
Brownian snails with removal die out in one dimension

Ivailo Hartarsky1 and Lyuben Lichev2,3

1TU Wien, Faculty of Mathematics and Geoinformation, Institute of Statistics and Mathematical
Methods in Economics, Research Unit of Mathematical Stochastics, Wiedner Hauptstraße 8-10,

A-1040 Vienna, Austria, ivailo.hartarsky@tuwien.ac.at
2Institut Camille Jordan, Univ. Jean Monnet, Saint-Etienne, France,

lyuben.lichev@univ-st-etienne.fr
3Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,

Acad. G. Bonchev str. 8, 1113 Sofia, Bulgaria

September 18, 2023

Abstract

Brownian snails with removal is a spatial epidemic model defined as follows. Initially, a homogeneous
Poisson process of susceptible particles on Rd with intensity λ > 0 is deposited and a single infected
one is added at the origin. Each particle performs an independent standard Brownian motion. Each
susceptible particle is infected immediately when it is within distance 1 from an infected particle. Each
infected particle is removed at rate α > 0, and removed particles remain such forever. Answering a
question of Grimmett and Li, we prove that in one dimension, for all values of λ and α, the infection
almost surely dies out.

MSC2020: 82C21, 60K35
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1 Introduction

Susceptible/infected/removed (SIR) models are among the most classical in epidemiology. While they
are most commonly studied in a mean-field setting, considerable progress in the analysis of geometric
SIR models for stochastic dynamics witnessing the individuals in the population was made in the past
decades. Given the circumstances (parameter values), the question of utmost importance is whether the
disease almost surely dies out or it survives indefinitely with positive probability.

The present paper deals with the Brownian snails with removal model recently studied by Grimmett
and Li [9]. Before introducing the model formally, let us briefly discuss related simpler models and
results. The frog model [2,3,15] is a lattice SIR system in which infected particles perform random walks
(in discrete or continuous time) on Zd until they are removed at rate α (in discrete or continuous time).
Susceptible particles remain immobile until an infected particle visits the site they occupy, at which
point they become infected (and start their own random walk until they are removed). We refer to the
latter feature (susceptible particles not moving) as delay. While it appears harmless from a modelisation
viewpoint, considering a delayed model makes it mathematically easier to handle. Similarly, there is a
canonically associated SI model (without removal), obtained by taking α = 0. Such models enjoy crucial
monotonicity properties making them easier to study. For instance, for the frog model without removal,
it is known that the set of infected particles converges to a (linearly expanding) limit shape [3,16], much
like classical static models such as first passage percolation.
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Similarly to the frog model without removal, a delayed model without removal in continuous space
(where particles perform Brownian motions rather than random walks and infections are transmitted
within distance 1) was studied much more recently by Beckman, Dinan, Durrett, Huo and Junge [4],
where it was proved that the set of infected particles also exhibits a limit shape. Grimmett and Li [9]
investigated the corresponding model of delayed Brownian snails with removal, showing that it exhibits
a non-trivial phase transition only for dimensions 2 and higher.

We next turn to models without delay. Among the first results in this direction are the ones of Kesten
and Sidoravicius [10–12] who proved a shape theorem in the absence of removal in a discrete space model.
Gracar and Stauffer [7] treated this model also in finite volume. The most recent progress is due to
Dauvergne and Sly [6] who showed that infection progresses linearly (though without establishing a limit
shape result) also if one allows for different speeds for infected and susceptible particles, which creates
major difficulties. Subsequently, they also treated the corresponding model with removal for small enough
removal rate α in dimensions d ≥ 2 [5]. In the setting of Brownian snails (with removal and no delay)
Grimmett and Li [9] only treated the case α large enough, again in dimension d ≥ 2.

However, determining whether Brownian snails have a non-trivial phase transition in one dimension
remained beyond the scope of [9]. Indeed, in [9, Question D] they asked for a solution of this problem,
which was subsequently reiterated in [8, Question 6.1(i)]. Our main result resolves this question by
showing that in one dimension there is no survival regardless of the value of the removal rate α > 0 and
the intensity λ of the initial configuration.

Analogues of our result have been proved for the frog model with removal [2, Theorem 1.1] and
the delayed Brownian snails model with removal [9, Theorem 1.2] but not for non-delayed models. In
[5, Remark 1.2], this was claimed also for the discrete space model with removal and without delay,
though the argument is a bit trickier than it appears. To be precise, in the discrete space setting of
[5, Remark 1.2], (2) is imported from [10] (see Appendix A for the continuous space setting), (4), (5)
and (10) are somewhat suggested to hold, while the somewhat subtle argument in (8) and (9) is omitted
altogether. Nevertheless, it should be noted that if both time and space are discrete, the heuristics
proposed in [5, Remark 1.2] are essentially exhaustive.

1.1 The model

Fix λ, α > 0. Consider a Poisson Point Process P on R with intensity λ with a particle added at 0. At
the beginning, the particle at position 0 is infected and all other particles are susceptible. Each particle
performs an independent standard Brownian motion (Bp(t))p∈P, t≥0. Infected particles are removed at
rate α (that is, an exponentially distributed amount of time with mean 1/α after becoming infected) and
remain removed forever. Susceptible particles become infected instantly at the first time when they are
at distance at most 1 from an infected particle. As remarked in [9, Section 2.4], a construction of the
process informally described above can be obtained along the lines of [10] (also see Appendix A).

It will be convenient for us to encode the process in terms of the empirical measure of the particles
and their type as follows. For any t ≥ 0, let Pt =

∑
p∈P δ(Bp(t), ηp(t)), where ηp(t) ∈ S = {S, I,R} is the

state (susceptible/infected/removed resp.) at time t of the particle starting at position p in the initial
condition P. We denote by It =

∑
p∈P: ηp(t)=I δBp(t) the empirical measure of the infected particles at

time t. We further define I(t) = It(R) as the number of infections at time t, as well as the leftmost and
rightmost infections L(t) = inf supp(It) and R(t) = sup supp(It), with the convention inf ∅ = ∞ and
sup∅ = −∞.

1.2 The result

Our main result establishes that, for any non-degenerate value of the parameters, infection eventually
dies out almost surely. In fact, we show that the probability that the infection survives until time T is
exponentially small.
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Theorem 1. There exists c > 0 such that, for all sufficiently large T > 0,

P(sup{t ≥ 0 : I(t) > 0} ≥ T ) ≤ e−cT . (1)

In particular, almost surely there exists T > 0 such that I(t) = 0 for all t ≥ T .

Remark 2 (Extensions). While Theorem 1 is stated and proved in the cleanest setting of Section 1.1, it
readily extends in various ways. A non-unit range of infection and diffusion coefficient can be obtained
by rescaling space and time, respectively. A drift can be added to the Brownian motions by shifting
space linearly with time. Furthermore, it will be clear from the proof that one can allow infection to
be transmitted at finite rate which may depend on the relative position of the susceptible and infected
particles, instead of instantaneously, as long as the infection range is finite. Indeed, in such models,
infection spreads more slowly than in models where the infection rate is infinite and there is no removal,
so Appendix A still applies, while the rest of the argument does not inspect the exact infection mechanism.
Our technique can likely be adapted to other diffusions and sufficiently fast decaying infection rates with
unbounded range (see [9, Theorem 3.6]), but we prefer to avoid such technical complications. For the
interested reader, we point out that the only model-dependent spots in the proof are (3), which uses
a very rough Gaussian computation, and Proposition 3. The latter relies only on the stationarity of a
homogeneous Poisson point process whose points perform independent Brownian motions and its result
can also be recovered in a more robust way via the approach of [10], if needed.

2 Proof of Theorem 1

Fix α, λ > 0. The proof proceeds as follows. First, we use the model without removal to restrict our
attention to particles in an interval growing linearly with time. By standard concentration bounds this
implies that only a linear number of particles is relevant. Since each infected particle typically survives a
time of order 1, most of the time there are at most a bounded number of infected particles. Finally, we
define suitable stopping times allowing us to make independent attempts to either remove all the infected
particles, before they infect anyone else, or infect yet more particles. In the former case, we are done
(infection dies out), while in the latter case, we arrive at a contradiction with the bound on the number
of infected particles. Next, we turn to the details. Note that in the proof of Theorem 1, we often spare
integer parts for the sake of readability.

Linearly localised infection Recall that the Brownian snails model with removal at different values
of α does not enjoy monotonicity in α (note that, while infected snails typically live longer for smaller
values of α, in this setting some of them may also become infected too early and fail to transmit the
infection further). However, if there is no removal at all (α = 0), it holds that the set of infections at any
given time contains the one for any value of α > 0. More precisely, this inclusion holds if we couple the
two processes using the same Brownian motions. We may therefore use the model without removal as
an upper bound. In Appendix A, we discuss how to adapt the proof of [4] in order to obtain c1, C1 > 0
depending on λ such that for any T large enough

P(E1) ≤ e−c1T where E1 =

{
sup
t≤T

max(−L(t), R(t)) ≥ C1T

}
(2)

for the model without removal (and, therefore, also for the one with removal). We have thus localised
infection to an interval of linear size. We next seek to show that only linearly many particles enter this
interval.
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Linear number of infections Fix T large enough. We next compute the expectation of the number
N of particles p ∈ P such that mint≤T |Bp(t)| ≤ C1T . It is at least 1 + 2C1T (because of the particles
initially present in [−C1T,C1T ]) and at most

1 + 4C1T + 2

∫ T

0
dt

∫ ∞

2C1T

e−(x−C1T )2/(2t)

√
2πt

dx ≤ 1 + 4C1T + 2T

∫ ∞

C1

√
T

e−x2/2

√
2π

dx ≤ 5C1T, (3)

as T is large enough. Moreover, the random variableN−1 has Poisson distribution with parameter E[N ]−1
(which is clear from the construction in Appendix A). We may thus apply a standard concentration result
for Poisson variables to N − 1 (see e.g. [1, Theorem A.1.15]) to get

P(E2) ≤ e−C1T where E2 = {N ≥ 20C1T} . (4)

Thus, so far, we know that only linearly many particles may become infected.

Frequently bounded number of infections Our next goal is to show that during a linear proportion
of the time, only boundedly many particles are infected. Consider a truncation of the model in which
only the first 20C1T infection events are allowed to occur. More precisely, the process is as above until
the time when the 20C1T -th particle becomes infected, thereafter infection is no longer transmitted and
the remaining infections are removed at rate α as usual. Note that on the event Ec

1 ∩ Ec
2, the truncation

will not take place until time T . Let I ′(t) be the number of infected particles in the truncated process
at time t. Then,

∫∞
0 I ′(t)dt is stochastically dominated by the sum of 20C1T independent exponential

random variables with mean 1/α. By the exponential Markov inequality there exist c2, C2 > 0 depending
on α and C1 (but not on T ) such that

P(E3) ≤ e−c2T where E3 =
{∫ ∞

0
I ′(t)dt ≥ C2T

}
. (5)

Notice that, on the event Ec
1 ∩ Ec

2 ∩ Ec
3, the set T = {t ∈ [0, T ] : I ′(t) ≤ 2C2} = {t ∈ [0, T ] : I(t) ≤ 2C2}

has Lebesgue measure
ℓ(T ) ≥ T/2. (6)

Fix ε = 1/(200C1). We next inductively define a sequence of stopping times at which I(t) ≤ 2C2 by
setting

τ1 = min{t ≥ 0 : I(t) ≤ 2C2} and, for all i ≥ 1, τi+1 = min{t ≥ τi + ε : I(t) ≤ 2C2} (7)

with min∅ = ∞. For each i ≥ 1, set

ξi =

{
1 if τi < ∞ and P(∃t ∈ (τi, τi + ε), limθ→t− I(θ) < I(t) | Pτi) ≥ 1/2,

0 otherwise.
(8)

In other words, we wait until there are few infections and assess whether it is likely that more infections
appear during the following time interval of length ε.1 The key idea is to take advantage of the stopping
times when infection is likely to appear in order to contradict (4) rather than trying to avoid this scenario.

1Note that almost surely there is no time such that a susceptible particle is infected and an infected one is removed
simultaneously.
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Too many infections We first asses the stopping times τi such that ξi = 1, that is, it is likely that a
new infection will appear soon. We argue that if many such times occur, probably too many infections
will arise, conflicting (4). Set i0 = 0 and, for every j ≥ 0,

ij+1 = min {i > ij : ξi = 1}

with min∅ = ∞. We construct a sequence (Xj)j≥1 of Bernoulli random variables as follows. For every
j ≥ 1 such that ij < ∞, we define

Xj =

{
1 if there is t ∈ (τij , τij + ε) such that limθ→t− I(θ) < I(t),

0 otherwise,

and extend the sequence by defining (Xj)j: ij=∞ as a sequence of independent Bernoulli(1/2) random
variables, which is also independent from (Xj)j: ij<∞. We remark that if ij < ∞, then ξij = 1 and τij < ∞,
so Xj is well defined. Moreover, the Markov property and (8) give that P(Xj = 1|(Xk)k<j) ≥ 1/2 for all
j ≥ 1. Hence, (Xj)j≥1 is stochastically dominates a sequence of i.i.d. Bernoulli random variables with
parameter 1/2 and a standard concentration inequality gives

P(E4) ≤ e−c3T where E4 =


50C1T∑
j=1

Xj ≤ 20C1T

 (9)

for some c3 > 0 depending only on C1.
Define M = T/(2ε) = 100C1T and Ξ =

∑M−1
i=1 ξi. We show that

⋂4
i=1 Ec

i implies that Ξ < 50C1T .
Indeed, on the one hand, on the event Ec

1 ∩ Ec
2 ∩ Ec

3 we have τi ≤ T − ε for all i ≤ M − 1, since, by (6)
and (7),

T/2 ≤ ℓ(T ) ≤ ε(1 + |{i ∈ N : τi ≤ T − ε}|).

On the other hand, the event {Ξ ≥ 50C1T} ∩ Ec
4 implies that at least 20C1T infections occur before time

τi50C1T
+ ε ≤ τM−1 + ε ≤ T , which is a contradiction with Ec

2.

Many chances to extinguish infection Now that we know that Ξ < 50C1T , we will recover many
indices i such that ξi = 0, so that at each corresponding τi, we have a good chance for the infection to
die out quickly. Set i′0 = 0 and, for all integers j ≥ 0, define

i′j+1 = min
{
i > i′j : ξi = 0

}
with min∅ = ∞. Note that on the event

⋂4
i=1 Ec

i (implying Ξ < 50C1T ) all terms of the subsequence
(i′j)

50C1T
j=0 are at most M − 1, so finite.
Now, we construct a sequence (Yj)j≥1 of Bernoulli random variables as follows. For every positive

integer j such that max(i′j , τi′j ) < ∞, let

Yj =

{
0 if I(τi′j + ε) = 0,

1 otherwise,

and extend the sequence by defining (Yj)j:max(i′j ,τi′
j
)=∞ as a sequence of independent Bernoulli random

variables with parameter p = 1 − (1 − e−αε)2C2/2, which is also independent from (Yj)j:max(i′j ,τi′
j
)<∞.

Again, the Markov property and (8) give that P(Yj = 1|(Yk)k<j) ≤ p for all j ≥ 1. Note that here, we use
that for any configuration P (not necessarily having a particle at the origin) with at most 2C2 infections
such that the probability of infecting another particle by time ε is at most 1/2, the probability that the
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infection dies out completely is at least 1 − p (it suffices for all infections to be removed within time ε
without modifying anything else in the graphical construction). In particular,

P(E5) ≤ e−c4T where E5 =


50C1T∏
j=1

Yj = 1

 (10)

for some c4 > 0 depending on ε, α, C1 and C2 but not on T .
We finally claim that

⋂5
i=1 Ec

i ⊂ {I(T ) = 0}, which will conclude the proof of Theorem 1 in view of
(2), (4), (5), (9) and (10). Assume

⋂5
i=1 Ec

i occurs. As already discussed, Ξ < 50C1T , so i′50C1T
≤ M − 1.

But then Ec
5 yields I(τi′50C1T

+ ε) = 0, which, together with the fact that τM−1 ≤ T − ε, implies that

I(T ) = 0, as desired. The almost sure extinction follows from (1) and the Borel–Cantelli lemma.
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A At most linear growth

In this appendix, we discuss the proof of (2). Since the argument is quite general, we work directly in
arbitrary dimension d ≥ 1.

Let us begin by introducing the Brownian snails model without removal (that is, with α = 0) more
formally. Fix λ ∈ (0,∞). Let P be a Poisson point process on C0 × Rd, where C0 denotes the space
of continuous functions f : [0,∞) → Rd such that f(0) = 0 equipped with the topology of uniform
convergence on compact sets (see e.g. [13, Chap. 2] for background on Poisson processes). We refer to
elements of C0 × Rd as possible trajectories and to elements of P (or other Poisson point processes on
the same space) as trajectories. We view the second coordinate of a possible trajectory as its starting
point. We take the intensity measure of P to be Wd ⊗ (λℓ), where Wd denotes the d-dimensional Wiener
measure (which is the distribution of the standard Brownian motion on Rd started at 0) and ℓ is the
Lebesgue measure on Rd. We further fix an independent d-dimensional Brownian motion B0 and set
P0 = (P \ (C0×B(0, 1)))∪{(B0, 0)}, where B(0, 1) is the unit ball of Rd. Thus, one obtains P0 from P by
removing the trajectories starting within unit distance from the origin, and then adding one trajectory
starting at the origin. We label the trajectories in P0 by ((Bi(t))t≥0, xi)

∞
i=0. It remains to specify the

state (S or I) of each particle. We set T (0) = 0 and for any positive integer i, we define

T (i) = inf{t > 0 : ∃k ≥ 0, ∃i0 = 0,∃i1, . . . ,∃ik = i, ∃0 < t1 ≤ t2 ≤ · · · ≤ tk ≤ t, ∀j ∈ {1, . . . , k},
∥(Bij (tj) + xij )− (Bij−1(tj) + xij−1)∥ ≤ 1}.

Thus, the positions of the infected particles at time t ≥ 0 are given by

It = {Bi(t) + xi : i ≥ 0, T (i) ≤ t} .

With this notation, we are ready to state the result we are after.

Proposition 3. Let d ≥ 1. For any λ > 0 strictly smaller than the critical rate for continuum percolation
with radius 1 in d dimensions (equal to ∞ when d = 1; see [14]), there exist c, C > 0 such that, for all t
large enough,

P (max {∥z∥ : z ∈ It} ≥ Ct) ≤ e−ct.
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While one can probably use the method of [10, Theorem 1] (with a significant amount of work, in
particular due to the need of also discretising space and not only time) to prove this fact, and it was more
or less claimed in [9, Section 2.4], there is a more elegant approach. It turns out that, once one adopts
the right viewpoint, the proof becomes essentially identical to the one of [4]. Indeed, [4, Proposition 1.4]
is the analogue of Proposition 3 for the corresponding model with delay (where particles remain immobile
until they are infected). The gist of [4] in our setting is as follows.

We start by exploring B0 until the time τ = infi≥1 T (i) when the first infection occurs. Also, reveal
the (random) index ι of the particle which comes at distance 1 from B0(τ) at time τ , together with its
position Bι(τ) + xι at time τ . Then comes the key point: one considers the random set

X =
{
(B, x) ∈ C0 × Rd : ∃t ≤ τ, ∥B(t) + x−B0(t)∥ ≤ 1

}
of possible trajectories coming within distance 1 of B0 no later than time τ . We know by construction that
P0 ∩ X = {(B0, 0), (Bι, xι)}. Therefore, X is measurable with respect to (the sigma-algebra generated
by) P0 ∩X, since

τ = min{t ≥ 0 : ∥Bι(t) + xι −B0(t)∥ = 1}
is measurable with respect to P0 ∩X.

We then define a Poisson point process P ′ that is equal to P0 outside X and independent with intensity
1X(Wd ⊗ (λℓ)) in X. Observe that P ′ is indeed a Poisson point process equal to P in distribution. To
see this, it suffices to note that for any disjoint measurable Y1, . . . , Yk ⊂ C0 × Rd, the random variables

|P ′ ∩ Yi| = |(P0 \X) ∩ Yi|+ |P ′ ∩ Yi ∩X| (11)

are independent for all i ∈ {1, . . . , k} and have expectations (Wd ⊗ (λℓ))(Yi). Moreover, in view of (11),
P ′ is independent of X, since X is measurable with respect to P0 ∩X. Let P ′ = {(B′

i, x
′
i) : i ≥ 0} and

write (B′
−1, x

′
−1) = (Bι, xι) and (B′

−2, x
′
−2) = (B0, 0) for convenience.

We then consider the continuum percolation cluster

C =
{
j ≥ 0 : ∃k ≥ 0,∃i0 ≥ 0, ∃i1 ≥ 0, . . . ,∃ik = j,

∥∥B′
i0(τ) + x′i0 −Bι(τ)− xι

∥∥ ≤ 1 and

∀j′ ∈ {1, . . . , k},
∥∥∥B′

ij′
(τ) + x′ij′ −B′

ij′−1
(τ)− x′ij′−1

∥∥∥ ≤ 1
}

of the point Bι(τ) + xι with radius 1 in the projection on Rd at time τ of the trajectories in P ′ (that
is, the set of particles other than ι that would become immediately infected if we introduce an infection
at Bι(τ) + xι at time τ). Finally, for each j ∈ C ∪ {−2,−1}, we start a copy of the original process
translated in time by τ and in space to B′

j(τ) + x′j (note that here we are using the fact that for every

t ≥ 0, {B(t) + x : (B, x) ∈ P} is still a Poisson point process on Rd with intensity λℓ). The Poisson point
process for each j ∈ C ∪ {−2,−1} is given by (P ′ \ {(B′

j′ , x
′
j′) : j

′ ∈ C}) ∪ {(B′
j , x

′
j)} to which we add an

independent Poisson point process with intensity Wd ⊗ (λℓ) restricted to the set{
(B, x) ∈ C0 × Rd :

∥∥B(τ) + x−B′
j(τ)− x′j

∥∥ > 1,∃j′ ∈ C ∪ {−2,−1},
∥∥B(τ) + x−B′

j′(τ)− x′j′
∥∥ ≤ 1

}
of possible trajectories which at time τ are located at distance less than 1 from B′

j′(τ) + x′j′ for some
j′ ∈ C ∪ {−2,−1}, but at distance more than 1 from B′

j(τ) + xj .
One then studies the branching process obtained this way and proves that it grows at most linearly.

Since the only difference with respect to [4, Section 3 and Appendix A] is the use of the space C0 × Rd

instead of Rd, we direct the reader to that paper for more details. The only subtlety to account for is the
fact that P(τ = 0) = 0, which is slightly more difficult when all particles move, but is proved as in (4).

Remark 4. A similar approach can be used to obtain a somewhat simpler proof of [10, Theorem 1].

Finally, let us note that, while Proposition 3 only gives a bound at a given time, it is not hard to
deduce that P(max{∥z∥ : ∃t′ ≤ t, z ∈ It′} ≥ 2Ct) ≤ e−c′t for some c′ > 0, as claimed in (2). Indeed, by a
reasoning similar to (4), if an infected particle is at distance 2Ct from the origin at some time t′ ≤ t, it
is exponentially unlikely to be within distance Ct of the origin at time t.
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