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Abstrat. The present expository artile overviews reent mathematial advanes on the Fredrikson�

Andersen kinetially onstrained spin model in two dimensions. It was introdued in physis as a toy

model for reovering the glassy phenomenology in superooled liquids lose to the glass transition via

dynami onstraints as opposed to stati interations.

Résumé. Dans et artile expositoire on disute des avanées mathématiques réentes sur le modèle

inétiquement ontraint de Fredrikson�Andersen en deux dimensions. Il fut introduit en physique

omme modèle jouet pour reproduire la phénoménologie des liquides surfondus près de la transition

vitreuse, moyennant une dynamique ontrainte plut�t que des interations statiques.
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1. Models

The Fredrikson�Andersen model (FA) is a family of models named after their inventors [15℄. They are

paradigmati examples within the larger lass of kinetially onstrained models (see [44, 50℄). Their purpose is

to provide an aessible toy model featuring glassy behaviour only via dynamial failitation (see [47℄), while

having a trivial stationary state. From the mathematial viewpoint these interating partile systems (see

[33℄) are hallenging to analyse as ompared to lose relatives suh as the stohasti Ising model (see [34℄)

notably due to their lak of attrativeness. FA and, more generally, KCM have deep links to synhronous

deterministi monotone proesses known as bootstrap perolation (see [37℄), whih we will be led to disuss in

detail. Building on bootstrap perolation knowledge and developing new tools for takling the more intriate

FA dynamis, signi�ant rigorous progress has been made, often settling ontroversial nonrigorous preditions.

Our goal is to aount for the urrent state of the art, primarily fousing on the most reent advanes [23,25,46℄

in addition to earlier results [6,10,36,38,40,41℄. Although most tehniques arry over to higher dimensions, we

fous on the two-dimensional setting for the sake of simpliity and onreteness.
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1.1. Bootstrap perolation

Let us start by introduing the j-neighbour bootstrap perolation model. Let Ω = {0, 1}Z2

and all a site

x ∈ Z
2
infeted (or empty) for ω ∈ Ω if ωx = 0 and healthy (or �lled) otherwise. For �xed 0 < q < 1, we denote

by µq the produt Bernoulli probability measure with parameter 1 − q under whih eah site is infeted with

probability q. When onfusion does not arise, we write µ = µq. Given j ∈ {1, 2, 3, 4}, the j-neighbour bootstrap
perolation model on Z

2
is the monotone ellular automaton evolving as follows. Let A0 ⊂ Z

2
be the set of

initially infeted sites distributed aording to µ. Then for any integer time t > 0 we reursively de�ne

At+1 = At ∪
{

x ∈ Z
2 : |Nx ∩ At| > j

}

,

where Nx denotes the set of nearest neighbours of x in the usual graph struture of Z
2
. In other words, a site

beomes infeted forever as soon as its onstraint beomes satis�ed, namely as soon as it has at least j already
infeted neighbours.

We denote by [A] =
⋃

t>0 At the losure of A ⊂ Z
2
and de�ne the ritial probability

qc = inf
{

q ∈ [0, 1] : µq

(

[A] = Z
d
)

> 0
}

. (1)

Another key quantity for bootstrap perolation is the infetion time of the origin de�ned as τBP
0 = inf{t > 0 :

0 ∈ At}, so that τBP
0 < ∞ a.s. for q < qc.

1.2. The Fredrikson�Andersen model

We next introdue the FA model, a natural stohasti ounterpart of bootstrap perolation and our main

fous.

For integers 1 6 j 6 4, the Fredrikson�Andersen j-spin failitated model (FA-jf) is the ontinuous time

Markov proess with state spae Ω = {0, 1}Z2

onstruted as follows. Eah site is endowed with an independent

Poisson lok with rate 1. At eah lok ring the state of the site is updated to a Bernoulli random variable with

parameter 1− q subjet to the ruial onstraint that if the site has fewer than j infeted (nearest) neighbours

urrently, then the update is rejeted. We refer to updates ourring at sites with at least j infeted neighbours

at the time of the update as legal.

Remark 1.1. Contrary to bootstrap perolation, the FA-jf proess is learly non-monotone beause of the

possibile reovery of infeted sites with at least j infeted neighbours. This feature is one of the major obstales

in the analysis of the proess, along with the lak of attrativeness aused by the fat that more infetions may

make a healing update legal.

It is standard to show (see [33℄) that the FA-jf proess is well de�ned and it is reversible w.r.t. µq. For any

funtion f depending on �nitely many spins, its Dirihlet form reads

D(f) =
∑

x∈Zd

µ
(

1|{y∈Nx:ηy=0}|>j ·Varx(f(η))
)

, (2)

where the average µ is over η ∈ Ω, ηy is the state of the spin at y and Varx stands for the average over ηx,
given the restrition of the on�guration η to Z

2 \ {x}. This enables the de�nition of a key harahteristi

timesale�the spetral gap or inverse relaxation time

(Trel)
−1 = inf

f 6≡onst

D(f)

Var(f)
. (3)

Alternatively, like for bootstrap perolation, one may prefer to investigate the �rst infetion time of the origin

under the FA-jf dynamis

τ0 = inf{t > 0 : η0(t) = 0}.
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A entral goal is to preisely quantify the asymptotis as q → 0 of Trel and τ0 for the stationary proess with

initial law µq. In fat, whenever possible, one would also like to treat non-equilibrium initial onditions, but

this is mostly open, so unless otherwise stated, we onsider the stationary proess. Sine it is lear that FA-3f
and FA-4f have Trel = ∞ and τ0 = ∞ with positive probability for any q < 1, we fous on j ∈ {1, 2}.

2. FA-1f

Initial results on FA-1f were obtained in [10℄, fousing on the relaxation time. There it was proved that Trel

is asymptotially q−2
up to a logarithmi fator, more preisely there exists a onstant C s.t. for any q ∈ (0, 1)

it holds

C/q2 6 Trel 6 log(1/q)/(Cq2) (4)

As we will see, this re�ets the fat that, to �rst order, as q → 0 infetions are typially isolated and perform

a random walks, jumping at rate of order 1/q to neighbouring positions. In order to equilibrate, these random

walks need to over a volume of the order of their inverse density, namely 1/q, hene the intuition behind the

1/q2 saling.

More rigorously, the lower bound of [46℄ onsists in examining the number of onneted lusters of infetions

trunated at distane 1/q from the origin as test funtion f in Eq. (3). Sine infetions are rare, they are

mostly isolated and Var(f) sales like q · q−2
. Moreover, the number of lusters hanges by at most 4 after a �ip

and only hanges if the �ip ours at a site with two or more adjaent infetions. Thus, ontributions to the

Dirihlet form of Eq. (2) only ome from transitions with three infetions at or around a given vertex, yielding

D(f) ≈ q3 · q−2
. Hene, Eq. (3) gives Trel > 1/q2. A slightly more involved argument allows one to also deal

with the expetation Eµ(τ0) of τ0 under the stationary proess [45℄.

Rather than explaining the upper bound's original proof from [10℄, we will take a simpler but less diret

route by de�ning a losely related model of oalesing and branhing simple exlusion proess (CBSEP) and

then deduing the result on FA-1f. Essentially, FA-1f is CBSEP's evil twin laking nie properties, but behaving

exatly the same way.

2.1. An auxiliary model: CBSEP

Let G = (V,E) be a onneted graph. Minimum, maximum, and average degrees in G are denoted by

dmin, dmax and davg, respetively. The degree of x ∈ V is denoted by dx. For any ω ∈ Ω = {0, 1}V and any

vertex x ∈ V we say that x is �lled (resp. empty), or that there is a partile (resp. hole) at x, if ωx = 1 (resp.

0). We de�ne Ω+ = Ω \ {0} to be the event that there exists at least one partile. Similarly, for any edge

e = {x, y} ∈ E we refer to (ωx, ωy) ∈ {0, 1}{x,y} as the state of e in ω and write Ee = {ω ∈ Ω : ωx + ωy 6= 0}
for the event that e is not empty (its verties are not both empty).

Given p ∈ (0, 1), let π =
⊗

x∈V πx be the produt Bernoulli measure in whih eah vertex is �lled with

probability p and let µ(·) := π(·|Ω+) (if G is in�nite, then simply µ = π). Given an edge e = {x, y}, we write
πe := πx ⊗ πy and λ(p) := π(Ee) = p(2− p).

CBSEP is a ontinuous time Markov hain on Ω+ for whih the state of any edge e ∈ E suh that Ee ours

is resampled with rate one w.r.t. πe(·|Ee). Thus, any edge ontaining exatly one partile moves the partile

to the opposite endpoint (the SEP move) with rate (1 − p)/(2 − p) and reates an extra partile at its empty

endpoint (the branhing move) with rate p/(2− p). Moreover, any edge ontaining two partiles kills one of the

two partiles hosen uniformly (the oalesing move) with rate 2(1 − p)/(2 − p). The hain is readily seen to

be reversible w.r.t. µ and ergodi on Ω+, beause from any on�guration we an reah the on�guration with

a partile at eah vertex. If c(ω, ω′) denotes the jump rate from ω to ω′
, the Dirihlet form DCBSEP(f) of the

hain has the expression

DCBSEP(f) =
1

2

∑

ω,ω′

µ(ω)c(ω, ω′) (f(ω′)− f(ω))
2
=

∑

e∈E

µ(1Ee
Vare(f |Ee)). (5)
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Notie that the branhing and oalesing moves of CBSEP are exatly the moves allowed in FA-1f, if we
identify the partiles of CBSEP with the infeted sites of FA-1f. Moreover, the SEP move for the edge {x, y}
from (1, 0) to (0, 1) an be reonstruted using two onseutive FA-1f moves, the �rst one �lling the hole at y
and the seond one emptying x. If we also take into aount the rate for eah move, we easily get the following

omparison between the respetive Dirihlet forms (see Eq. (2) and e.g. [32, Chapter 13.4℄): there exists an

absolute onstant c > 0 suh that for all f : Ω+ → R it holds that

c−1DFA−1f(f) 6 DCBSEP(f) 6 cdmaxp
−1DFA−1f(f), (6)

setting the parameter q of FA-1f equal to the parameter p of CBSEP. In our appliation to FA-1f for p → 0 only
the upper bound, whih we believe to be sharper, ounts.

Although the two models are learly losely related, we would like to emphasise that CBSEP has many

advantages over FA-1f, making its study simpler. Most notably, CBSEP is attrative in the sense that there

exists a grand-oupling (see e.g. [32℄) whih preserves the partial order on Ω given by ω ≺ ω′
i� ωx 6 ω′

x for all

x ∈ V . Furthermore, it is also natural to embed in CBSEP a ontinuous time random walk (Wt)t>0 on G suh

that CBSEP has a partile at Wt for all t > 0. The latter is a partiularly fruitful feature, whih is hallenging

to reprodue for FA-1f [6℄.

Thanks to Eqs. (3) and (6), in order to upper bound TFA−1f
rel and reover the result of [10℄, it su�es to prove

the following.

Proposition 2.1. If G = Z
2
, then TCBSEP

rel 6 O(log(1/p)/p).

A proof was given in [25℄ and [23, Appendix B℄ up to minor modi�ations. In fat, muh more is proved there.

Namely, CBSEP on arbitrary graphs is treated, establishing often sharp bounds on Trel, but, more importantly,

also on its logarithmi Sobolev onstant.

1

A orollary of suh stronger results and Eq. (6) is ontrol of the

mixing and L2
-mixing times of FA-1f. This reovers, strengthens and generalises results of Pillai and Smith

[40, 41℄ proved in a di�erent and somewhat more involved way.

In addition, [23, 25℄ study a generalised version of CBSEP with general state spaes per site instead of

{0, 1}. For this generalised model they establish appropriate mixing time bounds ruial for the results on

FA-2f disussed in Setion 4.

3. 2-neighbour bootstrap perolation

We next turn our attention to 2-neighbour bootstrap perolation in two dimensions, whih is a prerequisite

for FA-2f. The 2-neighbour bootstrap perolation originates from [11℄ (see also [30,42℄). Initially it was believed

that qc > 0 based on simulations (see [2℄ and referenes therein) with estimated values in (0.035, 0.17). However,
it was proved soon after [52℄ that in fat qc = 0. This was the �rst manifestation of what would grow to be

alled the bootstrap perolation paradox we will keep returning to. To give it in a somewhat simplisti sentene,

it refers to the observation that preditions on bootstrap perolation based on simulations always fail, no matter

how advaned rigorous results they take into aount. An early disussion of this paradox onerning the above

an be found in [53℄, while subsequent reassessments inlude [12, 20℄.

3.1. Coarse threshold

The �rst quantitative statement in the domain of bootstrap perolation, whih naturally laid its foundations

is due to Aizenman and Lebowitz [4℄ (for nonrigorous preursors see [31℄). They proved that

τBP
0 = exp(Θ(1/q)) (7)

w.h.p. We provide a sketh of the argument, as it introdues ingredients essential to us. The �rst thing to note

about 2-neighbour bootstrap perolation is that the losure of any set of infetions is the smallest (in terms of

1

This onstant is de�ned like the spetral gap in Eq. (3) with Var(f) replaed by the entropy µ(f2 log(f2/µ(f2))).
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inlusion) olletion of retangles (with sides parallel to the axes of the lattie) at graph distane at least 3 from
eah other ontaining the infetions. Thus, the losure of any set an be determined via the following retangles

proess. We start o� with a olletion of retangles onsisting of eah of the initial infetions. At eah step

we merge two of them at graph distane 2 or less, replaing them by the smallest retangle ontaining their

union. Repeating this until the proess beomes stationary yields the olletion of retangles in the losure. A

orollary of this proess is the following fundamental lemma.

Lemma 3.1 (Aizenman�Lebowitz [4℄). We say that a retangle R is internally �lled (by the set A of initial

infetions), if [A ∩ R] = R. If R is internally �lled, then for every k 6 long(R) there exists an internally �lled

retangle S ⊂ R suh that k 6 long(S) 6 2k, where long(R) denotes the number of sites on the longer side of

R.

Clearly, τBP
0 < exp(c/q) implies that the origin belongs to an internally �lled retangle with long side at most

exp(c/q) with c to be hosen appropriately later. Then Lemma 3.1 shows that within distane exp(c/q) of the
origin there should be an internally �lled retangle R of long side of our hoie up to a fator 2. The right side
length to hoose, whih we refer to as ritial sale, is 1/q. Observing that suh an internally �lled retangle

annot ontain two onseutive healthy rows/olumns, we get

µ([A ∩R] = R) 6
(

1− (1− q)
2 long(R)

)⌊long(R)/2⌋

= exp (−Θ(1/q)) ,

onluding the proof that τBP
0 > exp(Ω(1/q)) w.h.p. by the union bound on all possible positions of R, hoosing

c small enough.

A mathing upper bound is guided by a similar idea (explaining the title `Metastability e�ets in bootstrap

perolation' of [4℄). We �rst make sure to internally �ll a square of (superritial) side, say, q−3
and then this

ritial droplet is likely to grow and infet the entire grid at roughly linear speed. The internal �lling an be

diretly fored starting from one infetion and asking for it to �nd another one on its right and top side on eah

line as it progressively infets a growing square. This has probability

q

∞
∏

k=1

(

1− (1− q)
k
)2

≈ exp

(

2

∫ ∞

0

log
(

1− e−qx
)

dx

)

= exp (−Θ(1/q)) (8)

and thus is likely to our within distane exp(C/q) of the origin for C large enough. We may then ensure that

with overwhelming probability every vertial or horizontal line of length q−3
at distane at most exp(C/q) from

the origin ontains an infetion, so that the ritial droplet does grow roughly linearly until it engulfs the origin

after time exp(O(1/q)), proving Eq. (7).

3.2. Sharp threshold

Naturally, following Eq. (7) the question of the day beame determining the impliit onstant. This ame

about in a breakthrough of Holroyd 15 years later [28℄, proving that w.h.p.

τBP
0 = exp

(

π2 + o(1)

18q

)

. (9)

We will prove stronger lower and upper bounds in the sequel, so it is useful to give an idea of the proof, whih

introdued several ruial tehniques ommonly used thereafter. As in the Aizenman�Lebowitz result, the main

di�ulty is ontrolling the probability of a retangle of size roughly 1/q being internally �lled. More preisely,

Eq. (9) follows one we show that for R of size C/q for C large

µ([A ∩R] = R) ≈ e−π2/(9q). (10)
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Figure 1. Reursive struture of droplets used in 2-neighbour bootstrap perolation [28℄ and

FA-2f [23℄ respetively. Arrows indiate regions with no two onseutive healthy lines.

We will only disuss the easier lower bound in Eq. (10). One again we start from a single infetion and make

it infet progressively larger retangles. However, it grows by an amount larger than 1 in eah diretion before

swithing to the other (see Fig. 1). Namely, the right hoie is to grow in steps of 1/
√
q. The use of this is that

we do not need an infetion on every line, but on every seond line. This is the origin of the onstant π2/9: it
arises like the integral in Eq. (8), but for a funtion orresponding to the lak of two onseutive rows/olumns

of healthy sites. If one thinks about the two-term reurrene relation this funtion should ome from (we only

need to remember if an infetion was found on the previous line or the one before it), it is not surprising that it

appears as the root of a ertain quadrati equation. The reader interested in the links of this funtion and its

integral with integer partitions may onsult [7,29℄. Atually, the sketh above is not quite the way the result is

proved in [28℄, but antiipates [20℄ and [23℄ disussed below.

3.3. Speed of onvergene

Equation (9) might as well have been the end of the story, had it not been a new manifestation of the

bootstrap perolation paradox. Numerial estimates [1,3,39℄ of the onstant π2/18 above had yielded less than

half the orret value. This naturally leads to the question of how fast the onvergene in Eq. (9) is. For this

reason, we quantify the error term in Eq. (9), again ontraditing simulation preditions [48℄ (see also [21℄ for

more) and showing that the onvergene is very slow.

Theorem 3.2 (Seond term). For 2-neighbour bootstrap perolation in two dimensions it holds w.h.p.

τBP
0 = exp

(

π2 −Θ(
√
q)

18q

)

.

The upper bound was established in [20℄ and is based on the mehanism presented for Eq. (9). Roughly

speaking, the main di�erene, whih is at the origin of the negative sign of the seond term, is taking entropy

into aount. More preisely, rather than growing our squares in steps of 1/
√
q, we allow the exat length of

these inrements to vary, while being of order 1/
√
q. The entropy gained from this is su�ient to outweigh the

energeti ost of deviating from a square shape.

The lower bound is signi�antly harder and is the subjet of [26℄.

4. FA-2f

Moving on to FA-2f (again in two dimensions), the story is muh shorter. Indeed, the analogues of all the

results for 2-neighbour bootstrap�from the 1988 Aizenman�Lebowitz [4℄ one (Eq. (7)) to the reent Theo-

rem 3.2�were not known before the reent ontribution [23℄. Our task is then to review the only two previous

rigorous results [10, 36℄ and opious nonrigorous ones.
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4.1. Bakground

As for bootstrap perolation, the initial expetation was that FA-2f would exhibit a nontrivial transition

[15℄. We should emphasise that here and in the other works to be quoted below, preditions were made, taking

into aount bootstrap perolation results already available. In partiular, a transition was expeted despite its

absene in bootstrap perolation [16℄. This was quikly dissipated by physiists [17,43℄, though rigorous results

in this diretion ame only two deades later [10℄ (see also [9℄). Denoting the semigroup of FA-2f by (Pt)t>0,

the ergodiity ritial parameter is de�ned as

qc = inf
{

q > 0 : ∀f ∈ L2(µ), lim
t→∞

Ptf = µ(f)
}

.

It was proved in [10℄ that this transition oinides with the one of 2-neighbour bootstrap perolation (Eq. (1)),

whih is why we still denote it qc. It also oinides with the more standard ergodi theory de�nition: for q > qc
the eigenvalue 0 of LU is simple and, therefore, by the ergodi theorem we also have

qc = inf{q > 0 : Pµ(τ0 < ∞) = 1}.

The same paper also disarded the possibility that for FA-2f e.g. the tail Pµ(τ0 > t) of the infetion time

would deay as a strethed exponential.

2

The pure exponential deay they established was quite unexpeted

as numerous nonrigorous works had exhibited evidene of strething, though with various strething exponents

[5, 8, 13, 14, 16�19, 22, 43℄ aording to [9, 44℄. The exponential deay of the above quantity follows rather

easily, one it is established that Trel < ∞, though this had seemingly eluded physiists, who also had various

preditions for the saling of Trel as q → 0, as we will see.
The last results of [10℄ for FA-2f are the quantitative bounds on Trel

exp

(

π2 − o(1)

18q

)

= Ω
(

µ
(

τBP
0

))

6 Eµ(τ0) 6 Trel/q 6 exp
(

O
(

1/q5
))

, (11)

in partiular establishing that it is �nite. The �rst two inequalities hold in great generality and are not hard. The

upper bound is both harder and not useful to us, so we do not disuss it further. Unfortunately, Eq. (11) does

not give the preise saling of Eµ(τ0). Therefore, disriminating between the on�iting expressions suggested

by physiists [8,14,17�19,39,43,49,51℄ remained an open problem (e.g. [44℄ asked for settling this ontroversy).

Progress in this diretion was made reently in [36℄, improving the upper bound to

exp

(

O(log2(1/q))

q

)

, (12)

muh loser to the lower one, but still inonlusive. Indeed, by 2019, when [36℄ was published, several (di�erent)

preditions not only for the presene or absene of a logarithmi fator but also on the potential sharp onstant,

based on Eq. (9), had been aumulated in 35 years. The proof of [36℄ is again not very useful to us, so we do

not disuss it.

Before settling the matter, let us explain the di�erent preditions. The �rst one appeared in [39℄, where, based

on numerial simulations, a faster than exponential divergene in 1/q was onjetured. The �rst to laim an

exponential saling exp(Θ(1)/q) was Reiter [43℄. He argued that the infetion proess of the origin is dominated

by the motion of `maro-defets,' i.e. rare regions having probability exp(−Θ(1)/q) and size q−Θ(1)
that move

at an exponentially small rate exp(−Θ(1)/q). Later [51℄ re�ned the above piture. There it was argued that

maro-defets should oinide with the ritial droplets of 2-neighbour bootstrap perolation, having probability
exp(−π2/(9q)) and that the time sale of the relaxation proess inside a maro-defet should be exp(c/

√
q),

2

In [10℄, the �rst time when the origin hanges state was onsidered, rather than the time when it beomes infeted, but this is

unimportant.
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i.e. sub-dominant with respet to the inverse of their density, in sharp ontrast with the predition of [43℄.

Based on this and on the idea that maro-defets move di�usively, the relaxation time sale of FA-2f in d = 2
was onjetured to diverge as exp(π2/(9q)) [51, Setion 6.3℄. Yet, a di�erent predition was later made in [49℄

implying a di�erent saling of the form exp(2π2/(9q)).

4.2. Result

The main result of [23℄ shows that the saling predition of [43, 51℄ is orret, ontrary to those of [39, 49℄.

Moreover, they show that the harateristi time sale of the relaxation proess inside a maro-defet agrees

with the predition of [51℄ and disproves the one of [43℄.

Theorem 4.1. As q → 0 the stationary FA-2f model on Z
2
satis�es:

Eµ(τ0) > exp

(

π2

9q
(1−√

q · O(1))

)

, (13)

Eµ(τ0) 6 exp

(

π2

9q

(

1 +
√
q · (log(1/q))O(1)

)

)

. (14)

Moreover, these also hold for τ0 w.h.p.

Remark 4.2. Despite the resemblane, Theorem 4.1 is by no means a orollary of Theorem 3.2. While the

lower bound Eq. (13) does indeed follow rather easily from Theorem 3.2 together with an improvement of the

`automati' lower bound Eµ(τ0) > Ω
(

µ
(

τBP
0

))

from Eq. (11), the proof of Eq. (14) is muh more involved.

In partiular, it requires guessing an e�ient infetion/healing mehanism to infet the origin, whih has no

ounterpart in the monotone 2-neighbour bootstrap perolation model.

4.3. Behind Theorem 4.1: high-level ideas

The main intuition behind Theorem 4.1 is that for q → 0 the relaxation to equilibrium of the stationary FA-2f
proess is dominated by the slow motion of unusually unlikely pathes of infetion, dubbed mobile droplets or

just droplets. In analogy with the ritial droplets of bootstrap perolation, mobile droplets have a linear size

whih is polynomially inreasing in q (with some arbitrariness), i.e. they live on a muh smaller sale than the

metastable length sale eΘ(1/q)
arising in bootstrap perolation. One of the main requirements ditating the

hoie of the sale of mobile droplets is the requirement that the typial infetion environment around a droplet

is w.h.p. suh that the droplet is able to move under the FA-2f dynamis in any diretion. Within this senario

the main ontribution to the infetion time of the origin for the stationary FA-2f proess should ome from the

time it takes for a droplet to reah the origin.

In order to translate the above intuition into a mathematially rigorous proof, one is faed with two di�erent

fundamental problems:

(1) a preise, yet workable, de�nition of mobile droplets;

(2) an e�ient model for their `e�etive' random evolution.

In [24, 35, 36℄ mobile droplets (dubbed `super-good' regions there) have been de�ned rather rigidly as fully

infeted regions of suitable shape and size and their motion has been modelled as a generalised FA-1f proess
on Z [35, Setion 3.1℄. In the latter proess mobile droplets are freely reated or destroyed with the orret

heat-bath equilibrium rates but only at loations whih are adjaent to an already existing droplet.

While rather powerful and robust, this solution has no hane to give the exat asymptotis of either (1), or

(2) above. Indeed, a mobile droplet should be allowed to deform itself and move to a nearby position like an

amoeba, by rearranging its infetion using the FA-2f moves. This `amoeba motion' between nearby loations

should our on a time sale muh smaller than the global time sale neessary to bring a droplet from far away

to the origin. In partiular, it should not require to �rst reate a new droplet from the initial one and only later

destroy the original one (the main mehanism of the droplet dynamis under the generalised FA-1f proess).
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The work [23℄ o�ered a solution to (1) and (2) above whih indeed leads to determining the exat asymptotis

of the infetion time. Conerning (1), their treatment onsists of two steps. They �rst propose a sophistiated

multisale de�nition of mobile droplets whih, in partiular, introdues a ruial degree of softness in their

mirosopi infetion's on�guration. Namely, on eah sale the lower sale droplet is allowed to have an

arbitrary position within the higher sale one (see Fig. 1), instead of systematially being at the bottom-left

orner. This allows for the droplet to move by rearranging its inside, whih orresponds to hanging the position

of its ore on eah sale.

The seond and muh more tehnially involved step is developing the tools neessary to analyse the FA-2f

dynamis inside a mobile droplet. In partiular, [23℄ then proves two key features:

(1.a) to the leading order the probability ρD of mobile droplets mathes Eq. (10):

ρD > exp

(

−π2

9q
− O(log2(1/q))√

q

)

,

(1.b) the `amoeba motion' of mobile droplets to a nearby loation ours on time sale exp(O(log(1/q)3)/
√
q)

whih is sub-leading w.r.t. the main time sale of the problem and only manifests in the seond term of

Eq. (14).

Property (1.a) follows rather easily essentially as explained for Eq. (10), while proving property (1.b) required

several ideas. In partiular, let us mention how the use of the standard tehnique of anonial paths is avoided.

One proves a Poinaré inequality on eah sale for the produt measure µ on the volume of the droplet,

onditioned to have the droplet struture present. Deduing the higher-sale inequality from the lower sale

one, on the other hand, relies on a suitable adaptation the bisetion tehnique from [10℄.

While properties (1.a) and (1.b) above are essential, they are not su�ient on their own for solving problem

(2) above. That is where CBSEP's key role is to be played (reall Setion 2.1). In [23℄ the random evolution

of mobile droplets is treated as a generalised CBSEP at the level of Poinaré inequalities. More preisely, they

onsidered a renormalisation, so that the state of a box is 1 if it ontains a droplet and 0 otherwise. Thus,

the parameter p of CBSEP orresponds to the density ρD of droplets. We next reall the relaxation time of

CBSEP from Proposition 2.1, as well as the de�nitions Eqs. (3) and (5). Finally, we observe that the terms

Vare(f |Ee) in Eq. (5) all out for a onditional Poinaré inequality for a droplet, as disussed in the ontext of

(1.b). Putting these ingredients together, one does obtain the saling of Theorem 4.1.

5. Open problems

The results we aounted for in the previous setions onern the behaviour of the stationary proess started

from the equilibrium measure µ. A key issue, both from the mathematial and physial points of view, is to

analyse the out of equilibrium dynamis, namely the evolution starting from an initial measure ν 6= µ. For ν a

produt Bernoulli measure of parameter 1 − q′ with q′ ∈ [0, 1), we expet onvergene to equilibrium to our

for FA-1f and FA-2f. Namely we expet

lim
t→∞

ν(Ptf(η)) = µ(f)

to hold for any loal funtion f , where Pt denotes the semigroup of the proess. Progress in this diretion has

been hindered by the lak of robust tools. Indeed, due to non-attrativeness, many powerful tools that have

been developed to analyse relaxation to equilibrium for other interating partile systems, suh as oupling and

ensoring arguments, are unavailable here. Furthermore, due to the presene of onstraints, a worst ase analysis

is not possible (if the initial on�guration is ompletely healthy, no site an ever be infeted and equilibrium is

never attained). Similarly, the Sobolev and logarithmi Sobolev onstants diverge in in�nite volume, disarding

lassi arguments for proving relaxation to equilibrium based on hyperontrativity (see [27℄).

The only results available in this out of equilibrium setting onern FA-1f and establish onvergene to

equilibrium only in the the restrited parameter region q > 1/2 [6℄. As for the speed of onvergene, the result

of [6℄ proves onvergene at least as fast as a strethed exponential with exponent 1/2. This was later improved
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to exponential onvergene in [38℄, albeit in an even more restrited parameter region (for q su�iently lose to

1). The reason why the above results hold only in a restrited region is that, in order to irumvent the problems

stemming from non attrativeness, both [6, 38℄ ompare FA-1f to an auxiliary dynamis. These dynamis have

the advantage of being attrative, but the disadvantage of produing less infeted sites and being e�ient only if

q is su�iently high. For FA-2f even the regime q lose to 1 is ompletely open due to the ooperative dynamis

(no �nite set of infetions is able to move around on its own).

Let us onlude by mentioning two open questions for the stationary proess started from µ.

(i) For FA-1f a logarithmi gap remains to be �lled between the upper and lower bounds to obtain the saling

of Trel (see Eq. (4)).

(ii) For FA-2f the seond order term in the exponent remains to be determined to reah the preision of

Theorem 3.2 for bootstrap perolation or even determine its sign.
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