential de
ay of the one-arm

events En from De�nition 2.3. In fa
t, mu
h of the proof of [22℄ 
alls for no

modi�
ation.

3

We will only need the following repla
ement for their Lemma 3.2.

Lemma 7.3. There exists a randomised algorithm determining 1En
with maximal

revealment

δ 6
3

n− 1

n−1
∑

k=0

θ̃k(p).

Proof. The algorithm is as follows. First pi
k k uniformly at random in [1, n− 1].
Let S ⊂ Bn denote the 
urrent set of sites whose state has been 
he
ked by the

algorithm. We start by revealing (in an arbitrary order) all sites at distan
e at most

C from ∂Bk, the boundary of Bk, and adding them to S. Afterwards we repeat the
following. As long as there exists a site x0 ∈ Bn \S for whi
h there exist an integer

N > 1 and a sequen
e x1, . . . xN of sites in S verifying the following 
onditions,

the algorithm pi
ks one of the possible x0 arbitrarily and 
he
ks its state.

• xN is at distan
e at most C from ∂Bk.

• For all 0 < i 6 N we have xi−1 ∈ xi +X.

• For all 0 < i 6 N we have that S is a witness of the event τBn
xi

> i.

When no su
h sites remain, the �rst stage of the algorithm terminates.

If at this point 0 6∈ S, then the algorithm stops. Otherwise, we dire
tly reveal

all remaining sites in Bn (in an arbitrary order) and stop.

It is 
lear that this algorithm does determine 1En
. Indeed, if all sites were

revealed, this is va
uously true for any fun
tion, while if at the end of the �rst

stage we had 0 6∈ S, we know that Ek does not o

ur (by de�nition) and therefore

neither does En ⊂ Ek (by extra
tion of a shorter path from a longer one).

3

We en
ourage the reader unfamiliar with that paper to see the se
ond half of the 
ourse

re
ording [19℄, whi
h gives pre
isely the part we need and pre
isely in the simpler form we use

here adapted to produ
t measures, ex
ept for Lemma 7.3 we prove.
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We now pro
eed to bound its revealment. Fix the value of k and 
onsider a

site x ∈ ∂Bl for some 0 6 l 6 n. The events En are su
h that when x is revealed,

we are 
ertain that either E|k−l| translated by x o

urs or the original event Ek

o

urs. Hen
e, its revealment is at most θ̃|k−l|(q) + θ̃k(q). Taking the average on k
this gives a maximal revealment bounded by

3

n− 1

n−1
∑

0

θ̃l(p).

With this Lemma we are ready to apply the method of [22℄ to prove Theo-

rem 3.5.

Proof of Theorem 3.5. Let us start by proving the theorem for sub
riti
al models.

For the �rst two items, using Lemma 3.1 of [22℄ we 
an repeat the proof of their

Theorem 1.2, using the result of [57℄ (instead of its more general form, Theorem 1.1

of [22℄) together with our repla
ement for their Lemma 3.2�Lemma 7.3�and

Russo's formula. Setting

q̂c = sup

{

q, lim sup
log
∑n−1

0 θ̃k(q)

log n
> 1

}

,

this yields the following.

• If q > q̂c, then there exists c(q) > 0 su
h that

θ̃n(q) 6 exp(−c(q).n).

• There exists c > 0 su
h that for q < q̂c

θ̃(q) > c.(q̂c − q) > 0.

We next prove that q̂c = q̃c.
First noti
e that 0 6∈ [A ∩ Bn] implies the existen
e of a path, in the sense of

De�nition 2.3, of sites xi with τ
Bn
xi

= ∞ from 0 to ∂Bn (sin
e there are no �nite

stable healthy sets) with xi+1 ∈ xi + X and x0 = 0. But su
h a path needs to


ome at distan
e less than C/4 of ∂Bn/2 at some point xk, so En/3 translated by

xk o

urs. Thus, by the union bound

θn(q) 6 Cnθ̃n/3(q).

Therefore, exponential de
ay for θ̃n implies exponential de
ay for θn and thereby

q̃c 6 q̂c and for q > q̂c we have (for some other c(q))

θn(q) 6 exp(−c(q).n).
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Conversely, we know that for q < q̂c the sequen
e θ̃n(q) 
onverges to θ̃(q) > 0.
Note that on the event En there exists a site x with τBn

x > n/C at distan
e at

most C/4 from ∂Bn/2 in the path in De�nition 2.3. Then by the union bound we

obtain

Cnθ√n/(2C)(q) > θ̃n(q)→ θ̃(q) > 0,

sin
e τ
B

C2n

0 > 4Cn⇒ 0 6∈ [A ∩ B√
n]. Indeed, sin
e U is not super
riti
al, we 
an

�nd three or four stable dire
tions 
ontaining the origin in their 
onvex envelope,

whi
h guarantees that [B√
n] ⊂ B√

Cn and inside this box sites will be
ome infe
ted

at least one at a time. This proves that θn(q) > c/n2
for some c > 0 and thus

q 6 q̃c by (4). Hen
e, q̃c = q̂c and the proof of the �rst two items is 
omplete.

Let us turn to the third one. As we already observed the o

urren
e of En

implies the existen
e of a site x within distan
e C/4 of ∂Bn/2 with τBn
x > n/C.

However, the event τx > n/C does not depend on sites outside Bn, so that it is

the same as τBn
x > n/C and the �rst one's probability is independent of x ∈ B2n/3.

Then the union bound gives

CnPq(τ0 > n/C) > θ̃n(q)→ θ̃(q) > 0.

Thus, for q < q̃c we have Pq(τ0 > n) > c/n for some c > 0 and in parti
ular the

�rst moment of τ0 is in�nite, whi
h 
ompletes the proof for sub
riti
al models.

For U 
riti
al or super
riti
al and q > 0 it su�
es to re
all from Remark 4.8

that Pq(τ0 > n) de
ays exponentially, whi
h immediately implies the exponential

de
ay of θ̃n(q) by the union bound as above and thus 
ompletes the proof (the

se
ond and third items being void for q̃c = 0).

7.3 Noise sensitivity�proof of Theorem 3.6

We next use the algorithm we have to study noise sensitivity and prove Theo-

rem 3.6.

The harder part of the proof of Theorem 3.6 relies on the following easy 
onse-

quen
e of Theorem 1.8 of S
hramm and Steif [60℄ and Theorem 1.9 of Benjamini,

Kalai and S
hramm [10℄.

4

Theorem 7.4 ([10, 60℄). Let Gn be a sequen
e of 
ylinder events (depending on

�nitely many sites). If there exists a randomised algorithm determining the o

ur-

ren
e of Gn with maximal revealment δn → 0, then the sequen
e is noise sensitive.

The straightforward 
onverses in Theorem 3.6, stated for 
ompleteness, follow

from the next easy lemma.

4

The results of these papers are stated for q = 1/2, but they are also valid for any �xed value

of 0 < q < 1. Moreover, the result does hold for the stronger De�nition 2.4.
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Lemma 7.5. Let Gn be a nested sequen
e of 
ylinder events su
h that
⋂

nGn = G∞
and 0 < Pq(G∞) < 1. Then Gn are not noise sensitive.

Proof. Firstly, V ar(1Gn
) → V ar(1G∞

) ∈ (0, 1/4]. Se
ondly, 1Gn

L2

−→ 1G∞
, so

that for any δ > 0 there exists nδ su
h that for all n > nδ we have ‖1Gn
−

1Gnδ
‖L2 < δ. Finally, for any ε > 0 the fun
tion f 7→ (x 7→ E[f(Nε(x))|x]) is an

L2

ontra
tion, so that for all n > nδ we also have ‖1Nε(x)∈Gn

− 1Nε(x)∈Gnδ
‖L2 <

δ. These three fa
ts 
ombined imply that it is su�
ient to show that for any

δ > 0 small enough and any ε > 0 small enough depending on δ it holds that

V ar(1Gnδ
)−Cov(1x∈Gnδ

,1Nε(x)∈Gnδ
) < δ. But this is the 
ase, as Gnδ

is a 
ylinder

event, so that for ε small enough Pq(1x∈Gnδ
6= 1Nε(x)∈Gnδ

) < δ. Hen
e,

lim
ε→0

lim inf
n→∞

Cov(1x∈Gn
,1Nε(x)∈Gn

)

V ar(1Gn
)

= 1,

whi
h 
on
ludes the proof by De�nition 2.4.

Remark 7.6. The 
onsequen
es of Lemma 7.5 
an also be dedu
ed easily from

[10, Theorem 1.4℄.

Proof of Theorem 3.6. Fix 0 < q < 1. First assume that θ(q) > 0. Then by

Lemma 7.5 we have that the events 0 6∈ [A ∩ Bn] are not noise sensitive and then

Theorem 7.4 proves that no low-revealment algorithm exists. The proof in the 
ase

θ̃(q) > 0 that the events En are not noise sensitive is analogous. Assume, on the


ontrary, that θ̃(q) = 0. Then Lemma 7.3 provides an algorithm with revealment

δn → 0, whi
h 
ompletes the proof of the �rst two items of Theorem 3.6.

Finally, assume that θ(q) = θ̃(q) = 0. Sin
e θ(q) = 0 we also have Pq(τ0 >

n) → 0. Fix ε > 0 and let n be large enough so that we 
an �nd n/C > k0 > C
with k0 < ε/(64CPq(τ0 > n/C)) and 2

k0

∑2k0
m=0 θ̃m(q) < ε. Denote by Hk the event

that there exists x at distan
e at most C from ∂Bk su
h that τBn
x > n/C. Then

by the union bound Pq(Hk) < 16CkPq(τ0 > n/C) < ε for k < 4k0.
We perform the same algorithm as in the proof of Lemma 7.3, but with k 
hosen

uniformly in [3k0, 4k0). When the �rst stage (exploration) of the algorithm stops

we 
he
k if Hk o

urs, whi
h is indeed known (witnessed by the set of inspe
ted

sites S). If it does, then we simply 
he
k all the remaining sites to determine if

0 ∈ [A ∩ Bn]. The probability that this last step o

urs is exa
tly Pq(Hk) < ε.
If Hk does not o

ur, we know that 0 ∈ [A ∩ Bn] (sin
e there are no �nite stable

healthy sets). We 
an then bound the revealment similarly to what we did in

Lemma 7.3�we 
onsider a site y ∈ ∂Bl and take 
ases depending on its position.

If l > 5k0, the revealment is at most ε+ θ̃l−4k0(q) 6 ε+ θ̃k0(q) < 2ε and similarly

for l < 2k0. For 2k0 6 l < 5k0 we average on k as before to obtain a revealment

bounded by ε+ 2
k0

∑2k0
m=0 θ̃m(q). Hen
e, the maximal revealment is indeed bounded
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Figure 4: Illustration of the de�nition of a renormalised site being good. The two

hat
hed parallelograms be
ome infe
ted by the �rst 
ondition, while the se
ond

one 
on
erns the two shaded rhombi.

by 2ε. Then, as previously, Theorem 7.4 gives that 0 ∈ [A∩Bn] is noise sensitive,
whi
h 
on
ludes the proof.

7.4 Spe
tral gap and mean infe
tion time of KCM

To 
on
lude our dis
ussion of exponential de
ay, we turn to its appli
ations to the

KCM de�ned at the end of the introdu
tion. Can
rini, Martinelli, Roberto and

Toninelli [14℄ proved the positivity of the spe
tral gap above qc for several spe
i�

models in
luding OP, whose KCM 
ounterpart is known as the North-East model.

They also proved that the result holds for any model under an unhandy additional


ondition. We now use Theorem 3.5 together with their results to prove that for

all KCM the gap is positive above q̃c and 0 below and the mean infe
tion time of

the origin is �nite and in�nite respe
tively. It is very interesting to note that we

will use the exponential de
ay of θ̃n and not θn, whi
h does not su�
e.

In order to link the spe
tral gap and the mean infe
tion times we need the

following simple fa
ts from [53℄ and [15℄.

Lemma 7.7 (Lemma 4.3 [53℄, Theorem 4.7 [15℄). For all 0 < q < 1 the mean

infe
tion time of the origin in the BP and the 
orresponding stationary KCM pro-


esses satisfy

δEBP
q [τ0] 6 E

KCM
q [τ0] 6

Trel(q)

q
,

where Trel is the inverse spe
tral gap of the KCM and δ > 0 is a su�
iently small


onstant.

Proof of Theorem 3.7. Let U be a (non-trivial) update family and without loss

of generality assume that it 
ontains a rule U0 ⊂ H−π/2+δ ∩ H−π/2−2δ for some
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Figure 5: Infe
tion pro
edure used to prove that if the top-right, bottom-right and

top-left renormalised sites are good, the bottom-left one be
omes entirely infe
ted.

δ > 0 su�
iently small su
h that −π/2− δ is a rational dire
tion. Fix q > q̃c and
ε(δ) > 0 and η(δ, ε) > 0 su�
iently small. The positivity of the gap is implied

by Theorem 3.3 of [14℄ if we 
an �nd a suitable renormalisation satisfying the

following (see De�nition 3.1 [14℄).

5

(a) Ea
h renormalised site is good with probability at least 1− ε.

(b) If the renormalised sites (0, 1), (1, 0) and (1, 1) are all good, then

[A ∩ ({a,b, a+ b}+B′)] ⊃ B′,

where a and b are the two base ve
tors of the renormalisation and B′
is the

renormalisation box�the parallelogram generated by a and b i.e.

B′ = ([0, 1) · a) + ([0, 1) · b),

where we use the notation C +D = {c+ d, c ∈ C, d ∈ D}.

Set a = (n, 0) and b = n(cos(−π + δ), sin(−π + δ)) for n(η) su�
iently large.

We 
all the renormalised site 0 good if the following all hold (see Figure 4) and we

extend the de�nition to any site by translation.

• For all x in the parallelograms [ε, 1−ε]·a+[0, 2ε]·b and [ε, 1−ε]·b+[0, 2ε]·a
it holds that τB

′

x < ηn.

• For all x in the rhombus [1 − ε, 1) · a + [0, ε] · b it holds that τB
′

x < ηn if

we impose infe
ted boundary 
ondition on [1, 1 + 2ε] · a + [0, 1 − ε] · b and

healthy on the rest of Z
2 \ B′

. Also the symmetri
 
ondition holds for the

rhombus [1− ε, 1) · b+ [0, ε] · a.
5

The statement in [14℄ is given for square boxes, but generalises without 
hange.
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Condition (b) on the renormalisation is easily 
he
ked from this de�nition, using

only the rule U0 (see Figure 5). Indeed, all hat
hed regions be
ome infe
ted by the

�rst 
ondition, so that the double hat
hed rhombi are infe
ted by U0. Finally, the

shaded rhombi be
ome infe
ted by the se
ond 
ondition, sin
e the infe
ted boun-

dary 
ondition is already met. The renormalised site 
onsidered is then entirely

infe
ted using U0. Thus, we only need to 
he
k that a renormalised site is good

with probability at least 1− ε.
Sin
e the 
onditions 
on
ern O(n2) sites, by symmetry and monotoni
ity it

su�
es to observe that

Pq

(

τ
[−Cηn,Cηn]×[0,Cηn]
0 > ηn

)

de
ays exponentially with n. Indeed, for this event to o

ur, there must exist a

path of sites x0, . . . , x⌈nη⌉ = 0 with xi−xi+1 ∈ U0 and τ
[−Cηn,Cηn]×[0,Cηn]
xi > i for all

0 6 i < ηn, whi
h in parti
ular means that Eη2n translated by x0 o

urs. Hen
e,
using the �rst item of Theorem 3.5 and the union bound we obtain the desired

result and thereby the spe
tral gap is stri
tly positive. By Lemma 7.7 this implies

that the mean infe
tion time of the KCM is �nite.

Finally, by Theorem 3.5 for q < q̃c the mean infe
tion time of BP is in�nite, so

Lemma 7.7 shows that in this regime the spe
tral gap is 0 and the mean infe
tion

time of the KCM is in�nite.

8 Open problems

To 
on
lude, let us mention some interesting open problems related to this work

besides its dire
t extensions based on GOP.

8.1 Simpli�
ations

We next mention the two prime 
onje
tures whi
h would greatly simplify the

statements of our results besides being interesting on their own. We start with the

uniqueness of the transition.

Conje
ture 8.1. For all update families we have

qc = q̃c.

We should note that, the Kahn�Kalai�Linial theorem [47℄ tells us that (up to

repla
ing the box by the torus as in [6℄ or adapting the te
hnique of [21℄) θn(q)
de
ays at least like n−ε(q−qc)

above 
riti
ality and Theorem 3.5 establishes that

below q̃c it de
ays at most like n−2
. As it is 
ommonly the 
ase, it is likely that

brea
hing this gap will prove di�
ult.
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As mentioned earlier if one proves the slightly stronger property

θ̃(q) > 0⇒ θ(q) > 0, (9)

whi
h implies Conje
ture 8.1, then Theorem 3.6 exhausts the noise sensitivity

problem for sub
riti
al BP at least for the most natural event 0 ∈ [A∩Bn], whi
h
we 
onsider sin
e there is no obvious 
hoi
e of �
rossing� event. Indeed, in view

of Question 8.3 below, it is not 
lear whether it is relevant to 
onsider the event

of 
omplete infe
tion on the torus. Also in the light of Theorem 3.6 the 
onverse

impli
ation of (9) is not uninteresting at q̃c.
Se
ondly, it would be pra
ti
al to know if the 
ompli
ation of taking limits in

De�nition 2.1 is ne
essary. We suspe
t that this is never the 
ase.

Question 8.2. What are the 
ontinuity properties of the fun
tion (u, θ) 7→ dθu?

8.2 Torus

Although the most natural setting for sub
riti
al models is the in�nite volume

quantity θ, whi
h is approximated by its restri
tion to boxes θn, another 
ommon


hoi
e in order to avoid boundary issues is to 
onsider the torus Tn = (Z/nZ)2.
Indeed, results for 
riti
al and super
riti
al models are meaningful in this setting

and are essentially equivalent to the law of the infe
tion time in in�nite volume [13℄.

Yet, for sub
riti
al models the me
hanism of infe
tion is rather di�erent�instead

of rare large droplets that grow easily we have 
ommon droplets whi
h only manage

to grow with a lot of help. Owing to this it is not 
lear how quantities on the torus

relate to those on the entire grid. We should mention that most of our results


arry through if all is de�ned on the torus, but it is interesting to note that not

even the next question seems to have been answered yet.

Question 8.3. Does one have that for all sub
riti
al families

qc = lim inf
n
{q, Pq([A]Tn

= Tn) > 1/2},

where the 
losure is taken with respe
t to the BP pro
ess on the torus and A is a

random subset of Tn of density q?
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