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Abstrat

Bootstrap perolation is a wide lass of monotone ellular automata with

random initial state. In this work we develop tools for studying in full

generality one of the three `universality' lasses of bootstrap perolation

models in two dimensions, termed subritial. We introdue the new notion

of `ritial densities' serving the role of `di�ulties' for ritial models [12℄,

but adapted to subritial ones. We haraterise the ritial probability

in terms of these quantities and suessfully apply this link to prove new

and old results for onrete models suh as DTBP and Spiral as well as a

general non-trivial upper bound. Our approah establishes and exploits a

tight onnetion between subritial bootstrap perolation and a suitable

generalisation of lassial oriented perolation, whih will undoubtedly be

the soure of more results and ould provide an entry point for general

perolationists to bootstrap perolation.

Furthermore, we prove that above a ertain ritial probability there is

exponential deay of the probability of a one-arm event, while below it the

event has positive probability and the expeted infetion time is in�nite.

We also identify this as the transition of the spetral gap and mean infetion

time of the orresponding kinetially onstrained model. Finally, we essenti-

ally haraterise the noise sensitivity properties at �xed density for the two

natural one-arm events.

In doing so we answer fully or partially most of the open questions asked

by Balister, Bollobás, Przykuki and Smith [4℄�namely we are onerned

with their Questions 11, 12, 13, 14 and 17.
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1 Introdution

1.1 Bakground

The bootstrap peolation (BP) proess is a deterministi monotone ellular auto-

maton �rst introdued in 1979 by Chalupa, Leath and Reih [18℄ (see [55℄ for a

review). Given a set A ⊂ Z
d
or (Z/nZ)d of initially infeted verties (sites), we de-

lare more verties to be infeted on eah (disrete) time step aording to a loal

rule. For a given initial state A, we say that BP ours if every vertex eventually

beomes infeted. In the �rst examples onsidered a site beomes infeted if at

least r of its nearest neighbours are already infeted. These models are motivated

by several di�erent faets of statistial physis (see e.g. [1, 2℄). For instane, they

an represent nuleation or exitation of a metastable material. Moreover, they

are tightly related to the zero-temperature dynamis of the Ising model [26, 54℄,

as well as kinetially onstrained models for the liquid-glass transition [14, 41℄. In

these appliations and the vast majority of BP literature the initial set A is hosen

randomly aording to a produt Bernoulli measure with density of infetions q,
whih we denote Pq. A quantity of major interest for this model is its ritial

probability de�ned by

qc = qc(Z
2) = inf

{

q,Pq([A] = Z
2) > 1/2

}

(1)

on Z
2
and similarly for other graphs. We denote the parameter q instead of the

standard p, as it will beome lear that a more natural desription of the model

is in terms of a ertain in�nite `luster' of healthy sites, whose density is 1 − q.
We will use the term perolation for a random subset of Z

2
with law Pp for any p

(without neessarily referring to a BP proess).

The �rst results on BP due to van Enter [63℄ and Shonmann [59℄ proved the

triviality of the phase transition for all values of the parameters r and d. However,
Aizenmann and Lebowitz [3℄ showed that when the dynamis is onsidered on a

�nite box {1, . . . , n}d instead of Zd
, the ritial probability sales likeΘ

(

(logn)1−d
)

for the nearest neighbour model with d > r = 2. As it was notied by Balogh and

Bollobás [6℄ the phase transition is sharp owing to the general result of Friedgut

and Kalai[28℄. The position of the sharp threshold for d = r = 2 was determined

in a breakthrough of Holroyd [45℄. His results were then improved further and now

the saling of the seond term of the ritial probability is exatly known [33, 43℄

in this setting. For d > r > 2 the orret saling was determined by Cerf and

Cirillo [16℄ and Cerf and Manzo [17℄. The orresponding sharp threshold was

established by Balogh, Bollobás and Morris and the same authors together with

Duminil-Copin [7, 8℄.

However, the methods of those works remained highly model-dependent, while

many more models had been studied in the literature and some exhibited very dif-
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ferent behaviour [30,56,59,64℄. A relatively general lassi�ation was �rst attemp-

ted by Gravner and Gri�eath [30,32℄. It was muh later substantially generalised,

reti�ed and universality results were rigorously proved by Bollobás, Smith and

Uzzell [13℄ and Balister, Bollobás, Przykuki and Smith [4℄. It is this vast lass

of models that we introdue now. Although muh of our work easily arries over

to higher dimensions, we restrit ourselves to models on Z
2
, as the universality

piture is urrently only established in this setting.

1.2 Models

Bootstrap perolation A BP model is parametrised by an update family�a

�nite family U of �nite non-empty subsets of Z
2 \ {0} alled rules. The initial

set of infetions A = A0 in Z
2
or (Z/nZ)2 is taken at random aording to the

produt Bernoulli measure with parameter q, Pq, and we de�ne the evolution of

the dynamis by

At+1 = At ∪ {x ∈ Z
2, ∃U ∈ U , x+ U ⊂ At},

so that a site beomes infeted if any of the rules is entirely infeted already. We

denote by [A] =
⋃

t>0At the losure of A and extend this notation to A ⊂ R
2
by

setting [A] := [A ∩ Z
2]. The ritial probability is de�ned as in (1) for Z

2
and

(Z/nZ)2.
The result of [4, 13℄ is a partition of these models into three lasses. The

lassi�ation is based on the notion of stable diretions�a diretion u ∈ S1 =
{x ∈ R

2, ‖x‖2 = 1} is unstable if there exists U ∈ U entirely ontained in the

half-plane Hu = {x ∈ R
2, 〈x, u〉 < 0} and stable otherwise, where 〈·, ·〉 denotes

the anonial salar produt of R
2
. In terms of the BP proess u ∈ S1

is stable

i� [Hu] = Hu ∩ Z
2
and unstable i� [Hu] = Z

2
(see [13, Lemma 3.1℄). With this

terminology BP models are lassi�ed as follows.

• Superritial if there exists an open semi-irle of unstable diretions. In this

ase qc((Z/nZ)
2) = n−Θ(1)

[13℄.

• Critial if there exists a semi-irle with a �nite number of stable diretions,

but it is not superritial. In this ase qc((Z/nZ)
2) = (log n)−Θ(1)

[13℄.

• Subritial otherwise, i.e. if every semi-irle ontains in�nitely many stable

diretions. In this ase on Z
2
we have qc > 0 [4℄.

It is not hard to hek (see [13, Theorem 1.10℄) that, sine the update family and

rules are �nite, the set of stable diretions forms a �nite union of losed intervals of

S1
, with rational endpoints, a diretion u ∈ S1

being rational if there exists x ∈ Z
2
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suh that x = λu for some λ ∈ R \ {0}. In partiular, the above lassi�ation is

indeed equivalent to [13, De�nition 1.3℄.

Before disussing further results, let us give a few examples to digest these

de�nitions. Turning bak to the r-neighbour models, one an embed them in

this setting by onsidering U onsisting of all r-element subsets of the set of the

4 nearest neighbours of 0. The ase r = 1 is superritial, as it has no stable

diretions; r = 2 is ritial, as only the four lattie diretions are stable; r ∈ {3, 4}
are subritial, as they have no unstable diretions.

Trivial subritial models Models with no unstable diretions, whih we all

trivial subritial models, are not partiularly relevant for us. It an be shown

that they are exatly the models suh that qc = 1 or, equivalently, suh that there

exist �nite sets of healthy sites, whih annot be infeted by the rest of Z
2
[4℄.

Therefore, it is useful to introdue more interesting subritial models, whih will

be investigated further in this work.

Oriented site perolation OP an be viewed as the BP model with U =
{{(1, 1), (−1, 1)}}. It is easy to hek (and was notied already by Shonmann

[59℄) that x 6∈ [A] if and only if there exists an in�nite oriented path (with North-

East and North-West steps) starting at x of initially healthy sites. In partiular,

qc for this model is equal to 1− pOP
c , where pOP

c is the usual ritial probability of

OP parametrised in terms of the density of healthy sites (this is one of the reasons

for denoting our parameter q). Up to applying an invertible linear transformation

to Z
2
, any family with one rule onsisting of two non-ollinear sites is equivalent

to OP, so we will abusively also all them OP. Furthermore, one may onsider

bidiretional OP with U ′ = {{(1, 1), (−1, 1)}, {(−1,−1), (1,−1)}}, for whih the

surviving healthy sites are those initially belonging to a bi-in�nite oriented path,

so that the ritial probability is again 1 − pOP
c . OP is a very lassial and well-

understood model, for bakground on whih we diret the reader to [24℄ in addition

to Setion 5.

One-rule families and generalised oriented perolation More generally, it

is natural to onsider all update families with only one rule, U = {U}. There are
three types of them. If the origin is ontained in the onvex envelope of U , then
U is trivial subritial. If the rule is ontained in a half-line starting at the origin,

the model is superritial. All remaining one-rule families give rise to non-trivial

subritial models and their rule is ontained in an open half plane. We refer to

these models as generalised oriented site perolation (GOP). Spei� ases of these

orrespond to well-known probabilisti ellular automata (see [44℄).
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Spiral model The Spiral model of Toninelli, Biroli and Fisher [62℄ is de�ned by

U = {U1, U2, U3, U4}, where

U1 = {(1,−1), (1, 0), (1, 1), (0, 1)} U2 = {(1,−1), (1, 0), (−1,−1), (0,−1)}
U3 = −U1, U4 = −U2.

(2)

This model was introdued to witness the somewhat surprising fat that subritial

BP an have a disontinuous phase transition in the sense that θ(qc) = Pqc(0 6∈
[A]) > 0. This was established rigorously by Toninelli and Biroli [61℄ based on a

lose relationship with OP, whih we will disuss further in Setion 6.

Direted triangular bootstrap perolation DTBP was introdued by Ba-

lister, Bollobás, Przykuki and Smith [4℄ as an example of a simple, but somewhat

generi, subritial model. Its main feature is its lak of symmetry and it should

be viewed as a benhmarking example. It an be de�ned as 2-neighbour BP on a

direted triangular lattie, but an also be embedded in Z
2
by

U = {{(1, 0), (0, 1)}, {(1, 0), (−1,−1)}, {(0, 1), (−1,−1)}}. (3)

As for most subritial models not muh is known about it. As a quantitative

illustration of their result, the authors of [4℄ established that for DTBP

10−101
6 qc 6 1− pOP

c 6 0.3118,

invoking Gray, Weirman and Smythe [34℄ for the last inequality.

Kinetially onstrained models KCM are stohasti generalisations of BP,

although they were introdued independently to model the liquid-glass transition

[27℄. A KCM is de�ned by an update family U and a parameter q as in BP. It

is a Markov proess on {0, 1}Z2

reversible w.r.t. Pq with the following graphial

representation (see e.g. [48℄ for bakground on interating partile systems). We

onsider independent standard Poisson proesses on eah site and at eah point of

those proesses the state of the orresponding site is resampled from its equilibrium

Bernoulli measure with parameter q if it would beome infeted on the next step

in the BP proess with the same update family and remains unhanged otherwise.

Canrini, Martinelli, Roberto and Toninelli [14℄ proved that the ritial probability

of a KCM (above whih 0 is a simple eigenvalue of the Markov generator) is

equal to qc for the orresponding BP. Furthermore they proved, using a general

halving tehnique, that the spetral gap of the Markov generators of spei� KCM

onsidered in the physis literature is stritly positive (see e.g. [39℄ for a variational

de�nition).
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Superritial models Certain lasses of superritial BP were studied exten-

sively in the 90s by Gravner and Gri�eath (see [31℄), mainly from the point of

view of limit shapes and minimal perolating sets, whih are usually �nite for suh

models. Their KCM ounterparts o�er additional omplexity, but were suess-

fully studied in general by Marêhé, Martinelli, Morris and Toninelli in di�erent

ombinations [50�52℄.

Critial models For general ritial BP the most notable results are due to

Bollobás, Duminil-Copin, Morris and Smith [12℄. They introdued a notion of

`di�ulty' of a (topologially) isolated stable diretion, ounting the number of

additional infetions needed for an infeted half-plane to grow and used it to de-

termine the exat saling (up to a onstant fator) of qc((Z/nZ)
2) for all ritial

models. Although it will not be used diretly, this notion is an important inspira-

tion for our work. Sharper results generalising the one of Holroyd [45℄ were also

proved in a more restritive but still somewhat general framework by Duminil-

Copin and Holroyd [20℄.

Very reently, an equaly omplete understanding of ritial KCM was ahieved

in a series of works by Marêhé, Martinelli, Morris, Toninelli and the author in

various ombinations [37�41,52℄, establishing a more omplex behaviour.

Subritial models The fous of our work are the least understood of the three

lasses of update families�subritial ones. For them the only result in full gene-

rality to date is the one of Balister, Bollobás, Przykuki and Smith [4℄ stating that

qc > 0. The tehnique behind it is a fairly involved multi-sale renormalisation,

whih has little hope of providing more results than what Peierls arguments give for

standard perolation models (see Grimmett's lassial monograph on perolation

theory [36, Chapter 1℄). We should note that providing a simple analyti expres-

sion for the ritial probability qc of subritial models does not seem plausible

even for the simplest one�OP.

1

Ordinary site perolation Finally, SP is one of the most lassial perolation

models (see [36℄), whih will also be useful for us, although it is not a partiular ase

of BP. Similarly to OP, it onsists in delaring eah site of Z
2
open independently

with probability p and looking for in�nite paths of open sites with respet to the

usual nearest neighbour graph struture of Z
2
instead of the oriented one for OP.

We denote pSPc the ritial probability of appearane of suh in�nite paths.

1

To quote Grimmett [36℄ in the setting of standard perolation, but also valid e.g. for OP, �It

is highly unlikely that there exists a useful representation of pc [...℄ although suh values may be

omputed with inreasing degrees of auray with the aid of larger and faster omputers.�
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2 De�nitions and notation

In this setion we gather most of the notation used throughout the artile. We

invite the reader familiar with perolation to skip ahead to Setion 3 and go bak

to this setion as needed. As some of the notions will be used relatively loally,

let us indiate that the entral notion of the present work is the one in De�nition

2.1.

Critial probability Reall that 0 < q < 1 is the density of infeted sites and

Pq is the assoiated Bernoulli produt law of the random set A ⊂ Z
2
and that

[·] denotes the losure with respet to the BP proess de�ned by a non-trivial

update family U , that we keep impliit when there is no risk of onfusion. Also,

Bx = [−x, x]2 ∩ Z
2
for all x ∈ [0,∞). De�ne

θn(q) = Pq(0 6∈ [A ∩ Bn]),

θ(q) = lim
n
θn(q) = Pq(0 6∈ [A]).

The ritial probability is given by

qc = inf
{

q ∈ [0, 1],Pq([A] = Z
2) = 1

}

= sup {q, θ(q) > 0} ,

the �rst equality following from ergodiity and the seond one resulting from in-

variane by translation as for SP (see e.g. [36℄). We also introdue another ritial

probability

q̃c = inf

{

q ∈ [0, 1],
∑

n

nθn(q) <∞
}

, (4)

whih is atually the only relevant one for our proofs, only noting that q̃c > qc.
Several other equivalent de�nitions will be proved in Theorem 3.5, so that q̃c is

in partiular the ritial probability of exponential deay of θn(q). We emphasise

that working with q̃c instead of qc will only lead to stronger results in appliations.

Diretions and half-planes In order to de�ne the entral notion of this work,

ritial densities, we will need some onventions and notation onerning diretions

and half-planes, whih will mostly follow previous authors. We identify the unit

irle S1 ⊂ R
2
with the torus R/2πZ via

(cos θ, sin θ)←→ θ mod 2π.

Despite the identi�ation we shall preferentially use the letters u, v for diretions

and θ for angles. For n ∈ N diretions u1, . . . un ∈ S1
we write u1 < . . . < un if
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one an �nd θ1 < . . . < θn < θ1 + 2π and θ in R suh that for eah i we have

ui ←→ (θi − θ) mod 2π.
Reall that 〈·, ·〉 and S1

are the anonial salar produt on R
2
and its unit

sphere (irle). Furthermore, for u ∈ S1
and a ∈ R set

H
a
u = {v ∈ R

2, 〈v, u〉 < a},
Hu = H

0
u and H

a+
u = {v ∈ R

2, 〈v, u〉 6 a}. We denote by Vu,v = Hu ∩ Hv the

one de�ned by the diretions u, v ∈ S1
. We also reall the standard notation

a ∨ b = max(a, b) and a ∧ b = min(a, b).

Critial densities We are now ready to introdue the new notion of `ritial

densities' adapted to subritial BP (for ritial and superritial ones they will

turn out to be identially 0). Let us note that this is not an extension, but rather

a omplement, of the `di�ulties' of [12℄, whih are trivial for subritial models.

Before we frighten the reader with the de�nition, let us say that the ritial

density in a diretion u is morally the ritial probability of the model with infeted

boundary ondition in Hu. The de�nition we give di�ers from this one in two

ways�it onerns the ritial probability for ertain deay of θn(q) and it is de�ned
in a region whose shape approahes a half-plane. Nevertheless, this distintion will

only be of major importane for Setion 4.2. That is beause in appliations we will

always rely on simple OP-like models, in whih we know that there is exponential

deay above ritiality and that the ritial density is ontinuous in the shape of

the region, so that the two notions oinide. Finally, we atually onjeture that

they are always equal. With this in mind, let us state the de�nition we shall use.

De�nition 2.1. For u ∈ S1
and θ ∈ [−π, π] de�ne

dθu = inf

{

q ∈ [0, 1],
∑

n

nPq (0 6∈ [((A ∪ Vu,u+θ) ∩Bn)]) <∞
}

.

Taking the (monotone) limit of this quantity, we set

d±u = lim
θ→0±

dθu

and we all d−u and d+u the left and right ritial densities of u respetively. The

ritial density of u is then given by du = d+u ∨ d−u . We all u 7→ du the ritial

density funtion of the model (of U).
It is lear from the de�nition that this quantity is somewhat of the same om-

plexity as qc, so that it is not feasible to be able to ompute the ritial densities

for all u even for the simplest of subritial models�OP.

The next observation diretly follows from De�nition 2.1, but will be the base

for our upper bounds on qc.
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Observation 2.2. Let U be an update family. Let u ∈ S1
be a diretion and

U ′ ⊂ U be a subfamily of rules. Then

du(U) 6 du(U ′).

One-arm events Generally in perolation theory, a one-arm event is an event

orresponding to `a point being onneted to in�nity' or its �nite-size trunations.

In BP there is one very natural in�nite volume one-arm event�{0 6∈ [A]}, whih
orresponds to the presene of an in�nite luster (set) of healthy sites ensuring the

ourrene of the event. There are several natural ways to trunate this event. In

partiular, we have

{0 6∈ [A]} =
⋂

n

{τ0 > n} =
⋂

n

{0 6∈ [A ∩Bn]},

et., where τ0 is the infetion time of the origin. We interpret this event as 0→∞
(0 `looks at' in�nity) and its trunated version {0 6∈ [A ∩ Bn]} as 0 → ∂Bn (∂
stands for the boundary). In models involving some kind of diretionality, like BP,

one may need to distinguish between `point-to-in�nity' and `in�nity-to-point' and

similarly for trunated versions. The seond one, whih we de�ne next, turns out

to be more tratable, albeit less natural.

For n ∈ N and x ∈ Bn we denote the infetion time of x in Bn with healthy

boundary ondition by

τBn

x = inf
{

t, x ∈ (A ∩ Bn)
Bn

t

}

,

where the dynamis only a�ets the on�guration in Bn. More formally, for any

sets X ⊂ Z
2
and A0 ⊂ Z

2
, we indutively de�ne

AX
t+1 = AX

t ∪
{

x ∈ X, ∃U ∈ U , x+ U ⊂ AX
t

}

.

De�nition 2.3. Fix a large onstant C > 0 depending on U . Denote by En ⊂
{0, 1}Bn

the event that there exists an integer N and a sequene (xi)
N
0 of sites in

Bn suh that

• xN is at distane at most C from the boundary ∂Bn of Bn.

• x0 = 0

• xi−1 ∈ xi +X for all 1 6 i 6 N , where X =
⋃

U∈U U

• τBn
xi

> i.

Also set θ̃n(q) = Pq(En) and θ̃(q) = limn θ̃n(q).
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Note that the healthy boundary ondition does not in�uene this event too

muh. Indeed, it is lear that some xi is lose to ∂Bn/2, so the ourrene of

En implies the existene of a site `in the bulk' (far from the boundary) with

large infetion time. We will use this observation to obtain information on the

distribution of the infetion time τ0 below q̃c.
The events En, whih we interpret as ∂Bn → 0, have the notable advantage of

being `re�exive' in the sense that, when exploring a on�guration to hek if En

holds, looking bak at the explored region from its boundary, one sees the event

itself ourring in a smaller domain, whih is ruial for the argument of Duminil-

Copin, Raou� and Tassion [22℄ that we will use. Also very importantly, this event

is de�ned in terms of a path rather than a `luster', although it does require the

existene of `lusters' of healthy sites. Of ourse, the main disappointment is that

although very losely related to (and only di�ering by at most polynomial fators

from) the natural events {0 6∈ [A∩Bn]} or {τ0 > n}, it does not allow us to prove

that q̃c = qc, but only provides additional onstraints on the phase [qc, q̃c). The

reason is that we may have

⋂

nEn 6= {0 6∈ [A]}, meaning that in BP the `0→∞'

and `∞→ 0' events are di�erent.

Randomised algorithms and revealment We will need the natural notion of

algorithm determining a random variable Y on Ω0 = {0, 1}Bn
endowed e.g. with

the measure Pq. Roughly speaking, this is an algorithm whih reveals the state of

one bit (the value of ω0 ∈ Ω0 on one site x ∈ Bn) at a time possibly depending on

knowledge of the on�guration already explored. It keeps exploring bits one at a

time until the value of Y is witnessed by the explored sites (determined regardless

of the state of the remaining unexplored sites).

More formally, an algorithm is a rooted strit binary tree T direted away from

the root. Its internal nodes are labelled by sites of Bn indiating the state of whih

site is being revealed. For eah suh internal node labelled by x, the two out-edges
are labelled by the two possible values of the orresponding bit, so that given

ω0 ∈ Ω0, the algorithm with input ω0 ontinues along the edge labelled by ω0(x).
The leaves of the tree are labelled by the possible values of Y (with repetition)

indiating whih value of Y is witnessed (guaranteed) by the states indiated by

the edges from the root to the leaf. More preisely, let Pl denote the path from

the root to a leaf l labelled by a possible value y of Y . Then the verties of Pl all

have distint labels (eah site is revealed at most one) and for any ω0 ∈ Ω0 suh

that for all internal nodes v ∈ Pl we have ω0(xv) = ǫv it holds that Y (ω0) = y,
where xv is the label of v and ǫv is the label of the out-edge of v belonging to Pl.

Clearly, given an algorithm and an input ω0 ∈ Ω0, there exists a unique leaf lω0

suh that for every internal node in v ∈ Plω0
we have ω0(xv) = ǫv. This simply

orresponds to what the algorithm atually does for the spei� realisation of the

11



random input�whih sites it heks, in what order, what values it �nds for their

states and, �nally, what value of the random variable Y it determines based on

those states.

A randomised algorithm is an algorithm-valued random variable. As we will

apply these algorithms to inputs whih are random themselves, we need to de�ne

them on a ommon probability spae (Ω,P), so that the random algorithm is in-

dependent from the random input. For a randomised algorithm de�ne its maximal

revealment

δ = max
x∈Bn

P(∃v ∈ Plω0
, xv = x),

i.e. the maximal probability that any �xed site is explored by the algorithm.

Noise sensitivity We next de�ne noise sensitivity, although our proofs will

mostly use blak-box theorems based on Fourier analysis instead of the de�nition.

De�nition 2.4. Let Gn ⊂ {0, 1}Bn
be a sequene of events. For every ω0 ∈

{0, 1}Bn
let Nε(ω0) be the on�guration obtained when eah bit of ω0 is resampled

independently with probability ε and unhanged otherwise. Resampled bits are

taken to be independently infeted with probability q as originally.
We say that the sequene Gn is noise sensitive, if for every ε > 0

lim
n→∞

Cov
(

1ω0∈Gn
,1Nε(ω0)∈Gn

)

V ar(1Gn
)

= 0.

Let us note that this de�nition following [9℄ is stronger than the original one

from [10℄, whih is trivial for events with probabilities tending to 0 and equivalent,

if the probabilities are bounded away from 0.

3 Results

Our goal is to provide a toolbox for studying subritial models in full generality.

Although our results will apply also to superritial and ritial models, most

of them are either empty or relatively easy for suh families. Unless expliitly

mentioned we do not onsider trivial subritial models.

Critial densities and upper bounds on qc Let C = {[u, u + π], u ∈ S1}
be the set of losed semi-irles of S1

. The most entral result of our work is the

following diretional deomposition of the ritial probability.

Theorem 3.1. Let U be any update family. Then

q̃c = sup
u∈S1

du = inf
C∈C

sup
u∈C

du. (5)

12



If U is not subritial, then q̃c = 0.

Combining Theorem 3.1 with Observation 2.2, we obtain the following upper

bound on qc.

Corollary 3.2. Let U be an update family. Then for any set of subfamilies Ui ⊂ U
we have

qc(U) 6 q̃c(U) 6 inf
C∈C

sup
u∈C

min
i
du(Ui).

Critial densities of OP In order to make use of Corollary 3.2 and obtain

a onrete non-trivial upper bound in relative generality, we express the ritial

densities of OP in terms of a lassial quantity alled `edge speed'. This is done

in Setion 5 by ombining many standard fats about OP realled there together

with the de�nition of the `edge speed'.

Appliation to DTBP Though simple, the bound in Corollary 3.2 is very

versatile and an lead to non-trivial results for the right hoie of subfamilies we

have information for. Of ourse, in some ases it will redue to the trivial bound

qc(U) 6 minU∈U qc({U}) (sine it is sometimes sharp already), whih has not been

brought up expliitly in the literature, but was mentioned for DTBP in [4℄, taking

only U1 = {U} for some rule U ∈ U (they are all isomorphi). There it was

observed that qc 6 1 − pOP
c < 0.312, the seond inequality being due to Gray,

Weirman and Smythe [34℄.

As an exemplary appliation of our result, we improve this bound on DTBP,

answering Question 17 of [4℄ (of ourse, the question may now be reiterated). We

prove the following by ombining Corollary 3.2, the expression of ritial densities

of OP and a variant of the argument from [34℄.

Theorem 3.3. For DTBP

qc 6 q̃c 6 dOP
arctan(−1/3) < 0.2452,

where dOP
is the ritial density of OP.

Appliation to Spiral Another appliation onerns the Spiral model. For that

model Toninelli and Biroli [61℄ proved that qc = 1−pOP
c , there is exponential deay

for q > qc and its transition is disontinuous, as well as providing bounds on the

exponentially diverging orrelation length. It turns out that our method exatly

reovers the �rst two assertions, giving a new proof of the following.

Theorem 3.4 (Theorem 3.3. of [61℄). For the Spiral model qc = q̃c = 1− pOP
c .

This is a onsequene of Corollary 3.2 together with an adaptation of a straig-

htforward but fundamental lemma from [61℄, whih inputs a ruial feature of the

model identi�ed by Jeng and Shwarz [46℄.
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Exponential deay In the proof of Theorem 3.1 we atually prove that θn(q)
deays exponentially fast in n for q > q̃c. We provide a seond proof of this fat,

whih also gives additional information on the phase q < q̃c.

Theorem 3.5. Realling De�nition 2.3, for any update family the following holds.

• If q > q̃c, then there exists c(q) > 0 suh that

max
(

θn(q), θ̃n(q)
)

6 exp(−c(q) · n).

• There exists c > 0 suh that for q < q̃c

θ̃(q) > c · (q̃c − q) > 0.

• If q < q̃c, then there exists c(q) > 0 suh that

Pq(τ0 > n) > c(q)/n

and in partiular Eq[τ0] =∞.

Although we expet that qc = q̃c, this implies that if qc 6= q̃c, then the expeted

infetion time is in�nite at qc (Question 11 of [4℄).

The proof relies heavily on the new simple but powerful method of Duminil-

Copin, Raou� and Tassion [22℄ based on randomised algorithms. With some ad-

ditional work on their only model-dependent Lemma 3.2, somewhat surprisingly

the tehnique applies to BP, whih is a rather unonventional setting for suh

arguments from SP.

Finally, we answer Question 12 of [4℄ on exponential deay for q < qc in the

negative and provide satisfatory information onerning Question 14 of the same

paper on the relationship between BP and SP.

Noise sensitivity Exploiting the algorithm we devise in order to prove Theorem

3.5, we obtain the following relatively omplete information about noise sensitivity.

Theorem 3.6. Realling De�nition 2.3, for any update family and any q ∈ (0, 1)
the following hold.

• θ̃(q) = 0 if and only if the events En are noise sensitive and if and only if

there is an algorithm with vanishing revealment determining their ourrene.

• If θ(q) > 0, then the events {0 6∈ [A ∩ Bn]} are not noise sensitive.

• If θ(q) = θ̃(q) = 0, then the events {0 6∈ [A ∩ Bn]} are noise sensitive and

there is an algorithm with vanishing revealment determining their ourrene.
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The proof relies on fundamental results of Benjamini, Kalai and Shramm [10℄

and Shramm and Steif [60℄.

In partiular, this proves that Spiral is not noise sensitive at ritiality, while

OP is, so that the onditions on ontinuity of the transition are indeed relevant

for noise sensitivity. Let us also mention that proving that the missing ase�

θ̃(q) > 0 = θ(q)�never ours is only slightly stronger than proving Conjeture 8.1

stating that qc = q̃c. If it indeed does not our, then Theorem 3.6 provides

the �nal answer to Question 13 of [4℄ as far as one-arm events are onerned.

Furthermore, Theorem 3.6 suggests some limitations for the intuition given by

Bartha and Pete [9℄ (see Question 1.3 therein). Namely, Theorem 3.6 indiates

that noise sensitivity non-trivially depends on the ontinuity of the transition,

while [9℄ suggests that it should only depend on whether the model is subritial

or not, though for a more restrained lass of models. Therefore, if a variant of

Question 1.3 of [9℄ is to hold in general, additional rami�ations should be needed.

Spetral gap and mean infetion time of KCM Another appliation of our

exponential deay results onerns KCM. We extend to full generality the sope

of the main result of Canrini, Martinelli, Roberto and Toninelli [14℄ using their

method together with exponential deay.

Theorem 3.7. Consider any KCM. If q < q̃c, then the spetral gap of its generator

is 0 and the mean infetion time of the origin in the stationary proess (with initial

law Pq) is in�nite. If q > q̃c, then the spetral gap is stritly positive and the mean

infetion time of the origin in the stationary proess is �nite.

In other words, q̃c is the phase transition of the spetral gap of the assoiated

KCM, so that it an be diretly read o� the assoiated BP as is the ase of the

non-ergodiity transition ourring at qc [14℄.
We should note that the statement in the ase of superritial and ritial

models (for whih q̃c = 0 by Theorem 3.1) is also a trivial onsequene of the

quantitative result of [52℄. We are partiularly indebted to Cristina Toninelli for

disussions around this theorem and its proof.

4 Critial densities

In this setion, after some short preparatory work of establishing basi properties

of ritial densities, we haraterise q̃c in terms of them, whih an be viewed as

the most entral result of the paper.
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4.1 Preliminaries

We start with a few observations whih follow trivially from De�nition 2.1, but

are essential nonetheless.

Observation 4.1. For all u, θ ∈ S1
one has

dθu 6 q̃c

and therefore the same holds for du and d±u . Moreover, θ 7→ dθu is non-dereasing

for θ ∈ [0, π] and non-inreasing for θ ∈ [−π, 0] and d±π
u = q̃c.

Observation 4.2. For all u, θ ∈ S1
one has

dθu = d−θ
u+θ.

The following fundamental lemma is based on a lassial topologial trik.

Lemma 4.3. Let ε > 0 and I 6= S1
be a losed interval of S1

, whih we identify

with an interval [u, v] of R. Then there exists n ∈ N and a �nite sequene u =
u0 < u1 < . . . < un = v of diretions in I suh that

∀i ∈ [1, n], 0 6 dui−ui−1

ui−1
−
(

d+ui−1
∨ d−ui

)

< ε. (6)

Proof. Reall that by Observation 4.2 for u′, v′ ∈ S1
with 0 < v′ − u′ < π we have

dv
′−u′

u′ = d
−(v′−u′)
v′ . Then by Observation 4.1 one always has dv

′−u′

u′ > d+u′ ∨ d−v′ , so
we need only establish the seond inequality.

Set

I0 =
{

v′ ∈ [u, v], ∃n∃(ui) ∈ (S1)n+1, u = u0 < . . . < un = v′, satisfying (6)

}

,

and v0 = sup I0, whih we shall prove to be v. To do this we prove that I0 is open
to the right:

∀v′ ∈ I0 ∃δ > 0, [v′, v′ + δ] ∩ I ⊂ I0

and losed to the right:

∃v′ ∈ I, (vi) ∈ IN0 , vi ր v′ ⇒ v′ ∈ I0,
whih su�es as I is an interval and u ∈ I0.

For the �rst part, �x v′ ∈ I0 \ {v}, n and (ui)
n
0 , un = v′ as provided by the

de�nition of I0. By Observation 4.1 there exists (v− v′)∧ π > δ > 0 small enough

so that dδv′ − d+v′ < ε, whih proves that [v′, v′ + δ] ⊂ I0.
The proof of I0 being losed goes along the same lines looking to the left instead

of to the right. More preisely, let vi form an inreasing sequene of elements of

I0 onverging to v′ ∈ I. By de�nition for i su�iently large v′ − vi < δ, where
0 < δ < (v′− u)∧ π is suh that d−δ

v′ − d−v′ < ε. Hene, taking a sequene given by

the de�nition of vi ∈ I0 and appending v′ to it, we obtain v′ ∈ I0, whih onludes

the proof.
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Remark 4.4. One an use the tehnique of quasi-stable diretions [12℄ to deal

more easily with intervals of unstable and isolated stable diretions. We do not do

this as our onstrution works for the more di�ult stable intervals and trivially

also applies to unstable ones.

Also notie that if one knew that (u, θ) 7→ dθu is ontinuous, this would follow

by uniform ontinuity on a ompat set.

We shall in fat need the following variant whih follows immediately.

Corollary 4.5. With the notation of Lemma 4.3 there also exist two diretions

suh that v < v′ < u′ < u and

du
′−u

u − d−u < ε,

dv
′−v

v − d+v < ε.

Proof. Given a sequene as in Lemma 4.3 we apply one step of the reasoning to

the right of v, obtaining v′ su�iently lose to v and one step to the left of u. We

simply observe that the inequalities we obtained in the proof of the Lemma were

in fat the stronger ones in the statement of the orollary.

4.2 Critial density haraterisation of q̃c�proof of Theo-

rem 3.1

In order to prove Theorem 3.1 we will �rst need to show that above the maximal

ritial density in a semi-irle a ertain well-hosen big droplet of infetion grows

inde�nitely in that diretion with high probability. We thus start by de�ning our

droplets (see Figure 1).

De�nition 4.6. Let n > 3, u = u0 < . . . < un+1 = v be diretions with un = u1+π
and un < v < u < u1 and let L be in R+. We then de�ne the droplet of size L by

DL =
n+1
⋂

i=0

H
L
ui
− xL, DL+ =

⋂

L′>L

DL′ =

(

n
⋂

i=1

H
L+
ui
− xL

)

∩ Vu,v, (7)

where xL ∈ R
2
is suh that 〈xL, u〉 = 〈xL, v〉 = L, so that droplets are insribed in

Vu,v.

It is ruial for the reasoning to follow that all sides of this droplet are of length

Θ(L) for large L when the diretions are �xed.

The growth mehanism is, of ourse, quite di�erent from the one enountered

for ritial and superritial models (�nding an infetion somewhere on the side of

a droplet and relying on quasi-stable diretions to make sure that the sides expand
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Figure 1: The droplet DL of size L for the diretions u0, . . . un+1 de�ned in (7).

The left `half-side', hn−1 of ln−1 is thikened. The shaded box is x+BL/C for some

x ∈ hn−1.

to �ll the orners as well). Our strategy is to infet sites one by one by inspeting

an area of size Ω(L) to have su�iently small probability that the site remains

uninfeted in that zone. We an then use the union bound to infet a new row on

one side of the droplet. We use this proedure to make the droplet grow, making

sure that eah side grows linearly, so that we an �nally sum the probabilities

using the deay provided by the de�nition of ritial densities.

The next lemma roughly tells us that one a set of diretions is �xed as in

Corollary 4.5, a large infeted droplet is highly likely to grow to infet the one

it is insribed in if given a su�iently high (ompared to the ritial densities)

additional density of infetions.

Lemma 4.7. Let n > 2 and let (ui)
n+1
0 be diretions suh that

u = u0 < u1 < . . . < un < un+1 = v,

and u1 + π = un < un+1 < u0 < u1. Fix C large enough depending on the

diretions. Let q > max d
ui−ui−1

ui−1 for all 1 6 i 6 n + 1 and let δ > 0. Then for L
large enough and for any Λ > CL

Pq

(

[DL ∪ (A ∩ BCΛ)] ⊃ Vu,v ∩ BΛ/C

)

> 1− δ.

Proof. Let (ui)
n
i=0, C, q and δ be as in the statement of the lemma.

Consider L suh that Z
2 ∩ (DL+ \ DL) 6= ∅ and let L′ = sup{l, Dl ∩ Z

2 =
DL+ ∩ Z

2}. Consider the (possibly empty) new line of DL′ \ DL in diretion ui,
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li = Z
2 ∩DL′ ∩

((

H
L′

ui
\HL

ui

)

− xL
)

, for 1 6 i 6 n. Let hi = {x ∈ li, 〈ui + π/2, x+
xL〉 > 0} be the left half-side of li (looking from inside the droplet), see Figure 1.

For eah site x ∈ hi and Λ > CL we have

Pq (x 6∈ [DL ∪ (A ∩ BCΛ)]) 6 Pq

(

x 6∈
[

(A ∪DL) ∩ (x+BL/C)
])

6 Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩ BL/C

])

,

sine inside a box of size L/C around x the droplet loally looks like (at least)

Vui,ui+1
, see Figure 1. Then the union bound over all sites in all half-sides gives

Pq ([DL ∪ (A ∩BCΛ)] 6⊃ DL′) 6

n
∑

i=1

|li|
(

Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩BL/C

])

+ Pq

(

0 6∈
[(

A ∪ Vui−1,ui

)

∩ BL/C

])

)

.

We now iterate this bound. Let L0 be large enough (depending on C, δ and

(ui)
n+1
i=0 ) and suh that suh that Z

2∩(DL0+\DL0
) 6= ∅. De�ne Lj+1 = sup{l, Dl∩

Z
2 = DLj+ ∩ Z

2} for all j > 0. Again by the union bound for any L > L0 and

Λ > CL we have

Pq ([DL ∪ (A ∩BCΛ)] 6⊃ DΛ) 6

n
∑

i=1

∞
∑

j=0

|lji |
(

Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩ BLj/C

])

+ Pq

(

0 6∈
[(

A ∪ Vui−1,ui

)

∩BLj/C

])

)

,

where lji = Z
2 ∩DLj+1

∩
((

H
Lj+1

ui \HLj
ui

)

− xLj

)

.

Let us upper bound the �rst term for i = 1 for onreteness. Let jk =
min{j, Lj > Ck}. Then for any k > ⌊L0/C⌋
jk+1−1
∑

j=jk

|lj1|Pq

(

0 6∈
[

(A ∪ Vu1,u2
) ∩BLj/C

])

6 Pq (0 6∈ [(A ∪ Vu1,u2
) ∩Bk])

jk+1−1
∑

j=jk

|lj1|.

Finally, the last sum is easily seen to be at most C3k (it is essentially equal to the

area overed by the ui side while growing from DCk to DC(k+1)), so in total we get

Pq ([DL ∪ (A ∩ BCΛ)] 6⊃ DΛ) 6
∞
∑

k=⌊L0/C⌋
C3k

n
∑

i=0

Pq

(

0 6∈
[(

A ∪ Vui,ui+1

)

∩Bk

])

6 δ

by De�nition 2.1 and the hoie of q. This onludes the proof, sine DΛ ⊃
Vu,v ∩BΛ/2 (by onstrution the u, v-setor of the Eulidean ball of radius Λ/C is

ontained in DΛ).
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Observation 4.1 we have

q̃c > sup
u∈S1

du > inf
C∈C

sup
u∈C

du,

so we are left with proving q̃c 6 infC∈C supu∈C du.
Fix ε > 0 su�iently small and C ∈ C suh that

ε+ inf
C′∈C

sup
u∈C′

du > sup
u∈C

du.

Also �x a set of diretions as required by Lemma 4.7 with C = [u1, un] and
satisfying

∀i ∈ [2, n], dui−ui−1

ui−1
− (d+ui−1

∨ d−ui
) < ε

d−(u1−u0)
u1

− d−u1
< ε

dun+1−un
un

− d+un
< ε,

as provided by Corollary 4.5. Without loss of generality (after rotating the lattie)

we assume un = (0, 1). Fix δ > 0 su�iently small depending on the diretions

(ui) and ε. Let q′ = 2ε + supu′∈C du′
, so that q = q′ − ε satis�es the ondition

q > max d
ui−ui−1

ui−1 of Lemma 4.7.

We sample (a part of) the infeted sites as the union of two independent

perolations�one with probability ε and another one with probability q. At this
point one an easily obtain q′ > qc using Lemma 4.7 to prove that a droplet of

size L grows with high probability in the seond perolation and �nd suh a large

droplet in the �rst one. However, in order to avoid using qc = q̃c, we give a slightly
more involved but fairly standard renormalisation proedure to prove the desired

inequality for q̃c. Furthermore, we will be able to dedue that q̃c is also the ritial
probability of exponential deay.

Let L be large enough for the assertion of Lemma 4.7 to hold. Also �x N
su�iently large depending on L suh that Pε(∃x ∈ BN , A∩BN ⊃ DL+x) > 1−δ.
Finally, let c ∈ N be large enough depending only on the diretions (ui) (and on

the onstant C in Lemma 4.7), but not on δ. Consider a renormalised lattie

L = Z
2
and say X ∈ L is open if N.X + BN ⊂ [A ∩ (N.X + BcN)]. This proess

is learly only 2c-dependent2 and we laim that eah site is open with probability

at least 1 − 2δ. Indeed, N(X − (⌊√c⌋, 0)) + BN ontains a droplet of size L in

the perolation proess with parameter ε with probability at least 1 − δ and this

droplet grows to infet NX +BN with probability at least 1− δ in the perolation

proess with parameter q only using infetions inside NX +BcN by Lemma 4.7.

2

Eah site is independent from the states of sites at distane more than 2c from it.
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Hene, by the Liggett�Shonmann�Staey theorem [49℄ the renormalised pro-

ess stohastially dominates an independent site perolation with parameter 1−δ′
with δ′ whih an be made arbitrarily small by hoosing δ su�iently small. In

partiular, it is known (from the standard Peierls argument, see e.g. [36℄) that

the probability that there is no ontour (self-avoiding losed path) of open sites

around 0 deays exponentially. Yet, if suh a ontour exists in a renormalised box

of size a > c, we know that 0 ∈ [A ∩ B2aN ]. Indeed, sine the family is not trivial

subritial, the renormalised site NX +BN for X in the ontour beomes infeted

using A∩(NX+BcN ) and the union of these sets for allX in the ontour is enough

to infet the origin. To see this, simply use the fat that there exists an unstable

diretion and that the BP proess inside the infeted ontour behaves as though

everything outside the ontour is infeted. Thus, θm(q
′) deays exponentially in

m, sine N is a onstant. Hene, q′ > q̃c, onluding the proof of (5).

Let us now onsider a non-subritial family and show that q̃c = 0. Fix q > 2ε.
It is not hard to see (e.g. by repeating the proof from [13℄) that a su�iently large

droplet is very likely to grow using a density ε of infetions to infet an entire one

of �xed opening depending only on ε and U (see Figure 7 of [13℄). We an then

repeat the renormalisation above using this input instead of Lemma 4.7 to obtain

that there is exponential deay at q and thereby q̃c = 0.

Remark 4.8. Note that we also proved that q̃c is the ritial probability of expo-
nential deay: for eah q > q̃c

lim inf
n

− log θn(q)

n
> 0,

while this fails for q < q̃c. Moreover, sine the family is not trivial, the exponential

deay of the absene of a renormalised ontour of radius n implies also exponential

deay of Pq(τ0 > n) for q > q̃c.

Remark 4.9. In fat, using droplets ontained between two parallel lines (see

Figures 5 and 7 of [13℄) instead of a one with stritly positive opening one an

obtain a slightly stronger haraterisation of q̃c only involving one of the left or

right ritial densities at eah endpoint of the semi-irle.

5 Critial densities of oriented perolation

In this setion we determine the ritial densities of the simplest subritial BP

model�OP. This is established in order to be used in onjuntion with Theorem 3.1

in the next setion to dedue information about other models. Interestingly, alt-

hough determining ritial densities orresponds to studying the phase transition

of OP with an absorbing boundary ondition (in a restrited region), this problem
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does not seem to have been thoroughly studied. The only ase whih we are aware

of that has been onsidered [29℄ is the symmetri one�u = π, for whih the result,

as we shall see, is that the transition is the same as on the entire plane.

Let us reall a few lassial results from OP theory all of whih an be found

up to minor modi�ations in Durrett's review [24℄ (see also [23, 25, 34, 48℄). We

will not redo most of the proofs, as they will be disussed in more detail for GOP

in an upoming work by Szabó and the author [44℄ and sine they have appeared

numerous times in the literature in slightly modi�ed forms.

Reall that OP is de�ned by U = {U} = {{(−1, 1), (1, 1)}}. For the sake of

onveniene, in this setion we parametrise in terms of p = 1 − q�the density of

healthy (open) sites, so that Pp still denotes the produt Bernoulli measure suh

that eah site is open with probability p. For the rest of this setion we onsider

only the sublattie of Z
2
generated by U without further mention. Denote by

x→ y for x and y in Z
2
the event that there exist x0, . . . , xN with x0 = x, xN = y,

xi − xi−1 ∈ U and xi open for 0 < i 6 N , that we all an OP path (from x to y).
Let

rn = sup {x ∈ Z, ∃y 6 0, (y, 0)→ (x, n)}
be the right edge with the onvention sup∅ = −∞.

Lemma 5.1. There exists a funtion α : [0, 1] → [−∞, 1] alled edge speed with

the following properties.

1. For any p we have Pp-a.s.

rn/n→ α(p) = inf
n
Ep[rn/n] = lim

n
Ep[rn/n].

2. α is stritly inreasing on

[

pOP
c , 1

]

.

3. α and ontinuous on

[

pOP
c , 1

]

with α
(

pOP
c

)

= 0, α(1) = 1 and α(p) = −∞
for p < pOP

c .

The �rst equalities and the a.s. limit are proved as in [48℄, following [23, 24℄.

The other assertions are proved exatly as in [24℄. We will use this de�nition of

α in the remainder of the paper. The ontour argument used in [24℄ to prove

the ontinuity of α (together with the Borel-Cantelli lemma) atually gives the

following.

Lemma 5.2. For all p > pOP
c and a < α(p) we have that with positive probability

there exists an in�nite OP path ((ai, i))i∈N with a0 = 0 and infn an/n > a.

The next Lemma an be proved exatly like Theorem 7 of [35℄ (see also [24℄).
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Lemma 5.3. If a > α(p), then for some γ > 0

Pp(rn > an) 6 e−γn.

The following bound on α will only be used in the next setion.

Lemma 5.4. For all p ∈ [0, 1] we have

α(p) 6
p3 + p− 1

p3 − 2p2 + 3p− 1
.

Proof. The two-paragraph argument of Setion 2 of [34℄ adapts immediately to

give that α−1(a) is larger than the root of the equation

(p3 − p2 + 2p− 1)/(p− p2) = 1 + a

1− a.

Rephrasing this we obtain exatly the desired inequality.

Let ψ be the omposition of the tangent, the inverse of α and �nally 1− ·

ψ : [−π,−3π/4] ∪ [−π/4, 0] | tan |−−−→ [0, 1]
α−1

−−→
[

pOP
c , 1

] 1−·−−→ [0, qc].

Putting the preeding fats together we obtain the ritial densities of OP.

Theorem 5.5. The ritial density of U = {U} = {{(1, 1), (−1, 1)}} is given by

du(U) =











0, u ∈ [−3π/4,−π/4]
1− pOP

c = qc, u ∈ [0, π]

ψ(u), otherwise.

For bidiretional OP U ′ = {U,−U}, where −U = {(−1,−1), (1,−1)}, the ritial

densities are du(U ′) = du(U) ∧ d−u(U). One also has d0u = d±u = du for all u in

both ases.

Remark 5.6. If the OP rule is rather Ũ = {(x, y), (z, t)} with the two linearly in-

dependent vetors (sites), let L ∈ GL2(R) be suh that L·Ũ = U = {(−1, 1), (1, 1)}
and detL > 0. Then the ritial densities are also transformed via d

{Ũ}
u = d

{U}
u′ ,

where u′ is the diretion of (L(u− π/2)) + π/2.

Proof of Theorem 5.5. If u ∈ (−3π/4,−π/4) we have nothing to prove, as the

diretions are unstable. By symmetry it su�es to treat u ∈ [−π/4, π/2], so �x

one suh diretion and let q̃ = qc if u ∈ (0, π/2] and ψ(u) otherwise. Notie that
α(1− q̃) = − tan(u) in the latter ase and 0 in the former one.
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Let q < q̃. By Lemmas 5.1 and 5.2 we know that with positive probability

there exists an in�nite OP path of healthy sites starting at 0 not interseting Hu.

This proves that q 6 dθu for all θ, so q 6 d0u 6 d±u 6 du and the same inequalities

hold for q̃.
Conversely, let q > q̃. Then by Lemmas 5.1 and 5.3

Pq(0 6∈ [(A ∩Bn) ∪ Vu−θ,u+θ])

deays exponentially for θ > 0 small enough, so that d0u 6 d±u 6 du 6 q. Thus,

with the inequalities from the previous ase we obtain

du = d±u = d0u = q̃.

Now onsider bidiretional OP. It is lear that 0 remaining healthy for this

proess is equivalent to 0 remaining healthy for the family {U} and for the family

{−U}, both of whih are simply OP. Moreover, these two events are independent

onditionally on the state of 0 (as the oriented paths our in the upper and

lower half-planes respetively). Thus, the ritial densities are indeed obtained as

laimed.

Remark 5.7. In order to be able to usefully apply Corollary 3.2 in full generality

to any subritial model, we require a generalisation of Theorem 5.5 to GOP.

Indeed, every non-trivial subritial model ontains rules orresponding to GOP

as explained in Setion 1.2. The proof of Theorem 5.5 remains unhanged for GOP,

provided we have all the ingredients needed, Lemmas 5.1�5.3. In an upoming work

Szabó and the author [44℄ explain how those are established.

6 Appliations of the upper bound for bootstrap

perolation

The most natural and easy way to use Corollary 3.2, whih we all basi bound, is

for subfamilies onsisting of only one rule:

qc(U) 6 q̃c(U) 6 inf
C∈C

supmin
U∈U

du({U}), (8)

sine the r.h.s. terms orrespond to OP treated in the previous paragraph or simi-

larly behaved GOP. In priniple this approah inludes the trivial one onsisting

of using qc(U) 6 minU∈U q
{U}
c , but also allows better estimates.

We give two illustrative appliations of the general bound of Corollary 3.2. The

�rst one follows from the basi bound given by single rule subfamilies as outlined

above, while the seond one is more subtle.
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5π/4π3π/4π/2π/4
0

1− α−1(1/3)

1− pOP
c

Figure 2: A shemati representation of the ritial densities of the three OP rules

in DTBP. For symmetry reasons we only depit the domain u ∈ [π/4, 5π/4].

6.1 The basi bound�the DTBP model

Our �rst example is DTBP. We improve the upper bound of [4℄ as asked in their

Question 17 by proving Theorem 3.3.

Proof of Theorem 3.3. Our starting point is (8). Let Ui be the three rules in the

update family U of DTBP de�ned in (3). We an then use Theorem 5.5 and

Remark 5.6 to determine the r.h.s. We spare the reader the tedious details, but it

is elementary to see (see Figure 2) that by symmetry there are three loal maxima

of u 7→ mini du({Ui})�the one at π/4 being the global maximum in [−π/4, 3π/4].
Hene, Theorem 5.5 and Remark 5.6 give

qc(U) 6 dOP
L(−π/4)+π/4 = dOP

arctan(−1/3) = 1− α−1(1/3),

where L(x, y) = (x, y − x) transforms the DTBP rule {(−1,−1), (0, 1)} into

{(−1, 0), (0, 1)}, whih is OP rotated by π/4.
In fat, the other two maxima are also easily determined to be at π−arctan(1/2)

and arctan(1/2)− π/2. They turn out to give the same value as the one at π/4,
but we did not need that for establishing the upper bound. Finally, Lemma 5.4

provides the desired bound α−1(1/3) > 0.7548.

It should be noted that the numerial bound is not optimised, but merely given

to testify that the gain is signi�ant. For omparison, based on a re�nement of

the same method in [34℄ in onjuntion with the trivial bound qc(U) 6 1− pOP
c =

1− α−1(0) the authors of [4℄ obtain qc(U) < 0.312. Even if the exat value of pOP
c

were known, it follows from rigorous upper bounds that the trivial bound annot

go beyond 0.274 [5℄. Numerial studies indiate that in fat 1− pOP
c ≈ 0.2945 [58℄.

Unfortunately, we have been unable to �nd appropriate numerial estimates for α
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for values far from qc in the literature, so we annot provide a orresponding result

for our bound 1−α−1(1/3). Finally, all these values are also to be ompared with

the numerial estimate qc(U) ≈ 0.118 suggested in [4℄, whih indiates that there

is muh room for further improvements.

6.2 Motivation of the seond-level bound

Unfortunately, the basi bound (8) is not tight. Something more, it is possible

to �nd two rules U1 and U2, suh that d({U1, U2}) is nowhere equal to d({U1}) ∧
d({U2}). Even worse, hanging U2 may lead to a hange in d({U1, U2}) while

d({U2}) remains the same. We give the following instrutive ounterexample,

along whose lines many an be onstruted.

Proposition 6.1. Let Un = {U1, Un} = {{(1, 1), (−1, 1)}, {(n, n), (−n, n)}} for
n ∈ N. Then as n→∞

qc(Un) 6 1− inf
{

p, pOP
c 6 θOP (p)

}

+ o(1),

where θOP (p) = P1−p

(

0 6∈ [A]{U1}
)

is the probability that 0 is never infeted in OP.

Proof. Let B′
n = (−n, n]× (0, n) and denote by L = {n.(m−k,m+k), m, k ∈ N}

the sites onerned by the seond rule. Note that for all x ∈ L the boxes x + B′
n

are disjoint and disjoint from L.
Fix ε > 0 and p = 1− q suh that θOP (p) < pOP

c − ε. Let n be large enough so

that

Pq (x 6∈ [A ∩ (x+B′
n)]) 6

θOP (p) + ε

p
.

Suh an n exists, beause the proess with initial infetion in x + B′
n is idential

to the one under the family {U1}, whih is OP and for whih we know that the

probability onverges to θOP (p)/p.
Then we an assoiate to eah site of x ∈ L an independent Bernoulli(θOP(p)+

ε) random variable�the indiator of the event Gx = {x 6∈ A; x 6∈ [A∩ (x+B′
n)]}.

Furthermore, {x 6∈ [A]} ⊂ Gx for all x. But then in order for 0 to remain uninfeted

at all times it is neessary to have an in�nite path with steps in Un starting at 0 of
sites x suh that Gx ours and the probability of this event is θ

OP (θOP (p)+ε) = 0,
sine θOP (p) 6 pOP

c − ε.

This example shows where the main di�ulty of the subritial models resi-

des one GOP is well understood. The division into three universality lasses is

based on the unstable diretions of a model, whih an be diretly obtained by

superimposing the ones for eah rule, whih are very easy to determine [4, 13℄. In

the re�ned result based on `di�ulties' for ritial models [12℄ Bollobás, Duminil-

Copin, Morris and Smith only require information in the �nitely many isolated
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stable diretions�their di�ulty. In their ase, like here, there is no easy way

of alulating the di�ulty of an isolated stable diretion without looking at the

entire update family. However, in the simple ase of ritial models the di�ulty

happens to be a �nite disrete quantity, whih invites diret exhaustive omputa-

tion (whih for simple models is readily done by hand), and indeed [12℄ does not

provide a reipe for determining di�ulties (it turns out that determining them is

NP-hard [42℄). This is essentially the same problem that we are faing here, but

the ritial densities of subritial models being muh riher, they are even harder

to deompose and analyse.

On the bright side the bound from Corollary 3.2 need not be applied to sub-

families with a single rule. Hene, if we have information on the joint ritial

densities of, say, all pairs of rules in the family U , then we an extrat a (better)

upper bound for qc(U). We next turn our attention to an example where this ap-

proah works brilliantly, while to apply the basi bound (and obtain worse results)

we would need an understanding of GOP.

6.3 Spiral model

Indeed, in the Spiral model the subfamilies with two rules happen to be simpler

than the single-rule ones when restrited to appropriate half-planes. Reall the

de�nition of its update family U = {U1, U2, U3, U4} from (2). We will use Corol-

lary 3.2 to provide a new proof of one of the main results of [61℄�Theorem 3.4.

The proof is nearly omplete at this point, but we need one last ingredient�a

variant of Lemma 4.11 of [61℄, whih is atually more naturally expressed in the

language of ritial densities. This is where one uses the �no parallel rossing�

property, whih Jeng and Shwarz [46℄ identi�ed as essential, as without it the

pairs of rules do not simplify to OP.

Lemma 6.2 (Adaptation of Lemma 4.11 of [61℄). Let u ∈ (π/2, 5π/4). Then

du({U1, U2}) = du(U ′),

where U ′ = {{(0, 1), (1, 1)}, {(0,−1), (−1,−1)}} is a bidiretional OP.

Sine there are a few additional tehnialities, we give the proof, fousing on

the new parts, so the reader is also invited to onsult [61℄ for more details.

Proof of Lemma 6.2. Let u ∈ I = (π/2, 5π/4) and π/2 − u < θ < 5π/4 − u.
We laim that dθu({U1, U2}) = dθu(U ′), whih learly implies the desired result.

Let B = [−n, n] × [0, cn] for some �xed n ∈ N su�iently large and 0 6 c 6 1
su�iently small (c < tan(u − π/2) if u ∈ (π/2, π) and the same with u replaed
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Figure 3: An example of the healthy path used in the proof of Lemma 6.2. The

shaded region is entirely infeted.

with u+ θ) and de�ne the events

E1 =
{

0 6∈ [(A ∪ Vu,u+θ) ∩B]U ′

}

E2 =
{

0 6∈ [(A ∪ Vu,u+θ) ∩ B]{U1,U2}

}

.

We argue that E1 ⊃ E2. Fix a realisation of A suh that E2 \ E1 holds and all the

sites in

B \ [(A ∪ Vu,u+θ) ∩B]{U1,U2}

survivors. Consider the rightmost path P of survivors starting at 0 with steps in

{(0, 1), (1, 1)} (performing the step (1, 1) whenever possible and (0, 1) only when

(1, 1) is not possible) and denote x its endpoint. Indeed, P annot reah the

(top) boundary ∂B of B, sine E1 does not hold (survivors are neessarily initially

healthy). Sine x is a survivor and both x+(0, 1) and x+(1, 1) are not (otherwise
x is not the end of the path), there needs to be a survivor y among x+ (1, 0) and
x + (1,−1) (see Figure 3). In partiular, x 6= 0, as both (0, 1) and (1,−1) are in
Hu ∩Hu+θ.

Sine y is a survivor, there has to exist a path of survivors starting at y with

steps in U2 reahing ∂B. However, it is easy to see (see Figure 3) that suh a

path annot reah ∂B without interseting Vu,u+θ or P . The former possibility is

exluded, sine Vu,u+θ are not survivors and the latter one ontradits the hoie

of P to be the rightmost path of survivors from 0.
Hene, E2 ⊂ E1. A similar reasoning applies with B tilted by 3π/4. Finally, re-

alling that the region Vπ/2,5π/4 is entirely infeted for all values of (u, θ) onsidered,
we obtain that

0 6∈ [(A ∪ Vu,u+θ) ∩ Bn]{U1,U2} =⇒ 0 6∈ [(A ∪ Vu,u+θ) ∩Bcn]U ′ .
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The same impliation with U ′
and {U1, U2} swapped is lear from the fat that

U1 ⊃ {(0, 1), (1, 1)} and U2 ⊃ {(0,−1), (−1,−1)}, so we are done by De�nition

2.1.

Proof of Theorem 3.4. First note that if q < 1−pOP
c , then with probability 1 there

exists a bidiretional U ′
path of healthy sites, whih remains healthy also for U .

Therefore, qc(U) > 1− pOP
c .

We apply Corollary 3.2 to U and the families U1 = {U1, U2}, U2 = {U2, U3},
U3 = {U3, U4} and U4 = {U4, U1}. We simply bound du(U1) by 1 for u ∈ (−π, π/2]
and apply Lemma 6.2 and Theorem 5.5 with Remark 5.6 to obtain a bound on

du(U1) for all u. By symmetry the same applies to the other three families up to

rotation by π/2. Hene,

qc(U) 6 q̃c(U) = sup
u∈S1

du 6 sup
u∈(π/2,π]

du(U1) = sup
u∈(π/2,π]

du(U ′) 6 sup
u∈S1

du(U ′) = 1−pOP
c .

Remark 6.3. It is important to note that Lemma 6.2 does not hold for all di-

retions u. It is lear, for example, that when u = 0 it su�es to have an in�nite

uni-diretional healthy path with steps {(1, 0), (1,−1)} starting at 0, whih ours

for q < 1 − pOP
c 6= 0 = du(U ′). Moreover, the omplete Spiral model is not equi-

valent to any (uni- or bi-diretional) OP, as it is lear from the fat that it has a

disontinuous phase transition [61℄, while the phase transition of OP is ontinu-

ous [11℄�BP ours for both bidiretional OP involved, but not for Spiral. Thus,

it is ruial to restrit the proess to half-planes where it is equivalent to OP. This

idea also underlies the reasoning of [61℄.

7 Exponential deay and appliations

In Setion 4 we haraterised q̃c in terms of ritial densities and proved that it is

the ritial probability of exponential deay. We now give a seond proof of the

latter, whih makes the onlusions slightly stronger and more manipulable. For

instane, if we assume that θn(q) deays like a power law, (4) gives that for q < q̃c
the exponent is at least −2, whih is what we will prove here without assuming

that the deay is a power law. Moreover, this method will grant us aess to noise

sensitivity as well as proving that a one-arm event has stritly positive probability

below q̃c, so that this is indeed a phase transition regardless of whether qc = q̃c or
not. Finally, we give a straightforward but important appliation of exponential

deay to the spetral gap and mean infetion time of KCM.

As a motivation we start by answering Questions 12 and 14 of Balister, Bol-

lobás, Przykuki and Smith [4℄. We then reprove exponential deay and all the

results gathered in Theorem 3.5 using the method developed by Duminil-Copin,
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Raou� and Tassion [22℄ and then use a modi�ation of the algorithm we made for

the proof of exponential deay to also dedue the results onerning noise sensiti-

vity in Theorem 3.6.

7.1 Answers to Questions 12 and 14 of [4℄

Let us begin this setion by explaining why, ontrary to the expetations of the

authors of [4℄, one should expet exponential deay above ritiality rather than

below it, thus answering Question 12 of that paper. As the reasoning will be

idential, we also answer Question 14, but before that we will need to establish

the following straightforward fat that will serve as a soure of examples.

Proposition 7.1. For every ε > 0 there exists a GOP model with qc > 1− ε.

Proof. Fix 1 − q = ε > 0 and let N = N(ε) ∈ N be large enough. Consider the

following GOP update family

U = {U} = {H−π/2 ∩B8N}.

We perform the following renormalisation. We all a renormalised site X ∈ Z
2

good if there is a healthy site in 4N.X + BN . The renormalised proess learly

yields a perolation with parameter larger than pOP
c for N large enough. Indeed,

sites are good independently (as (4NX+BN)∩(4NY +BN) = ∅ for X 6= Y ∈ Z
2
)

with probability 1 − q|BN |
. In partiular, for N large enough there is a positive

probability that the renormalised site 0 belongs to an in�nite OP path of good

renormalised sites. But this implies that the ordinary site 0 belongs to an in�nite

oriented path of healthy verties in the graph struture on Z
2
de�ned by U , i.e. 0

remains healthy forever with positive probability. Hene, BP does not our a.s.

and 1− ε = q 6 qc as desired.

7.1.1 Question 14

The authors of [4℄ ask for whih subritial models below ritiality there is no

in�nite path (non-oriented with nearest neighbour steps) of sites in [A] and seem

to be in favour of a positive answer for all subritial BP models. On the one

hand, it is indeed possible for this senario to our and that is the ase for the

simplest subritial model�OP.

Proposition 7.2. Consider OP and let q < qc. Then a.s. there is no in�nite path

in [A].

Proof. Let q < qc. Reall that the edge speed from Lemma 5.1 satis�es α(1−q) > ε
for some ε > 0. It then follows from Lemma 5.2 that with positive probability there
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exists an in�nite initially healthy oriented path (ai, i)i∈N (i.e. with |ai+1 − ai| = 1
for all i) starting at 0 with inf ai/i > ε. Re�eting this event, we see that with

positive probability there exists a bi-in�nite oriented path (ai, i)i∈Z ontaining 0
suh that inf i 6=0 ai/|i| > ε. By ergodiity and symmetry a.s. there exist two bi-

in�nite oriented paths of initially healthy verties (ai)i∈Z and (bi)i∈Z suh that

a0 < 0, b0 > 0, lim inf |i|→∞ ai/|i| > ε and lim sup|i|→∞ bi/|i| 6 −ε. As these are

oriented paths of healthy sites, they never beome infeted in the BP proess.

Moreover, the two paths interset both in the upper and lower half-planes, H−π/2

and Hπ/2, forming a ontour of sites in Z
2\[A] around the origin. In partiular, a.s.

there is no in�nite non-oriented path with nearest neighbour steps in [A] ontaining
the origin, whih onludes the proof by ergodiity.

On the other hand, it is obvious that any subritial model with qc > pSPc is

an example of the opposite behaviour. Minimal suh examples are provided by

large enough GOP as in Proposition 7.1, but also by any trivial subritial model.

Indeed, for any pSPc < q < qc we a.s. have an in�nite non-oriented path of initially

infeted sites.

As we do not give the haraterisation asked for in [4℄, let us explain why we

believe the question to be somewhat extrinsi in the light of the above example

and ounter-examples. Indeed, the graph struture of Z
2
, whih de�nes the in�nite

path in [A] that [4℄ asks for, is not relevant to the model itself, de�ned only by U .
For example if one is to replae U by 2U (e.g. in the above examples) the problem

is hanged non-trivially, while the bootstrap proess is really the same. Finally, let

us note that we do not expet that qc > pSPc (or qc > pSPc ) is a neessary ondition.

7.1.2 Question 12

With the previous reasoning in mind, let us go bak to Question 12 of [4℄ about

exponential deay. The question is whether at q < qc there would be exponential

deay in n of the probability of 0 being onneted by sites in [A] to the boundary of
Bn, to quote [4℄ �Here we mean `onneted' in the site perolation sense, although

other notions of onnetedness are also interesting�.

This is not the ase, sine in many models there is even no deay at all (the

probability of being onneted in the non-oriented nearest neighbour sense by sites

in [A] to the boundary of Bn may remain bounded away from 0 as n → ∞ for

some q < qc), let alone exponential one. For example onsider any subritial

model with qc > pSPc . Obviously, for pOP
c < q < qc there is positive probability for

0 to be initially onneted to in�nity by an infeted non-oriented nearest neighbour

path, but also with probability 1 BP does not our, so some (positive density of)

sites remain healthy forever. This is by no means ontraditory, sine, e.g. in the

example of Proposition 7.1, a path, in the graph sense given by the GOP rule
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and not the non-oriented nearest neighbour one, of healthy sites witnessing that

0 never beomes infeted an easily jump over an in�nite infeted non-oriented

nearest neighbour path in the usual Z
2
sense.

7.2 Exponential deay�proof of Theorem 3.5

Even though exponential deay below qc is not always present, we prove that there
is exponential deay above qc, as it is well known to be the ase for OP (this follows

e.g. from Lemmas 5.1 and 5.3). We shall use the reent method of Duminil-Copin,

Raou� and Tassion [22℄ in order to prove the exponential deay of the one-arm

events En from De�nition 2.3. In fat, muh of the proof of [22℄ alls for no

modi�ation.

3

We will only need the following replaement for their Lemma 3.2.

Lemma 7.3. There exists a randomised algorithm determining 1En
with maximal

revealment

δ 6
3

n− 1

n−1
∑

k=0

θ̃k(p).

Proof. The algorithm is as follows. First pik k uniformly at random in [1, n− 1].
Let S ⊂ Bn denote the urrent set of sites whose state has been heked by the

algorithm. We start by revealing (in an arbitrary order) all sites at distane at most

C from ∂Bk, the boundary of Bk, and adding them to S. Afterwards we repeat the
following. As long as there exists a site x0 ∈ Bn \S for whih there exist an integer

N > 1 and a sequene x1, . . . xN of sites in S verifying the following onditions,

the algorithm piks one of the possible x0 arbitrarily and heks its state.

• xN is at distane at most C from ∂Bk.

• For all 0 < i 6 N we have xi−1 ∈ xi +X.

• For all 0 < i 6 N we have that S is a witness of the event τBn
xi

> i.

When no suh sites remain, the �rst stage of the algorithm terminates.

If at this point 0 6∈ S, then the algorithm stops. Otherwise, we diretly reveal

all remaining sites in Bn (in an arbitrary order) and stop.

It is lear that this algorithm does determine 1En
. Indeed, if all sites were

revealed, this is vauously true for any funtion, while if at the end of the �rst

stage we had 0 6∈ S, we know that Ek does not our (by de�nition) and therefore

neither does En ⊂ Ek (by extration of a shorter path from a longer one).

3

We enourage the reader unfamiliar with that paper to see the seond half of the ourse

reording [19℄, whih gives preisely the part we need and preisely in the simpler form we use

here adapted to produt measures, exept for Lemma 7.3 we prove.
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We now proeed to bound its revealment. Fix the value of k and onsider a

site x ∈ ∂Bl for some 0 6 l 6 n. The events En are suh that when x is revealed,

we are ertain that either E|k−l| translated by x ours or the original event Ek

ours. Hene, its revealment is at most θ̃|k−l|(q) + θ̃k(q). Taking the average on k
this gives a maximal revealment bounded by

3

n− 1

n−1
∑

0

θ̃l(p).

With this Lemma we are ready to apply the method of [22℄ to prove Theo-

rem 3.5.

Proof of Theorem 3.5. Let us start by proving the theorem for subritial models.

For the �rst two items, using Lemma 3.1 of [22℄ we an repeat the proof of their

Theorem 1.2, using the result of [57℄ (instead of its more general form, Theorem 1.1

of [22℄) together with our replaement for their Lemma 3.2�Lemma 7.3�and

Russo's formula. Setting

q̂c = sup

{

q, lim sup
log
∑n−1

0 θ̃k(q)

log n
> 1

}

,

this yields the following.

• If q > q̂c, then there exists c(q) > 0 suh that

θ̃n(q) 6 exp(−c(q).n).

• There exists c > 0 suh that for q < q̂c

θ̃(q) > c.(q̂c − q) > 0.

We next prove that q̂c = q̃c.
First notie that 0 6∈ [A ∩ Bn] implies the existene of a path, in the sense of

De�nition 2.3, of sites xi with τ
Bn
xi

= ∞ from 0 to ∂Bn (sine there are no �nite

stable healthy sets) with xi+1 ∈ xi + X and x0 = 0. But suh a path needs to

ome at distane less than C/4 of ∂Bn/2 at some point xk, so En/3 translated by

xk ours. Thus, by the union bound

θn(q) 6 Cnθ̃n/3(q).

Therefore, exponential deay for θ̃n implies exponential deay for θn and thereby

q̃c 6 q̂c and for q > q̂c we have (for some other c(q))

θn(q) 6 exp(−c(q).n).
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Conversely, we know that for q < q̂c the sequene θ̃n(q) onverges to θ̃(q) > 0.
Note that on the event En there exists a site x with τBn

x > n/C at distane at

most C/4 from ∂Bn/2 in the path in De�nition 2.3. Then by the union bound we

obtain

Cnθ√n/(2C)(q) > θ̃n(q)→ θ̃(q) > 0,

sine τ
B

C2n

0 > 4Cn⇒ 0 6∈ [A ∩ B√
n]. Indeed, sine U is not superritial, we an

�nd three or four stable diretions ontaining the origin in their onvex envelope,

whih guarantees that [B√
n] ⊂ B√

Cn and inside this box sites will beome infeted

at least one at a time. This proves that θn(q) > c/n2
for some c > 0 and thus

q 6 q̃c by (4). Hene, q̃c = q̂c and the proof of the �rst two items is omplete.

Let us turn to the third one. As we already observed the ourrene of En

implies the existene of a site x within distane C/4 of ∂Bn/2 with τBn
x > n/C.

However, the event τx > n/C does not depend on sites outside Bn, so that it is

the same as τBn
x > n/C and the �rst one's probability is independent of x ∈ B2n/3.

Then the union bound gives

CnPq(τ0 > n/C) > θ̃n(q)→ θ̃(q) > 0.

Thus, for q < q̃c we have Pq(τ0 > n) > c/n for some c > 0 and in partiular the

�rst moment of τ0 is in�nite, whih ompletes the proof for subritial models.

For U ritial or superritial and q > 0 it su�es to reall from Remark 4.8

that Pq(τ0 > n) deays exponentially, whih immediately implies the exponential

deay of θ̃n(q) by the union bound as above and thus ompletes the proof (the

seond and third items being void for q̃c = 0).

7.3 Noise sensitivity�proof of Theorem 3.6

We next use the algorithm we have to study noise sensitivity and prove Theo-

rem 3.6.

The harder part of the proof of Theorem 3.6 relies on the following easy onse-

quene of Theorem 1.8 of Shramm and Steif [60℄ and Theorem 1.9 of Benjamini,

Kalai and Shramm [10℄.

4

Theorem 7.4 ([10, 60℄). Let Gn be a sequene of ylinder events (depending on

�nitely many sites). If there exists a randomised algorithm determining the our-

rene of Gn with maximal revealment δn → 0, then the sequene is noise sensitive.

The straightforward onverses in Theorem 3.6, stated for ompleteness, follow

from the next easy lemma.

4

The results of these papers are stated for q = 1/2, but they are also valid for any �xed value

of 0 < q < 1. Moreover, the result does hold for the stronger De�nition 2.4.
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Lemma 7.5. Let Gn be a nested sequene of ylinder events suh that
⋂

nGn = G∞
and 0 < Pq(G∞) < 1. Then Gn are not noise sensitive.

Proof. Firstly, V ar(1Gn
) → V ar(1G∞

) ∈ (0, 1/4]. Seondly, 1Gn

L2

−→ 1G∞
, so

that for any δ > 0 there exists nδ suh that for all n > nδ we have ‖1Gn
−

1Gnδ
‖L2 < δ. Finally, for any ε > 0 the funtion f 7→ (x 7→ E[f(Nε(x))|x]) is an

L2
ontration, so that for all n > nδ we also have ‖1Nε(x)∈Gn

− 1Nε(x)∈Gnδ
‖L2 <

δ. These three fats ombined imply that it is su�ient to show that for any

δ > 0 small enough and any ε > 0 small enough depending on δ it holds that

V ar(1Gnδ
)−Cov(1x∈Gnδ

,1Nε(x)∈Gnδ
) < δ. But this is the ase, as Gnδ

is a ylinder

event, so that for ε small enough Pq(1x∈Gnδ
6= 1Nε(x)∈Gnδ

) < δ. Hene,

lim
ε→0

lim inf
n→∞

Cov(1x∈Gn
,1Nε(x)∈Gn

)

V ar(1Gn
)

= 1,

whih onludes the proof by De�nition 2.4.

Remark 7.6. The onsequenes of Lemma 7.5 an also be dedued easily from

[10, Theorem 1.4℄.

Proof of Theorem 3.6. Fix 0 < q < 1. First assume that θ(q) > 0. Then by

Lemma 7.5 we have that the events 0 6∈ [A ∩ Bn] are not noise sensitive and then

Theorem 7.4 proves that no low-revealment algorithm exists. The proof in the ase

θ̃(q) > 0 that the events En are not noise sensitive is analogous. Assume, on the

ontrary, that θ̃(q) = 0. Then Lemma 7.3 provides an algorithm with revealment

δn → 0, whih ompletes the proof of the �rst two items of Theorem 3.6.

Finally, assume that θ(q) = θ̃(q) = 0. Sine θ(q) = 0 we also have Pq(τ0 >

n) → 0. Fix ε > 0 and let n be large enough so that we an �nd n/C > k0 > C
with k0 < ε/(64CPq(τ0 > n/C)) and 2

k0

∑2k0
m=0 θ̃m(q) < ε. Denote by Hk the event

that there exists x at distane at most C from ∂Bk suh that τBn
x > n/C. Then

by the union bound Pq(Hk) < 16CkPq(τ0 > n/C) < ε for k < 4k0.
We perform the same algorithm as in the proof of Lemma 7.3, but with k hosen

uniformly in [3k0, 4k0). When the �rst stage (exploration) of the algorithm stops

we hek if Hk ours, whih is indeed known (witnessed by the set of inspeted

sites S). If it does, then we simply hek all the remaining sites to determine if

0 ∈ [A ∩ Bn]. The probability that this last step ours is exatly Pq(Hk) < ε.
If Hk does not our, we know that 0 ∈ [A ∩ Bn] (sine there are no �nite stable

healthy sets). We an then bound the revealment similarly to what we did in

Lemma 7.3�we onsider a site y ∈ ∂Bl and take ases depending on its position.

If l > 5k0, the revealment is at most ε+ θ̃l−4k0(q) 6 ε+ θ̃k0(q) < 2ε and similarly

for l < 2k0. For 2k0 6 l < 5k0 we average on k as before to obtain a revealment

bounded by ε+ 2
k0

∑2k0
m=0 θ̃m(q). Hene, the maximal revealment is indeed bounded
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Figure 4: Illustration of the de�nition of a renormalised site being good. The two

hathed parallelograms beome infeted by the �rst ondition, while the seond

one onerns the two shaded rhombi.

by 2ε. Then, as previously, Theorem 7.4 gives that 0 ∈ [A∩Bn] is noise sensitive,
whih onludes the proof.

7.4 Spetral gap and mean infetion time of KCM

To onlude our disussion of exponential deay, we turn to its appliations to the

KCM de�ned at the end of the introdution. Canrini, Martinelli, Roberto and

Toninelli [14℄ proved the positivity of the spetral gap above qc for several spei�
models inluding OP, whose KCM ounterpart is known as the North-East model.

They also proved that the result holds for any model under an unhandy additional

ondition. We now use Theorem 3.5 together with their results to prove that for

all KCM the gap is positive above q̃c and 0 below and the mean infetion time of

the origin is �nite and in�nite respetively. It is very interesting to note that we

will use the exponential deay of θ̃n and not θn, whih does not su�e.

In order to link the spetral gap and the mean infetion times we need the

following simple fats from [53℄ and [15℄.

Lemma 7.7 (Lemma 4.3 [53℄, Theorem 4.7 [15℄). For all 0 < q < 1 the mean

infetion time of the origin in the BP and the orresponding stationary KCM pro-

esses satisfy

δEBP
q [τ0] 6 E

KCM
q [τ0] 6

Trel(q)

q
,

where Trel is the inverse spetral gap of the KCM and δ > 0 is a su�iently small

onstant.

Proof of Theorem 3.7. Let U be a (non-trivial) update family and without loss

of generality assume that it ontains a rule U0 ⊂ H−π/2+δ ∩ H−π/2−2δ for some
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Figure 5: Infetion proedure used to prove that if the top-right, bottom-right and

top-left renormalised sites are good, the bottom-left one beomes entirely infeted.

δ > 0 su�iently small suh that −π/2− δ is a rational diretion. Fix q > q̃c and
ε(δ) > 0 and η(δ, ε) > 0 su�iently small. The positivity of the gap is implied

by Theorem 3.3 of [14℄ if we an �nd a suitable renormalisation satisfying the

following (see De�nition 3.1 [14℄).

5

(a) Eah renormalised site is good with probability at least 1− ε.

(b) If the renormalised sites (0, 1), (1, 0) and (1, 1) are all good, then

[A ∩ ({a,b, a+ b}+B′)] ⊃ B′,

where a and b are the two base vetors of the renormalisation and B′
is the

renormalisation box�the parallelogram generated by a and b i.e.

B′ = ([0, 1) · a) + ([0, 1) · b),

where we use the notation C +D = {c+ d, c ∈ C, d ∈ D}.

Set a = (n, 0) and b = n(cos(−π + δ), sin(−π + δ)) for n(η) su�iently large.

We all the renormalised site 0 good if the following all hold (see Figure 4) and we

extend the de�nition to any site by translation.

• For all x in the parallelograms [ε, 1−ε]·a+[0, 2ε]·b and [ε, 1−ε]·b+[0, 2ε]·a
it holds that τB

′

x < ηn.

• For all x in the rhombus [1 − ε, 1) · a + [0, ε] · b it holds that τB
′

x < ηn if

we impose infeted boundary ondition on [1, 1 + 2ε] · a + [0, 1 − ε] · b and

healthy on the rest of Z
2 \ B′

. Also the symmetri ondition holds for the

rhombus [1− ε, 1) · b+ [0, ε] · a.
5

The statement in [14℄ is given for square boxes, but generalises without hange.
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Condition (b) on the renormalisation is easily heked from this de�nition, using

only the rule U0 (see Figure 5). Indeed, all hathed regions beome infeted by the

�rst ondition, so that the double hathed rhombi are infeted by U0. Finally, the

shaded rhombi beome infeted by the seond ondition, sine the infeted boun-

dary ondition is already met. The renormalised site onsidered is then entirely

infeted using U0. Thus, we only need to hek that a renormalised site is good

with probability at least 1− ε.
Sine the onditions onern O(n2) sites, by symmetry and monotoniity it

su�es to observe that

Pq

(

τ
[−Cηn,Cηn]×[0,Cηn]
0 > ηn

)

deays exponentially with n. Indeed, for this event to our, there must exist a

path of sites x0, . . . , x⌈nη⌉ = 0 with xi−xi+1 ∈ U0 and τ
[−Cηn,Cηn]×[0,Cηn]
xi > i for all

0 6 i < ηn, whih in partiular means that Eη2n translated by x0 ours. Hene,
using the �rst item of Theorem 3.5 and the union bound we obtain the desired

result and thereby the spetral gap is stritly positive. By Lemma 7.7 this implies

that the mean infetion time of the KCM is �nite.

Finally, by Theorem 3.5 for q < q̃c the mean infetion time of BP is in�nite, so

Lemma 7.7 shows that in this regime the spetral gap is 0 and the mean infetion

time of the KCM is in�nite.

8 Open problems

To onlude, let us mention some interesting open problems related to this work

besides its diret extensions based on GOP.

8.1 Simpli�ations

We next mention the two prime onjetures whih would greatly simplify the

statements of our results besides being interesting on their own. We start with the

uniqueness of the transition.

Conjeture 8.1. For all update families we have

qc = q̃c.

We should note that, the Kahn�Kalai�Linial theorem [47℄ tells us that (up to

replaing the box by the torus as in [6℄ or adapting the tehnique of [21℄) θn(q)
deays at least like n−ε(q−qc)

above ritiality and Theorem 3.5 establishes that

below q̃c it deays at most like n−2
. As it is ommonly the ase, it is likely that

breahing this gap will prove di�ult.
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As mentioned earlier if one proves the slightly stronger property

θ̃(q) > 0⇒ θ(q) > 0, (9)

whih implies Conjeture 8.1, then Theorem 3.6 exhausts the noise sensitivity

problem for subritial BP at least for the most natural event 0 ∈ [A∩Bn], whih
we onsider sine there is no obvious hoie of �rossing� event. Indeed, in view

of Question 8.3 below, it is not lear whether it is relevant to onsider the event

of omplete infetion on the torus. Also in the light of Theorem 3.6 the onverse

impliation of (9) is not uninteresting at q̃c.
Seondly, it would be pratial to know if the ompliation of taking limits in

De�nition 2.1 is neessary. We suspet that this is never the ase.

Question 8.2. What are the ontinuity properties of the funtion (u, θ) 7→ dθu?

8.2 Torus

Although the most natural setting for subritial models is the in�nite volume

quantity θ, whih is approximated by its restrition to boxes θn, another ommon

hoie in order to avoid boundary issues is to onsider the torus Tn = (Z/nZ)2.
Indeed, results for ritial and superritial models are meaningful in this setting

and are essentially equivalent to the law of the infetion time in in�nite volume [13℄.

Yet, for subritial models the mehanism of infetion is rather di�erent�instead

of rare large droplets that grow easily we have ommon droplets whih only manage

to grow with a lot of help. Owing to this it is not lear how quantities on the torus

relate to those on the entire grid. We should mention that most of our results

arry through if all is de�ned on the torus, but it is interesting to note that not

even the next question seems to have been answered yet.

Question 8.3. Does one have that for all subritial families

qc = lim inf
n
{q, Pq([A]Tn

= Tn) > 1/2},

where the losure is taken with respet to the BP proess on the torus and A is a

random subset of Tn of density q?
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