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Abstra
t

In r-neighbour bootstrap per
olation, verti
es (sites) of a graph G be-


ome �infe
ted� in ea
h round of the pro
ess if they have r neighbours already

infe
ted. On
e infe
ted, they remain su
h. An initial set of infe
ted sites

is said to per
olate if every site is eventually infe
ted. We determine the

maximal per
olation time for r-neighbour bootstrap per
olation on the hy-

per
ube for all r > 3 as the dimension d goes to in�nity up to a logarithmi


fa
tor. Surprisingly, it turns out to be

2d

d
, whi
h is in great 
ontrast with

the value for r = 2, whi
h is quadrati
 in d, as established by Przyku
ki [24℄.

Furthermore, we dis
over a link between this problem and a generalisation

of the well-known Snake-in-the-Box problem.
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1 Introdu
tion

Bootstrap per
olation was introdu
ed in 1979 by Chalupa, Leath and Rei
h [11℄

as a simpli�ed monotone version of ferromagneti
 dynami
s and it is in parti
ular

related to Glauber dynami
s of the Ising model. The general r-neighbour model

on a graph G is de�ned as follows. Consider an initial subset of the verti
es (sites)

that are de
lared infe
ted. At ea
h time step every site be
omes infe
ted if it has

at least r neighbours already infe
ted and infe
ted site always remain su
h. We say

that per
olation o

urs if eventually all sites of G are infe
ted. In the most 
lassi
al
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setting the initially infe
ted sites are sele
ted randomly and independently with

probability p and the graph G is taken to be a �nite d-dimensional grid {1, . . . , n}d.
One of the founding results in the �eld was by Aizenman and Liebowitz [1℄, who

determined the order of the 
riti
al probability of per
olation for r = 2, all �xed d

as n → ∞. The simplest setting, r = d = 2 was then studied by Holroyd [18℄, who

proved that the threshold is sharp and determined the leading term of the 
riti
al

probability. Further work on that threshold was done and the order of the se
ond

term is now known [16, 17℄. However, the 
ase r > 2 required a lot more 
are,

be
ause the stable sets of infe
ted sites are no longer simple boxes. An important

step was done by Cerf and Cirillo [9℄ and Cerf and Manzo [10℄, who proved the


ounterpart of the result of [1℄. Their methods were later used in 
onjun
tion with

Holroyd's to determine the leading term of the 
riti
al probability for all �xed r

and d when n → ∞ [4℄.

A less standard and more 
ombinatorial fa
et of bootstrap per
olation 
onsists

in keeping n �xed and letting d grow to in�nity, so that the simplest 
ase is the

high dimensional hyper
ube. This setting was explored by Balogh and Bollobás [2℄,

and later Balogh, Bollobás, and Morris [3℄ determined the 
riti
al probability of

per
olation with high pre
ision for r = 2, and also for high dimensional grids with

size not ne
essarily equal to 2. However, the situation for r > 2 remains entirely

open due to the la
k of tools to handle the more 
ompli
ated stable sets, sin
e the

method of [9, 10℄ is no longer of relevan
e.

Alongside the probabilisti
 perspe
tive on bootstrap per
olation, purely 
om-

binatorial extremal questions have been widely investigated. Su
h deterministi


bounds have proved useful for obtaining probabilisti
 results as well, e.g. in [3℄.

However, it has be
ome 
ustomary to expe
t the unexpe
ted, as, more often than

not, answers to su
h extremal questions are very 
ounterintuitive and very far

from �
ommon� behaviour. Some deal with the 
lassi
al 2 dimensional 2-neighbour
model, like [5, 6, 21℄, but others [22, 23, 25℄ fo
us on the hyper
ube. The typi-


al quantities assessed are the extremal sizes of (extremal) (non-)per
olating sets,

extremal per
olation time or mixtures of those.

One su
h result by Przyku
ki [24℄ 
on
erns the maximal per
olation time on

the hyper
ube under the 2-neighbour model. Contrary to the result of [6℄ that the

maximal per
olation time for the same model in two dimensions is of the order of

the size of the whole grid 
onsidered, for the hyper
ube of dimension d the maximal

per
olation time was determined to be merely

⌊

d2

3

⌋

. Based on the 
onstru
tion

in [24℄ one might expe
t that setting r = 3 would simply allow one to gain another

fa
tor of order d and the per
olation time to be at most 
ubi
 in the dimension.

Most surprisingly, we prove that there is a drasti
 jump between r = 2 and r = 3
for this question. We show that the maximal per
olation time goes from 
lose to

the trivial lower bound 1, as found in [24℄, to 
lose to the trivial upper bound 2d.
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More pre
isely, we prove that for all r > 2 the maximal per
olation time is equal

to

2d

d
up to a logarithmi
 fa
tor.

The lower bound is based on an entirely expli
it 
onstru
tion, though quite

elaborate, as it also uses a previously known non-trivial one. An essential ingre-

dient for this bound is a new link we establish between bootstrap per
olation and

the very well-known snake-in-the-box problem, whi
h 
on
erns long indu
ed paths

and 
y
les in the hyper
ube. It was introdu
ed by Kautz in the late 50s [19℄ and

has a wide range of appli
ations, namely in 
oding, error-
orre
tion and others. It

was �rst proved in [12, 15℄ that the maximal length of a snake-in-the-box is 2d up
to a 
onstant fa
tor, though its 
orre
t asymptoti
 value is not yet known.

We will rather be 
on
erned with a natural generalisation of the problem,

introdu
ed by Singleton in [27℄. It asks for a long path (or 
y
le) in the hyper
ube

su
h that sites at distan
e at least k along the path are also at distan
e at least k in

the hyper
ube as well. Hen
e, the snake-in-the-box problem 
orresponds to k = 2.
These paths or 
y
les are usually referred to as snakes or 
ir
uit 
odes of spread

k, but we will 
all them k-snakes and we will only need 3-snakes for our result.
The maximal length of k-snakes was also studied extensively over the last half a


entury. A very easy upper bound for k = 3, mentioned already in [27℄ is

2d

d−2
, is

fairly 
lose to the right asymptoti
s. The right exponent 2d−o(d)
was determined

in [20℄ and Evdokimov determined the maximal length of a 3-snake to be

2d

d
up

to a logarithmi
 fa
tor [13℄. This result is at the base of our 
onstru
tion. For a

more re
ent overview, whi
h is very 
omplete from the mathemati
al perspe
tive,

on snake-in-the-box and related problems, the reader is referred to the survey [14℄

by the same author.

We should also note that, 
uriously, another link between bootstrap per
olation

and the snake-in-the-box (with spread k = 2) problem has been observed in [26℄,

although it is along an entirely di�erent dire
tion and very spe
i�
 to r = 2.

2 Notation

In this se
tion, we introdu
e the notation ne
essary for the proof of the main result.

We denote by Mr(d) our quantity of interest � the maximal time of r-neighbour

bootstrap per
olation on the d-dimensional hyper
ube {0, 1}d with its usual graph

stru
ture. Denote by d(·, ·) the asso
iated graph distan
e indu
ed by the norm

‖x‖ =
∑d

i=1 xi for x = (xi) ∈ {0, 1}d.

Snakes

De�nition 1. For k > 1 a k-snake is a path (St)
T
t=0 in the hyper
ube su
h that,

for all t > 0 and t′ ∈ [t+ k, T ] it holds that d(St, St′) > k. We 
all T the length of

3



S and refer to the parameter t as the time.

Remark 2. For a k-snake of length greater than k this de�nition implies that

for t, t′ ∈ [0, T ] su
h that |t − t′| 6 k one has d(St, St′) = |t − t′|. Indeed, ea
h

step in
reases the distan
e by at most 1, but after k steps we are required to be at

distan
e at least k, so that in
reasing by 1 was always ne
essary. Hen
e, snakes

are k-lo
ally isometri
 to paths.

De�nition 3. We denote by s(d) the maximal length of a 3-snake in the d-

dimensional hyper
ube.

The following bound was established by Evdokimov [13℄.

Proposition 4. For all d > 3

s(d) >
2d

d(log d)2
.

Hyper
ubes For the remainder of this paper, we employ the 
onvenient notation

used by Przyku
ki in [24℄. Though it may appear very te
hni
al at �rst, it will

prove itself to be very pra
ti
al.

De�nition 5. For any �nite sequen
e (ai) ∈ {0, 1, ∗}n we denote

[a1, . . . , an] := {(b1, . . . , bn) ∈ {0, 1}n | ∀ 1 6 i 6 n, ai 6= ∗ ⇒ bi = ai}

and 
all all su
h sets sub
ubes (of the hyper
ube {0, 1}n). We extend this notation

to the 
on
atenation of two sequen
es (ai) and (bi) as

[a1, . . . , an][b1, . . . , bk] := [a1, . . . , an, b1, . . . , bk] .

[a1, . . . , an]
k
stands for [a1, . . . , an] . . . [a1, . . . , an] repeating k times. We will abu-

sively identify singletons with their unique element, when they arise in this nota-

tion, i.e. when ∗ is never used.

Example 6. The hyper
ube of dimension d is thus denoted by [∗]d and [1, 0, 1][∗]d−6[0]3

is its d − 6 dimensional sub
ube whose �rst three 
oordinates are 1, 0, and 1 in

that order, and whose last three 
oordinates are all 0.
We may write [1, 0, 1][0]2 for both the site (1, 0, 1, 0, 0) and the sub
ube {(1, 0, 1, 0, 0)}.

De�nition 7. For any sequen
e of sequen
es

(

(aji )
lj
i=1

)n

j=1
on the alphabet {0, 1, ∗},

we de�ne their permutation

[a11, . . . , a
1
l1
] . . . [an1 , . . . , a

n
ln
] =

⋃

σ∈Sn

[

a
σ(1)
1 . . . , a

σ(1)
lσ(1)

]

. . .
[

a
σ(n)
1 . . . , a

σ(n)
lσ(n)

]

where Sn is the symmetri
 group.
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Example 8. The elements of [0][0]2[1, 0][∗] are (0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0,
1, 0, 0, 0), (0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1).

It is important to note that the permutation does not a
t inside ea
h 
omponent

of the 
on
atenation and moves the whole blo
ks without interla
ing them, so

that [1]2[0]2, [1, 1][0, 0] and [1, 0]2 are all di�erent sets with 6, 2 and 1 elements

respe
tively.

3 The Main Result

In this se
tion, we prove our main result determining the maximal per
olation time

for all r > 2 in the hyper
ube up to a log d fa
tor.

Theorem 9. For all r > 3

Mr(d) =
2d

d
(log d)−O(1) .

The upper and lower bounds are established independently. We start with the

lower one, whi
h will follow by linking the bootstrap pro
ess to long 3-snakes.

Lemma 10. Let d > 15 be odd. Then,

s(d− 10) 6 M3(d)

Let us sket
h the idea before we turn to the proof of the lemma. We would like

have a long 3-snake be
oming infe
ted one site at a time. To a
hieve that we �x

a long 3-snake in a sub
ube of 
odimension 9 and infe
t neighbours of that snake

in new dire
tions in order to have two for ea
h site of the snake. Then we only

need to have the beginning of the snake initially infe
ted. We also make sure that

next to the end of the snake there is a 
on�guration of lots of infe
ted sites whi
h


an per
olate only using the end of the snake in addition. Of 
ourse, some 
are is

needed in order not to infe
t any other site by a

ident before the snake 
an rea
h

its end.

Proof of Lemma 10. We will need the following te
hni
al lemma.

Lemma 11. Let d′′ > 6. There is a 3-snake S of dimension d′′ and length T su
h

that the following 
onditions all hold.

1. ST−3 = [1, 0, 1, 0, 1][0]d
′′−5

.

2. ST−2 = [1, 0, 1][0]d
′′−3

.

3. ST−1 = [1][0]d
′′−1

.
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4. ST = [0]d
′′

.

5. ‖St‖ > 3 for every t < T − 3.

6. T > s(d′′ − 1).

Proof of Lemma 11. It su�
es to satisfy 
onditions 4-6 and then to permute the


oordinates to also ful�l the other 
onditions. One 
an a
hieve 
onditions 4-6 as

follows.

Let S ′
be a d′′−1-dimensional 3-snake of maximal length with S ′

s(d′′−1) = [0]d
′′−1

(to obtain it 
ompose a d′′−1-dimensional 3-snake of maximal length by a suitable

isomorphism of the hyper
ube). Then we set St = [1]S ′
t for all 0 6 t 6 s(d′′ − 1),

T = s(d′′ − 1) + 1 and ST = [0]d
′′

. Conditions 4 and 6 are 
learly satis�ed.

Furthermore, sin
e S ′
is a 3-snake ending in [0]d

′′−1
, we have that ‖S ′

t‖ > 3 for all

t 6 s(d′′ − 1)− 3. Thus, 
ondition 5 does hold by 
onstru
tion and S is indeed a

3-snake.

For 
onvenien
e denote d′ := d − 3 and d′′ := d − 9. Let S be as provided by

Lemma 11. Let the initial set of infe
ted sites I be de�ned as follows (see Figure 1).

• Infe
t [0]9S0.

• For i ∈ {1, 2, 3} set

Si :=

{

ST−i−3j , 0 6 j 6
T − i

3

}

.

Infe
t

I0 := [0]3[0][1][0]4S1 ∪ [0]5[0][1][0]2S2 ∪ [0]7[0][1]S3 .

Do note that we do not in
lude neighbours of the end of the snake [0]9ST .

• Moreover, infe
t

J1 := [1, 1][∗]d
′+1, J2 := [0][1][1][0]d

′

and J3 := [0][1][0][1, 1][0, 0]
d′−2

2 .

Re
all that [1, 1][0, 0]k =
⋃

06l6k[0, 0]
l[1, 1][0, 0]k−l

.

We 
laim that [0]9S is infe
ted one site at a time, that no site outside [0]9S is

infe
ted stri
tly before ST and that per
olation o

urs. However, before we turn

to the proof of those 
laims, let us establish some properties of the 
on�guration.

• I0, J2 and J3 have pairwise no 
ommon neighbours. Indeed,

� J2 and J3 have no 
ommon neighbours by parity.
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I0 J3

J2∅

J3 J1

J1J2

Figure 1: Ea
h vertex of the 
ube in this pi
ture represents a d′ dimensional hyper
ube,

so that only the �rst three dimensions of [∗]d are visible. We indi
ate the positions of

the di�erent parts of the initial infe
ted set I. J1 
onsists of two entire d′-dimensional

sub
ubes, J2 has one site in ea
h of the two sub
ubes indi
ated, J3 has
d′

2 sites at distan
e

4 in ea
h of the two sub
ubes indi
ated. Finally, I0 
ontains two neighbours of ea
h site in

the 3-snake [0]9S (ex
ept its end). The 3-snake in question lies in the same d′ dimensional

sub
ube as I0.

� J2 and I0 have no 
ommon neighbours, sin
e [0]d 6∈ I0 and two of the

�rst three 
oordinates are di�erent.

� J3 and I0 have no 
ommon neighbours. To see this, 
onsider a site

j in J3 at distan
e 2 from i ∈ I0. Those two di�er in one of the

�rst three 
oordinates, so i has a neighbour in [0]3[1, 1][0, 0]
d′−2

2
. Then

‖i‖ ∈ {1, 3} and by 
ondition 5 of Lemma 11 and parity i is ne
essarily

a neighbour of [0]9ST−2 (re
all that I0 does not 
ontain neighbours of

[0]9ST ). Hen
e, i ∈ [0]3[0]5[1][1, 0, 1][0]d
′′−3

. Noti
e that i ne
essarily has

2 adja
ent 1s, sin
e it has a neighbour in [0]3[1, 1][0, 0]
d′−2

2
. However,

this is the 
ase only if i = [0]8[1, 1, 0, 1][0]d
′′−3

, whi
h has no neighbour

in [0]3[1, 1][0, 0]
d′−2

2
� a 
ontradi
tion.

• The only 
ouples of sites in J3 at distan
e (at most) 2 are of the form

([1, 0, 0]x, [0, 1, 0]x) for x ∈ [1, 1][0, 0]
d′−2

2
. Indeed, if the �rst two 
oordinates

di�er, the distan
e is at most 2 only if all other 
oordinates are identi
al and

if they do not di�er, sites in J3 are at distan
e 4.

• Every site i1 ∈ I0 has a unique other site i2 ∈ I0 at distan
e (at most)

2. Indeed, 
onsider d(i1, i2) 6 2 and argue that i1 and i2 only di�er in


oordinates 4-9. If the last d′′ 
oordinates di�er, by less than 3, as S is

a 3-snake, the time in the snake has di�erent remainder modulo 3 for the

two sites and thus, 2 of the the �rst 9 
oordinates must di�er. If the last

d′′ 
oordinates di�er by 3 or more, S being a 3-snake implies d(i1, i2) > 3.
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Clearly, there is a unique site whi
h di�ers from i1 only in 
oordinates 4-9.

• [0]9St has 
ommon neighbours with J3 only for t = T − 1. Indeed, by


ondition 5 of Lemma 11 and parity one has t ∈ {T − 1, T − 3}. For T − 3
it su�
es to note that [0]9ST−3 has no two 
onse
utive 1s.

• [0]9St has 
ommon neighbours with J2 only for t = T (More generally, [0]3a
is at distan
e 2 from J2 only for a = [0]d

′

).

Claim 1 At time 0 6 t < T the set of infe
ted sites is I ∪ {[0]9St′ , t
′ 6 t}.

Proof of Claim 1. We pro
eed by indu
tion.

Base: We show that I \ {[0]9S0} is stable i.e. no uninfe
ted site has three

infe
ted neighbours. Consider an uninfe
ted site s and split the reasoning in 
ases

depending on s.

• If s ∈ [0, 0, 1][∗]d
′

, then it has at most two neighbours in J2 (sin
e |J2| = 2)
and at most one neighbour in I0. However, J2 and I0 have no 
ommon

neighbours, so it has at most 2 infe
ted neighbours.

• If s ∈ [0][1][1][∗]d
′

\ J2, then it has one neighbour in J1 (sin
e this is a

sub
ube), at most one neighbour in J2, at most one neighbour in J3 and no

neighbours in I0. However, J2 and J3 have no 
ommon neighbours, so it has

at most 2 infe
ted neighbours.

• If s ∈ [0][1][0][∗]d
′

\ J3, then it has one neighbour in J1 (sin
e this is a

sub
ube), at most one neighbour in ea
h of I0, J2 and J3. Indeed, for J3 we

know that all sites with (at least) two neighbours in J3 are not in [0][1][0][∗]d
′

.

However, I0, J2 and J3 have pairwise no 
ommon neighbours, so we are done.

• If s ∈ [0]3[∗]d
′

\ I0, then it has no neighbours in J1 or J2 and at most two

in J3, but sin
e J3 and I0 have no 
ommon neighbours, it su�
es to prove

that s 
annot have 3 neighbours in I0. However, we know that ea
h site in

I0 has 
ommon neighbours with only one other site in I0, whi
h 
on
ludes

the proof of the base.

Step: Assume that at time 0 6 t < T−1 the infe
ted sites are I∪{[0]9St′ , t
′ 6

t}. We only need to 
he
k that none of the uninfe
ted neighbours of [0]9St other

than [0]9St+1 has 3 infe
ted neighbours at time t.

As we know, J2 and J3 have no 
ommon neighbours with [0]9St, so they 
annot


ontribute. In [0]9[∗]d
′′

the only infe
ted site with neighbours in 
ommon with

[0]9St is [0]
9St−2 (or none if t 6 1), as S is a 3-snake. But their 
ommon neighbour

8



di�erent from [0]9St−1 has no other infe
ted neighbours in [0]9[∗]d
′′

(sin
e S is a

3-snake), does not neighbour J1 (sin
e it is in [0]9[∗]d
′′

), and nor does it neighbour

I0 (sin
e the only neighbours of I0 in [0]9[∗]d
′′

are in [0]9S by 
onstru
tion).

Furthermore, the only other infe
ted sites in [0]3[∗]d
′

\ [0]9[∗]d
′′

with 
ommon

neighbours with [0]9St are the 4 neighbours of [0]9St±1 in I0. Re
all that ea
h

of those has a 
ommon neighbour only with one other, so the only sites with

three neighbours among those four and [0]9St are [0]9St±1. Moreover, J1 does not


ontribute, as before, be
ause those 4 sites are in [0]3[∗]d
′

.

Finally, the only infe
ted site outside [0]3[∗]d
′

with 
ommon neighbours with

[0]9St is [1, 1][0]
7St ∈ J1. Those 
ommon neighbours being outside J1 and [0]3[∗]d

′

,

they 
annot have more than 2 infe
ted neighbours in those two sub
ubes, whi
h

exhausts all possible 
ases and 
ompletes the indu
tion step.

Claim 2 The set J1 ∪ J2 ∪ J3 ∪ {[0]9ST−1} per
olates.

Proof of Claim 2. We have the following infe
tions (we do not 
laim that they

happen at di�erent times or in this order).

• [0][1][0]7[1][0]d
′′−1

is infe
ted by [0]9ST−1, J1 and J3.

• [0][1][0]d
′+1

is infe
ted by the previous one, J1 and J2.

• [0][1][0][1][0]d′−1
is infe
ted by the previous one, J1 and J3.

• [0][1][0][∗]d
′

is infe
ted by the previous one and J1. Indeed, for all 2 6 k 6 d′

every site in [0][1][0][1]k[0]d′−k
has at least 2 neighbours in [0][1][0][1]k−1[0]d′−k+1

and one neighbour in J1, so those sets be
ome infe
ted su

essively by in-

du
tion.

• [0]3[∗]d
′

is infe
ted by the previous one and [0]9ST−1. Indeed, all sites in

[0]3[∗]d
′

have two infe
ted neighbours from the previous step, so they only

need one more in order to be infe
ted. But sin
e [0]3[∗]d
′

is 
onne
ted and


ontains the infe
ted site [0]9ST−1, it does be
ome infe
ted entirely.

• [0][1][1][∗]d
′

is infe
ted by [0][1][0][∗]d
′

, J1 and J2 just like in the previous

step.

• [0, 0][1][∗]d
′

is infe
ted by the ones in the previous two steps.

Hen
e, the whole hyper
ube is infe
ted.

The lemma follows trivially from the two 
laims.

The next lemma establishes our upper bound on the per
olation time.
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Lemma 12. Let r > 3. Then for all d > r

Mr(d) 6 (4r + 2)
2d

d
.

Proof. Assume that Mr(d) > (4r + 2)2
d

d
for some d and 
onsider a per
olating set

of initially infe
ted sites, whi
h a
hieves the maximal time. For ea
h site v of the

hyper
ube denote tv its per
olation time. Note that any site v has at most r − 1
neighbours u su
h that tv − tu > 1, so there are at most (r − 1)2d edges uv of the

hyper
ube su
h that |tv − tu| > 2. Call a site v bad if it has at least

d
2
neighbours

u su
h that |tv− tu| > 2 and good otherwise. Thus, there are at most

2d+2(r−1)
d

bad

sites in total, sin
e an edge 
ontributes to at most 2 of them. But then there are

at most

2d+2(r−1)
d

values of t when a bad site be
omes infe
ted and in parti
ular

there are more than

2d

d
((4r+2)−4(r−1)) = 62d

d
values when a good site be
omes

infe
ted. But if v is a good site, then at least

d
2
of its neighbours are infe
ted at

time tv − 1, tv or tv + 1. Hen
e, applying this to one good site for ea
h time when

there is one, one obtains that there are more than

6 ·
2d

d
·
d

2
·
1

3
= 2d

infe
ted sites, sin
e ea
h one is 
ounted up to three times � a 
ontradi
tion.

Remark 13. In order to obtain a better 
onstant with the same proof, bad sites

should be de�ned to have Cd edges of the type spe
i�ed and C should then be

optimised.

The main result now follows immediately.

Proof of Theorem 9. Let us �rst prove the lower bound. For r > 3, 
onsider a


on�guration givingM3(d−r+3) in a (d−r+3)-dimensional sub
ube and infe
t the

rest of the hyper
ube. Then sites in that sub
ube follow exa
tly the 3-neighbour

bootstrap pro
ess restri
ted to it and thus the problem is redu
ed to r = 3. For

r = 3 the result follows dire
tly from Lemma 10 and Proposition 4, so we are

done when d is odd. Consider d > 15 even and denote by A a d − 1 dimensional

per
olating set a
hieving M3(d − 1). Then we 
laim that the d-dimensional set

A′ := [∗]A per
olates in exa
tly the same time. Indeed, by an immediate indu
tion

at any time t a site [0]a ∈ [∗]d is infe
ted if and only if [1]a is, so for any uninfe
ted

site [0]b the only infe
ted neighbours are in [0][∗]d−1
and so, by indu
tion it be
omes

infe
ted if and only if b be
omes infe
ted at time t in the d−1-dimensional pro
ess.

The upper bound was proved in Lemma 12.
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4 Con
lusion and open problems

In 
on
lusion, our result exhibits a signi�
ant di�eren
e between the 2 and 3-
neighbour models on the hyper
ube. The reason why our method does not work

for the 2-neighbour 
ase is that parasite infe
tions are inevitable. More pre
isely,

there ne
essarily appear additional infe
tions around an infe
ted path � at ea
h

`
orner' of the path (in the hyper
ube a path has `
orners' at ea
h step) at the

�rst time step and more afterwards.

Further understanding of the di�erent behaviours should be of use in atta
king

the 3-neighbour model on the hyper
ube with random initial 
ondition, by showing

what anomalies one needs to take into 
onsideration. We list here a few of the

questions raised by the present work, not ne
essarily aiming dire
tly at solving

that model.

The �rst natural question to ask in view of our work is to determine the exa
t

order of the maximal per
olation time. We 
onje
ture that the upper bound is

tight up to a 
onstant.

Conje
ture 14. Prove that for all �xed r > 3

Mr(d) = Θ

(

2d

d

)

.

It should be noted, that this result would follow from the same proof, if one

establishes the 
orresponding lower bound for the maximal length of 3-snakes,
improving the result of [13℄.

Se
ondly, a probably di�
ult question is to determine the random per
olation

time. The probabilisti
 
ounterpart of our extremal result would be as follows.

Question 15. Conditionally on per
olating, what is the order of the per
olation

time if the initially infe
ted sites are 
hosen randomly and independently with

probability p(d)?

It would, namely, be interesting to see if exponentially large times su
h as

the ones we give manage to alter the mean per
olation time despite their low

probability of o

urren
e.

Finally, in view of the more re
ent development of U-bootstrap per
olation

in 2 dimensions [7, 8℄ and, 
urrently in higher, but �xed number of dimensions,

one 
ould ask for similar results about models more general than the r-neighbour

model, but still on the hyper
ube (e.g. a site is infe
ted if some �xed subset,

de�ned up to isomorphism, of its 2-neighbourhood is infe
ted). An answer of sat-

isfa
tory generality to the following question might need to wait until U-bootstrap
per
olation setting is extended to the hyper
ube, but it is worth investigating

nonetheless.

11



Question 16. When is the order of the maximal time of U-bootstrap per
olation

on the hyper
ube up to a 
onstant given by the maximal length of a k-snake for

some k and how is k determined by U?
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