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Abstrat

In r-neighbour bootstrap perolation, verties (sites) of a graph G be-

ome �infeted� in eah round of the proess if they have r neighbours already

infeted. One infeted, they remain suh. An initial set of infeted sites

is said to perolate if every site is eventually infeted. We determine the

maximal perolation time for r-neighbour bootstrap perolation on the hy-

perube for all r > 3 as the dimension d goes to in�nity up to a logarithmi

fator. Surprisingly, it turns out to be

2d

d
, whih is in great ontrast with

the value for r = 2, whih is quadrati in d, as established by Przykuki [24℄.

Furthermore, we disover a link between this problem and a generalisation

of the well-known Snake-in-the-Box problem.
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1 Introdution

Bootstrap perolation was introdued in 1979 by Chalupa, Leath and Reih [11℄

as a simpli�ed monotone version of ferromagneti dynamis and it is in partiular

related to Glauber dynamis of the Ising model. The general r-neighbour model

on a graph G is de�ned as follows. Consider an initial subset of the verties (sites)

that are delared infeted. At eah time step every site beomes infeted if it has

at least r neighbours already infeted and infeted site always remain suh. We say

that perolation ours if eventually all sites of G are infeted. In the most lassial
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setting the initially infeted sites are seleted randomly and independently with

probability p and the graph G is taken to be a �nite d-dimensional grid {1, . . . , n}d.
One of the founding results in the �eld was by Aizenman and Liebowitz [1℄, who

determined the order of the ritial probability of perolation for r = 2, all �xed d

as n → ∞. The simplest setting, r = d = 2 was then studied by Holroyd [18℄, who

proved that the threshold is sharp and determined the leading term of the ritial

probability. Further work on that threshold was done and the order of the seond

term is now known [16, 17℄. However, the ase r > 2 required a lot more are,

beause the stable sets of infeted sites are no longer simple boxes. An important

step was done by Cerf and Cirillo [9℄ and Cerf and Manzo [10℄, who proved the

ounterpart of the result of [1℄. Their methods were later used in onjuntion with

Holroyd's to determine the leading term of the ritial probability for all �xed r

and d when n → ∞ [4℄.

A less standard and more ombinatorial faet of bootstrap perolation onsists

in keeping n �xed and letting d grow to in�nity, so that the simplest ase is the

high dimensional hyperube. This setting was explored by Balogh and Bollobás [2℄,

and later Balogh, Bollobás, and Morris [3℄ determined the ritial probability of

perolation with high preision for r = 2, and also for high dimensional grids with

size not neessarily equal to 2. However, the situation for r > 2 remains entirely

open due to the lak of tools to handle the more ompliated stable sets, sine the

method of [9, 10℄ is no longer of relevane.

Alongside the probabilisti perspetive on bootstrap perolation, purely om-

binatorial extremal questions have been widely investigated. Suh deterministi

bounds have proved useful for obtaining probabilisti results as well, e.g. in [3℄.

However, it has beome ustomary to expet the unexpeted, as, more often than

not, answers to suh extremal questions are very ounterintuitive and very far

from �ommon� behaviour. Some deal with the lassial 2 dimensional 2-neighbour
model, like [5, 6, 21℄, but others [22, 23, 25℄ fous on the hyperube. The typi-

al quantities assessed are the extremal sizes of (extremal) (non-)perolating sets,

extremal perolation time or mixtures of those.

One suh result by Przykuki [24℄ onerns the maximal perolation time on

the hyperube under the 2-neighbour model. Contrary to the result of [6℄ that the

maximal perolation time for the same model in two dimensions is of the order of

the size of the whole grid onsidered, for the hyperube of dimension d the maximal

perolation time was determined to be merely

⌊

d2

3

⌋

. Based on the onstrution

in [24℄ one might expet that setting r = 3 would simply allow one to gain another

fator of order d and the perolation time to be at most ubi in the dimension.

Most surprisingly, we prove that there is a drasti jump between r = 2 and r = 3
for this question. We show that the maximal perolation time goes from lose to

the trivial lower bound 1, as found in [24℄, to lose to the trivial upper bound 2d.
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More preisely, we prove that for all r > 2 the maximal perolation time is equal

to

2d

d
up to a logarithmi fator.

The lower bound is based on an entirely expliit onstrution, though quite

elaborate, as it also uses a previously known non-trivial one. An essential ingre-

dient for this bound is a new link we establish between bootstrap perolation and

the very well-known snake-in-the-box problem, whih onerns long indued paths

and yles in the hyperube. It was introdued by Kautz in the late 50s [19℄ and

has a wide range of appliations, namely in oding, error-orretion and others. It

was �rst proved in [12, 15℄ that the maximal length of a snake-in-the-box is 2d up
to a onstant fator, though its orret asymptoti value is not yet known.

We will rather be onerned with a natural generalisation of the problem,

introdued by Singleton in [27℄. It asks for a long path (or yle) in the hyperube

suh that sites at distane at least k along the path are also at distane at least k in

the hyperube as well. Hene, the snake-in-the-box problem orresponds to k = 2.
These paths or yles are usually referred to as snakes or iruit odes of spread

k, but we will all them k-snakes and we will only need 3-snakes for our result.
The maximal length of k-snakes was also studied extensively over the last half a

entury. A very easy upper bound for k = 3, mentioned already in [27℄ is

2d

d−2
, is

fairly lose to the right asymptotis. The right exponent 2d−o(d)
was determined

in [20℄ and Evdokimov determined the maximal length of a 3-snake to be

2d

d
up

to a logarithmi fator [13℄. This result is at the base of our onstrution. For a

more reent overview, whih is very omplete from the mathematial perspetive,

on snake-in-the-box and related problems, the reader is referred to the survey [14℄

by the same author.

We should also note that, uriously, another link between bootstrap perolation

and the snake-in-the-box (with spread k = 2) problem has been observed in [26℄,

although it is along an entirely di�erent diretion and very spei� to r = 2.

2 Notation

In this setion, we introdue the notation neessary for the proof of the main result.

We denote by Mr(d) our quantity of interest � the maximal time of r-neighbour

bootstrap perolation on the d-dimensional hyperube {0, 1}d with its usual graph

struture. Denote by d(·, ·) the assoiated graph distane indued by the norm

‖x‖ =
∑d

i=1 xi for x = (xi) ∈ {0, 1}d.

Snakes

De�nition 1. For k > 1 a k-snake is a path (St)
T
t=0 in the hyperube suh that,

for all t > 0 and t′ ∈ [t+ k, T ] it holds that d(St, St′) > k. We all T the length of
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S and refer to the parameter t as the time.

Remark 2. For a k-snake of length greater than k this de�nition implies that

for t, t′ ∈ [0, T ] suh that |t − t′| 6 k one has d(St, St′) = |t − t′|. Indeed, eah

step inreases the distane by at most 1, but after k steps we are required to be at

distane at least k, so that inreasing by 1 was always neessary. Hene, snakes

are k-loally isometri to paths.

De�nition 3. We denote by s(d) the maximal length of a 3-snake in the d-

dimensional hyperube.

The following bound was established by Evdokimov [13℄.

Proposition 4. For all d > 3

s(d) >
2d

d(log d)2
.

Hyperubes For the remainder of this paper, we employ the onvenient notation

used by Przykuki in [24℄. Though it may appear very tehnial at �rst, it will

prove itself to be very pratial.

De�nition 5. For any �nite sequene (ai) ∈ {0, 1, ∗}n we denote

[a1, . . . , an] := {(b1, . . . , bn) ∈ {0, 1}n | ∀ 1 6 i 6 n, ai 6= ∗ ⇒ bi = ai}

and all all suh sets sububes (of the hyperube {0, 1}n). We extend this notation

to the onatenation of two sequenes (ai) and (bi) as

[a1, . . . , an][b1, . . . , bk] := [a1, . . . , an, b1, . . . , bk] .

[a1, . . . , an]
k
stands for [a1, . . . , an] . . . [a1, . . . , an] repeating k times. We will abu-

sively identify singletons with their unique element, when they arise in this nota-

tion, i.e. when ∗ is never used.

Example 6. The hyperube of dimension d is thus denoted by [∗]d and [1, 0, 1][∗]d−6[0]3

is its d − 6 dimensional subube whose �rst three oordinates are 1, 0, and 1 in

that order, and whose last three oordinates are all 0.
We may write [1, 0, 1][0]2 for both the site (1, 0, 1, 0, 0) and the subube {(1, 0, 1, 0, 0)}.

De�nition 7. For any sequene of sequenes

(

(aji )
lj
i=1

)n

j=1
on the alphabet {0, 1, ∗},

we de�ne their permutation

[a11, . . . , a
1
l1
] . . . [an1 , . . . , a

n
ln
] =

⋃

σ∈Sn

[

a
σ(1)
1 . . . , a

σ(1)
lσ(1)

]

. . .
[

a
σ(n)
1 . . . , a

σ(n)
lσ(n)

]

where Sn is the symmetri group.
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Example 8. The elements of [0][0]2[1, 0][∗] are (0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1), (0, 0,
1, 0, 0, 0), (0, 0, 1, 0, 0, 1), (0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 1).

It is important to note that the permutation does not at inside eah omponent

of the onatenation and moves the whole bloks without interlaing them, so

that [1]2[0]2, [1, 1][0, 0] and [1, 0]2 are all di�erent sets with 6, 2 and 1 elements

respetively.

3 The Main Result

In this setion, we prove our main result determining the maximal perolation time

for all r > 2 in the hyperube up to a log d fator.

Theorem 9. For all r > 3

Mr(d) =
2d

d
(log d)−O(1) .

The upper and lower bounds are established independently. We start with the

lower one, whih will follow by linking the bootstrap proess to long 3-snakes.

Lemma 10. Let d > 15 be odd. Then,

s(d− 10) 6 M3(d)

Let us sketh the idea before we turn to the proof of the lemma. We would like

have a long 3-snake beoming infeted one site at a time. To ahieve that we �x

a long 3-snake in a subube of odimension 9 and infet neighbours of that snake

in new diretions in order to have two for eah site of the snake. Then we only

need to have the beginning of the snake initially infeted. We also make sure that

next to the end of the snake there is a on�guration of lots of infeted sites whih

an perolate only using the end of the snake in addition. Of ourse, some are is

needed in order not to infet any other site by aident before the snake an reah

its end.

Proof of Lemma 10. We will need the following tehnial lemma.

Lemma 11. Let d′′ > 6. There is a 3-snake S of dimension d′′ and length T suh

that the following onditions all hold.

1. ST−3 = [1, 0, 1, 0, 1][0]d
′′−5

.

2. ST−2 = [1, 0, 1][0]d
′′−3

.

3. ST−1 = [1][0]d
′′−1

.
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4. ST = [0]d
′′

.

5. ‖St‖ > 3 for every t < T − 3.

6. T > s(d′′ − 1).

Proof of Lemma 11. It su�es to satisfy onditions 4-6 and then to permute the

oordinates to also ful�l the other onditions. One an ahieve onditions 4-6 as

follows.

Let S ′
be a d′′−1-dimensional 3-snake of maximal length with S ′

s(d′′−1) = [0]d
′′−1

(to obtain it ompose a d′′−1-dimensional 3-snake of maximal length by a suitable

isomorphism of the hyperube). Then we set St = [1]S ′
t for all 0 6 t 6 s(d′′ − 1),

T = s(d′′ − 1) + 1 and ST = [0]d
′′

. Conditions 4 and 6 are learly satis�ed.

Furthermore, sine S ′
is a 3-snake ending in [0]d

′′−1
, we have that ‖S ′

t‖ > 3 for all

t 6 s(d′′ − 1)− 3. Thus, ondition 5 does hold by onstrution and S is indeed a

3-snake.

For onveniene denote d′ := d − 3 and d′′ := d − 9. Let S be as provided by

Lemma 11. Let the initial set of infeted sites I be de�ned as follows (see Figure 1).

• Infet [0]9S0.

• For i ∈ {1, 2, 3} set

Si :=

{

ST−i−3j , 0 6 j 6
T − i

3

}

.

Infet

I0 := [0]3[0][1][0]4S1 ∪ [0]5[0][1][0]2S2 ∪ [0]7[0][1]S3 .

Do note that we do not inlude neighbours of the end of the snake [0]9ST .

• Moreover, infet

J1 := [1, 1][∗]d
′+1, J2 := [0][1][1][0]d

′

and J3 := [0][1][0][1, 1][0, 0]
d′−2

2 .

Reall that [1, 1][0, 0]k =
⋃

06l6k[0, 0]
l[1, 1][0, 0]k−l

.

We laim that [0]9S is infeted one site at a time, that no site outside [0]9S is

infeted stritly before ST and that perolation ours. However, before we turn

to the proof of those laims, let us establish some properties of the on�guration.

• I0, J2 and J3 have pairwise no ommon neighbours. Indeed,

� J2 and J3 have no ommon neighbours by parity.
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I0 J3

J2∅

J3 J1

J1J2

Figure 1: Eah vertex of the ube in this piture represents a d′ dimensional hyperube,

so that only the �rst three dimensions of [∗]d are visible. We indiate the positions of

the di�erent parts of the initial infeted set I. J1 onsists of two entire d′-dimensional

sububes, J2 has one site in eah of the two sububes indiated, J3 has
d′

2 sites at distane

4 in eah of the two sububes indiated. Finally, I0 ontains two neighbours of eah site in

the 3-snake [0]9S (exept its end). The 3-snake in question lies in the same d′ dimensional

subube as I0.

� J2 and I0 have no ommon neighbours, sine [0]d 6∈ I0 and two of the

�rst three oordinates are di�erent.

� J3 and I0 have no ommon neighbours. To see this, onsider a site

j in J3 at distane 2 from i ∈ I0. Those two di�er in one of the

�rst three oordinates, so i has a neighbour in [0]3[1, 1][0, 0]
d′−2

2
. Then

‖i‖ ∈ {1, 3} and by ondition 5 of Lemma 11 and parity i is neessarily

a neighbour of [0]9ST−2 (reall that I0 does not ontain neighbours of

[0]9ST ). Hene, i ∈ [0]3[0]5[1][1, 0, 1][0]d
′′−3

. Notie that i neessarily has

2 adjaent 1s, sine it has a neighbour in [0]3[1, 1][0, 0]
d′−2

2
. However,

this is the ase only if i = [0]8[1, 1, 0, 1][0]d
′′−3

, whih has no neighbour

in [0]3[1, 1][0, 0]
d′−2

2
� a ontradition.

• The only ouples of sites in J3 at distane (at most) 2 are of the form

([1, 0, 0]x, [0, 1, 0]x) for x ∈ [1, 1][0, 0]
d′−2

2
. Indeed, if the �rst two oordinates

di�er, the distane is at most 2 only if all other oordinates are idential and

if they do not di�er, sites in J3 are at distane 4.

• Every site i1 ∈ I0 has a unique other site i2 ∈ I0 at distane (at most)

2. Indeed, onsider d(i1, i2) 6 2 and argue that i1 and i2 only di�er in

oordinates 4-9. If the last d′′ oordinates di�er, by less than 3, as S is

a 3-snake, the time in the snake has di�erent remainder modulo 3 for the

two sites and thus, 2 of the the �rst 9 oordinates must di�er. If the last

d′′ oordinates di�er by 3 or more, S being a 3-snake implies d(i1, i2) > 3.
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Clearly, there is a unique site whih di�ers from i1 only in oordinates 4-9.

• [0]9St has ommon neighbours with J3 only for t = T − 1. Indeed, by

ondition 5 of Lemma 11 and parity one has t ∈ {T − 1, T − 3}. For T − 3
it su�es to note that [0]9ST−3 has no two onseutive 1s.

• [0]9St has ommon neighbours with J2 only for t = T (More generally, [0]3a
is at distane 2 from J2 only for a = [0]d

′

).

Claim 1 At time 0 6 t < T the set of infeted sites is I ∪ {[0]9St′ , t
′ 6 t}.

Proof of Claim 1. We proeed by indution.

Base: We show that I \ {[0]9S0} is stable i.e. no uninfeted site has three

infeted neighbours. Consider an uninfeted site s and split the reasoning in ases

depending on s.

• If s ∈ [0, 0, 1][∗]d
′

, then it has at most two neighbours in J2 (sine |J2| = 2)
and at most one neighbour in I0. However, J2 and I0 have no ommon

neighbours, so it has at most 2 infeted neighbours.

• If s ∈ [0][1][1][∗]d
′

\ J2, then it has one neighbour in J1 (sine this is a

subube), at most one neighbour in J2, at most one neighbour in J3 and no

neighbours in I0. However, J2 and J3 have no ommon neighbours, so it has

at most 2 infeted neighbours.

• If s ∈ [0][1][0][∗]d
′

\ J3, then it has one neighbour in J1 (sine this is a

subube), at most one neighbour in eah of I0, J2 and J3. Indeed, for J3 we

know that all sites with (at least) two neighbours in J3 are not in [0][1][0][∗]d
′

.

However, I0, J2 and J3 have pairwise no ommon neighbours, so we are done.

• If s ∈ [0]3[∗]d
′

\ I0, then it has no neighbours in J1 or J2 and at most two

in J3, but sine J3 and I0 have no ommon neighbours, it su�es to prove

that s annot have 3 neighbours in I0. However, we know that eah site in

I0 has ommon neighbours with only one other site in I0, whih onludes

the proof of the base.

Step: Assume that at time 0 6 t < T−1 the infeted sites are I∪{[0]9St′ , t
′ 6

t}. We only need to hek that none of the uninfeted neighbours of [0]9St other

than [0]9St+1 has 3 infeted neighbours at time t.

As we know, J2 and J3 have no ommon neighbours with [0]9St, so they annot

ontribute. In [0]9[∗]d
′′

the only infeted site with neighbours in ommon with

[0]9St is [0]
9St−2 (or none if t 6 1), as S is a 3-snake. But their ommon neighbour
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di�erent from [0]9St−1 has no other infeted neighbours in [0]9[∗]d
′′

(sine S is a

3-snake), does not neighbour J1 (sine it is in [0]9[∗]d
′′

), and nor does it neighbour

I0 (sine the only neighbours of I0 in [0]9[∗]d
′′

are in [0]9S by onstrution).

Furthermore, the only other infeted sites in [0]3[∗]d
′

\ [0]9[∗]d
′′

with ommon

neighbours with [0]9St are the 4 neighbours of [0]9St±1 in I0. Reall that eah

of those has a ommon neighbour only with one other, so the only sites with

three neighbours among those four and [0]9St are [0]9St±1. Moreover, J1 does not

ontribute, as before, beause those 4 sites are in [0]3[∗]d
′

.

Finally, the only infeted site outside [0]3[∗]d
′

with ommon neighbours with

[0]9St is [1, 1][0]
7St ∈ J1. Those ommon neighbours being outside J1 and [0]3[∗]d

′

,

they annot have more than 2 infeted neighbours in those two sububes, whih

exhausts all possible ases and ompletes the indution step.

Claim 2 The set J1 ∪ J2 ∪ J3 ∪ {[0]9ST−1} perolates.

Proof of Claim 2. We have the following infetions (we do not laim that they

happen at di�erent times or in this order).

• [0][1][0]7[1][0]d
′′−1

is infeted by [0]9ST−1, J1 and J3.

• [0][1][0]d
′+1

is infeted by the previous one, J1 and J2.

• [0][1][0][1][0]d′−1
is infeted by the previous one, J1 and J3.

• [0][1][0][∗]d
′

is infeted by the previous one and J1. Indeed, for all 2 6 k 6 d′

every site in [0][1][0][1]k[0]d′−k
has at least 2 neighbours in [0][1][0][1]k−1[0]d′−k+1

and one neighbour in J1, so those sets beome infeted suessively by in-

dution.

• [0]3[∗]d
′

is infeted by the previous one and [0]9ST−1. Indeed, all sites in

[0]3[∗]d
′

have two infeted neighbours from the previous step, so they only

need one more in order to be infeted. But sine [0]3[∗]d
′

is onneted and

ontains the infeted site [0]9ST−1, it does beome infeted entirely.

• [0][1][1][∗]d
′

is infeted by [0][1][0][∗]d
′

, J1 and J2 just like in the previous

step.

• [0, 0][1][∗]d
′

is infeted by the ones in the previous two steps.

Hene, the whole hyperube is infeted.

The lemma follows trivially from the two laims.

The next lemma establishes our upper bound on the perolation time.

9



Lemma 12. Let r > 3. Then for all d > r

Mr(d) 6 (4r + 2)
2d

d
.

Proof. Assume that Mr(d) > (4r + 2)2
d

d
for some d and onsider a perolating set

of initially infeted sites, whih ahieves the maximal time. For eah site v of the

hyperube denote tv its perolation time. Note that any site v has at most r − 1
neighbours u suh that tv − tu > 1, so there are at most (r − 1)2d edges uv of the

hyperube suh that |tv − tu| > 2. Call a site v bad if it has at least

d
2
neighbours

u suh that |tv− tu| > 2 and good otherwise. Thus, there are at most

2d+2(r−1)
d

bad

sites in total, sine an edge ontributes to at most 2 of them. But then there are

at most

2d+2(r−1)
d

values of t when a bad site beomes infeted and in partiular

there are more than

2d

d
((4r+2)−4(r−1)) = 62d

d
values when a good site beomes

infeted. But if v is a good site, then at least

d
2
of its neighbours are infeted at

time tv − 1, tv or tv + 1. Hene, applying this to one good site for eah time when

there is one, one obtains that there are more than

6 ·
2d

d
·
d

2
·
1

3
= 2d

infeted sites, sine eah one is ounted up to three times � a ontradition.

Remark 13. In order to obtain a better onstant with the same proof, bad sites

should be de�ned to have Cd edges of the type spei�ed and C should then be

optimised.

The main result now follows immediately.

Proof of Theorem 9. Let us �rst prove the lower bound. For r > 3, onsider a

on�guration givingM3(d−r+3) in a (d−r+3)-dimensional subube and infet the

rest of the hyperube. Then sites in that subube follow exatly the 3-neighbour

bootstrap proess restrited to it and thus the problem is redued to r = 3. For

r = 3 the result follows diretly from Lemma 10 and Proposition 4, so we are

done when d is odd. Consider d > 15 even and denote by A a d − 1 dimensional

perolating set ahieving M3(d − 1). Then we laim that the d-dimensional set

A′ := [∗]A perolates in exatly the same time. Indeed, by an immediate indution

at any time t a site [0]a ∈ [∗]d is infeted if and only if [1]a is, so for any uninfeted

site [0]b the only infeted neighbours are in [0][∗]d−1
and so, by indution it beomes

infeted if and only if b beomes infeted at time t in the d−1-dimensional proess.

The upper bound was proved in Lemma 12.
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4 Conlusion and open problems

In onlusion, our result exhibits a signi�ant di�erene between the 2 and 3-
neighbour models on the hyperube. The reason why our method does not work

for the 2-neighbour ase is that parasite infetions are inevitable. More preisely,

there neessarily appear additional infetions around an infeted path � at eah

`orner' of the path (in the hyperube a path has `orners' at eah step) at the

�rst time step and more afterwards.

Further understanding of the di�erent behaviours should be of use in attaking

the 3-neighbour model on the hyperube with random initial ondition, by showing

what anomalies one needs to take into onsideration. We list here a few of the

questions raised by the present work, not neessarily aiming diretly at solving

that model.

The �rst natural question to ask in view of our work is to determine the exat

order of the maximal perolation time. We onjeture that the upper bound is

tight up to a onstant.

Conjeture 14. Prove that for all �xed r > 3

Mr(d) = Θ

(

2d

d

)

.

It should be noted, that this result would follow from the same proof, if one

establishes the orresponding lower bound for the maximal length of 3-snakes,
improving the result of [13℄.

Seondly, a probably di�ult question is to determine the random perolation

time. The probabilisti ounterpart of our extremal result would be as follows.

Question 15. Conditionally on perolating, what is the order of the perolation

time if the initially infeted sites are hosen randomly and independently with

probability p(d)?

It would, namely, be interesting to see if exponentially large times suh as

the ones we give manage to alter the mean perolation time despite their low

probability of ourrene.

Finally, in view of the more reent development of U-bootstrap perolation

in 2 dimensions [7, 8℄ and, urrently in higher, but �xed number of dimensions,

one ould ask for similar results about models more general than the r-neighbour

model, but still on the hyperube (e.g. a site is infeted if some �xed subset,

de�ned up to isomorphism, of its 2-neighbourhood is infeted). An answer of sat-

isfatory generality to the following question might need to wait until U-bootstrap
perolation setting is extended to the hyperube, but it is worth investigating

nonetheless.
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Question 16. When is the order of the maximal time of U-bootstrap perolation

on the hyperube up to a onstant given by the maximal length of a k-snake for

some k and how is k determined by U?
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