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Abstra
t. The present expository arti
le overviews re
ent mathemati
al advan
es on the Fredri
kson�

Andersen kineti
ally 
onstrained spin model in two dimensions. It was introdu
ed in physi
s as a toy

model for re
overing the glassy phenomenology in super
ooled liquids 
lose to the glass transition via

dynami
 
onstraints as opposed to stati
 intera
tions.

Résumé. Dans 
et arti
le expositoire on dis
ute des avan
ées mathématiques ré
entes sur le modèle


inétiquement 
ontraint de Fredri
kson�Andersen en deux dimensions. Il fut introduit en physique


omme modèle jouet pour reproduire la phénoménologie des liquides surfondus près de la transition

vitreuse, moyennant une dynamique 
ontrainte plut�t que des intera
tions statiques.
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1. Models

The Fredri
kson�Andersen model (FA) is a family of models named after their inventors [15℄. They are

paradigmati
 examples within the larger 
lass of kineti
ally 
onstrained models (see [44, 50℄). Their purpose is

to provide an a

essible toy model featuring glassy behaviour only via dynami
al fa
ilitation (see [47℄), while

having a trivial stationary state. From the mathemati
al viewpoint these intera
ting parti
le systems (see

[33℄) are 
hallenging to analyse as 
ompared to 
lose relatives su
h as the sto
hasti
 Ising model (see [34℄)

notably due to their la
k of attra
tiveness. FA and, more generally, KCM have deep links to syn
hronous

deterministi
 monotone pro
esses known as bootstrap per
olation (see [37℄), whi
h we will be led to dis
uss in

detail. Building on bootstrap per
olation knowledge and developing new tools for ta
kling the more intri
ate

FA dynami
s, signi�
ant rigorous progress has been made, often settling 
ontroversial nonrigorous predi
tions.

Our goal is to a

ount for the 
urrent state of the art, primarily fo
using on the most re
ent advan
es [23,25,46℄

in addition to earlier results [6,10,36,38,40,41℄. Although most te
hniques 
arry over to higher dimensions, we

fo
us on the two-dimensional setting for the sake of simpli
ity and 
on
reteness.
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1.1. Bootstrap per
olation

Let us start by introdu
ing the j-neighbour bootstrap per
olation model. Let Ω = {0, 1}Z2

and 
all a site

x ∈ Z
2
infe
ted (or empty) for ω ∈ Ω if ωx = 0 and healthy (or �lled) otherwise. For �xed 0 < q < 1, we denote

by µq the produ
t Bernoulli probability measure with parameter 1 − q under whi
h ea
h site is infe
ted with

probability q. When 
onfusion does not arise, we write µ = µq. Given j ∈ {1, 2, 3, 4}, the j-neighbour bootstrap
per
olation model on Z

2
is the monotone 
ellular automaton evolving as follows. Let A0 ⊂ Z

2
be the set of

initially infe
ted sites distributed a

ording to µ. Then for any integer time t > 0 we re
ursively de�ne

At+1 = At ∪
{

x ∈ Z
2 : |Nx ∩ At| > j

}

,

where Nx denotes the set of nearest neighbours of x in the usual graph stru
ture of Z
2
. In other words, a site

be
omes infe
ted forever as soon as its 
onstraint be
omes satis�ed, namely as soon as it has at least j already
infe
ted neighbours.

We denote by [A] =
⋃

t>0 At the 
losure of A ⊂ Z
2
and de�ne the 
riti
al probability

qc = inf
{

q ∈ [0, 1] : µq

(

[A] = Z
d
)

> 0
}

. (1)

Another key quantity for bootstrap per
olation is the infe
tion time of the origin de�ned as τBP
0 = inf{t > 0 :

0 ∈ At}, so that τBP
0 < ∞ a.s. for q < qc.

1.2. The Fredri
kson�Andersen model

We next introdu
e the FA model, a natural sto
hasti
 
ounterpart of bootstrap per
olation and our main

fo
us.

For integers 1 6 j 6 4, the Fredri
kson�Andersen j-spin fa
ilitated model (FA-jf) is the 
ontinuous time

Markov pro
ess with state spa
e Ω = {0, 1}Z2


onstru
ted as follows. Ea
h site is endowed with an independent

Poisson 
lo
k with rate 1. At ea
h 
lo
k ring the state of the site is updated to a Bernoulli random variable with

parameter 1− q subje
t to the 
ru
ial 
onstraint that if the site has fewer than j infe
ted (nearest) neighbours


urrently, then the update is reje
ted. We refer to updates o

urring at sites with at least j infe
ted neighbours

at the time of the update as legal.

Remark 1.1. Contrary to bootstrap per
olation, the FA-jf pro
ess is 
learly non-monotone be
ause of the

possibile re
overy of infe
ted sites with at least j infe
ted neighbours. This feature is one of the major obsta
les

in the analysis of the pro
ess, along with the la
k of attra
tiveness 
aused by the fa
t that more infe
tions may

make a healing update legal.

It is standard to show (see [33℄) that the FA-jf pro
ess is well de�ned and it is reversible w.r.t. µq. For any

fun
tion f depending on �nitely many spins, its Diri
hlet form reads

D(f) =
∑

x∈Zd

µ
(

1|{y∈Nx:ηy=0}|>j ·Varx(f(η))
)

, (2)

where the average µ is over η ∈ Ω, ηy is the state of the spin at y and Varx stands for the average over ηx,
given the restri
tion of the 
on�guration η to Z

2 \ {x}. This enables the de�nition of a key 
hara
hteristi


times
ale�the spe
tral gap or inverse relaxation time

(Trel)
−1 = inf

f 6≡
onst

D(f)

Var(f)
. (3)

Alternatively, like for bootstrap per
olation, one may prefer to investigate the �rst infe
tion time of the origin

under the FA-jf dynami
s

τ0 = inf{t > 0 : η0(t) = 0}.



ESAIM: PROCEEDINGS AND SURVEYS 3

A 
entral goal is to pre
isely quantify the asymptoti
s as q → 0 of Trel and τ0 for the stationary pro
ess with

initial law µq. In fa
t, whenever possible, one would also like to treat non-equilibrium initial 
onditions, but

this is mostly open, so unless otherwise stated, we 
onsider the stationary pro
ess. Sin
e it is 
lear that FA-3f
and FA-4f have Trel = ∞ and τ0 = ∞ with positive probability for any q < 1, we fo
us on j ∈ {1, 2}.

2. FA-1f

Initial results on FA-1f were obtained in [10℄, fo
using on the relaxation time. There it was proved that Trel

is asymptoti
ally q−2
up to a logarithmi
 fa
tor, more pre
isely there exists a 
onstant C s.t. for any q ∈ (0, 1)

it holds

C/q2 6 Trel 6 log(1/q)/(Cq2) (4)

As we will see, this re�e
ts the fa
t that, to �rst order, as q → 0 infe
tions are typi
ally isolated and perform

a random walks, jumping at rate of order 1/q to neighbouring positions. In order to equilibrate, these random

walks need to 
over a volume of the order of their inverse density, namely 1/q, hen
e the intuition behind the

1/q2 s
aling.

More rigorously, the lower bound of [46℄ 
onsists in examining the number of 
onne
ted 
lusters of infe
tions

trun
ated at distan
e 1/q from the origin as test fun
tion f in Eq. (3). Sin
e infe
tions are rare, they are

mostly isolated and Var(f) s
ales like q · q−2
. Moreover, the number of 
lusters 
hanges by at most 4 after a �ip

and only 
hanges if the �ip o

urs at a site with two or more adja
ent infe
tions. Thus, 
ontributions to the

Diri
hlet form of Eq. (2) only 
ome from transitions with three infe
tions at or around a given vertex, yielding

D(f) ≈ q3 · q−2
. Hen
e, Eq. (3) gives Trel > 1/q2. A slightly more involved argument allows one to also deal

with the expe
tation Eµ(τ0) of τ0 under the stationary pro
ess [45℄.

Rather than explaining the upper bound's original proof from [10℄, we will take a simpler but less dire
t

route by de�ning a 
losely related model of 
oales
ing and bran
hing simple ex
lusion pro
ess (CBSEP) and

then dedu
ing the result on FA-1f. Essentially, FA-1f is CBSEP's evil twin la
king ni
e properties, but behaving

exa
tly the same way.

2.1. An auxiliary model: CBSEP

Let G = (V,E) be a 
onne
ted graph. Minimum, maximum, and average degrees in G are denoted by

dmin, dmax and davg, respe
tively. The degree of x ∈ V is denoted by dx. For any ω ∈ Ω = {0, 1}V and any

vertex x ∈ V we say that x is �lled (resp. empty), or that there is a parti
le (resp. hole) at x, if ωx = 1 (resp.

0). We de�ne Ω+ = Ω \ {0} to be the event that there exists at least one parti
le. Similarly, for any edge

e = {x, y} ∈ E we refer to (ωx, ωy) ∈ {0, 1}{x,y} as the state of e in ω and write Ee = {ω ∈ Ω : ωx + ωy 6= 0}
for the event that e is not empty (its verti
es are not both empty).

Given p ∈ (0, 1), let π =
⊗

x∈V πx be the produ
t Bernoulli measure in whi
h ea
h vertex is �lled with

probability p and let µ(·) := π(·|Ω+) (if G is in�nite, then simply µ = π). Given an edge e = {x, y}, we write
πe := πx ⊗ πy and λ(p) := π(Ee) = p(2− p).

CBSEP is a 
ontinuous time Markov 
hain on Ω+ for whi
h the state of any edge e ∈ E su
h that Ee o

urs

is resampled with rate one w.r.t. πe(·|Ee). Thus, any edge 
ontaining exa
tly one parti
le moves the parti
le

to the opposite endpoint (the SEP move) with rate (1 − p)/(2 − p) and 
reates an extra parti
le at its empty

endpoint (the bran
hing move) with rate p/(2− p). Moreover, any edge 
ontaining two parti
les kills one of the

two parti
les 
hosen uniformly (the 
oales
ing move) with rate 2(1 − p)/(2 − p). The 
hain is readily seen to

be reversible w.r.t. µ and ergodi
 on Ω+, be
ause from any 
on�guration we 
an rea
h the 
on�guration with

a parti
le at ea
h vertex. If c(ω, ω′) denotes the jump rate from ω to ω′
, the Diri
hlet form DCBSEP(f) of the


hain has the expression

DCBSEP(f) =
1

2

∑

ω,ω′

µ(ω)c(ω, ω′) (f(ω′)− f(ω))
2
=

∑

e∈E

µ(1Ee
Vare(f |Ee)). (5)
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Noti
e that the bran
hing and 
oales
ing moves of CBSEP are exa
tly the moves allowed in FA-1f, if we
identify the parti
les of CBSEP with the infe
ted sites of FA-1f. Moreover, the SEP move for the edge {x, y}
from (1, 0) to (0, 1) 
an be re
onstru
ted using two 
onse
utive FA-1f moves, the �rst one �lling the hole at y
and the se
ond one emptying x. If we also take into a

ount the rate for ea
h move, we easily get the following


omparison between the respe
tive Diri
hlet forms (see Eq. (2) and e.g. [32, Chapter 13.4℄): there exists an

absolute 
onstant c > 0 su
h that for all f : Ω+ → R it holds that

c−1DFA−1f(f) 6 DCBSEP(f) 6 cdmaxp
−1DFA−1f(f), (6)

setting the parameter q of FA-1f equal to the parameter p of CBSEP. In our appli
ation to FA-1f for p → 0 only
the upper bound, whi
h we believe to be sharper, 
ounts.

Although the two models are 
learly 
losely related, we would like to emphasise that CBSEP has many

advantages over FA-1f, making its study simpler. Most notably, CBSEP is attra
tive in the sense that there

exists a grand-
oupling (see e.g. [32℄) whi
h preserves the partial order on Ω given by ω ≺ ω′
i� ωx 6 ω′

x for all

x ∈ V . Furthermore, it is also natural to embed in CBSEP a 
ontinuous time random walk (Wt)t>0 on G su
h

that CBSEP has a parti
le at Wt for all t > 0. The latter is a parti
ularly fruitful feature, whi
h is 
hallenging

to reprodu
e for FA-1f [6℄.

Thanks to Eqs. (3) and (6), in order to upper bound TFA−1f
rel and re
over the result of [10℄, it su�
es to prove

the following.

Proposition 2.1. If G = Z
2
, then TCBSEP

rel 6 O(log(1/p)/p).

A proof was given in [25℄ and [23, Appendix B℄ up to minor modi�
ations. In fa
t, mu
h more is proved there.

Namely, CBSEP on arbitrary graphs is treated, establishing often sharp bounds on Trel, but, more importantly,

also on its logarithmi
 Sobolev 
onstant.

1

A 
orollary of su
h stronger results and Eq. (6) is 
ontrol of the

mixing and L2
-mixing times of FA-1f. This re
overs, strengthens and generalises results of Pillai and Smith

[40, 41℄ proved in a di�erent and somewhat more involved way.

In addition, [23, 25℄ study a generalised version of CBSEP with general state spa
es per site instead of

{0, 1}. For this generalised model they establish appropriate mixing time bounds 
ru
ial for the results on

FA-2f dis
ussed in Se
tion 4.

3. 2-neighbour bootstrap per
olation

We next turn our attention to 2-neighbour bootstrap per
olation in two dimensions, whi
h is a prerequisite

for FA-2f. The 2-neighbour bootstrap per
olation originates from [11℄ (see also [30,42℄). Initially it was believed

that qc > 0 based on simulations (see [2℄ and referen
es therein) with estimated values in (0.035, 0.17). However,
it was proved soon after [52℄ that in fa
t qc = 0. This was the �rst manifestation of what would grow to be


alled the bootstrap per
olation paradox we will keep returning to. To give it in a somewhat simplisti
 senten
e,

it refers to the observation that predi
tions on bootstrap per
olation based on simulations always fail, no matter

how advan
ed rigorous results they take into a

ount. An early dis
ussion of this paradox 
on
erning the above


an be found in [53℄, while subsequent reassessments in
lude [12, 20℄.

3.1. Coarse threshold

The �rst quantitative statement in the domain of bootstrap per
olation, whi
h naturally laid its foundations

is due to Aizenman and Lebowitz [4℄ (for nonrigorous pre
ursors see [31℄). They proved that

τBP
0 = exp(Θ(1/q)) (7)

w.h.p. We provide a sket
h of the argument, as it introdu
es ingredients essential to us. The �rst thing to note

about 2-neighbour bootstrap per
olation is that the 
losure of any set of infe
tions is the smallest (in terms of

1

This 
onstant is de�ned like the spe
tral gap in Eq. (3) with Var(f) repla
ed by the entropy µ(f2 log(f2/µ(f2))).
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in
lusion) 
olle
tion of re
tangles (with sides parallel to the axes of the latti
e) at graph distan
e at least 3 from
ea
h other 
ontaining the infe
tions. Thus, the 
losure of any set 
an be determined via the following re
tangles

pro
ess. We start o� with a 
olle
tion of re
tangles 
onsisting of ea
h of the initial infe
tions. At ea
h step

we merge two of them at graph distan
e 2 or less, repla
ing them by the smallest re
tangle 
ontaining their

union. Repeating this until the pro
ess be
omes stationary yields the 
olle
tion of re
tangles in the 
losure. A


orollary of this pro
ess is the following fundamental lemma.

Lemma 3.1 (Aizenman�Lebowitz [4℄). We say that a re
tangle R is internally �lled (by the set A of initial

infe
tions), if [A ∩ R] = R. If R is internally �lled, then for every k 6 long(R) there exists an internally �lled

re
tangle S ⊂ R su
h that k 6 long(S) 6 2k, where long(R) denotes the number of sites on the longer side of

R.

Clearly, τBP
0 < exp(c/q) implies that the origin belongs to an internally �lled re
tangle with long side at most

exp(c/q) with c to be 
hosen appropriately later. Then Lemma 3.1 shows that within distan
e exp(c/q) of the
origin there should be an internally �lled re
tangle R of long side of our 
hoi
e up to a fa
tor 2. The right side
length to 
hoose, whi
h we refer to as 
riti
al s
ale, is 1/q. Observing that su
h an internally �lled re
tangle


annot 
ontain two 
onse
utive healthy rows/
olumns, we get

µ([A ∩R] = R) 6
(

1− (1− q)
2 long(R)

)⌊long(R)/2⌋

= exp (−Θ(1/q)) ,


on
luding the proof that τBP
0 > exp(Ω(1/q)) w.h.p. by the union bound on all possible positions of R, 
hoosing

c small enough.

A mat
hing upper bound is guided by a similar idea (explaining the title `Metastability e�e
ts in bootstrap

per
olation' of [4℄). We �rst make sure to internally �ll a square of (super
riti
al) side, say, q−3
and then this


riti
al droplet is likely to grow and infe
t the entire grid at roughly linear speed. The internal �lling 
an be

dire
tly for
ed starting from one infe
tion and asking for it to �nd another one on its right and top side on ea
h

line as it progressively infe
ts a growing square. This has probability

q

∞
∏

k=1

(

1− (1− q)
k
)2

≈ exp

(

2

∫ ∞

0

log
(

1− e−qx
)

dx

)

= exp (−Θ(1/q)) (8)

and thus is likely to o

ur within distan
e exp(C/q) of the origin for C large enough. We may then ensure that

with overwhelming probability every verti
al or horizontal line of length q−3
at distan
e at most exp(C/q) from

the origin 
ontains an infe
tion, so that the 
riti
al droplet does grow roughly linearly until it engulfs the origin

after time exp(O(1/q)), proving Eq. (7).

3.2. Sharp threshold

Naturally, following Eq. (7) the question of the day be
ame determining the impli
it 
onstant. This 
ame

about in a breakthrough of Holroyd 15 years later [28℄, proving that w.h.p.

τBP
0 = exp

(

π2 + o(1)

18q

)

. (9)

We will prove stronger lower and upper bounds in the sequel, so it is useful to give an idea of the proof, whi
h

introdu
ed several 
ru
ial te
hniques 
ommonly used thereafter. As in the Aizenman�Lebowitz result, the main

di�
ulty is 
ontrolling the probability of a re
tangle of size roughly 1/q being internally �lled. More pre
isely,

Eq. (9) follows on
e we show that for R of size C/q for C large

µ([A ∩R] = R) ≈ e−π2/(9q). (10)
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Figure 1. Re
ursive stru
ture of droplets used in 2-neighbour bootstrap per
olation [28℄ and

FA-2f [23℄ respe
tively. Arrows indi
ate regions with no two 
onse
utive healthy lines.

We will only dis
uss the easier lower bound in Eq. (10). On
e again we start from a single infe
tion and make

it infe
t progressively larger re
tangles. However, it grows by an amount larger than 1 in ea
h dire
tion before

swit
hing to the other (see Fig. 1). Namely, the right 
hoi
e is to grow in steps of 1/
√
q. The use of this is that

we do not need an infe
tion on every line, but on every se
ond line. This is the origin of the 
onstant π2/9: it
arises like the integral in Eq. (8), but for a fun
tion 
orresponding to the la
k of two 
onse
utive rows/
olumns

of healthy sites. If one thinks about the two-term re
urren
e relation this fun
tion should 
ome from (we only

need to remember if an infe
tion was found on the previous line or the one before it), it is not surprising that it

appears as the root of a 
ertain quadrati
 equation. The reader interested in the links of this fun
tion and its

integral with integer partitions may 
onsult [7,29℄. A
tually, the sket
h above is not quite the way the result is

proved in [28℄, but anti
ipates [20℄ and [23℄ dis
ussed below.

3.3. Speed of 
onvergen
e

Equation (9) might as well have been the end of the story, had it not been a new manifestation of the

bootstrap per
olation paradox. Numeri
al estimates [1,3,39℄ of the 
onstant π2/18 above had yielded less than

half the 
orre
t value. This naturally leads to the question of how fast the 
onvergen
e in Eq. (9) is. For this

reason, we quantify the error term in Eq. (9), again 
ontradi
ting simulation predi
tions [48℄ (see also [21℄ for

more) and showing that the 
onvergen
e is very slow.

Theorem 3.2 (Se
ond term). For 2-neighbour bootstrap per
olation in two dimensions it holds w.h.p.

τBP
0 = exp

(

π2 −Θ(
√
q)

18q

)

.

The upper bound was established in [20℄ and is based on the me
hanism presented for Eq. (9). Roughly

speaking, the main di�eren
e, whi
h is at the origin of the negative sign of the se
ond term, is taking entropy

into a

ount. More pre
isely, rather than growing our squares in steps of 1/
√
q, we allow the exa
t length of

these in
rements to vary, while being of order 1/
√
q. The entropy gained from this is su�
ient to outweigh the

energeti
 
ost of deviating from a square shape.

The lower bound is signi�
antly harder and is the subje
t of [26℄.

4. FA-2f

Moving on to FA-2f (again in two dimensions), the story is mu
h shorter. Indeed, the analogues of all the

results for 2-neighbour bootstrap�from the 1988 Aizenman�Lebowitz [4℄ one (Eq. (7)) to the re
ent Theo-

rem 3.2�were not known before the re
ent 
ontribution [23℄. Our task is then to review the only two previous

rigorous results [10, 36℄ and 
opious nonrigorous ones.
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4.1. Ba
kground

As for bootstrap per
olation, the initial expe
tation was that FA-2f would exhibit a nontrivial transition

[15℄. We should emphasise that here and in the other works to be quoted below, predi
tions were made, taking

into a

ount bootstrap per
olation results already available. In parti
ular, a transition was expe
ted despite its

absen
e in bootstrap per
olation [16℄. This was qui
kly dissipated by physi
ists [17,43℄, though rigorous results

in this dire
tion 
ame only two de
ades later [10℄ (see also [9℄). Denoting the semigroup of FA-2f by (Pt)t>0,

the ergodi
ity 
riti
al parameter is de�ned as

qc = inf
{

q > 0 : ∀f ∈ L2(µ), lim
t→∞

Ptf = µ(f)
}

.

It was proved in [10℄ that this transition 
oin
ides with the one of 2-neighbour bootstrap per
olation (Eq. (1)),

whi
h is why we still denote it qc. It also 
oin
ides with the more standard ergodi
 theory de�nition: for q > qc
the eigenvalue 0 of LU is simple and, therefore, by the ergodi
 theorem we also have

qc = inf{q > 0 : Pµ(τ0 < ∞) = 1}.

The same paper also dis
arded the possibility that for FA-2f e.g. the tail Pµ(τ0 > t) of the infe
tion time

would de
ay as a stret
hed exponential.

2

The pure exponential de
ay they established was quite unexpe
ted

as numerous nonrigorous works had exhibited eviden
e of stret
hing, though with various stret
hing exponents

[5, 8, 13, 14, 16�19, 22, 43℄ a

ording to [9, 44℄. The exponential de
ay of the above quantity follows rather

easily, on
e it is established that Trel < ∞, though this had seemingly eluded physi
ists, who also had various

predi
tions for the s
aling of Trel as q → 0, as we will see.
The last results of [10℄ for FA-2f are the quantitative bounds on Trel

exp

(

π2 − o(1)

18q

)

= Ω
(

µ
(

τBP
0

))

6 Eµ(τ0) 6 Trel/q 6 exp
(

O
(

1/q5
))

, (11)

in parti
ular establishing that it is �nite. The �rst two inequalities hold in great generality and are not hard. The

upper bound is both harder and not useful to us, so we do not dis
uss it further. Unfortunately, Eq. (11) does

not give the pre
ise s
aling of Eµ(τ0). Therefore, dis
riminating between the 
on�i
ting expressions suggested

by physi
ists [8,14,17�19,39,43,49,51℄ remained an open problem (e.g. [44℄ asked for settling this 
ontroversy).

Progress in this dire
tion was made re
ently in [36℄, improving the upper bound to

exp

(

O(log2(1/q))

q

)

, (12)

mu
h 
loser to the lower one, but still in
on
lusive. Indeed, by 2019, when [36℄ was published, several (di�erent)

predi
tions not only for the presen
e or absen
e of a logarithmi
 fa
tor but also on the potential sharp 
onstant,

based on Eq. (9), had been a

umulated in 35 years. The proof of [36℄ is again not very useful to us, so we do

not dis
uss it.

Before settling the matter, let us explain the di�erent predi
tions. The �rst one appeared in [39℄, where, based

on numeri
al simulations, a faster than exponential divergen
e in 1/q was 
onje
tured. The �rst to 
laim an

exponential s
aling exp(Θ(1)/q) was Reiter [43℄. He argued that the infe
tion pro
ess of the origin is dominated

by the motion of `ma
ro-defe
ts,' i.e. rare regions having probability exp(−Θ(1)/q) and size q−Θ(1)
that move

at an exponentially small rate exp(−Θ(1)/q). Later [51℄ re�ned the above pi
ture. There it was argued that

ma
ro-defe
ts should 
oin
ide with the 
riti
al droplets of 2-neighbour bootstrap per
olation, having probability
exp(−π2/(9q)) and that the time s
ale of the relaxation pro
ess inside a ma
ro-defe
t should be exp(c/

√
q),

2

In [10℄, the �rst time when the origin 
hanges state was 
onsidered, rather than the time when it be
omes infe
ted, but this is

unimportant.
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i.e. sub-dominant with respe
t to the inverse of their density, in sharp 
ontrast with the predi
tion of [43℄.

Based on this and on the idea that ma
ro-defe
ts move di�usively, the relaxation time s
ale of FA-2f in d = 2
was 
onje
tured to diverge as exp(π2/(9q)) [51, Se
tion 6.3℄. Yet, a di�erent predi
tion was later made in [49℄

implying a di�erent s
aling of the form exp(2π2/(9q)).

4.2. Result

The main result of [23℄ shows that the s
aling predi
tion of [43, 51℄ is 
orre
t, 
ontrary to those of [39, 49℄.

Moreover, they show that the 
hara
teristi
 time s
ale of the relaxation pro
ess inside a ma
ro-defe
t agrees

with the predi
tion of [51℄ and disproves the one of [43℄.

Theorem 4.1. As q → 0 the stationary FA-2f model on Z
2
satis�es:

Eµ(τ0) > exp

(

π2

9q
(1−√

q · O(1))

)

, (13)

Eµ(τ0) 6 exp

(

π2

9q

(

1 +
√
q · (log(1/q))O(1)

)

)

. (14)

Moreover, these also hold for τ0 w.h.p.

Remark 4.2. Despite the resemblan
e, Theorem 4.1 is by no means a 
orollary of Theorem 3.2. While the

lower bound Eq. (13) does indeed follow rather easily from Theorem 3.2 together with an improvement of the

`automati
' lower bound Eµ(τ0) > Ω
(

µ
(

τBP
0

))

from Eq. (11), the proof of Eq. (14) is mu
h more involved.

In parti
ular, it requires guessing an e�
ient infe
tion/healing me
hanism to infe
t the origin, whi
h has no


ounterpart in the monotone 2-neighbour bootstrap per
olation model.

4.3. Behind Theorem 4.1: high-level ideas

The main intuition behind Theorem 4.1 is that for q → 0 the relaxation to equilibrium of the stationary FA-2f
pro
ess is dominated by the slow motion of unusually unlikely pat
hes of infe
tion, dubbed mobile droplets or

just droplets. In analogy with the 
riti
al droplets of bootstrap per
olation, mobile droplets have a linear size

whi
h is polynomially in
reasing in q (with some arbitrariness), i.e. they live on a mu
h smaller s
ale than the

metastable length s
ale eΘ(1/q)
arising in bootstrap per
olation. One of the main requirements di
tating the


hoi
e of the s
ale of mobile droplets is the requirement that the typi
al infe
tion environment around a droplet

is w.h.p. su
h that the droplet is able to move under the FA-2f dynami
s in any dire
tion. Within this s
enario

the main 
ontribution to the infe
tion time of the origin for the stationary FA-2f pro
ess should 
ome from the

time it takes for a droplet to rea
h the origin.

In order to translate the above intuition into a mathemati
ally rigorous proof, one is fa
ed with two di�erent

fundamental problems:

(1) a pre
ise, yet workable, de�nition of mobile droplets;

(2) an e�
ient model for their `e�e
tive' random evolution.

In [24, 35, 36℄ mobile droplets (dubbed `super-good' regions there) have been de�ned rather rigidly as fully

infe
ted regions of suitable shape and size and their motion has been modelled as a generalised FA-1f pro
ess
on Z [35, Se
tion 3.1℄. In the latter pro
ess mobile droplets are freely 
reated or destroyed with the 
orre
t

heat-bath equilibrium rates but only at lo
ations whi
h are adja
ent to an already existing droplet.

While rather powerful and robust, this solution has no 
han
e to give the exa
t asymptoti
s of either (1), or

(2) above. Indeed, a mobile droplet should be allowed to deform itself and move to a nearby position like an

amoeba, by rearranging its infe
tion using the FA-2f moves. This `amoeba motion' between nearby lo
ations

should o

ur on a time s
ale mu
h smaller than the global time s
ale ne
essary to bring a droplet from far away

to the origin. In parti
ular, it should not require to �rst 
reate a new droplet from the initial one and only later

destroy the original one (the main me
hanism of the droplet dynami
s under the generalised FA-1f pro
ess).
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The work [23℄ o�ered a solution to (1) and (2) above whi
h indeed leads to determining the exa
t asymptoti
s

of the infe
tion time. Con
erning (1), their treatment 
onsists of two steps. They �rst propose a sophisti
ated

multis
ale de�nition of mobile droplets whi
h, in parti
ular, introdu
es a 
ru
ial degree of softness in their

mi
ros
opi
 infe
tion's 
on�guration. Namely, on ea
h s
ale the lower s
ale droplet is allowed to have an

arbitrary position within the higher s
ale one (see Fig. 1), instead of systemati
ally being at the bottom-left


orner. This allows for the droplet to move by rearranging its inside, whi
h 
orresponds to 
hanging the position

of its 
ore on ea
h s
ale.

The se
ond and mu
h more te
hni
ally involved step is developing the tools ne
essary to analyse the FA-2f

dynami
s inside a mobile droplet. In parti
ular, [23℄ then proves two key features:

(1.a) to the leading order the probability ρD of mobile droplets mat
hes Eq. (10):

ρD > exp

(

−π2

9q
− O(log2(1/q))√

q

)

,

(1.b) the `amoeba motion' of mobile droplets to a nearby lo
ation o

urs on time s
ale exp(O(log(1/q)3)/
√
q)

whi
h is sub-leading w.r.t. the main time s
ale of the problem and only manifests in the se
ond term of

Eq. (14).

Property (1.a) follows rather easily essentially as explained for Eq. (10), while proving property (1.b) required

several ideas. In parti
ular, let us mention how the use of the standard te
hnique of 
anoni
al paths is avoided.

One proves a Poin
aré inequality on ea
h s
ale for the produ
t measure µ on the volume of the droplet,


onditioned to have the droplet stru
ture present. Dedu
ing the higher-s
ale inequality from the lower s
ale

one, on the other hand, relies on a suitable adaptation the bise
tion te
hnique from [10℄.

While properties (1.a) and (1.b) above are essential, they are not su�
ient on their own for solving problem

(2) above. That is where CBSEP's key role is to be played (re
all Se
tion 2.1). In [23℄ the random evolution

of mobile droplets is treated as a generalised CBSEP at the level of Poin
aré inequalities. More pre
isely, they


onsidered a renormalisation, so that the state of a box is 1 if it 
ontains a droplet and 0 otherwise. Thus,

the parameter p of CBSEP 
orresponds to the density ρD of droplets. We next re
all the relaxation time of

CBSEP from Proposition 2.1, as well as the de�nitions Eqs. (3) and (5). Finally, we observe that the terms

Vare(f |Ee) in Eq. (5) 
all out for a 
onditional Poin
aré inequality for a droplet, as dis
ussed in the 
ontext of

(1.b). Putting these ingredients together, one does obtain the s
aling of Theorem 4.1.

5. Open problems

The results we a

ounted for in the previous se
tions 
on
ern the behaviour of the stationary pro
ess started

from the equilibrium measure µ. A key issue, both from the mathemati
al and physi
al points of view, is to

analyse the out of equilibrium dynami
s, namely the evolution starting from an initial measure ν 6= µ. For ν a

produ
t Bernoulli measure of parameter 1 − q′ with q′ ∈ [0, 1), we expe
t 
onvergen
e to equilibrium to o

ur

for FA-1f and FA-2f. Namely we expe
t

lim
t→∞

ν(Ptf(η)) = µ(f)

to hold for any lo
al fun
tion f , where Pt denotes the semigroup of the pro
ess. Progress in this dire
tion has

been hindered by the la
k of robust tools. Indeed, due to non-attra
tiveness, many powerful tools that have

been developed to analyse relaxation to equilibrium for other intera
ting parti
le systems, su
h as 
oupling and


ensoring arguments, are unavailable here. Furthermore, due to the presen
e of 
onstraints, a worst 
ase analysis

is not possible (if the initial 
on�guration is 
ompletely healthy, no site 
an ever be infe
ted and equilibrium is

never attained). Similarly, the Sobolev and logarithmi
 Sobolev 
onstants diverge in in�nite volume, dis
arding


lassi
 arguments for proving relaxation to equilibrium based on hyper
ontra
tivity (see [27℄).

The only results available in this out of equilibrium setting 
on
ern FA-1f and establish 
onvergen
e to

equilibrium only in the the restri
ted parameter region q > 1/2 [6℄. As for the speed of 
onvergen
e, the result

of [6℄ proves 
onvergen
e at least as fast as a stret
hed exponential with exponent 1/2. This was later improved
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to exponential 
onvergen
e in [38℄, albeit in an even more restri
ted parameter region (for q su�
iently 
lose to

1). The reason why the above results hold only in a restri
ted region is that, in order to 
ir
umvent the problems

stemming from non attra
tiveness, both [6, 38℄ 
ompare FA-1f to an auxiliary dynami
s. These dynami
s have

the advantage of being attra
tive, but the disadvantage of produ
ing less infe
ted sites and being e�
ient only if

q is su�
iently high. For FA-2f even the regime q 
lose to 1 is 
ompletely open due to the 
ooperative dynami
s

(no �nite set of infe
tions is able to move around on its own).

Let us 
on
lude by mentioning two open questions for the stationary pro
ess started from µ.

(i) For FA-1f a logarithmi
 gap remains to be �lled between the upper and lower bounds to obtain the s
aling

of Trel (see Eq. (4)).

(ii) For FA-2f the se
ond order term in the exponent remains to be determined to rea
h the pre
ision of

Theorem 3.2 for bootstrap per
olation or even determine its sign.
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