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Abstract

In modified two-neighbour bootstrap percolation in two dimensions each site of Z2

is initially independently infected with probability p and on each discrete time step
one additionally infects sites with at least two non-opposite infected neighbours. In
this note we establish that for this model the second term in the asymptotics of the
infection time τ unexpectedly scales differently from the classical two-neighbour
model, in which arbitrary two infected neighbours are required. More precisely, we
show that for modified bootstrap percolation with high probability as p→ 0 it holds
that

τ ≤ exp

(
π2

6p
− c log(1/p)

√
p

)
for some positive constant c, while the classical model is known to lack the logarithmic
factor.
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1 Introduction

Modified two-neighbour bootstrap percolation is a monotone cellular automaton on
Z2, which may be defined as a growing subset of Z2 as follows. Let A = A0 ⊂ Z2 be an
arbitrary set of initially infected sites. For all nonnegative integer t we set

At+1 = At ∪
{
x ∈ Z2 : At ∩ {x+ e1, x− e1} 6= ∅, At ∩ {x+ e2, x− e2} 6= ∅

}
,

where e1, e2 is the canonical basis of Z2. The more classical two-neighbour bootstrap
percolation is defined similarly, by setting A′0 = A and

A′t+1 = A′t ∪
{
x ∈ Z2 : |A′t ∩ {x+ e1, x+ e2, x− e1, x− e2}| ≥ 2

}
.

Given A ⊂ Z2, one denotes its closure by [A] =
⋃

t≥0At and [A]′ =
⋃

t≥0A
′
t. One is

interested in the behaviour of these models as A is taken at random according to the
product Bernoulli measure Pp so that Pp(x ∈ A) = p for all x ∈ Z2. It is classical [10]
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Sensitive bootstrap percolation second term

that for any p > 0, Pp-almost surely [A] = [A]′ = Z2, so it is natural to consider the
(random) infection time

τ = min {t ≥ 0 : 0 ∈ At} , τ ′ = min {t ≥ 0 : 0 ∈ A′t} .

Traditionally, the modified model is perceived as a technically simpler but morally
identically behaved variant of the classical one. As a result, it has been usually treated
simultaneously with or before the classical one by the same means. It was proved in
[5,9] that for some constant c > 0

lim
p→0

Pp

(
exp

(
λ− o(1)

p

)
≤ τ ≤ exp

(
λ

p
− c
√
p

))
= 1 (1.1)

with λ = π2/6 and the same holds for τ ′ with λ′ = π2/18. The second order term
was important for explaining the bootstrap percolation paradox. This is the ongoing
phenomenon that simulation-based conjectures on these models were systematically
subsequently disproved by rigorous results.

While for the modified model the lower bound in Eq. (1.1) remains the state of the
art, for the classical model it was improved [8], so that for some c′ > 0

lim
p→0

Pp

(
exp

(
λ′

p
− 1

c′
√
p

)
≤ τ ′ ≤ exp

(
λ′

p
− c′
√
p

))
= 1, (1.2)

making it natural to expect an analogous result for the modified model. Indeed, further
studies of simplified so-called local versions of these processes were carried out in [3,6]
leading to lower bounds between those of Eqs. (1.1) and (1.2) with identical error terms
for both processes. Moreover, already Gravner and Holroyd [5] expended some effort to
obtain a decent explicit, albeit non-optimal, value for c in Eq. (1.1) given by

√
2 + o(1),

since it was simpler to keep track of error terms than for the classical model.
The only sign of discrepancy between the two models we are aware of arose on

the occasion of proving a subsequent improved lower bound for classical bootstrap
percolation preceding Eq. (1.2) and the local ones of [3]. Namely, Gravner, Holroyd and
Morris [7] wrote “Surprisingly, it appears that our proof does not extend directly to the
‘modified’ bootstrap percolation model” (also see [7]), while it did apply to other similar
models such as the Froböse and k-cross ones [7, Theorem 20]. The subsequent work [8]
proving Eq. (1.2) faced the same difficulty and simply ignored the modified model.

In view of the above, the following result comes as quite a surprise.

Theorem 1.1. For the modified two-neighbour bootstrap percolation model in two
dimensions there exists c > 0 such that

lim
p→0

Pp

(
τ ≤ exp

(
π2

6p
− c log(1/p)

√
p

))
= 1.

Let us remark that analogous results hold for the critical probability and critical
length (see [5]) or the local version of modified bootstrap percolation (see [6]) sometimes
considered in the literature and they follow in the same way.

It is further good to note that the constant λ is known to be the result of a nontrivial
optimisation problem [4] in some generality including all models mentioned above. Its
value is therefore very sensitive to the exact microscopic details of the model. However,
the leading order scaling itself is known to admit a simple universal form in much greater
generality [2]. In view of this and the similarity so far exhibited by models for which
information about the second term is available, one might hope for a similar universal
form for this corrective term, at least in some generality within the so-called isotropic
class. Unfortunately, Theorem 1.1 strongly indicates that this term is far too sensitive
to be captured in general, if even models as similar as the classical and modified ones
differ at that level.
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2 Heuristics

While the proof of Theorem 1.1 is very simple, we find it important to highlight
the somewhat subtle intuition underlying it. The leading order term λ/p in Eq. (1.1)
can be understood simply as the limit of − 1

2

∑∞
i=1 log(1− (1− p)i)2, which corresponds

to the diagonal growth mechanism depicted in Fig. 1a. In order to improve it for the
classical model, Gravner and Holroyd [5] considered deviations from the diagonal (see
Fig. 1b) on the critical scale 1/p in order to win some entropy. This comes at an energetic
price, so the length 1/

√
p of these deviations was chosen carefully, so that the entropic

gain cancels the energetic cost, but not by far, since afterwards entropy itself becomes
smaller, deteriorating the result. The same can be done for the modified model to show
the upper bound in Eq. (1.1).

However, [5] gives yet another reason for the upper bound in Eq. (1.1) to hold for the
modified model (for the purpose of easily obtaining a good constant). Namely, on scales
1/
√
p (much smaller than the critical one) one can already win an entropy c/

√
p, using

the minimal possible number of infections, but allowing their position to be arbitrary.
This hints at what will be the key to Theorem 1.1. Namely, on any scale between 1/

√
p

and 1/p one can win a second order contribution of 1/
√
p, which will accumulate over all

scales to give the desired result.
Finally, let us point out the exact spot witnessing the difference between the modified

and classical bootstrap percolation and ultimately leading to the logarithmic correction.
When comparing the growth mechanism of Fig. 1b to Fig. 1a, four contributions arise.
Firstly, the cost of deviating too much from the diagonal, since the horizontal growth
is harder. Secondly, the cost of the infection used to switch direction. Thirdly, the cost
of the line free of infections. Fourthly, the fact that the switching infection induces the
growth of two lines (a vertical and a horizontal one). The first contribution is going to
be subdominant for our purposes (our deviations will be small) and so is the third one
(we will consider scales smaller than the critical one, making the absence of infections
likely). The second one is simply p per such deviation. It is the fourth contribution that
was neglected in [5] and is crucial to us. Indeed, in both the classical and modified
models a single infection can be used to grow two lines. However, in the classical one
that is what should be done typically on the critical scale, while for the modified one it is
one infection per line. Thus, each line normally costs twice as much for the modified
model, so growing two lines with a single direction switching infection is more beneficial.
Thanks to this, we can afford to have more such deviation steps, so that together with
the entropy contribution we can compensate the cost of these single infections. At this
point it only remains to optimise the choice deviation lengths as a function of the scale.
We will make no attempt to optimise the constant c in Theorem 1.1, but rather simplify
the presentation, as the right constant cannot be obtained this way. Yet, we believe
Theorem 1.1 to be sharp up to the value of c.

3 Preliminaries

For integers x1 ≤ x2 and y1 ≤ y2, we define the rectangle

R(x1, y1;x2, y2) = {x1, . . . , x2} × {y1, . . . , y2}.

We say that a rectangle R is internally filled, if [A ∩R] = R. For a positive integer L we
denote by I(L) the event that R(1, 1;L,L) is internally filled. For a rectangle R we say
that R is occupied, if A ∩R 6= ∅ and denote this event by O(R) and its complement by
Oc(R).

The following is our main goal.
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a

a

b

b

. .
.

(a) Illustration of the diagonal growth event
Db

a of Definition 3.2.

a

a

b

b

. . .

...

(b) Illustration of the sideways growth event
J b

a of Definition 3.3. Note that, vitally, we
require no infections in the last column of
height a to the right.

Figure 1: The two growth mechanisms. Shaded rectangles are required to be occupied;
the hatched one is not occupied; the black site is infected.

Proposition 3.1 (Filling probability). Let λ = π2/6. There exist c > 0 and p0 > 0 such
that for all p ∈ (0, p0) and integer B ≥ 2p−3/4

Pp(I(B)) ≥ exp (−2λ/p+ c log(1/p)/
√
p) .

Assuming Proposition 3.1, it is standard to deduce Theorem 1.1 by the method of [1].

Proof of Theorem 1.1. Fix c > 0 as in Proposition 3.1. By Proposition 3.1 with high pro-
bability as p→ 0 there exist x1, x2 ∈ Z with max(|x1|, |x2|) ≤ exp(λ/p− c log(1/p)/(3√p))
such that I(R(x1, x2;x1 + B, x2 + B)) occurs with B = dp−3e, since these events are
independent for disjoint rectangles. Moreover, by the union bound we have that
with high probability for all x1, x2 as above the events O(R(x1, x2;x1 + B, x2)) and
O(R(x1, x2;x1, x2 + B)) hold. Yet, if both of these high probability events occur, then
τ ≤ (B + 1)2 + B exp(λ/p − c log(1/p)/(3√p)). To see this, note that the initial square
of side length B becomes infected in time at most (B + 1)2, while thereafter in each B
steps its height and width grow by (at least) 1 towards the origin.

In the remainder of this section we import the relevant parts of [5, Section 3] (see
Fig. 1).

Definition 3.2 (Diagonal growth). Let a ≤ b be positive integers. We set

Db
a =

b⋂
i=a+1

O(R(1, i; i− 1, i)) ∩ O(R(i, 1; i, i− 1)).

Definition 3.3 (Sideways growth). Let a < b be positive integers. We set

J b
a =

b−1⋂
i=a+1

(O(R(i, 1; i, a)) ∩ O(R(1, i+ 1; b, i+ 1)))

∩ Oc(1, a+ 1; b− 1, a+ 1) ∩ {(b, a+ 1) ∈ A}.
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Definition 3.4 (Alternating growth). For positive integers m, (ai)
m+1
i=1 and (bi)

m
i=1 such

that a1 < b1 ≤ a2 < b2 ≤ · · · < bm ≤ am+1, we further define

E(a1, b1, . . . , bm, am+1) =

m⋂
i=1

J bi
ai
∩ Dai+1

bi
.

Clearly, the events featuring in each of Definitions 3.2 to 3.4 are independent. Mo-
reover, it is readily checked that I(a) ∩ Db

a ⊂ I(b) and I(a) ∩ J b
a ⊂ I(b) for any positive

integers a < b and therefore I(a1) ∩ E(a1, b1, . . . , bm, am+1) ⊂ I(am+1) for any positive
integers m and a1 < b1 ≤ · · · < bm ≤ am+1.

Lemma 3.5. Fix positive integers a ≤ b. Then for different choices of positive integers
a1 < b1 ≤ · · · < bm ≤ am+1 with a1 = a, am+1 = b, the events E(a1, b1, . . . , am+1) are
disjoint.

Proof. Given a realisation A ∈ E(a1, b1, . . . , am+1), one can check by induction that for
all integer i ∈ [1,m]

bi = min {b′ > ai : (b
′, ai + 1) ∈ A} ,

ai+1 = min {a′ ≥ bi : A ∈ Oc (R (1, a′ + 1; a′, a′ + 1))} ,

with min∅ = b, so the sequences are uniquely determined.

4 Proof of Proposition 3.1

In this section we develop our multi-scale strategy for proving Proposition 3.1. Follo-
wing [9], set q = − log(1− p) and

f : (0,∞)→ (0,∞) : z 7→ − log(1− e−z).

The function f is C∞, decreasing and convex. Set

N = dlog(1/p)/(4 log 2)e , m = 1/ (50
√
q)

and assume for simplicity that m is an integer. It will be convenient to proceed scale by
scale, so let us introduce `(n) = 2n/

√
q for any integer n ∈ [0, N ]. We will use the event

from Definition 3.4 with sequences (a
(n)
i )m+1

i=1 and (b
(n)
i )mi=1 such that

`(n) = a
(n)
1 < b

(n)
1 ≤ a(n)2 < b

(n)
2 ≤ · · · < b(n)m ≤ a(n)m+1 = `(n+1).

We call such sequences good, if for all n ∈ [0, N) and i ∈ [1,m] it holds that b(n)i − a(n)i ∈
[1, 2n]. It is important to note that, contrary to what would be best for non-modified
bootstrap percolation, the number of terms on each scale does not increase with the
scale.

Let us first assess the entropy, that is, the number of good sequences.

Lemma 4.1 (Entropic gain). There are at least (12 · 2N )N(m−1) good sequences.

Proof. Choosing the a(n)i first so that they differ by at least 2n, we get that the number
of sequences is at least

N−1∏
n=0

(
`(n+1) − `(n) −m2n

m− 1

)
2nm ≥

N−1∏
n=0

(2n−1/
√
q)m−1

mm−1 2nm

≥
N−1∏
n=0

(
50 · 22n−1

)m−1
=
(
50 · 2N−2

)N(m−1)
.
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We next evaluate the energy cost of sideways growth.

Lemma 4.2 (Energy cost). Fix positive integers n ∈ [0, N) and `(n) ≤ a < b ≤ `(n+1) such
that b− a ≤ 2n. Then for any p < 1/2

Pp(J b
a )

Pp(Db
a)
≥

exp(−2n+2√q)
22n+3

.

Proof. Definitions 3.2 and 3.3 give

Pp

(
Db

a

)
= exp

(
−2

b−1∑
i=a

f(iq)

)
, (4.1)

Pp

(
J b
a

)
= p exp (− (b− a− 1) (f(aq) + f(bq))) exp (−q(b− 1))

≥ p exp
(
2f
(
q`(n+1)

)
− q`(n+1) − 2(b− a)

(
f(bq)− (b− a)qf ′

(
`(n)q

)))
≥ p exp

(
2f
(
2n+1√q

)
− 2n+1√q − 2q(b− a)2/

(
`(n)q

))
Pp

(
Db

a

)
≥ p exp

(
−2 log

(
2n+1√q

)
− 2n+2√q

)
Pp

(
Db

a

)
since f(z) = − log(1− e−z) ≥ − log z is decreasing and convex and f ′(z) = 1/(1− ez) ≥
−1/z. Since q < 2p for p < 1/2, this concludes the proof.

Proof of Proposition 3.1. Fix p small enough and B ≥ `(N). By Lemmas 3.5 to 4.2 we
have

Pp (I(B)) ≥ pPp

(
D`(0)

1

)
Pp

(
D`(N)

`(0)

)
Pp

(
DB

`(N)

) (
12 · 2N

)N(m−1)
N−1∏
n=0

exp
(
−m2n+2√q

)
2m(2n+3)

≥ Pp (D∞1 ) e−p
−1/3

2N(m−1) ≥ exp

(
2q−1

∫ ∞
0

f − log(1/p)

300
√
p

)
,

where we noted that Pp(Db
a)Pp(Dd

b ) = Pp(Dd
a) for any positive integers a ≤ b ≤ d by

Definition 3.2 and used Eq. (4.1). This concludes the proof, since λ =
∫∞
0
f [9].
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