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Abstrat

We study a general lass of interating partile systems alled kine-

tially onstrained models (KCM) in two dimensions tightly linked to

the monotone ellular automata alled bootstrap perolation. There

are three lasses of suh models [5℄, the most studied being the ritial

one. In a reent series of works [18,20,26℄ it was shown that the KCM

ounterparts of ritial bootstrap perolation models with the same

properties [4℄ split into two lasses with di�erent behaviour.

Together with the ompanion paper by the �rst author [17℄, our

work determines the logarithm of the infetion time up to a onstant

fator for all ritial KCM, whih were previously known only up to

logarithmi orretions. This improves all previous results exept for

the Duarte-KCM, for whih we give a new proof of the best result

known [25℄. We establish that on this level of preision ritial KCM

have to be lassi�ed into seven ategories instead of the two in boot-

strap perolation [4℄. In the present work we establish lower bounds

for ritial KCM in a uni�ed way, also reovering the universality re-

sult of Toninelli and the authors [18℄ and the Duarte model result of

Martinelli, Toninelli and the seond author [25℄.
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1 Introdution and results

1.1 Kinetially onstrained models

Kinetially onstrained models (KCM) are a lass of interating partile sy-

stems used sine the 1980s to model the liquid-glass transition [12, 13℄ (see

[14,30℄ for reviews). We will be interested in the very general lass of U-KCM

�rst introdued by Canrini, Martinelli, Roberto and Toninelli in 2008 [6℄,

whih inludes all previously onsidered ases on Zd
.

Let us start by introduing these models diretly on the two-dimensional

lattie, to whih we restrit our attention. A KCM is a Markov proess with

state spae Ω � t0, 1uZ
2

. For a on�guration η P Ω and a site x P Z2
, we

denote ηx the value of η at x. We say that x is empty or infeted if ηx � 0

and that it is oupied or healthy if ηx � 1. We thus naturally identify a

on�guration η P Ω with the set of its infeted sites, so that η � Z2
.

A U-KCM is spei�ed by two parameters�an update family U and an

equilibrium measure µ. The measure µ on Ω is hosen to be the produt

Bernoulli measure suh that eah site is infeted with probability q ¡ 0 and

healthy with probability 1� q. All asymptotis hereafter are taken as q Ñ 0.

The update family U is a �nite set of �nite nonempty subsets of Z2
zt0u alled

update rules. The dynamis is the following. For eah site x P Z2
at rate 1

(i.e. at the times given by a Poisson point proess on R
�

with intensity 1)

we attempt to update ηx by replaing it by an independent Bernoullip1� qq

variable. However, the update is only performed if there exists an update

rule U P U suh that η � px�Uq, while otherwise the on�guration remains

unhanged. In more formal terms the generator of the Markov proess is the

following for any funtion f : Ω ÞÑ R depending on a �nite number of sites.

Lpfqpηq �
¸

xPZ2

1

tDUPU ,ηx�U�0upµxpfq � fqpηq,

where ηX denotes the restrition of η toXXZ2
forX � R2

and µxpfq denotes

the average of f with respet to ηx onditionally on all other oupation

variables. We further view ηX as the element of t0, 1uZ
2

equal to η in XXZ2

and to 1 elsewhere. For bakground on the theoretial foundations of suh

interating partile systems the reader is referred to [23℄. In partiular, µ is

indeed a reversible invariant measure for the U-KCM.

For any KCM arguably the most natural quantity of interest desribing

the speed at whih memory of the initial state is lost is the �rst infetion

time of the origin

τ0 � inftt ¥ 0, pηptqq0 � 0u P r0,8s,
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where pηptqqt¥0 denotes the U-KCM proess. As we will onentrate on the

equilibrium properties of the KCM, we will rather be onerned with Eµrτ0s,

that is the expetation of τ0 with respet to the law of the stationary U-KCM

with initial ondition distributed aording to its equilibrium measure µ.

1.2 Bootstrap perolation and universality

Bootstrap perolation is a lose relative of KCM, though the two �elds remai-

ned relatively independent for deades. Formally, the ontinuous time version

of U-bootstrap perolation is the U-KCM with q � 1. However, bootstrap

perolation has important additional properties and has attrated a great

deal of attention with di�erent motivation, also in non-lattie settings, as

well as from omputer siene and soiologial perspetives. We diret the

reader to [9, 29℄ and the referenes therein for an overview of this rih �eld.

In U-bootstrap perolation (the update family U being as above), for eah

integer t ¥ 0, a set At of infeted sites at time t is onstruted as follows.

Given an initial set of infeted sites A0 � Z2
we set for all integers t ¥ 0

At�1 � At Y tx P Z2 : DU P U , x� U � Atu.

That is, at eah disrete time step the sites suh that the translate of a

rule by the orresponding site is already fully infeted also beome infeted,

while infetions never heal. Thus, given the initial ondition, U-bootstrap

perolation is a monotone deterministi ellular automaton. For any set

A0 � Z2
we denote by rA0s �

�

t¥0 At its losure with respet to the U-

bootstrap perolation proess, i.e. the sites that are eventually infeted when

the initial infetion is A0 (we may also use this notation when A0 � Z2
; it

will then mean rA0 X Z2
s). The best-studied setting, whih is also the one

relevant to us, is taking A0 random with law µ, so that eah site is infeted

independently with probability q. In this ase the most prominent questions

are for whih values of q we have rA0s � Z2
a.s. and, for suh values of q,

what is the typial order of magnitude of the infetion time of the origin τ0
de�ned as for KCM.

The general U-bootstrap perolation framework only gained visibility af-

ter the work of Bollobás, Smith and Uzzell [5℄. They introdued several

ruial notions, whih we disuss next. We invite the reader unfamiliar with

these notions to systematially onsult the examples in Figure 1 and apply

the de�nitions to them.

We denote by S1
� tz P R2, }z} � 1u the unit irle, whih we standardly

identify with R{2πZ, where } � } is the Eulidean norm of R2
(all distanes

in this work will be Eulidean, denoted by dp�, �q). A diretion u P S1
will be
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alled rational when tan u P Q Y t8u. For a diretion u P S1
and a salar

x P R, we de�ne the open half-plane Hupxq � ty P R2, xu, yy   xu direted

by u translated by x, and H̄upxq � ty P R2, xu, yy ¤ xu the orresponding

losed half-plane. We further set Hu � Hup0q. A diretion u P S1
is said

to be unstable (for U) if there exists U P U suh that U � Hu and stable

otherwise. It is not hard to see (Theorem 1.10 of [5℄, Lemma 2.6 of [4℄) that

the set of stable diretions is a �nite union of losed intervals of S1
with

rational endpoints. Bollobás, Smith and Uzzell [5℄ introdued the following

partition of update families into three lasses. In order to state their results

and others, we will need the following standard asymptoti notation. For

any real funtions fpqq, gpqq de�ned for q ¡ 0 su�iently small, with g ¡ 0,

we write

• fpqq � Θpgpqqq when cgpqq ¤ fpqq ¤ Cgpqq,

• fpqq � Ωpgpqqq when fpqq ¥ cgpqq,

• fpqq � Opgpqqq when |fpqq| ¤ Cgpqq

for some onstants 0   c ¤ C   �8 when q ¡ 0 is su�iently small. Finally,

we write fpqq � opgpqqq when
|fpqq|

gpqq
Ñ 0 when q Ñ 0. Let us note that all

suh impliit onstants are allowed to depend on the update family U and

all (�nite sets of) diretions onsidered, but never on q.

De�nition 1.1 (De�nition 1.3 of [5℄). An update family U is alled

• superritial if there exists an open semiirle of unstable diretions,

• ritial if it is not superritial, but there exists an open semiirle with

a �nite number of stable diretions,

• subritial otherwise.

In [5℄ it was proved that for superritial models τ0 � q�Θp1q
with high

probability

1

as q Ñ 0, while for ritial ones τ0 � exppq�Θp1q
q. Completing

the justi�ation of De�nition 1.1, Balister, Bollobás, Przykuki and Smith

[2℄ proved that for subritial models τ0 � 8 with positive probability for q

small enough. Albeit very general, these results were muh less preise than

what was known for most spei� models studied previously, so one may view

them as only qualitatively identifying the three di�erent possible behaviours.

Superritial models are fairly simple from the bootstrap perolation

point of view, while still very little is known in general about subritial

1

This means there exist onstants 0   c   C   �8 suh that µpq�c
¤ τ0 ¤ q�C

q Ñ 1

when q Ñ 0.
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ones [16℄. The remaining ritial models are the most pursued. Bollobás,

Duminil-Copin, Morris and Smith [4℄ established muh more preise quan-

titative results for this lass. To state their results, we need some more

notation.

De�nition 1.2 (De�nition 1.2 of [4℄). Let U be a ritial update family and

u P S1
be a diretion. Then the di�ulty of u, αpuq, is de�ned as follows.

• If u is unstable, then αpuq � 0.

• If u is an isolated stable diretion (isolated in the topologial sense),

then

αpuq � mintn P r1,8q : DZ � Z2, |Z| � n, |rHu Y ZszHu| � 8u,

i.e. the minimal number of additional infetions allowing Hu to infet

an in�nite set of sites.

• Otherwise, αpuq � 8.

We de�ne the di�ulty of U by

αpUq � min
CPC

max
uPC

αpuq P r1,8q, (1)

where C � tHu X S1 : u P S1
u is the set of open semiirles of S1

.

De�nition 1.3 (De�nition 1.3 of [4℄). A ritial update family with di�ulty

α is balaned if there exists a losed semiirle in whih all diretions have

di�ulty at most α and is unbalaned otherwise.

With these de�nitions, the main result of Bollobás, Duminil-Copin, Mor-

ris and Smith [4, Theorem 1.5℄, states

τ0 �

$

&

%

exp
�

Θp1q

qαpUq

	

for ritial balaned models,

exp
�

Θpplog qq2q

qαpUq

	

for ritial unbalaned models

(2)

with high probability as q Ñ 0. These are the best general estimates urrently

known, though for some spei� hoies of U sharper results are available

[3, 10, 15, 21, 22℄.
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1.3 Universality for KCM

Superritial KCM As we shall see, the situation for U-KCM is far more

omplex. Some new features already appear for superritial models. The

general setting was treated only reently by Martinelli, Morris and Toninelli

[26℄ and Martinelli, Toninelli and the seond author [25℄, who identi�ed the

two relevant lasses of models.

De�nition 1.4 (De�nition 2.11 of [26℄). A superritial update family U is

rooted if there exist two non-opposite stable diretions and unrooted other-

wise.

In [26℄ the upper bounds in the following result for U-KCM were establis-

hed: as q Ñ 0,

Eµrτ0s �

#

exp pΘplogp1{qqqq superritial unrooted,

exp pΘpplogp1{qqq2qq superritial rooted,
(3)

while the lower ones were supplied in [25℄, the lower bound for unrooted

models being trivial. The lower bound for rooted models relied mostly on a

ombinatorial result by the seond author [24℄ roughly stating that in order to

infet the origin starting from a on�guration in whih the infetion losest

to the origin is at distane d from it, the dynamis has to go through a

on�guration with at least log d infetions at distane at most d from the

origin. This ombinatorial bottlenek was originally identi�ed in [31℄ (see

also [8℄) for the arhetypal one-dimensional superritial rooted model, whih

is, perhaps, the simplest and best-studied KCM�the East model (see [11℄

for a review). Extending the one-dimensional result to higher dimensions in

[24℄ required the development of a new approah, whih will be the starting

point for our analysis, although we will not be able to apply the result of [24℄

itself.

Critial KCM Turning to ritial models, a �rst observation is that boot-

strap perolation provides an automati lower bound for Eµrτ0s in the U-KCM

with the same update family. In partiular, it is easy to show (see [27, Lemma

4.3℄ and its improved version from [19, Setion 2℄) that the expressions in (2)

are lower bounds for Eµrτ0s for the orresponding U-KCM.

Led by the intuition from the results for superritial models, Morris [28℄,

presenting his work with Martinelli and Toninelli, introdued the following

notion (we simplify his terminology slightly).

De�nition 1.5 (De�nition 2.3 of [28℄). A ritial update family of di�ulty

α is alled rooted if there exist two non-opposite diretions of di�ulty stritly

larger than α and unrooted otherwise.
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Initially it was believed, as explained in [28℄, that if a ritial model is

unrooted, it satis�es Eµrτ0s � exppq�αpUq�op1q
q as q Ñ 0, but not if it is

rooted. This onjeture was made more preise by the same authors in [26℄,

who then suggested a di�erent de�nition of rooted/unrooted re�eting the

upper bounds they proved and onjetured to be tight.

However, both onjetures were disproved by Martinelli, Toninelli and

the �rst author [20℄, who proved stronger upper bounds than the ones in

[26℄, in partiular refuting the above onjetures for some rooted models and

showing that the automati bootstrap perolation lower bound is essentially

sharp for them as well. In a parallel work Toninelli and the present authors

[18℄ proved for all other models lower bounds essentially mathing the upper

ones from [26℄. Hene, the ombined results of [18,20,26℄ proved the following

universality piture featuring yet a di�erent partition of ritial models. As

q Ñ 0,

Eµrτ0s �

$

&

%

exp
�

plogp1{qqqOp1q

qαpUq

	

ritial, �nitely many stable diretions,

exp
�

plogp1{qqqOp1q

q2αpUq

	

ritial, in�nitely many stable diretions.

This result shows that eah universality lass in bootstrap perolation

(models with the same value of αpUq) splits into two universality lasses of

KCM. This should indeed be viewed as the ritial ounterpart of (3). While

the lower bound of [18℄ establishing the result for models with in�nitely many

stable diretions does re�et (and atually uses) the ombinatorial bottlenek

of the one-dimensional superritial rooted East model, the upper bound of

[20℄ is based on a very peuliar e�ient mehanism that uses a �quasi-loal�

East-type movement resulting in a superritial unrooted dynamis on larger

length sales. However, it remained unlear whether this fairly unnatural

mehanism of [20℄ and the purely East-like one used in [26℄ are indeed the

orret ones for all models onerned.

1.4 Results

Our goal is to identify the dominant relaxation mehanisms for eah model,

whih are re�eted in the saling of τ0. Therefore, together with the ompa-

nion work by the �rst author [17℄, we determine logEµrτ0s up to a onstant

fator. In the present paper we establish all lower bounds by identifying

the orret bottlenek (see Setion 2), while the ompanion one [17℄ provi-

des the remaining mathing upper bounds by exhibiting e�ient relaxation

mehanisms for all ritial U-KCM.

In order to state our results we introdue the last bit of notation needed

to de�ne the seven re�ned universality lasses of ritial U-KCM, whih we
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in�nite stable diretions

�nite stable diretions

rooted unrooted

unbalaned (a) 2, 4, 0 () 1, 3, 0 (d) 1, 2, 0

balaned (b) 2, 0, 0 (e) 1, 1, 0

(f) 1, 0, 1

s.-dir. iso.

(g) 1, 0, 0

Table 1: Classi�ation of ritial U-KCM with di�ulty α. Assuming [17℄,

for eah lass Eµrτ0s � exp

�

Θp1q
�

1
qα

	β �

log 1
q

	γ �

log log 1
q

	δ



as q Ñ 0.

The label of the lass and the exponents β, γ, δ are indiated in that order.

identify.

De�nition 1.6. A ritial update family of di�ulty α is alled

• isotropi if there is no diretion of di�ulty stritly greater than α,

• semi-direted if there exists exatly one diretion of di�ulty stritly

greater than α.

Notie that the isotropi/semi-direted ritial models form a partition

of unrooted balaned ritial ones.

Theorem 1. Let U be a ritial update family with di�ulty α and in�nite

number of stable diretions. We have the following alternatives as q Ñ 0.

(a) If U is unbalaned, i.e. there exist two opposite diretions u P S1
with

αpuq ¡ α, then

Eµrτ0s � exp

�

Θ
�

plogp1{qqq
4
�

q2α

�

.

(b) If U is balaned, i.e. there do not exist two opposite diretions u P S1

with αpuq ¡ α, then

Eµrτ0s � exp

�

Θp1q

q2α




.

The upper bounds are proved in [26, Theorem 2(a)℄ and [17, Theorem

1(b)℄ respetively. Furthermore, for one spei� model of the lass (a), the

Duarte model, this result was known from [25℄. A di�erent proof of the lower

bound for ase (b) was given in [18℄.
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Theorem 2. Let U be a ritial update family with di�ulty α and �nite

number of stable diretions. We have the following alternatives as q Ñ 0.

() If U is unbalaned rooted, i.e. there exist at least three diretions u P S1

with αpuq ¡ α, two of whih are opposite, then

Eµrτ0s � exp

�

Θ
�

plogp1{qqq
3
�

qα

�

.

(d) If U is unbalaned unrooted, i.e. there exist exatly two diretions u P S1

suh that αpuq ¡ α and they are opposite, then

Eµrτ0s � exp

�

Θ
�

plogp1{qqq
2
�

qα

�

.

(e) If U is balaned rooted, i.e. there exist at least two diretions u P S1

with αpuq ¡ α, but not two opposite ones, then

Eµrτ0s � exp

�

Θ plogp1{qqq

qα




.

(f) If U is semi-direted, i.e. there exists exatly one diretion u P S1
suh

that αpuq ¡ α, then

Eµrτ0s � exp

�

Θ plog logp1{qqq

qα




.

(g) If U is isotropi, i.e. there exists no diretion u P S1
suh that αpuq ¡ α,

then

Eµrτ0s � exp

�

Θp1q

qα




.

The upper bound in () was proved in [20, Theorem 1℄, while the re-

maining upper bounds are from [17, Theorem 1℄. The lower bounds for a-

ses (d) and (g) follow automatially from bootstrap perolation results and

[27, Lemma 4.3℄ as disussed in the previous setion.

The lassi�ation results, assuming the remaining mathing bounds of

[17℄, are summarised in Table 1. In addition, a simple representative of eah

lass is given in Figure 1 for the reader's onveniene.

Remark 1.7. The lower bounds we prove in Theorems 1 and 2 for Eµrτ0s also

hold for another important harateristi timesale of the orresponding U-

KCM, the relaxation time Trel (see e.g. [18, De�nition 2.5℄), whih is another

measure of the speed at whih the memory of the initial state is lost. Indeed,

[26, Equation (2.8)℄ yields Trel ¥ qEµrτ0s.
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2

1

8

(a) A model of Theorem 1(a).

1

1

8

(b) A model of Theorem 1(b).

2

12

2

() A model of Theorem 2().

2

2

11

(d) A model of Theorem 2(d).

1

12

2

(e) A model of Theorem 2(e).

1

11

2

(f) A model of Theorem 2(f).

1

1

11

(g) A model of Theorem 2(g).

Figure 1: Representative models of eah of the seven re�ned universality

lasses of ritial U-KCM. For eah one the update rules are depited on the

left with 0 marked by a ross and the sites of the rule denoted by dots. The

�gure on the right gives the stable diretions, whih are thikened and have

their di�ulties next to them. The isolated stable diretions are marked by

dots. In all ases the di�ulty α of the model is 1, as witnessed by the

right-hand open semiirle.
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1.5 Comments

Let us emphasise that, ontrary to what is the ase in bootstrap perolation,

where the exat asymptotis and orretive terms of log τ0 are sometimes

known, for KCM there exists only one model (the Duarte model treated by

Martinelli, Toninelli and the seond author [25℄) for whih logEµrτ0s is de-

termined up to a onstant fator and none for whih the exat asymptotis is

known. Thereby, the ombined results of [17,20,26℄ and the present work im-

prove the best known results for all ritial U-KCM exept the Duarte-KCM

and give a new proof of the best known results for that last model. In view of

the state of the art in the simpler setting of U-bootstrap perolation, it does

not seem urrently feasible to pursue higher preision in full generality for

ritial U-KCM. Theorem 1 establishes the lower bounds of [18, Conjeture

7.1℄, while Theorem 2 proves the ones of [20, Conjeture 6.1℄ (that onjeture

was intentionally not as preise onerning the semi-direted ase (f), whih

seemed quite mysterious at the time of writing of the onjeture).

What is more, the present work treats all lower bounds in a systemati

and omprehensive way, by showing that the main obstale for the dynamis

in all ases orresponds to a ombinatorial bottlenek similar to the one of

the two-dimensional East model (see Setion 2 for more details). Moreover,

the ore of our argument arries over to higher dimensions with no further

di�ulty, thus reduing suh lower bounds for higher-dimensional KCM to

estimates for their bootstrap perolation ounterparts.

1.6 Organisation of the paper

The remainder of the paper is organised as follows. In Setion 2 we pro-

vide an outline of the ideas of the proof. The ore of the proof is Setion 3,

where we establish the general ombinatorial bottlenek for KCM dynamis.

In Setion 4 we dedue our main results, Theorems 1 and 2, very diretly

from Proposition 3.7. It is not until Setion 4 that the distintion between

the di�erent lasses of models beomes relevant. In addition to the en-

tral Proposition 3.7, Setion 4 requires several estimates regarding bootstrap

perolation, whih are established in the appendies. Appendix A is rather

standard and provides bounds on the probability of �spanning� by uniting

arguments of Bollobás, Duminil-Copin, Morris and Smith [4℄ and of Toninelli

and the authors [18℄ without signi�ant new input. This appendix may still

be of interest to bootstrap perolation speialists, as it gives a simpli�ation

of the most tehnial part of the proof of the main result of [4℄. Finally, in

Appendix B we establish bounds on the probability of a notion of �rossing�

inspired from [4℄ but modi�ed to suit our setting (see Setion 2), whih are
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not partiularly di�ult, given Appendix A.

2 Outline of the proof

Let us outline the main highlights of the proof, emphasising new ideas with

respet to our main soures of inspiration [4, 17, 18, 24℄. The di�erenes

between the various universality lasses will be muh more apparent in [17℄,

where e�ient mehanisms for the infetion of the origin are implemented

for eah lass. Sine one of the main virtues of our work is that the ore

argument is independent of the universality lass, we invite the reader willing

to understand the origin of the hoies of length sales appearing in Setion

4 to onsult [17℄, whih is also our inspiration for hoosing them. For the

sake of onreteness, unless otherwise indiated, in this setion we restrit

our attention to the representative of the lass (e) of rooted balaned models

with �nitely many stable diretions given in Figure 1e.

The proof relies on the notion of �bottlenek�: we show that before the

origin an be infeted, the dynamis has to go through a set of on�gurations

with a probability small enough so that this does not happen for a very long

time.

Morally speaking, in this model the smallest mobile entity (�droplet�) is

an infeted square of size roughly 1{q. Indeed, typially on its right and top

sides one an �nd an infetion, whih allows it to infet the olumn of sites on

its right and the row of sites above it. However, it is essentially impossible for

the infetion to grow down or left, as this requires two onseutive infetions

and those are typially only available at distane 1{q2 from the droplet. We

will only work in a region R of size 1{q7{4 around the droplet, so, morally,

suh ouples of infetions are not available. Thus, we an think of the droplet

as performing the following simpler dynamis. If there is a droplet present

at a ertain position, it may reate/destroy another one above it and to its

right. Therefore, the droplets follow the dynamis of the two-dimensional

superritial rooted KCM alled East model.

As mentioned in the introdution, for superritial rooted models, inlu-

ding the (two-dimensional) East one, the seond author established in [24℄

the following bottlenek: in order for an infetion (representing a droplet in

our original model) to reah the enter of a box R of size 3n initially fully

healthy it is neessary to visit a on�guration with at least n infetions simul-

taneously present in the box. This was ahieved by an indutive argument

that we desribe next. It is enough to show that if R is initially fully healthy

and we an only have stritly less than n infetions at the same time in R, we

annot reah a on�guration with all infetions in the middle of R. Indeed,
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this implies that there are stritly less than n�1 infetions at the same time

in the middle of R, and one an make an indution on n. To show that

we annot reah a on�guration with all infetions in the middle of R, by

reversibility we may instead prove that if we start with infetions only in the

middle of R, but we are never allowed to have n infetions simultaneously

in R, we annot reah a on�guration fully healthy in R. The idea is to

ensure that for any path of the dynamis starting with all infetions in the

middle of R in whih we never have n infetions at the same time in R, the

following two onditions remain true at all times. Firstly, a bu�er zone (see

the shaded frame B in Figure 2) with no infetions remains intat. Seondly,

there is always an infetion in the internal region enirled by the bu�er, so

the dynamis annot reah a on�guration ompletely healthy in R.

In order to ahieve that, we use a seond indution, on the step of the

path. We know that so far an infetion remains trapped in the internal

region enirled by the bu�er, so we only have n � 1 infetions available for

disrupting the bu�er from the outside, whih is impossible by indution on

n. Therefore, it su�es to show that we may not disrupt the bu�er from the

inside either. By projeting the two-dimensional East model on eah axis it

is lear that no infetion an enter the left and bottom parts of the bu�er

from the inside, and the projetions of the lowest and leftmost partiles in

the region inside the bu�er need to remain where they were initially. The

right part of the bu�er (and similarly the top one) annot be reahed from

the inside, beause at least one infetion needs to remain as far left as the

leftmost initial one was, so we only have n� 1 infetions with whih to reah

the right part of the bu�er, whih is impossible by indution on n.

On a very high level we will proeed in the same way for ritial models.

However, there are several obvious problems in making the above reasoning

rigorous for these models (in fat we do not think that a diret mapping to

the two-dimensional East model an be made rigorous for our purposes). Fir-

stly, we said above that the smallest mobile entities, �droplets,� were infeted

squares of size 1{q, but the smallest mobile entities are atually more ompli-

ated. One needs to identify an event, whih says whether or not something

is a droplet and this event should be both deterministially neessary for

infetion to spread and su�iently unlikely, so that having many droplets at

the same time has probability small enough to be a good bottlenek. It turns

out that the notion of �spanning� introdued in [4℄, following [7℄ is �exible

enough for us. Roughly speaking (see De�nition 3.1), a droplet is spanned if

the infetions present inside it are su�ient to infet a onneted set touhing

all its sides. We all a droplet ritial if it has size roughly 1{q. It is known

from [4℄ and obtained again in Appendix A in a more adapted form that the

probability of a spei� ritial droplet being spanned is roughly expp�1{qq.

13



Unfortunately, given a on�guration, spanned ritial droplets may overlap,

so in order to obtain good bounds on the probability of the on�guration, one

needs to onsider disjointly ourring ones. We may then de�ne the number

of spanned ritial droplets as the maximal number of disjointly ourring

ones.

Having �xed these notions, we enounter a more signi�ant issue�the

(spanned ritial) droplets may move a bit without reating another droplet,

by hanging their internal struture. Worse yet, they are not really forbidden

to move left or down, but simply are not likely to be able to do so wherever

they want: it depends on the dynami environment. Indeed, being able

to move by a single step down is allowed by the presene of a ouple of

infetions on the side of the droplet, whih has probability only as small

as q and is by far not something we an ensure never happens up to time

T � expplogp1{qq{qq.

In order to handle these problems we introdue the ruial notion of

rossing (not to be onfused e.g. with the one of [4℄). Consider a vertial

strip S of width 1{q3{2 of our domain, R, whih is a square of size 1{q7{4.

Roughly speaking (see De�nition 3.5 for a more preise statement), we say

that S has a rossing if the following two events our. Firstly, the infetions

in S together with the entire half-plane to the right of S are enough to infet

a path from right to left in S (this is essentially the notion of rossing in [4℄).

Seondly, S does not ontain a spanned ritial droplet. Notie that these

two events go opposite ways�the former is favoured by infetions, while the

latter is not. In Appendix B we show that the probability of a rossing deays

exponentially with the width of S at our sales.

Having established suh a bound on the probability of rossings, we may

safely assume (it happens with high probability) that they never our until

time T and this is the property we use to formalise the intuition that �mo-

ving down or left is impossible.� More preisely, assume that initially the

only ritial droplet is on the right of S and S never has a rossing. Then,

simply beause the KCM dynamis an never infet more than what boot-

strap perolation an, starting from the same initial ondition, the droplet

will not be able to reah the left side of S. Indeed, if it ould, there would be

a �trail� of infetable sites from the right of S to its left, whih would imply

a rossing.
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3 Superritial rooted dynamis of droplets

3.1 Setting and preliminaries

Let U be an update family. Assuming they exist, we further �x two non-

ollinear rational stable diretions u1 and u2. We set u3 � u1�π, u4 � u2�π

and T � tu1, u2, u3, u4u. We will simply all parallelogram a set of the form

Rpa, b; c, dq �
 

x P R2
| xx, u3y P ra, cs, xx, u4y P rb, ds

(

� H̄u1
p�aq X H̄u2

p�bq X H̄u3
pcq X H̄u4

pdq

for real numbers a ¤ b, c ¤ d and denote by

8Rpa, b; c, dq its topologial inte-

rior. For parallelograms we will systematially extend de�nitions by transla-

tion and interhange of u1 and u2 (resp. u3 and u4).

Finally,

C6 " C5 " C 1

2 " C1 " r � maxt}s� s1} | s, s1 P U Y t0u, U P Uu

are onstants not depending on q, but only on U and T , eah one su�iently

large with respet to funtions of the next.

2

Furthermore, we systematially

assume that q is small enough, as we are interested in q Ñ 0.

De�nition 3.1 ([4, De�nitions 2.3 and 2.4℄). A set Z � Z2
is strongly

onneted if it is onneted in the graph with vertex set Z2
de�ned by x � y

if }x� y} ¤ C 1

2.

Given K ¥ C2
1C

1

2 to be spei�ed in Setion 4, we say a parallelogram is

ritial when its diameter is ontained between K{C1 and K.

A parallelogramD is spanned in η if there exists a strongly onneted set

X � rD X ηs suh that the smallest parallelogram ontaining X is D.

If η, η1 are two on�gurations, we say that η ¤ η1 when ηs ¤ η1s for all s.

For instane, if a parallelogram D is spanned for η, then is is also spanned

for any η1 ¤ η. This order should not be onfused with the (inverted) one

indued by inlusion when viewing η as its set of infetions.

Notie that the event that a given parallelogram D is spanned depends

only on ηD and does not our when ηD ontains no infetions. We further

state two immediate onsequenes of De�nition 3.1 for future referene.

Observation 3.2. Let R � R2
. Then every parallelogram D spanned in ηR

intersets R.

2

We use C 1

2 instead of C2 and avoid C3 and C4 for oherene with the appendies.
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Observation 3.3. Let η be a on�guration and X be a strongly onneted

omponent of rηs. Then X � rη XXs.

Proof. By maximality of a strongly onneted omponent, rη X Xs � X is

at distane at least C 1

2 ¡ 2r from other strongly onneted omponents X of

rηs. Thus,

rηs �
§

Y

rη X Y s,

where the union is on all strongly onneted omponents of rηs.

Another standard fat is the following Aizenman-Lebowitz lemma origi-

nating from [1℄, whose proof an be found in Appendix A (Lemma A.9).

Lemma 3.4. Let D be a spanned parallelogram with diameter d ¥ C1C
1

2 and

let C1d ¥ k ¥ C1C
1

2. Then there exists a spanned parallelogram with diameter

d1 suh that k{C1 ¤ d1 ¤ k. In partiular, if d ¥ K{C1, then there exists a

spanned ritial parallelogram.

We next import and adapt the notion of rossing from [4, De�nition 8.16℄.

De�nition 3.5 (Crossing). We say that a parallelogram R � Rpa, b; 0, dq is

u1-rossed if there exists a strongly onneted set in rHu1
Y pR X ηqs inter-

seting both Hu1
and H̄u3

paq.

Let Cu1

R denote the event that there exists η1 ¥ η suh that R is u1-rossed

for η1, but there is no spanned ritial parallelogram for η1R.

We say that a parallelogram Λ � Rp0, 0;L,Hq has no pℓ, hq-rossing (or

simply rossing) if the event Cu1

R does not our for any R � Λ of the form

Rpa, 0; a� ℓ,Hq and the event Cu2

R does not our for any R � Λ of the form

Rp0, b;L, b� hq.

In words, a parallelogram is u1-rossed if, given an infeted boundary

ondition on its side opposite to diretion u1, the infetions inside it are

su�ient to infet a �path� reahing its side in diretion u1. Thus, a u1-

rossing orresponds to the propagation of infetion aross the parallelogram

in the diretion u1. The event Cu1

R further demands that this rossing is

ahieved without the help of large spanned parallelograms (in view of Lemma

3.4). We should note that, while parallelograms smaller than ritial are

inreasingly unlikely as their size grows, parallelograms larger than ritial

ones roughly beome more likely with their size (hene the name of ritial

ones), so Cu1

R fores us to use only small unlikely parallelograms all along

the rossing. Relying on this fat, it will be possible to establish very strong

bounds on the probability of Cu1

R . This leads to the notion of a pℓ, hq-rossing,

whih will one of the �good� properties we will require the dynamis to satisfy.
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Finally, we say that a site s P Z2
is loally infetable in a on�guration η if

s P rηXps�Rp�2K,�2K; 2K, 2Kqqs. We also denote by ηs the on�guration

equal to η everywhere exept at s, i.e. ηss � 1�ηs and ηss1 � ηs1 for any s1 � s.

We then have the following property, originating from [19, Setion 2℄.

Lemma 3.6. Let η P t0, 1uZ
2

, s P Z2
, U P U be suh that s � U � η and let

R � Rp�2K,�2K; 2K, 2Kq. Assume that the origin is not loally infetable

in η, but is loally infetable in ηs. Then there exists a ritial parallelogram

D spanned in ηsR suh that D � Rp�3K,�3K; 3K, 3Kq.

Proof. By de�nition, 0 P rηs XRszrη XRs. Therefore, s P R and s� U � R.

In partiular, dps, 0q ¡ K. Let X be the strongly onneted omponent of

0 in rηs X Rs. We laim that s P X . Indeed, by Observation 3.3 we have

0 P X � rηsXRXXs, so if s R X , we have 0 P rηXRs whih is not the ase.

Let D0 be the smallest parallelogram ontaining X . Sine D0 ontains 0

and s, its diameter is at least K. Moreover, X � rηsXRXXs � rηsRXD0s, so

X is a strongly onneted set in rηsRXD0s. Therefore, D0 is spanned in ηsR and

has diameter at least K. In partiular, by Lemma 3.4 there exists a ritial

parallelogram D spanned in ηsR. By Observation 3.2, D intersets R, and by

De�nition 3.1 diampDq ¤ K. Thus, we have D � Rp�3K,�3K; 3K, 3Kq,

whih ends the proof of the lemma.

3.2 The ombinatorial bottlenek

With the notation above we are ready to prove a very general deterministi

bottlenek (Lemma 3.10 below), onstituting the ore of our work, whih

relatively straightforwardly translates into the following bound on Eµrτ0s.

The idea behind it is that for the enter of a parallelogram of size roughly

3n to beome infeted, either an pℓ, hq-rossing should our or we should

witness n�1 spanned ritial parallelograms simultaneously. Assuming upper

bounds on the probabilities of these two events, we dedue a lower bound on

Eµrτ0s.

Proposition 3.7. Let T, L,H,K, ℓ, h be positive real numbers su�iently

large with respet to C 1

2. Denote

ρ � max
D

µpD is spannedq,

where the max is over all ritial parallelograms. Also set

p
�

� max
a,bPR

µ
�

Cu1

Rpa,b;a�ℓ,b�Hq

	

p
Ó

� max
a,bPR

µ
�

Cu2

Rpa,b;a�L,b�hq

	

.
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Assume that for some integer n ¥ 0 we have the following inequalities on

geometry:

L ¥ 3np11K � ℓq H ¥ 3np11K � hq, (4)

and probability:

1{8 ¥ µp0 is loally infetableq (5)

1 ¥ T pLHq

2maxpp
Ó

, p
�

q (6)

1 ¥ TLHpLHK3ρqn�1. (7)

Then the U-KCM on Z2
satis�es Eµrτ0s ¥ T .

Remark 3.8. Although the boostrap perolation estimates needed to make

use of this statement in higher dimensions are not yet available, let us mention

that our argument is not dimension sensitive.

The proof of Proposition 3.7 will oupy the rest of the present setion.

We start by �xing T, L,H,K, ℓ, h as in the statement and introduing the

following de�nitions.

Reall that for any R � Z2
, we identify on�gurations η P t0, 1uR with

their zero set tx P R, ηx � 0u. Unless otherwise spei�ed, on�gurations

η P t0, 1uR are extended to t0, 1uZ
2

by keeping the same zero set.

De�nition 3.9 (Good paths and on�gurations). For any parallelogramR �

R2
, on�guration η P t0, 1uRXZ2

and integer n ¥ 0, we say that η is n-good

when the maximum number of ritial parallelograms that are disjointly

3

spanned in η is at most n and R has no rossing for η.

A legal path in R is a sequene pηpjqq0¤j¤m of on�gurations in t0, 1uRXZ2

suh that for every j P t0, . . . , m � 1u, there exists s P R X Z2
suh that

ηpj�1q
� pηpjqqs and ps � Uq X R � ηpjq for some U P U . For any integer

n ¥ 0, the path is n-good if for every j P t0, . . . , mu, ηpjq is n-good. For any

A,B � t0, 1uRXZ2

, we say pηpjqq0¤j¤m is a path from A to B when ηp0q P A

and ηpmq P B (if A or B � tηu, we will write η to simplify).

We denote by GpRq the set of on�gurations in t0, 1uRXZ2

that ontain

no spanned ritial parallelogram and suh that R ontains no rossing, i.e.

the 0-good on�gurations. For any n P N, we de�ne

V pn,Rq �
!

η P t0, 1uRXZ2

| there is an n-good legal path from GpRq to η
)

.

3

As is standard [32℄, we say that the parallelograms R1, . . . , Rk are disjointly spanned

in η if one an �nd disjoint sets X1, . . . , Xk � η suh that η1
Xi

� 0 implies that Ri is

spanned in η1 for all 1 ¤ i ¤ k.
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Finally, we de�ne our domain sizes for the indution to ome:

Ln �
3n � 1

2
p9K � ℓq � 3nK Hn �

3n � 1

2
p9K � hq � 3nK, (8)

so that Ln � Ln�1 � 2Ln�1 � 9K � ℓ and Hn �Hn�1 � 2Hn�1 � 9K � h.

Lemma 3.10. For any non-negative integer n, for any parallelogram R �

Rpa, b; c, dq suh that c � a ¥ 2Ln and d � b ¥ 2Hn, we have that for all

η P V pn,Rq, there is no spanned ritial parallelogram in η interseting Rpa�

Ln, b�Hn; c� Ln, d�Hnq.

We �rst dedue Proposition 3.7 from Lemma 3.10.

Proof of Proposition 3.7, assuming Lemma 3.10. Clearly, it su�es to prove

that Pµpτ0 ¡ 2T q ¥ 1{2. Let τ 1 � inftt ¥ 0, 0 is loally infetable in ηptqu.

Clearly, τ 1 ¤ τ0. We denote R � Rp�L{2,�H{2;L{2, H{2q and de�ne the

following events.

E1: τ 1 ¡ 0, i.e. 0 is not loally infetable in ηp0q.

E2: There is no ritial parallelogram spanned in pηp0qqR.

E3: For all 0 ¤ t ¤ 2T , no n � 1 ritial parallelograms are disjointly

spanned in pηptqqR.

E4: For all 0 ¤ t ¤ 2T , R has no rossing for pηptqqR.

We laim that

�4

i�1Ei � tτ 1 ¡ 2T u. Indeed, let us assume

�4

i�1Ei ours.

By De�nition 3.9, E2 and E4 imply pηp0qqR P GpRq. Moreover, E3 and E4

give that pηptqqR is n-good for all t ¤ 2T . Thus, for all t ¤ 2T , the sequene of

on�gurations pηpt1qqR for t1 P r0, ts yields a n-good legal path from pηp0qqR P

GpRq to pηptqqR, therefore pηptqqR P V pn,Rq. Applying Lemma 3.10, this

yields that for all t P r0, 2T s there is no ritial parallelogram spanned in

pηptqqR interseting

Rp�L{2 � Ln,�H{2�Hn;L{2 � Ln, H{2�Hnq

� R

�

�

9K � ℓ

2
,�

9K � h

2
;
9K � ℓ

2
,
9K � h

2




� Rp�3K,�3K; 3K, 3Kq,

realling (4) and (8). Finally, notie that 0 being loally infetable depends

only on the on�guration in Rp�2K,�2K; 2K, 2Kq. Thus, if E1 ours, we

an apply Lemma 3.6 with ηs :� pηpτ 1qqR and η :� limtÑτ 1,t τ 1pηptqqR, to de-

due that there is a ritial parallelogram spanned in pηpτ 1qqR and ontained

in Rp�3K,�3K; 3K, 3Kq. Hene, τ 1 ¡ 2T , as laimed.
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We next brutally bound the probability of E1, . . . , E4. By (5), 1 �

PµpE1q ¤ 1{8. By the union bound on all (disrete) ritial parallelograms

interseting R (reall Observation 3.2) and (7) we have

1� PµpE2q ¤ OpLHK2
qρ ¤

LHK3ρ

8
¤

1

8pTLHq

1{pn�1q
¤

1

8
.

In order to treat E3 and E4, reall from Setion 1.1 that the U-KCM may

be onstruted by assoiating to eah site x P Z2
a standard Possion proess

and attempting to update ηx at the times given by its Poisson proess. We

will refer to these times as lok rings. Let N denote the number of lok

rings in R between 0 and 2T . Sine N is a Poisson random variable with

parameter 2T |R| � ΘpTLHq ¡ 1, we have PµpN ¥ C1TLHq ¤ 1{16 (e.g. by

the Bienaymé�Chebyshev inequality).

Let ηpjq denote the restrition of the on�guration to R X Z2
after the

j-th lok ring in R. We next laim that ηpjq is at equilibrium, the formal

proof being postponed for the moment.

Claim 3.11. With the above notation, ηpjq has the produt Bernoulli distri-

bution with parameter 1� q for all j.

For any η P t0, 1uRXZ2

we write Dn�1pηq � tthere are n�1 ritial paralle-

lograms disjointly spanned in ηu, so that E3 does not our i�
�N

j�0Dn�1pη
pjq
q

does not. Then the union bound and Claim 3.11 give

1� PµpE3q ¤ PµpN ¥ C1TLHq �

C1TLH
¸

j�0

Pµ

�

Dn�1

�

ηpjq
��

¤

1

16
� 2C1TLHµpDn�1pηRqq. (9)

In order to bound µpDn�1pηRqq, we use the union bound on all pOpLHK2
qq

n�1

possible hoies of n � 1 ritial parallelograms interseting R (by Observa-

tion 3.2, a parallelogram spanned in ηR intersets R) together with the BK

inequality [32℄ to get that (9) is at most

1

16
� 2C1TLHpOpLHK2

qρqn�1
¤

1

8
,

using (7) in the last inequality.

Similarly, using (6), we have

1� PµpE4q ¤
1

16
� 2C1TLH � OpL�Hqmaxpp

Ó

, p
�

q ¤

1

8
.
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Putting the bounds 1 � PµpEiq ¤ 1{8 for all i together and realling that

�4

i�1Ei � tτ 1 ¡ 2T u, we onlude that

Pµpτ0 ¡ 2T q ¥ Pµpτ
1

¡ 2T q ¥ Pµ

�

4
£

i�1

Ei

�

¥ 1�

4̧

i�1

p1� PµpEiqq ¥
1

2
.

Proof of Claim 3.11. We �x j, and denote by t the time of the j-th lok ring

in R. For all s P r0, ts, we will onstrut a (random) set of sites Xs suh that

the on�guration in R at time t an be reonstruted from the on�guration

in Xs at time s and the updates sine time s. The onstrution is as follows.

For all s P r0, ts, Xs ontains all sites in R. Moreover, for any x0 P R whih

had a lok ring before time t, for any s before this lok ring we add to Xs

the sites x1 suh that x1�x0 P U, where U �

�

UPU U . Now, for any of these

x1 that had a lok ring before the lok ring at x0, for any s before this

lok ring at x1 we add the sites x2 suh that x2 � x1 P U, et. It is lassial

to see that the Xs are a.s. �nite. For example, one an see there are exatly

j lok rings in R before time t, so lok rings in R may add at most j|U|

sites to the Xs. Now, for any of these sites that is not in R, the number of

sites it brings an be bounded from above by a ontinuous time branhing

proess with reprodution law δ
|U|�1, so stays �nite.

We now onsider all the lok rings suh that there exists s P r0, ts suh

that the lok ring ours in Xs at time at most s, and order them hro-

nologially. If s is the time of the j1-th suh lok ring, η̄pj
1

q

will denote

the on�guration in Xs at time s. Let us denote by F the sigma-algebra

generated by all lok rings in Z2
. In partiular, for any s P r0, ts, Xs is

F -measurable. By indution on j1, one an prove that onditionally to F ,

η̄pj
1

q

has law µ. Now, the j1 orresponding to j depends only on F , hene ηpjq

has law µ, whih proves the laim.

Proof of Lemma 3.10. We will prove the lemma by indution on n. For any

n let us all Hn the statement of the lemma for n. H0 holds by de�nition.

Let n ¥ 1 and assume that Hn�1 holds. Let R � Rpa, b; c, dq be suh that

c � a ¥ 2Ln and d � b ¥ 2Hn. We de�ne a smaller parallelogram R1

in the

middle of R:

R1

� Rpa� Ln � Ln�1, b�Hn �Hn�1; c� pLn � Ln�1q, d� pHn �Hn�1qq

(see Figure 2). We will prove Lemma 3.10 by showingHn, using the following

result, whose proof we postpone for the moment.

Lemma 3.12. For all η P V pn,RqzGpRq (reall De�nition 3.9), there exists

a ritial parallelogram not interseting R1

that is spanned in η.
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Let η P V pn,Rq. The idea is that sine η is n-good, there are at most n

spanned ritial parallelograms in η, and Lemma 3.12 implies one of them

has to be outside R1

. Thus, there an only be n � 1 suh parallelograms in

R1

. This will allow us to use Hn�1 in R1

, whih will prevent the existene of a

spanned ritial parallelogram interseting Rpa�Ln, b�Hn; c�Ln, d�Hnq.

We now give the rigorous argument. Sine η P V pn,Rq, there exists an

n-good legal path from GpRq to η, denoted by pηpjqq0¤j¤m. For any j P

t0, . . . , mu, we have ηpjq P V pn,Rq. Let us prove that there are at most

n � 1 ritial parallelograms disjointly spanned in η
pjq

R1

. If ηpjq P GpRq, it

is lear. If ηpjq R GpRq, Lemma 3.12 guarantees the existene of a ritial

parallelogram D spanned in ηpjq that does not interset R1

. Now, let k be

the maximal number of ritial parallelograms disjointly spanned in η
pjq

R1

, and

D1, . . . , Dk be suh parallelograms. Sine D does not interset R1

, we have

thatD,D1, . . . , Dk are ritial parallelograms disjointly spanned in ηpjq. Sine

ηpjq is n-good, it ontains at most n disjointly spanned ritial parallelograms,

so k ¤ n � 1. Furthermore, if R1

had a rossing for η
pjq

R1

, R would have a

rossing for ηpjq, whih is not the ase, as ηpjq is n-good. Hene, R1

has no

rossing for η
pjq

R1

. We dedue that η
pjq

R1

is pn�1q-good in the parallelogram R1

.

Thus, if we onsider the path pη
pjq

R1

q0¤j¤m and keep only the steps η
pjq

R1

that

di�er from η
pj�1q

R1

, we obtain a pn � 1q-good legal path, going from GpR1

q to

ηR1

. This implies ηR1

P V pn � 1, R1

q. Therefore, we an apply Hn�1 to ηR1

,

whih yields that there is no spanned ritial parallelogram in ηR1

interseting

Rpa� Ln, b�Hn; c� Ln, d�Hnq. This implies Hn and onludes the proof

of Lemma 3.10.

Consequently, it remains to prove Lemma 3.12.

Proof of Lemma 3.12. Another way to state Lemma 3.12 is to say that if

we start a n-good legal path from GpRq, we annot reah a on�guration

in whih all spanned ritial parallelograms interset R1

. As legal paths

are reversible, we will prove that if we start an n-good legal path from a

on�guration in whih all spanned ritial parallelograms interset R1

, it is

impossible to reah GpRq, beause there will always be a spanned ritial

parallelogram �near� R1

.

In order to do that, we start by introduing the following geometri regi-
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R

Rh

Rℓ

R1

Rℓ,Ó

Rh,Ó

Rℓ,Ò

Rh,Ò

γ

R1

ℓ,Ó

R1

h,Ó

R1

ℓ,Ò

R1

h,Ò

B1

B

u1

u2

u3

u4

Ln�1 3KK 3K Ln�1 2K�ℓ Ln�13KK3KLn�12K�ℓ

Hn�1

3K
K
3K

Hn�1

2K�h

Hn�1

3K
K
3K

Hn�1

2K�h

Figure 2: The setting of the proof of Lemma 3.12. For the �gure we assume

that u3 � 0 and u4 � π{2. B1

is the frame with thikened boundary, Rℓ

and Rh are the overlapping regions in dark gray. The regions R1

ℓ,Ó, R
1

h,Ó, R
1

ℓ,Ò

and R1

h,Ò are in lighter gray and the frame formed by their union is B. The

horizontally (resp. vertially) hathed regions are Rh,Ó and Rh,Ò (resp. Rℓ,Ó

and Rℓ,Ò). The ontour inside B1

is γ and its diagonally hathed interior is

8γ. All the regions drawn are losed subsets of R2
with the exeption of Rℓ,

Rh and 8γ, whih are open. The thiker version, γ̄, of γ and the set F � Z2

de�ned in (10) are not drawn.
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ons, represented in Figure 2.

Rℓ �
8Rpa� 2Ln�1 � 7K, b� 2Hn�1 � 7K; c� Ln�1 � 7K, d� 2Hn�1 � 7Kq

Rℓ,Ó � Rpa, b; a� 2Ln�1 � 7K, dq

Rℓ,Ò � Rpc� 2Ln�1 � 7K, b; c, dq

R1

ℓ,Ó � Rpa� Ln�1, b�Hn�1, a� Ln�1 � 7K, d�Hn�1q

R1

ℓ,Ò � Rpc� Ln�1 � 7K, b�Hn�1, c� Ln�1, d�Hn�1q

Rℓ will ontain the aforementioned spanned ritial parallelogram �near� R1

.

In the parallelograms Rℓ,Ó and Rℓ,Ò, we will use Hn�1, and R1

ℓ,Ó, R1

ℓ,Ò are

the respetive �entral� parallelograms inside that will not be interseted by

spanned ritial parallelograms. We also de�ne similar regions with index h

instead of ℓ.

We further de�ne the two frames (see Figure 2)

B � R1

ℓ,Ó YR1

ℓ,Ò YR1

h,Ó YR1

h,Ò

B1

� Rpa� Ln�1 � 3K, b�Hn�1 � 3K; c� Ln�1 � 3K, d�Hn�1 � 3Kqz

8Rpa� Ln�1 � 4K, b�Hn�1 � 4K; c� Ln�1 � 4K, d�Hn�1 � 4Kq.

As the union of R1

ℓ,Ó, R
1

ℓ,Ò, R
1

h,Ó, R
1

h,Ò, the frame B will not be interseted by

spanned ritial parallelograms. B will be a �bu�er� between the inner and

outer parts of R, and B1

its entral part. We will be able to �nd a ontour

γ ontained in B1

suh that the dynamis in the interior of the ontour is

�isolated� from the dynamis outside in a spei� way. This is the goal of the

following laim.

Claim 3.13. Let η P t0, 1uRXZ2

be suh that every ritial parallelogram

spanned in η intersets R1

. Then there exists a losed ontour γ � R2

(that is, a self-avoiding and losed path obtained by onneting sites of Z2

by straight lines linking a site to its left, top, right or bottom neighbour)

satisfying the following properties:

• γ � B1

.

• dpγ, RzB1

q ¥ C2
1 .

• Every s P γ̄ is not loally infetable in η, where

γ̄ � ts P Z2
|dps, γq ¤ C1u.

• The (topologially open) interior, 8γ � R2
, de�ned by γ ontains R1

.
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Proof. We proeed by renormalization. Let H denote the regular hexagon

entered at the origin with diameter C3
1 and having two horizontal sides.

Consider the tiling of the plane with translates of H and denote by T the

triangular lattie formed by their enters. Let T � tt P T|H � t � B1

u be

the sites of T orresponding to B1

. We say that a site t P T is open if no site

in pt�Hq X Z2
is loally infetable in η.

If there exists a ontour of open sites in T surrounding R1

(where a ontour

in T is a self-avoiding and losed path in the graph pT, tpt, t1q P T2
|t�H and

t1 � H share a sideu), we may hoose γ approximating this ontour, whih

learly satis�es the onditions of the laim. Assume for a ontradition that

suh a ontour does not exist. In this ase, there is a path of losed sites in T

from the inner to the outer boundary of T . In partiular, this path yields a

strongly onneted (reall De�nition 3.1) set X of sites of Z2
that are loally

infetable in η, with diameter at least K � 4C3
1 , ontained in either the �left

part� of the frame B1

, de�ned as

R2

ℓ,Ó � Rpa� Ln�1 � 3K, b�Hn�1 � 3K; a� Ln�1 � 4K, d�Hn�1 � 3Kq,

(see Figure 2) or in the top, right or bottom part of B1

, de�ned similarly.

Without loss of generality, assume that X is ontained in R2

ℓ,Ó. Sine the

sites of X are loally infetable in η, they are infetable in ηR3

ℓ,Ó
, where R3

ℓ,Ó

is �R2

ℓ,Ó enlarged by 2K on eah side,� that is

R3

ℓ,Ó � Rpa� Ln�1 �K, b�Hn�1 �K; a� Ln�1 � 6K, d�Hn�1 �Kq.

X is then a strongly onneted set ontained in rηR3

ℓ,Ó
s.

We denote by X 1

the strongly onneted omponent of rηR3

ℓ,Ó
s ontaining

X , and we onsider the smallest parallelogram D ontaining X 1

. We laim

that D is spanned in ηR3

ℓ,Ó
. Indeed, Observation 3.3 yields X 1

� rηR3

ℓ,Ó
XX 1

s �

rηR3

ℓ,Ó
X Ds, so X 1

is a strongly onneted set in rηR3

ℓ,Ó
X Ds suh that the

smallest parallelogram ontaining X 1

is D, whih means that D is spanned

in ηR3

ℓ,Ó
. Furthermore, D ontains X , whih has diameter at least K � 4C3

1 .

Therefore, by Lemma 3.4 there exists a ritial parallelogram D1

spanned in

ηR3

ℓ,Ó
. D1

is then spanned in η. Moreover, by Observation 3.2, D1

intersets

R3

ℓ,Ó, and, sine D1

is ritial, it has diameter at most K. Hene, D1

is

ontained inR1

ℓ,Ó. We dedue the existene of a ritial parallelogram spanned

in η not interseting R1

, hene a ontradition.

Now that most of the needed geometri regions are de�ned, we may start

the proof of Lemma 3.12 itself. We �x η P t0, 1uRXZ2

zGpRq suh that every

ritial parallelogram spanned in η intersets R1

. We will prove that there is
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no n-good legal path from η to GpRq. Sine legal paths an be reversed, this

implies η R V pn,Rq, whih proves Lemma 3.12.

We �x a ontour γ as provided by Claim 3.13 for the on�guration η (see

Figure 2), as well as its thikened version γ̄ and its interior 8γ. In order to

isolate the dynamis in 8γ from the dynamis outside, we need to de�ne

F � ts P B1

X Z2
|s is not loally infetable in ηu. (10)

We then have γ̄ � F . F will �shield 8γ from outside interferene.�

Let pηpjqq0¤j¤m be an n-good legal path with ηp0q � η. We will use an

indution on j P t0, . . . , mu to prove that ηpmq R GpRq. More preisely, we will

prove by indution on j that the following properties hold for j P t0, . . . , mu.

P1
j For every ζ P tℓ, hu, there exists a ritial parallelogram ontained in

Rζ spanned in ηpjq.

P2
j The sites of F are not loally infetable in ηpjq.

P3
j For every pζ, ξq P tℓ, hu � tÓ, Òu, η

pjq

Rζ,ξ
P V pn� 1, Rζ,ξq.

P4
j rη

pjq

8γ s � rη
p0q

8γ s.

P4
j is what we mean by �the dynamis inside 8γ is isolated from the outside�:

from time 0 to time j, the sites infetable by the on�guration in 8γ have not

hanged. P2
j is neessary for F to play its role as a shield throughout the

path. P3
j , along with Hn�1, will ensure that there are no spanned ritial

parallelograms at the enter of the Rζ,ξ, whih will help to preserve the shield.

Finally, if P1
m is satis�ed, then there exists a ritial parallelogram spanned

in ηpmq, so ηpmq R GpRq, whih proves Lemma 3.12, so it su�es to establish

the indution.

We begin with a quik laim.

Claim 3.14. There exists a ritial parallelogram spanned in η interseting

R1

.

Proof. Sine η belongs to an n-good legal path, R has no rossing for η, but

by the de�nition of η, η R GpRq, hene there exists a ritial parallelogram

spanned in η. Moreover, by assumption, every ritial parallelogram spanned

in η intersets R1

, hene the laim.

With this, we an start work on the indution.

Base: j=0. P4
0 is trivial, and the de�nition (10) of F implies P2

0 . For

P1
0 , Claim 3.14 gives the existene of a ritial parallelogram spanned in η

interseting R1

, hene ontained in Rℓ XRh, whih yields P1
0 .
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We now show P3
0 . Let pζ, ξq P tℓ, hu � tÓ, Òu. We laim that there is no

ritial parallelogram spanned in ηRζ,ξ
. Indeed, by Observation 3.2 suh a

parallelogram would have to interset Rζ,ξ so ould not interset R1

, whih

would ontradit the de�nition of η. Moreover, R has no rossing for η sine

η is n-good, so Rζ,ξ has no rossing for ηRζ,ξ
. Thus, ηRζ,ξ

P GpRζ,ξq, hene

ηRζ,ξ
P V pn� 1, Rζ,ξq, so P3

0 holds.

Indution step. Let j P t0, . . . , m � 1u, and suppose that P1
j , P

2
j , P

3
j

and P4
j hold. Sine pηpkqq0¤k¤m is a legal path, we have ηpj�1q

� pηpjqqs and

ps� Uq XR � ηpjq for some s P RX Z2
and U P U .

We �rst prove P4
j�1, that is rη

pj�1q

8γ s � rη
p0q

8γ s, using that �F shields 8γ from

the in�uene of the exterior.�

Claim 3.15. P4
j�1 holds.

Proof. If s R 8γ, then η
pj�1q

8γ � η
pjq

8γ , so rη
pj�1q

8γ s � rη
pjq

8γ s � rη
p0q

8γ s by P4
j . Mo-

reover, if s P 8γ, then s � U � 8γ Y γ̄. Furthermore, the sites of γ̄ are in F ,

so by P2
j they are not loally infetable in ηpjq and, in partiular s1 R ηpjq

for all s1 P γ̄. Sine ps � Uq X R � ηpjq, this implies s � U � 8γ and so

rη
pj�1q

8γ s � rη
pjq

8γ s � rη
p0q

8γ s by P4
j .

We annot prove P1
j�1 yet, whih would be that Rℓ and Rh ontain a ri-

tial parallelogram spanned in ηpj�1q
. Instead, we establish a weaker result,

that there exists at least one spanned ritial parallelogram of η
pj�1q

8γ �to the

left� of Rℓ,Ò (see Figure 2), as well as one �below� Rh,Ò (these two parallelo-

grams may be the same). The idea of the proof is that sine at the beginning

of the path all spanned ritial parallelograms interset R1

, if at step j � 1

they have moved too muh to the right, then they must have left a trail of

infetable sites behind them, whih onstitutes a rossing.

Claim 3.16. There exists a ritial parallelogram ontained in Hu3
pc �

2Ln�1�7Kq that is spanned in η
pj�1q

8γ and similarly for Hu4
pd�2Hn�1�7Kq

(reall from Setion 1.2 that Hupxq is the open half-plane direted by u trans-

lated by a distane x and H̄upxq is its losure).

Proof. We will only treat H � Hu3
pc � 2Ln�1 � 7Kq as the argument for

the other half-plane is the same. Assume for a ontradition that there is

no ritial parallelogram ontained in H that is spanned in η
pj�1q

8γ . We will

onstrut a rossing for ηpj�1q
, whih ontradits the fat that ηpj�1q

is n-

good.

By Claim 3.14, there exists a ritial parallelogram D spanned in ηp0q

interseting R1

. D is then ontained in 8γ (see Figure 2), hene spanned in

η
p0q

8γ . Let X be a strongly onneted set of rD X η
p0q

8γ s suh that the smallest
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parallelogram ontaining X is D. Then, sine D is �su�iently to the left�

to interset R1

, X intersets H̄u3
pc � 2Ln�1 � 9K � ℓq (see Figure 2). By

Claim 3.15 we have rη
pj�1q

8γ s � rη
p0q

8γ s, and X � rD X η
p0q

8γ s � rη
p0q

8γ s, so we

an onsider X 1

the strongly onneted omponent of rη
pj�1q

8γ s ontaining X .

Then X 1

intersets H̄u3
pc� 2Ln�1 � 9K � ℓq.

We will now prove that X 1

also intersets H̄u1
p�pc� 2Ln�1 � 8Kqq. The

smallest parallelogram D1

ontaining X 1

ontains X , thus it ontains D,

so it has diameter at least K{C1, sine D is ritial (reall De�nition 3.1).

By Observation 3.3, X 1

� rη
pj�1q

8γ X X 1

s � rη
pj�1q

8γXX1

X D1

s, so D1

is spanned

in η
pj�1q

8γXX1

. Hene, by Lemma 3.4, there exists a ritial parallelogram D2

spanned for η
pj�1q

8γXX1

. By the assumption made at the beginning of the proof

of the laim, D2

annot be ontained in H , so D2

intersets H̄u1
p�pc �

2Ln�1 � 7Kqq. Furthermore, D2

is ritial, so its diameter is at most K.

Thus, D2

is ontained in H̄u1
p�pc � 2Ln�1 � 8Kqq. In addition, sine D2

is spanned for η
pj�1q

8γXX1

, by Observation 3.2 D2

intersets X 1

, so X 1

intersets

H̄u1
p�pc� 2Ln�1 � 8Kqq.

We now onstrut the retangle in whih the rossing will take plae. We

denote a0 � maxta1 |X 1

� H̄u1
p�a1qu (the �left end� ofX 1

). We laim a0 ¥ a.

Indeed, X 1

� rη
pj�1q

8γ s, and sine we have 8γ � Hu1
p�aq and u1 is a stable

diretion, we have rη
pj�1q

8γ s � Hu1
p�aq, so X 1

� Hu1
p�aq. Moreover, a0 ¤

c�2Ln�1�9K�ℓ, sine we proved that X 1

intersets H̄u3
pc�2Ln�1�9K�ℓq.

Furthermore, we saw that by Observation 3.3, X 1

� rη
pj�1q

8γ X X 1

s, so if we

denote RX1

� Rpa0, b; a0 � ℓ, dq, then X 1

� rpη
pj�1q

8γ X RX1

q Y Hu1
p�pa0 �

ℓqqs. Together with the fat that X 1

intersets H̄u1
p�pc � 2Ln�1 � 8Kqq �

Hu1
p�pa0� ℓqq, this yields that RX1

is u1-rossed for η
pj�1q

8γ (reall De�nition

3.5).

Moreover, sine ritial parallelograms have diameter at mostK and a0 ¤

c� 2Ln�1 � 9K � ℓ, any ritial parallelogram interseting RX1

is ontained

in H . This will imply that there is no ritial parallelogram spanned for

η
pj�1q

8γ X RX1

, as by Observation 3.2 suh a parallelogram would interset

RX1

, thus would be ontained in H , whih is impossible by the assumption

made at the beginning of the proof of the laim. Sine RX1

is u1-rossed

for η
pj�1q

8γ and there is no ritial parallelogram spanned for η
pj�1q

8γ X RX1

,

the event Cu1

RX1

ours for ηpj�1q
(reall De�nition 3.5). But this whih is

a ontradition with the fat that R has no rossing for ηpj�1q
, as it is a

on�guration in a n-good legal path. This ontradition onludes the proof

of the laim.

28



Claim 3.16 will allow us to prove half of P3
j�1, more preisely η

pj�1q

Rℓ,Ò
P

V pn� 1, Rℓ,Òq and η
pj�1q

Rh,Ò
P V pn� 1, Rh,Òq. The idea of the proof is that sine

Claim 3.16 yields that at least one spanned ritial parallelogram is to the

left of Rℓ,Ò, and as the on�gurations are n-good, there are at most n spanned

ritial parallelograms in total, this implies there are at most n� 1 spanned

ritial parallelograms inside Rℓ,Ò (and similarly for Rh,Ò).

Claim 3.17. η
pj�1q

Rℓ,Ò
P V pn � 1, Rℓ,Òq and η

pj�1q

Rh,Ò
P V pn� 1, Rh,Òq.

Proof. We will only prove η
pj�1q

Rℓ,Ò
P V pn�1, Rℓ,Òq, as the other proof is similar.

It will su�e to prove that η
pj�1q

Rℓ,Ò
is pn � 1q-good. Indeed, by P3

j we have

η
pjq

Rℓ,Ò
P V pn � 1, Rℓ,Òq, hene in the ase η

pj�1q

Rℓ,Ò
� η

pjq

Rℓ,Ò
we an say that there

exists an pn � 1q-good legal path from GpRℓ,Òq to η
pjq

Rℓ,Ò
. If we add η

pj�1q

Rℓ,Ò
to

this path, we then obtain an pn� 1q-good legal path from GpRℓ,Òq to η
pj�1q

Rℓ,Ò
,

hene η
pj�1q

Rℓ,Ò
P V pn� 1, Rℓ,Òq.

We now prove that η
pj�1q

Rℓ,Ò
is pn � 1q-good. Firstly, Rℓ,Ò has no rossing

for η
pj�1q

Rℓ,Ò
beause R has no rossing for ηpj�1q

. It remains only to show that

the maximal number k of ritial parallelograms that are disjointly span-

ned in η
pj�1q

Rℓ,Ò
is at most n � 1. Let D1, . . . , Dk be ritial parallelograms

that are disjointly spanned in η
pj�1q

Rℓ,Ò
. By Claim 3.16, there exists a riti-

al parallelogram D � Hu3
pc � 2Ln�1 � 7Kq that is spanned in η

pj�1q

8γ and,

therefore, also in η
pj�1q

D . D is then disjoint from Rℓ,Ò (see Figure 2), so we

dedue that D1, . . . , Dk, D are disjointly spanned in ηpj�1q
, so ηpj�1q

ontains

k � 1 disjointly spanned ritial parallelograms. Sine ηpj�1q
is n-good, we

get k ¤ n � 1, whih ends the proof.

We are now ready to prove P1
j�1, that is, Rℓ and Rh ontain a ritial

parallelogram spanned in ηpj�1q
. To do that, we will prove that a spanned

ritial parallelogram in Hu4
pd � 2Hn�1 � 7Kq provided by Claim 3.16 is

in fat in Rℓ (and similarly for Rh). The idea of the proof is that Claim

3.16 prevents the parallelogram from being �too far up,� being �too far left

or down� would indue a rossing, so will be impossible, and being �too far

right� will be prevented beause Claim 3.17 will allow us to use Hn�1 in Rℓ,Ò.

Claim 3.18. P1
j�1 holds.

Proof. We only treat Rℓ, as Rh is similar. Assume for a ontradition that

there is no ritial parallelogram ontained in Rℓ spanned in ηpj�1q
.
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By Claim 3.16, there exists a ritial parallelogramD ontained inHu4
pd�

2Hn�1 � 7Kq that is spanned in η
pj�1q

8γ . By assumption D � Rℓ. There are

three possibilities (see Figure 2):

a) D XRℓ,Ó � ∅, i.e. D is �too far left;�

b) D XRh,Ó � ∅, i.e. D is �too far down;�

) D X H̄u1
p�pc� Ln�1 � 7Kqq � ∅, i.e. D is �too far right.�

We �rst assume ase ) ours. Sine D is spanned in η
pj�1q

8γ , by Obser-

vation 3.2, D intersets 8γ. In addition, sine D is ritial it has diameter at

most K. This yields that the intersetion of D and H̄u1
p�pc�Ln�1�7Kqq is

in R1

ℓ,Ò (see Figure 2). Sine D intersets R1

ℓ,Ò and has diameter at most K,

it is ontained in Rℓ,Ò, hene spanned in η
pj�1q

Rℓ,Ò
. However, by Claim 3.17 we

have η
pj�1q

Rℓ,Ò
P V pn�1, Rℓ,Òq, so Hn�1 implies there is no ritial parallelogram

interseting R1

ℓ,Ò spanned in η
pj�1q

Rℓ,Ò
, so we get a ontradition.

Cases a) and b) being analogous, we only treat ase a). Assume ase

a) ours. The argument will resemble the one in the proof of Claim 3.16.

Sine D is spanned in η
pj�1q

8γ , there exists a strongly onneted set X �

rDX η
pj�1q

8γ s suh that D is the smallest parallelogram ontaining X . Let X 1

be the strongly onneted omponent of rη
pj�1q

8γ s ontaining X , and D1

be the

smallest parallelogram ontaining X 1

. Then D1

ontains X , hene it ontains

D and, sine D is ritial, diampD1

q ¥ diampDq ¥ K{C1. Furthermore, X 1

is a strongly onneted omponent of rη
pj�1q

8γ s � rη
p0q

8γ s by Claim 3.15, so

X 1

� rη
p0q

8γ XX 1

s by Observation 3.3. This implies X 1

� rη
p0q

8γXX1

XD1

s, hene

D1

is spanned in η
p0q

8γXX1

.

Sine diampD1

q ¥ K{C1, Lemma 3.4 implies that there exists a ritial

parallelogram D2

that is spanned in η
p0q

8γXX1

. Then D2

is spanned in ηp0q � η

and therefore intersets R1

by the de�nition of η. Sine D2

is ritial, its

diameter is at most K, so, sine D2

intersets R1

, it is ontained in H̄u1
p�a�

2Ln�1 � 8K � ℓq (see Figure 2). Moreover, sine D2

is spanned in η
p0q

8γXX1

, by

Observation 3.2, X 1

intersets D2

hene X 1

intersets H̄u1
p�a�2Ln�1�8K�

ℓq. In addition, sine D intersets Rℓ,Ó by assumption a) and is the smallest

parallelogram ontaining X , then X intersets H̄u3
pa�2Ln�1�7Kq, thus X 1

intersets this half-plane as well.

Denote a0 � maxta1 |X 1

� H̄u1
p�a1qu (the �left end� of X 1

). Then a0 ¥ a,

sine X 1

� rη
p0q

8γ s � r8γs � rHu1
p�aqs � Hu1

p�aq as u1 is a stable diretion,

and a0 ¤ a�2Ln�1�7K, as X 1

intersets H̄u3
pa�2Ln�1�7Kq. As in Claim
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3.16 (realling that X 1

intersets H̄u1
p�a�2Ln�1�8K�ℓq), this entails that

RX1

� Rpa0, b; a0�ℓ, dq is u1-rossed for ηp0q (reall De�nition 3.5). However,

R has no rossing for ηp0q as ηp0q is n-good, so Cu1

RX1

does not our for ηp0q.

Consequently, there exists a ritial parallelogram spanned for η
p0q

RX1

, hene for

ηp0q. By Observation 3.2 this parallelogram intersets RX1

, so sine ritial

parallelograms have diameter at most K and a0 ¤ a � 2Ln�1 � 7K it does

not interset R1

, whih ontradits the fat that all ritial parallelograms

spanned in ηp0q � η interset R1

.

The previous laim will allow us to omplete the proof of P3
j�1. We already

proved in Claim 3.17 that η
pj�1q

Rℓ,Ò
P V pn� 1, Rℓ,Òq and η

pj�1q

Rh,Ò
P V pn� 1, Rh,Òq,

so we need η
pj�1q

Rℓ,Ó
P V pn� 1, Rℓ,Óq and η

pj�1q

Rh,Ó
P V pn� 1, Rh,Óq. The argument

is idential to that of Claim 3.17: by Claim 3.18 we have a spanned ritial

parallelogram inRℓ, whih entails that there are at most n�1 ritial spanned

parallelograms in Rℓ,Ó (and similarly for Rh,Ó), hene the result.

Claim 3.19. P3
j�1 holds.

Proof. The proof is atually the same as in Claim 3.17, replaing Hu3
pc �

2Ln�1 � 7Kq by Rℓ or Rh and Claim 3.16 by Claim 3.18.

It remains only to prove P2
j�1, i.e. that the sites of F are not loally

infetable in ηpj�1q
.

Claim 3.20. P2
j�1 holds.

Proof. Assume for a ontradition that there exists s1 P F � B1

that is loally

infetable in ηpj�1q
. By P2

j , s
1

is not loally infetable in ηpjq. Therefore, by

Lemma 3.6, there exist ζ P tℓ, hu, ξ P tÓ, Òu and a ritial parallelogram

D � R1

ζ,ξ spanned in η
pj�1q

Rζ,ξ
. However, by Claim 3.19 η

pj�1q

Rζ,ξ
P V pn � 1, Rζ,ξq,

so Hn�1 yields the desired ontradition.

Claims 3.15, 3.18, 3.19 and 3.20 together establish the indution step,

whih ompletes the proof of Lemma 3.12.

4 Appliation of Proposition 3.7

In this setion we derive Theorems 1 and 2 from Proposition 3.7. For that

purpose we require some estimates on the probabilities appearing in the

statement of the proposition, whih are mostly proved in the appendies. We

restate those results below as needed. Throughout the setion U is a ritial

update family with di�ulty α subjet to further assumptions realled in eah
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subsetion. Suh a family admits two non-ollinear rational stable diretions.

We set u1 and u2 to be two arbitrary suh diretions, whih will be hosen

di�erently for eah lass of update families. We will use the de�nitions of

Setion 3 with u1 and u2.

Let us start with the easiest estimate.

Lemma 4.1. Let K ¤ q�2α
. Then,

µp0 is loally infetableq ¤ 1{8.

Proof. Let R � Rp�2K,�2K; 2K, 2Kq. Sine U is ritial, diamprηRsq ¤

C1K, so, starting the bootstrap perolation dynamis with ηR, the origin is

either infeted in time at most C3
1K

2
or not at all. We onlude using e.g.

[5, Theorem 1.4℄, whih gives that with probability tending to 1 as q Ñ 0,

the infetion time is exppq�Θp1q
q.

Turning to the probability of spanning there are two ases to onsider.

For unbalaned models the following is essentially a reformulation of the most

di�ult result of [4℄.

Lemma 4.2. Assume that U is unbalaned and K � q�α�1{4
. Then, for any

ritial parallelogram D we have

µpD is spannedq ¤ exp

�

�

plogp1{qqq2

C5qα




.

Proof. By de�nition ifD is a spanned ritial parallelogram, then there exists

a strongly onneted set X � rηXDs with diameter at least diampDq{C1. If

X 1

is the strongly onneted omponent of X in rηXDs, then by Observation

3.3, X 1

� rη X D X X 1

s. Therefore, if D1

is the smallest SU -droplet in the

sense of [4, De�nition 2.1℄ with the SU de�ned in [4, Lemma 6.2℄ suh that

D1

ontains X 1

, then D1

is internally spanned by η X D (in the sense of

[4, De�nition 2.4℄

4

), and diampD1

q ¥ diampDq{C1 ¥ K{C2
1 . Repeating the

proof of [4, Lemma 8.37℄, we get that there is a ritial droplet in the sense

of [4, De�nition 2.5℄ internally spanned by η X D. Then the union bound

over suh droplets and [4, Lemma 8.36℄ yield the desired result.

Conerning balaned models, in Appendix A (Corollary A.11) we esta-

blish the following, by ombining the tehniques of [4, 18℄.

4

Tehnially, it is not exatly the ase, as [4℄ uses a di�erent hoie of onstants.

However, their results that we use still hold in our setting.
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Lemma 4.3. Assume that U is balaned and q�α
{C5 ¤ K ¤ q�2α

. Then for

any ritial parallelogram D we have

µpD is spannedq ¤ exp

�

�

1

C5qα




.

For the remaining onditions of Proposition 3.7 we need to distinguish

the di�erent lasses of models.

4.1 Proof of Theorem 1

In this setion we assume that U has an in�nite number of stable diretions.

We then hoose two rational diretions u1   u2   u1� π su�iently lose to

eah other, suh that all diretions in r2u1 � u2, 2u2 � u1s are stable and u1,

u2 satisfy a tehnial ondition whih the reader is advised to ignore, namely

that u1 and u2 are onstruted like the eponymous diretions in the proof of

[18, Lemma 4.1℄.

4.1.1 Proof of Theorem 1(a)

For this setion we further assume that U is unbalaned. We �x the values

of the parameters of Proposition 3.7 as follows.

K � q�α�1{4 ℓ � q�4α L � exp

�

plogp1{qqq2

C6qα




T � exp

�

plogp1{qqq4

C2
6q

2α




h � q�4α H � exp

�

plogp1{qqq2

C6qα




.

Proof of Theorem 1(a). The upper bound was proved in [26, Theorem 2(a)℄,

so we fous on the lower one. We will apply Proposition 3.7 with the above

hoie of parameters, so that we obtain the desired onlusion: Eµrτ0s ¥ T .

Hene, it su�es to verify the hypotheses of the proposition. Indeed, setting

n � plogp1{qqq2{p2C6q
α
q, we have

L � exp

�

plogp1{qqq2

C6qα




¥ 3n � 2q�4α
¥ 3np11K � ℓq

and similarly for H . By Lemma 4.1 we do have µp0 is loally infetableq ¤

1{8. Moreover, realling that ρ ¤ expp�plogp1{qqq2{pC5q
α
qq by Lemma 4.2,

we obtain

TLHpLHK3ρqn�1
¤ exp

�

2plogp1{qqq4

C2
6q

2α
� n

�

3plogp1{qqq2

C6qα
�

plogp1{qqq2

C5qα





¤ exp

�

plogp1{qqq4

C6q2α

�

2

C6

�

3

2C6

�

1

2C5





¤ 1.
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Finally,

T pLHq

2
¤ exp

�

2plogp1{qqq4

C2
6q

2α




¤ exp
�

q�3α
�

and Lemma 4.4 below yields maxpp
�

, p
Ó

q ¤ expp�q�3α
q. Therefore, we

obtain T pLHq

2maxpp
�

, p
Ó

q ¤ 1 and all the hypotheses of Proposition 3.7

are veri�ed one we establish Lemma 4.4.

Lemma 4.4. With the notation and assumptions above we have

maxpp
�

, p
Ó

q ¤ exp
�

�q�3α
�

.

This bound is proved in Appendix B (Lemma B.4), but let us provide a

rough sketh for the reader's onveniene.

Sketh of the proof of Lemma 4.4. Consider the retangleR � Rp�ℓ, 0; 0, Hq

and assume that Cu1

R ours with η1 � η in De�nition 3.5. Fix some u1-

rossing X � rHu1
YpRX ηqs of R. One an retrae how X beomes infeted

by the bootstrap perolation proess by a method known as a spanning algo-

rithm as follows. Starting from single infetions, we lump them into groups

of infetions by progressively merging two groups if their losures are lose

to eah other. Sine X has diameter at least ℓ, this proess will eventually

produe a set of infetions of diameter roughly ℓ. We assoiate to eah set of

infetions a droplet (appropriately shaped polygon) ontaining its losure.

We an then view the spanning algorithm run bakwards as a progressive

shattering of the initial droplet of size ℓ and reord its history. However, we

do not wish to register the entire history of all splittings. When a droplet

splits into two large droplets, we study the subsequent splittings of both

droplets, but when a large droplet splits into a large one plus a small one, we

ignore the small one. Still, if there are many suessive suh small splittings,

we oasionally write down one of the resulting large droplets. We stop

studying the splitting when the droplets are of size roughly K. We then all

these droplets of size K seeds. In total, this gives us a tree of large droplets

alled hierarhy reording how the droplet of size ℓ is produed.

Reall that the event Cu1

R requires the absene of spanned ritial pa-

rallelograms, whih prevents the existene of lusters of infetable sites of

size at least K, hene of droplets of size at least K. This seemingly forbids

the hierarhy to exist. However, in the above we overlooked the presene

of the infeted boundary Hu1
. To take it into aount, we atually onsider

hierarhies of ut droplets whih are �very �at triangles stiking out of the

boundary.�

To bound the probability of Cu1

R , we bound the probability that suh a

hierarhy ours. There are two possibilities: either there are many splittings
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into two large droplets, or muh of the splitting is done into a large and a

small droplet. In the �rst ase, there will be many seeds. We establish a

preliminary upper bound on the probability of ourrene of a seed of order

expp�q�α
q. Sine eah seed should be ontained in the original droplet of

size ℓ, there are few possible hoies for them. We dedue an appropriate

bound on the probability of suh a hierarhy.

Assuming that most of the size ℓ of the initial droplet is gained by split-

tings into a large and a small droplet, let us onsider one suh step. This

means that in the spanning algorithm, when we add to the infetions of a

large (ut) droplet the few infetions ontained in a small droplet, we get to

infet a slightly larger droplet. This essentially implies the existene of an

infetable set going from the boundary of the large droplet to that of the

larger one. This in turn yields the ourrene of another ut droplet of size

at least K. Hene, the preliminary bound on the probability of ourrene

of a seed allows us to bound the probability of suh a splitting, onluding

the proof.

4.1.2 Proof of Theorem 1(b)

For this setion we further assume that U is balaned. We �x the values of

the parameters of Proposition 3.7 as follows.

K � q�α ℓ � q�4α L � exp

�

1

C6qα




T � exp

�

1

C2
6q

2α




h � q�4α H � exp

�

1

C6qα




.

Then Theorem 1(b) follows diretly from Proposition 3.7 and the upper

bound from [17, Theorem 1(b)℄. Setting n � 1{p2C6q
α
q, the hypotheses of

the proposition follow like in Setion 4.1.1 from the hoie of parameters,

Lemmas 4.1 and 4.3, and Lemma 4.4, whih still applies.

4.2 Proof of Theorem 2

4.2.1 Proof of Theorem 2()

In this setion we assume that U is unbalaned, rooted and has a �nite num-

ber of stable diretions. Therefore, we an �nd rational diretions u1, u2, u3

suh that u1 � π � u3, u2 P pu1, u3q and αpuiq ¥ α � 1 for all i P t1, 2, 3u.
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We �x the values of the parameters of Proposition 3.7 as follows.

K � q�α�1{4 ℓ � q�α�5{8 L � q�α�3{4

T � exp

�

plogp1{qqq3

C6qα




h � q�α�5{8 H � q�α�3{4.

Proof of Theorem 1(). The upper bound was proved in [20, Theorem 1℄, so

we fous on the lower one. As previously, it su�es to verify the hypotheses

of Proposition 3.7 with the above hoie of parameters. Indeed, setting n �

logp1{qq{C1, we have

L � q�α�3{4
¥ 3n � 2q�α�5{8

¥ 3np11K � ℓq

and similarly for H . By Lemma 4.1 we do have µp0 is loally infetableq ¤

1{8. Moreover, realling that ρ ¤ expp�plogp1{qqq2{pC5q
α
qq by Lemma 4.2,

we obtain

TLHpLHK3ρqn�1
¤ exp

�

2plogp1{qqq3

C6qα
�

nplogp1{qqq2

2C5qα




¤ exp

�

plogp1{qqq3

qα

�

2

C6

�

1

2C1C5





¤ 1.

Finally,

T pLHq

2
¤ exp

�

2plogp1{qqq3

C6qα




¤ exp
�

q�α�1{4
�

.

Thus, one we establish Lemma 4.5 below, all the hypotheses of Proposition

3.7 are veri�ed.

Lemma 4.5. With the notation and assumptions above we have

maxpp
�

, p
Ó

q ¤ exp
�

�q�α�1{4
�

.

This bound is proved in Appendix B (Lemma B.3). Sine the proof is

quite di�erent from the one of Lemma 4.4, we also provide a sketh.

Sketh of the proof of Lemma 4.5. Consider R � Rp�ℓ, 0; 0, Hq. Our goal is

essentially to prove that µpCu1

R q ¤ e�ℓ
. To do this, we use an improvement of

the partition method of [4, Setion 8.3℄. We ut the retangle into strips of

a large onstant width and lump the strips together into groups rossed by

a spanned parallelogram. We establish that it is deterministially neessary

for all strips to either be interseted by a spanned parallelogram as above or

to ontain a set of αpu1q ¥ α � 1 infetions. Yet, H is muh smaller than

q�α�1
, so it is unlikely that a strip ontains α � 1 infetions. As for the
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strips interseted by spanned parallelograms, sine Cu1

R assumes that no ri-

tial parallelogram is spanned, we only need to are about smaller spanned

parallelograms, for whih one may prove a preliminary probability bound

exponentially small in their size. Combining these fats and taking into a-

ount that the size of R is only polynomial in 1{q, we an ontrol the entropy

and onlude that the probability of a rossing is indeed exponentially small

in its width.

4.2.2 Proof of Theorem 2(e)

In this setion we assume that U is balaned, rooted and with a �nite number

of stable diretions. Therefore, we an �nd non-opposite rational diretions

u1, u2 suh that αpu1q ¥ α � 1 and αpu2q ¥ α � 1. We �x the values of the

parameters of Proposition 3.7 as follows.

K � 1{pC5q
α
q ℓ � q�α�1{2 L � q�α�3{4

T � exp

�

logp1{qq

C6qα




h � q�α�1{2 H � q�α�3{4.

Then Theorem 2(e) follows diretly from Proposition 3.7 and the upper

bound in [17, Theorem 1(e)℄. Setting n � logp1{qq{C1, the hypotheses of

the proposition follow like in Setion 4.2.1 from the hoie of parameters,

Lemmas 4.1 and 4.3, and Lemma 4.5, whih still holds.

4.2.3 Proof of Theorem 2(f)

In this setion we assume that U is semi-direted. Therefore, we an �nd non-

opposite rational diretions u1, u2 suh that αpu1q � α and αpu2q ¥ α � 1.

We �x the values of the parameters of Proposition 3.7 as follows.

K � 1{pC5q
α
q ℓ � q�α�1{2 L � q�α�3{4

T � exp

�

log logp1{qq

C3
6q

α




h �
log logp1{qq

qα
H �

plogp1{qqq1{4

qα
.

Proof of Theorem 1(f). The upper bound is proved in [17, Theorem 1(f)℄, so

we fous on the lower one. As previously, it su�es to verify the hypotheses

of Proposition 3.7 with the above hoie of parameters. Indeed, setting n �

log logp1{qq{C1, we have

L � q�α�3{4
¥ 3n � 2q�α�1{2

¥ 3np11K � ℓq,

H �

plogp1{qqq1{4

qα
¥ 3n

2 log logp1{qq

qα
¥ 3np11K � hq.
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By Lemma 4.1 we do have µp0 is loally infetableq ¤ 1{8. Moreover, real-

ling that ρ ¤ expp�1{pC5q
α
qq by Lemma 4.3, we obtain

TLHpLHK3ρqn�1
¤ exp

�

2 log logp1{qq

C3
6q

α
�

n

2C5qα




¤ exp

�

log logp1{qq

qα

�

2

C3
6

�

1

2C1C5





¤ 1.

Finally,

T pLHq

2
¤ exp

�

2 log logp1{qq

C3
6q

α




¤ exp

�

log logp1{qq

2C2
6q

α




¤ exppq�α�1{4
q.

Thus, one we establish Lemma 4.6 below, all the hypotheses of Proposition

3.7 are veri�ed.

Lemma 4.6. With the notation and assumptions above we have

p
�

¤ exp
�

�q�α�1{4
�

p
Ó

¤ exp

�

�

log logp1{qq

2C2
6q

α




.

This bound is proved in Appendix B (Lemma B.3) like Lemma 4.5.
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A Bounds on spanning

Relation to previous works Let us start by explaining why additional

arguments are needed, as speialists would probably expet suh bounds to

be automati. In [4℄ two main algorithms were used�the overing and the

spanning ones. The former provides bounds of the type we need but for

a notion of overed droplet invoking only the initial on�guration. On the

other hand, the spanning algorithm works with the losure of the initial
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on�guration inside droplets, whih obstruts obtaining results analogous

to those for the overing algorithm in the same way. Yet, it is the spanning

algorithm whih is the most useful and partiularly so for unbalaned models.

In [4℄ an indutive multi-sale sheme was used to bootstrap the bounds on

the probability of droplets being spanned from a size whih is easily ontrolled

by the more rudimentary predeessor of the overing algorithm developed in

[5℄. This fairly tehnial proedure an be irumvented using our method.

Indeed, if one has bounds analogous to the ones for overed droplets up to

size 1{qαpUq, one an diretly prove the result of [4℄ in one step, whih was

made there as well.

The reason why in [4℄ one ould not diretly transfer the easier bounds

on overing, whih were established there anyway, to spanning is that the

overing algorithm there laks the key property of being essentially losure-

invariant in a sense made preise below. This property was one of the main

features gained in [18℄ by using a less wasteful notion of luster. Therefore,

we aomplish our goal as follows. We arry through (a simpli�ed version of)

the sheme of [18℄ to obtain general bounds for droplets overed in the sense

of [18℄ and we use the key losure lemma (see below) to diretly transfer those

to spanning. On the more tehnial level, we should mention that analogous

bounds on spanning were established in [4℄ in the ourse of their indution,

but the proof needlessly uses that the model is unbalaned and onstrains the

hoie of diretions used for de�ning droplets, whih we will need to hoose

freely. Moreover, [18℄ made unneessary use of the existene of strongly stable

diretions

5

, whih is only needed for treating the algorithm with boundary

ondition. We are thus obliged to review the proofs. The reader familiar

with the details of [18℄ would probably be satis�ed by skipping diretly to

Appendix B and onsulting the statements as needed there.

Outline The appendix is strutured as follows. In setion A.1 we reall

several results from [18℄, leading up to Lemma A.6 providing good bounds

on the probability of being overed (in a sense made preise below) and to

the Closure lemma A.7 relating the results of the overing algorithm for a

set and for its losure. In setion A.2, using the latter lemma we transfer

the bounds of the former one to the notion of spanning used throughout

the body of the paper. Setion A.3 establishes, yet again, the same bounds

on the probability of spanned droplets ourring, but in the presene of an

infeted boundary, following the same reasoning and relying more losely on

[18℄.

5

Strongly stable diretions are those ontained in the topologial interior of the set of

stable diretions.
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Notation For the remainder of the paper we �x an arbitrary ritial update

family U with di�ulty α. Following [18℄ we onsider onstants

1 ! C1 ! C 1

2 ! C2 ! C3 ! C 1

4 ! C4 ! C5 ! C6

suh that eah one is larger than a suitable funtion of the previous ones, de-

pending on T , T0, Su, et. to be de�ned below and on U . These onstants do

not depend on q, whih is always assumed small enough, as we are interested

in q Ñ 0.

For any �nite set of diretions V � S1
a V-droplet is a set of the form

�

vPV H̄vpavq for some av P R.

A.1 Covering and losure

We start by studying the overing algorithm in the spirit of [18, Setion 5℄

(but without the boundary and rugged edge present there). The reader is

invited to onsult that work for most proofs and more details, as indiated

below. By de�nition 1.2 we an �x a set of non semi-isolated rational stable

diretions

6 T0 with di�ulty at least α, suh that the onvex envelope of the

elements of T0 ontain 0 in its interior and either

• |T0| � 3 or

• |T0| � 4 and one has T0 � tu, v, u� π, v � πu for some u, v P S1
.

Let Γ be the graph with vertex set Z2
but with x � y i� }x� y} ¤ C2.

De�nition A.1 ([18, De�nitions 5.1 and 5.3℄). Fix a �nite set Z � Z2
. Let

κ be a onneted omponent of the subgraph of Γ indued by the vertex set

Z.

• κ is a rumb for Z if there exists a set Pκ � Z2
suh that rPκs � κ and

|Pκ| � α � 1.

• If κ is not a rumb for Z, we say that a C � κ is a α-luster (or simply

luster) of Z if the following onditions hold

� diampCq ¤ C3.

� C is onneted in Γ.

� For all x P κzC and y P C suh that x � y in Γ we have diampCY

txuq ¡ C3.

6

Semi-isolated stable diretions are the endpoints of intervals of stable diretions with

nonempty interior.
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It an be proved [18, Observation 5.4℄ that any luster ontains at least

α sites. Moreover, Corollary 5.17 of [18℄ yields that a rumb has diameter

at most αC2. For a luster C we denote by QpCq the smallest T0-droplet

ontaining the set tx P R2 : dpx, Cq ¤ C4u.

We next de�ne the overing algorithm we will use. It is an adaptation of

the droplet algorithm of [18℄ and should not be onfused with the overing

algorithms of [4, 5℄.

De�nition A.2 (Covering algorithm). Given a �nite set Z � Z2
of infetions

the overing algorithm outputs a set D of disjoint T0-droplets as follows.

• Form an initial olletion D of T0-droplets onsisting of QpCq for all

lusters C of Z.

• Whenever there exist D1, D2 P D with D1 X D2 � ∅, replae them

with the smallest T0-droplet ontaining their union, whih we denote

by D1 _D2.

• Output the olletionD obtained when all T0 droplets in D are disjoint.

Equivalently, D is the minimal olletion (with respet to inlusion of the

union of its elements) of disjoint T0-droplets ontaining the union of QpCq

for all lusters C of Z. In partiular, D does not depend on the order in

whih droplets are merged.

We say that a T0-droplet D is overed by a set Z of infetions if the above

algorithm for Z XD outputs a T0-droplet ontaining D.

We make the onvention that all T0-droplets have diameter at least C 1

4

and ontain a site of Z2
.

We next state some properties of the overing algorithm.

Lemma A.3 (Lemma 4.6 of [5℄). Let D1 and D2 be T0-droplets suh that

D1 XD2 � ∅. Then

diampD1 _D2q ¤ diampD1q � diampD2q.

This immediately implies the Aizenman-Lebowitz lemma (see e.g. [5,

Lemma 4.8℄).

Lemma A.4 (Aizenman-Lebowitz). Let Z be a set of infetions and D be

a T0-droplet overed by Z. Then for all C1C4 ¤ k ¤ diampDq there exists a

T0-droplet D
1

overed by Z with k ¤ diampD1

q ¤ 2k.

A further onsequene of Lemma A.3 is the following.

41



Lemma A.5 (Lemma 5.14 of [18℄). Let Z be a set of infetions and D be

a T0-droplet overed by Z. Then D ontains at least rdiampDq{C2
4 s disjoint

lusters of Z XD.

We are now able to dedue the relevant bounds on overing following

[18, Lemma 5.15℄.

Lemma A.6. Let D be a T0-droplet with d � diampDq. Let 1 ¡ ǫ ¡ 0. Then

we have

µpD is overedq ¤

$

'

'

&

'

'

%

qdǫ{p3C
2

4
q

if d ¤ C1

qα�ǫ

e�C1C4d
if

1
C1qα�ǫ ¤ d ¤ C1

e
C4
4 qα

d2e�C1{pC5q
α
q

if

1

C1e
C4
4 qα

¤ d.

(11)

Proof. Let Z be the (random) set of infetions in D. By Lemma A.5 we have

that if D is overed, it ontains at least rd{C2
4 s disjoint lusters of Z, eah

one having diameter at most C3 and at least α sites. Thus, the union bound

gives

µpD is overedq ¤

�

C2α
3 d2

rd{C2
4 s




qαrd{C2

4
s.

For d ¤ C2
4 this gives C2α

3 d2qα, whih onludes the proof. For C2
4 ¤ d ¤

C1{pe
C4

4 qαq we use the inequality
�

n

k

�

¤ pne{kqk to obtain the desired bounds.

For the ase d ¥ 1{peC
4

4 qαq we use Lemma A.4 to extrat a smaller T0-droplet

D1

overed by Z (hene interseting D) with 1{p2eC
4

4 qαq ¤ diampD1

q ¤

1{peC
4

4 qαq. We then apply the seond bound to D1

and use the union bound

to onlude.

We would now like to use analogous bounds on the probability of T0-

droplets being overed with initial ondition rZs instead of Z. Unfortunately,

we do not have aess to the law of rZs when Z follows µ. Therefore, we

rather bound the output of the overing algorithm for the losure using the

original output. For that purpose, we de�ne parallel notions of Γ1, modi�ed

lusters and modi�ed overing, by replaing C2 by C 1

2 and C4 by C 1

4.

We then have the following key property, whose proof is idential to the

one of [18, Proposition 5.20℄, up to the relevant simpli�ations (we do not

have rugged edges and there is no boundary).

Lemma A.7 (Closure). Let Z � Z2
be a �nite set and let D1

be the olletion

of T0-droplets given by the modi�ed overing algorithm with input rZs. Let

D be the output of the overing algorithm for Z. Then

�D1

P D1

DD P D, D1

� D.
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A.2 Spanning

Let T be an arbitrary �nite set of rational diretions ontaining the origin in

the interior of its onvex envelope. We then generalise the notion of spanning

from De�nition 3.1.

De�nition A.8 (Spanning). LetD be a T -droplet. We say thatD is spanned

by Z � Z2
if there exists a set C � rZ XDs onneted in Γ1 suh that the

smallest T -droplet ontaining C is D.

We will need the following Aizenman-Lebowitz type lemma. Though this

is a very lassial result, some additional arguments are needed to prove it,

beause T is not omposed of stable diretions.

Lemma A.9 (Aizenman-Lebowitz). Let Z � Z2
and D be a T -droplet span-

ned by Z with diampDq ¥ C1C
1

2. Then for any C 1

2 ¤ k ¤ diampDq, there

exists a T -droplet D1

spanned by Z XD with k ¤ diampD1

q ¤ C1k.

Proof. If k ¥ diampDq{C1 there is nothing to prove, as D
1

� D is as desired.

Assume k ¤ diampDq{C1. Let C be a onneted omponent of rZ X Ds in

Γ1 with maximal diameter. By De�nition A.8 diampCq ¥ diampDq{
?

C1. By

Observation 3.3 and [4, Lemma 6.18℄ (we use it although de�nitions slightly

di�er from [4℄, see Footnote 4) there exists C 1

� C onneted in Γ1 suh that

C 1

� rC 1

X Z X Ds and k ¤ diampC 1

q ¤

?

C1k. Denoting D1

the smallest

T -droplet ontaining C 1

, we are done.

Observation A.10. LetD be a T -droplet spanned by Z � Z2
with diampDq ¥

C4. Then there exists a T0-droplet D̄ overed by Z, interseting D and suh

that diampD̄q � ΘpdiampDqq.

Proof. Let C be as in De�nition A.8. Notie that, sine diampDq ¥ C3,

we an �nd modi�ed lusters for rZ XDs whose union is a onneted set in

Γ1 ontaining C. Then there is a T0-droplet in the output of the modi�ed

overing algorithm for rZ XDs ontaining C. By Lemma A.7 there is also a

T0-droplet D̄ in the output of the overing algorithm for ZXD ontaining C,

so that diampD̄q ¥ diampCq � ΩpdiampDqq. But D̄ is at most the smallest

T0-droplet ontaining tx P R2 : dpx,Dq ¤ C4u, so diampD̄q � ΘpdiampDqq.

Moreover, sine D̄ is in the output of the overing algorithm for Z XD, it is

overed by Z and intersets D.

We immediately dedue from this observation and Lemma A.6 the desired

bounds on spanning.
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Corollary A.11. Let D be a T -droplet with d � diampDq and let 1 ¡ ǫ ¡ 0.

Then

µpD is spannedq ¤

$

'

&

'

%

qdǫ{C5
if d ¤ q�α�ǫ

e�2C4d
if q�α�ǫ

¤ d ¤ C1

C5qα

dOp1qe�2{pC5q
α
q

if

1
C5qα

¤ d.

(12)

A.3 Boundary and spanning

We next turn to the treatment of an in�nite infeted boundary ondition,

following [18℄, whih is appliable only for models with an in�nite number

of stable diretions. Indeed, for a model with a �nite number of stable

diretions a bounded set of infetions next to the boundary an indue a

set of supplementary infetions and, thereby, a droplet of the size of the

boundary, making similar algorithms useless. We therefore �x an update

family U with an in�nite number of stable diretions and di�ulty α, to

whih the treatment of [18℄ applies.

For the rest of this setion let Su � tu�, u�, v1, v2u be a set of 4 direti-

ons hosen as in [18, Lemma 4.1℄

7

(we rename pu1, u2q from that work into

pu�, u�q to avoid notational on�it) with u � pu� � u�q{2. The proof of

[18℄ allows us to hoose u� and u� as lose as we want, even depending on

v1 and v2. We will hoose them lose enough for our results to hold. Let

B � Hu. For any set Z � Z2
we write rZs

B

� rZYBszB. We will use the term

luster in the sense of [18, De�nition 5.3℄, extending De�nition A.1 (rumbs

lose to B are onsidered as lusters instead and Z is replaed by ZzB). We

replae the notion of DYD from [18℄ by that of Su-droplet and the notion of

CDYD beomes that of ut Su-droplet�a nonempty set of the form

�

H̄u�pxq X H̄u�pyq
�

zB (13)

for some x, y P R, whih is a geometri triangle. We further replae the use

of the diameter by onsidering the size | � | from [18, De�nition 5.7℄. Namely

for a ut Su-droplet D we denote |D| � diampDq{C1, while for an Su-droplet

D, |D| denotes the length of its projetion parallel to v1. We then de�ne

orrespondingly an extension of the overing algorithm as in [18, Setion 5.4℄

and a notion of overed (ut) Su-droplet. For the reader unfamiliar with

[18℄, let us indiate that the hange with respet to the overing algorithm

of De�nition A.2 orresponds to replaing at eah stage of the algorithm any

Su-droplet D interseting B by the smallest ut Su-droplet ontaining DzB.

7

It is not hard to see that in [18, Lemma 4.1℄, with a �nite number of exeptions, given

any rational strongly stable diretion u P S1
we an de�ne Su orrespondingly.
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The properties of [18, Setion 5.5℄, analogous to Lemmas A.3-A.5 and A.7,

remain valid for this setting. Furthermore, ombining the proofs of Lemma

A.6 and [18, Lemma 5.15℄ shows that the following holds.

Lemma A.12. Let D be a ut Su-droplet or an Su-droplet not interseting

B with d � |D|. Let 1 ¡ ǫ ¡ 0. Then (11) holds.

We similarly extend De�nition A.8 to the setting with boundary.

De�nition A.13 (Spanning with boundary). We all whole Su-droplet any

Su-droplet at distane at least C3 from B and, by abuse, we all olletively

Su-droplet any ut or whole Su-droplet. We say that an Su-droplet D is

spanned by Z � Z2
if there exists a set C � rZ XDs

B

onneted in Γ1 suh

that the smallest Su-droplet ontaining C is D.

We next reall several properties of the spanning algorithm following lo-

sely [4℄.

De�nition A.14 (De�nition 6.15 of [4℄). Let Z � tz1, . . . , zk0u be a �nite

set of infetions. Set Z0
� tZ0

1 , . . . , Z
0
k0
u with Z0

i � tziu. For eah t ¥ 0 do

the following.

• If there exist Zt
i and Zt

j suh that rZt
i sBYrZt

jsB is onneted in Γ1, then

set Z t�1
� pZ t

ztZt
i , Z

t
juq Y tZt

i Y Zt
ju.

• Otherwise, de�ne the span of Z by xZy � tDpZt
q, Zt

P Z t
u, where

DpZ 1

q denotes the smallest Su-droplet ontaining Z 1

, and terminate

the algorithm.

Similarly, for any A � R2
we denote xAy � xAX Z2

y.

Observation A.15 (Lemma 6.16 of [4℄). We have xZy � tDpκ1q, . . . , Dpκkqu,

where the κi are the onneted omponents of rZs
B

in Γ1.

Observation A.16 (Lemma 6.17 of [4℄). A nonempty Su-droplet is spanned

i� D P xD X Zy.

Lemma A.17 (Lemma 6.21 of [4℄). Let Z be a �nite set of at least two

infetions suh that rZs
B

is onneted in Γ1. Then there exists a nontrivial

partition Z � Z1\Z2 suh that rZ1sB, rZ2sB and rZ1sB Y rZ2sB are onneted

in Γ1.

The next lemma follows from the de�nition of size and [18, Lemma 5.12℄.

Lemma A.18. For any Su-droplets D,D1, D2 with |D1| ¥ C3 or |D2| ¥

C3 suh that xD1y � tD1u, xD2y � tD2u and xD1 Y D2y � tDu we have

|D1|{C1 ¤ |D| ¤ |D1| � |D2| �OpC 1

2q.
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This standardly implies (see e.g. [4, Lemma 6.18℄) the following.

Lemma A.19 (Aizenman-Lebowitz). Let D be a spanned Su-droplet and

C3 ¤ k ¤ |D|. Then there exists a spanned Su-droplet D
1

� D with k ¤

|D1

| ¤ 3k.

Similarly to Corollary A.11 we obtain the following.

Corollary A.20. Let D be an Su-droplet with d � |D| ¥ 1{pC5q
α
q. Then

µpD is spannedq ¤ dOp1qe�2{pC5q
α
q.

Remark A.21. Let us note that the results of this setion remain valid

if B is replaed by any su�iently regular boundary ondition. Namely, if

u
K

� u� π{2 and f is a δ-Lipshitz funtion for δ   tanppu� � u�q{2q, then

we an use any B with topologial interior

tx P R2, xx, uy   fpxx, u
K

yqu

suh that B, B YD are stable for any ut Su-droplet.

Finally, one an also remove the boundary by onsidering infetions suf-

�iently far from it to reover the setting of the previous setion for the

diretions under onsideration.

B Bound on rossing

For this appendix we plae ourselves in the ontext of Setion 3 (in parti-

ular, T -droplets will be parallelograms). In setions B.1 and B.2 we show

that rossings are unlikely in diretions with respetively �nite and in�nite

di�ulty. Of ourse, though we treat u1, the results are also valid for u2.

B.1 Crossing in a diretion with �nite di�ulty

One an use Corollary A.11 to show that if u1 has �nite di�ulty, a u1-

rossing without large droplets is extremely unlikely. To do that, we will use

a onept of partition lose to the one from [4, De�nition 8.20℄.

De�nition B.1. Assume that 0   αpu1q   8. Let R � Rpa, b; c, dq be a

parallelogram and Z � R X Z2
. Set m � tpc � aq{pC1C6qu ¥ 1 and

Si � Hu1
p�pc� iC1C6qq X H̄u2

p�bq X H̄u3
pc� pi� 1qC1C6q X H̄u4

pdq

for 1 ¤ i ¤ m � 1 and Sm � Rpa, b; c � pm � 1qC1C6, dq. A u1-partition of

R for Z is a sequene a1, . . . , ak of positive integers with m � a1 � � � � � ak
suh that, setting tj � a1 � � � � � aj , we have either
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• aj � 1 and Stj ontains an αpu1q-luster for Z (see De�nition A.1) or

• there exists a T -droplet D spanned by ZX
�tj

i�tj�1�1 Si, with C1C6aj ¥

diampDq ¥ ajC6.

The following lemma is lose to [4, Lemma 8.21℄.

Lemma B.2. Let R be a parallelogram. If 0   αpu1q   8 and R is u1-

rossed then there exists a u1-partition for η XR.

Proof. For notational onveniene we assume that R � Rp�a, 0; 0, dq. In

this proof, all lusters and rumbs are with respet to αpu1q. The proof is by

indution on m.

Suppose that the property holds for any m1

¤ m � 1. If S1 ontains a

luster of η X R, we set a1 � 1 and we are done, sine Rp�a, 0;�C1C6, dq

is u1-rossed. Let us assume S1 ontains no luster of η X R. Then S 11 �

Rp�C1C6 � C1C3, 0; 0, dq intersets no luster of η X R, so if K is the set

of onneted omponents of η X S 11 in Γ, eah κ P K is a rumb of η X S 11.

In partiular, all elements of rκs and rκ Y Hu1
szHu1

are at distane at most

C1 of κ (see Observation 5.16 and the proof of Corollary 5.17 in [18℄). As

elements of K are at distane at least C2 from one another, this means that

rηX S 11s �
�

κPKrκs, and that Z̄ �

�

κPK1

rκYHu1
s is losed, where K1

� tκ P

K : dpκ,Hu1
q ¤ C2u. Moreover, the diameter of a rumb is at most αpu1qC2,

so all elements of Z̄ are at distane at most pαpu1q � 2qC2 of Hu1
. Sine R

is u1-rossed, this implies that there exists z P Z̄ and w P rpη X RqzZ̄s suh

that dpz, wq ¤ C 1

2. Then dpw,Hu1
q ¤ pαpu1q � 2qC2 � C 1

2.

Let X be the onneted omponent in Γ1 of rpη XRqzZ̄s ontaining w. If

X � rη X S 11s, then X �

�

κPKrκs, so X � rκs for some κ P K, sine they are

at distane more than C 1

2 from one another. Moreover, by Observation 3.3,

X � rppη XRqzZ̄q XXs, so X � Z̄, so κ R K1

. However, this ontradits the

fat that dpw, zq ¤ C 1

2, as dpZ̄, rκsq ¥ C2 � 2C1.

Therefore, X � rη X S 11s, so X intersets RzS 11. Let a1 � maxti ¥

1, X X Si � ∅u and D be the smallest T -droplet ontaining X . Clearly,

diampDq ¥ diampXq ¥ a1C6, sine dpw,Hu1
q ¤ C3. Furthermore, sine

X � rppη XRqzZ̄q XXs, D is spanned by η X
�a1

i�1 Si. We then onlude by

Lemma A.9 and the indution hypothesis for Rp�a, 0;�a1C1C6, bq.

We next require a more sophistiated version of [4, Lemma 8.23℄.

Lemma B.3. Fix K in De�nitions 3.1 and 3.5 by

K �

#

1{pC5q
α
q if U is balaned

q�α�1{4
if U is unbalaned.
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Assume that 0   αpu1q   8. Let R � Rpa, b; c, dq with d � b ¤
logp1{qq

C3

6
qαpu1q

and

1{qC1
¥ c� a ¥ 1{q. Then

µpCu1

R q ¤

#

exp
�

�pc� aq exp
�

�2C2
6pd� bqqαpu1q

�

{C2
6

�

if U is balaned

exp
�

�pc� aqq1{4{C6

�

if U is unbalaned.

Proof. For notational onveniene, we assume that R � Rp�a, 0; 0, dq. If

Cu1

R holds, there exists η1 ¥ η suh that R is u1-rossed for η1 and there

is no spanned ritial T -droplet for η1 X R. By Lemma B.2, there exists a

u1-partition for η1 X R and, by Lemma A.9, all orresponding spanned T -

droplets have diameter at most K{C1. We notie that any empty site or

spanned droplet for η1 is still an empty site or spanned droplet for η.

We �rst assume that U is balaned. Given a partition P we de�ne its

numbers and total sizes of big/small/luster parts by

B � tj : 1{
?

q   aj ¤ 1{pC5C6q
α
qu b � |B| B �

¸

jPB

aj

S � tj : 1   aj ¤ 1{
?

qu s � |S| S �

¸

jPS

aj

C � tj : aj � 1u c � |C|.

We denote by Ppb, s, c, B, Sq the set of partitions P with the orresponding

numbers and total sizes of parts.

Then, using Corollary A.11, we get that the probability of a given P

ourring is at most

ΠpPq �
¹

jPC

p1� p1� qαpu1q
q

C2

6
d
q

¹

jPS

qaj
?

C6

¹

jPB

e�C3C6aj

� p1� p1� qαpu1q
q

C2

6
d
q

cqS
?

C6e�C3C6B

by the union bound on all possible droplets and their positions, realling

that d � q�Op1q
. Indeed, the probability that there is no set of αpu1q zeroes

onneted in Γ1 in a given Si is the probability that for any possible suh set

C, ηC � 0, whih, by the Harris inequality, is bigger than the produt of this

probability for eah set C.

Assuming for simpliity that 1{
?

q and 1{pC5C6q
α
q are integers, we an

ount Ppb, s, c, B, Sq in the following way (the �rst binomial oe�ient or-

responds to the deomposition of B into ordered parts, the seond one to the

deomposition of S, and the last two to the ordering of the parts of B, S, C):

|Ppb, s, c, B, Sq| ¤

�

B � b{
?

q � 1

b� 1


�

S � s� 1

s� 1


�

b� s� c

b


�

s � c

s




¤ 2B�S
pb� s� cqbps� cqs ¤ eB�Sq�C1s,
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realling that C6pB � S � cq   a ¤ 1{qC1
. Therefore, denoting by m �

ta{pC1C6qu � B � S � c the total number of strips, we have

¸

B,S,b,s

¸

PPPpb,s,m�B�S,B,Sq

ΠpPq

¤ m4max
B,S

�

1�
�

1� qαpu1q
�C2

6
d
	m�B�S

qS
?

C6{2e�C3C6B{2

¤ m4 max
0¤c¤m

e�c exp
p

�2C2

6
dqαpu1q

qe�C2C6pm�cq

¤ exp
�

�

m

2
exp

�

�2C2
6dq

αpu1q
�

	

,

whih onludes the proof in the balaned ase, realling the hypotheses of

the lemma.

We next onsider U to be unbalaned. Notie that, sine K � q�α�1{4
,

there may be droplets with diameter larger than 1{pC5q
α
q. Therefore, we

further set

H �

 

j : 1{pC5C6q
α
q   aj ¤ 1{pC6q

α�1{4
q

(

h � |H| H �

¸

jPH

aj .

Then Corollary A.11 gives that the probability of a given P ourring is at

most

ΠpPq �
�

qOp1qe�2{pC5q
α
q

�h
¤ ΠpPq � exp

�

�Hq1{4C6{C5

�

.

We further easily hek that

�

H � h{pC5C6q
α
q � 1

h� 1




¤ eH
?

q

�

h� b� s� c

h




¤ eH
?

q,

so, as above the probability of any P ourring is at most

m6 exp
�

�m.min
�

C6q
1{4
{p2C5q, exp

�

�2C2
6dq

αpu1q
���

¤ exp

�

�

C6mq1{4

3C5




,

whih onludes the proof.

B.2 Crossing in a diretion with in�nite di�ulty

If U has an in�nite number of stable diretions, we need to treat an infeted

boundary ondition. This is essential, as we will work in exponentially large

regions, for whih the bounds from the previous setion annot be applied.

We plae ourselves in the setting of Setion 4.1. We will write (ut/whole)

droplet for (ut/whole) Su1
-droplet in the sense of De�nition A.13, with u�1

49



and u�1 su�iently lose to u1. These should not be onfused with T -droplets,

whih are alled parallelograms to avoid any onfusion.

We will seek to apply Corollary A.20 rather than A.11 to prove the follo-

wing.

Lemma B.4. Fix

K �

#

q�α
if U is balaned

q�α�1{4
if U is unbalaned

for De�nitions 3.1 and 3.5. Let R � Rpa, b; c, dq with C1 ¤ d�b ¤ exppq�3α
q

and c� a ¥ q�4α
. Then

µpCu1

R q ¤ exp
�

�q�3α
�

.

Our strategy is as follows. Instead of onsidering u1-partitions, we diretly

retrae the spanning algorithm to obtain a hierarhy of droplets reahing

a ut droplet of size roughly c � a. We reassure the reader familiar with

[22℄ that our hierarhies will be very simple and impreise, as the a priori

hypothesis that there are no ritial parallelograms removes the metastability

(it is no longer easy for large droplets to grow) together with the need of �ne

tuning. Namely, their seeds will be of size roughly K whih will also be the

inrement of the size of unary verties (the reader unfamiliar with hierarhies

is invited to onsult the de�nitions below). The lak of ritial parallelograms

entails that all droplets in the hierarhy are ut (so they are simply very �at

triangles). The bound on the probability of seeds being spanned is provided

by Corollary A.20 and entropy is easily subdominant, so we an fous on

the probability that the infetions around a ut droplet are suh that if that

droplet is infeted, the infetion an expand to �ll a slightly larger ut droplet.

However, this would imply that there is a (smaller sale) u�1 -rossing from

the side of the smaller one to side of the larger one (see Figure 3b). The

probability of this event is again bounded diretly by Corollary A.20, taking

into aount Remark A.21.

Let us begin by introduing our hierarhies following Holroyd [22℄. Let

T � q�α�1{4
. Fix a droplet D. A hierarhy H for D is a rooted unary-binary

tree with eah vertex x labelled by a droplet Dx � D, so that the label of

the root is D. We denote by Npxq the set of hildren of x P V pHq, so that

|Npxq| P t0, 1, 2u for all x. The leaves are alled seeds and the binary verties

are alled splitters. We alert the reader that in reality there will only be

ut droplets in our hierarhies, but for tehnial reasons we de�ne them in

general. A hierarhy is de�ned to satisfy the following onditions.

• If y P Npxq, then Dy � Dx.
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• If Dx is a whole droplet, then x is a seed and T {3 ¤ |Dx|.

• If Dx is a ut droplet, then T {3 ¤ |Dx| ¤ T if and only if x is a seed.

• If Npxq � tyu and |Npyq| � 1, then T   |Dx| � |Dy| ¤ 2T .

• If Npxq � tyu, then |Dx| � |Dy| ¤ 2T .

• If Npxq � ty, zu, then |Dx| � |Dy| ¡ T and xDy YDzy � tDxu.

We set

SpHq � tx P V pHq : |Npxq| � 0u

NpHq � tpx, yq P pV pHqq2 : Npxq � tyu, |Npyq| � 1u

and remark that |SpHq|�1 is the number of splitters. We say that a hierarhy

H ours if the following events our disjointly (are witnessed by disjoint

sets of infetions, see [32℄).

• For every seed x P SpHq we have that Dx is spanned.

• For every x P V pHq suh thatNpxq � tyu we have Dx P xDyYpηXDxqy.

Lemma B.5. If D is a spanned droplet with |D| ¥ T {3, then some hierarhy

for D ours.

Proof. The proof is very similar e.g. to [4, Lemma 8.7℄. Assuming that D0

is a spanned droplet with |D0| ¥ T {3, we onstrut an ourring hierarhy

by indution on D0 with respet to inlusion. If |D0| ¤ T or D0 is a whole

droplet, the hierarhy with only vertex labelled by D0 is as desired.

Assume that D0 is a ut droplet and |D0| ¡ T . Let Z be a onneted

omponent for Γ1 of rD0X ηs
B

suh that the smallest droplet ontaining Z is

D0, and let Z0 � Z X η. We then have rZ0sB � Z. By Lemma A.17 there

exist sequenes Z1, . . . , Zm and Z 1

1, . . . , Z
1

m of subsets of Z0 and D1, . . . , Dm

and D1

1, . . . , D
1

m suh that the following onditions hold for all 0   i ¤ m.

• Zi�1 � Zi \ Z 1

i, rZisB, rZ
1

isB and rZisB Y rZ 1

isB are onneted in Γ1.

• Di � DprZisBq and D1

i � DprZ 1

isBq.

• xDi YD1

iy � tDi�1u and |Di| ¥ |D1

i|

• m ¥ 1 is the minimal index suh that one of the following holds:

1. |D0| � |Dm| ¡ T ;
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2. Dm is a whole droplet;

3. |Dm| ¤ T .

If 1 does not hold, then we attah a seed labelled by Dm to the root and

we are done, as |Dm| ¥ |Dm�1|{3 ¡ T {3 by Lemma A.18 and minimality of

m. Indeed, Dm being spanned is witnessed by Zm, whileD0 P xDmYpηXD0qy

is witnessed by Z0zZm.

Assume that 1 holds. Then we onsider two ases. If T   |D0| � |Dm| ¤

2T , we attah a hierarhy for Dm (ourring for Zm) to the root D0 and we

are done using Lemma A.18 to get that |Dm| ¡ T {3 as above. Otherwise we

attah a splitter labelled by Dm�1 to the root D0 (if m � 1, then D0 is the

splitter) and hierarhies for Dm and D1

m to that splitter. Then we are done,

realling Lemma A.18, to get that |Dm| ¥ |D1

m| ¥ |Dm�1| � |Dm| �OpC 1

2q ¥

T �OpC 1

2q.

In order to bound the probability that a hierarhy ours, we will need

the following result.

Lemma B.6. Let D1 � D2 be two ut droplets for B � Hu1
suh that T  

|D2| � |D1| ¤ 2T and |D2| ¤ q�4α
. Then

µpD2 P xD1 Y pη XD2qyq ¤ e�q�α
{C5.

Proof. The proof is illustrated in Figure 3. Let us denote Di � pH̄u�
1

pxiq X

H̄u�
1

pyiqqzHu1
for i P t1, 2u. De�ne the strips X � H̄u�

1

px2qzH̄u�
1

px1q and Y �

H̄u�
1

py2qzH̄u�
1

py1q and assume without loss of generality that y2� y1 � ΩpT q.

Assume that D2 P xD1 Y pη X D2qy ours. Setting η1 � η X Y X D2, this

implies D2 P xpD2zY q Y η1y. We onsider two ases.

Assume that D2 P xη
1

y. By Corollary A.20 the probability of this event

is at most q�Op1qe�2{pC5q
α
q

.

Assume that, on the ontrary, D2 R xη
1

y and set B

1

� Hu1
YH̄u�

1

py1q. Then

by Observation 3.3 there exists a set C � rD2 X ηs
B

1

onneted in Γ1 suh

that dpC,Hu�
1

py1qq ¤ C 1

2 and C � Hu�
1

py2q. By de�nition this implies the

existene of a ut Su�
1

-droplet spanned by D2 X η with boundary B

1

, where

the two diretions of ut droplets in Su�
1

are u�1 and u��1 � 2u�1 � u�1 (reall

Remark A.21). Hene, by the union bound over all possible suh droplets

and Corollary A.20 we obtain the desired result.

We are now ready to assemble the proof of Lemma B.4 as outlined at the

beginning of the setion.
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u�
1

u��
1

u�
1

u1

v1

v2 u4

u2

u3

(a) We reall all diretions in the ontext of

Lemma B.6, stable ones being thikened. The

only relevant ones for a u1-rossing are u1, u
�

1 ,

u�1 and u��1 (or similarly u��1 ). Indeed, v1 and

v2 are only used for whole droplets and to bound

the probability of a u1-rossing we onsider ut

droplets with diretions u�1 , u
�

1 . Note that u1
and u2 should be very lose and u�1 even loser,

but this is avoided here for visibility.

u�
1

u�
1

u�
1 u��

1

u1D1

D2

(b) Growth of the infetion in the hathed ut droplet D1 to the thikened one,

D2, requires a path of infetions suh as the one on the right, induing the shaded

spanned ut Su�
1

-droplet.

Figure 3: Illustration of the proof of Lemma B.6 bounding the probability

that the infetions around a ut droplet, D1, allow an infetion �lling D1 to

grow and �ll the slightly larger ut droplet, D2.

Proof of Lemma B.4. Assume that Cu1

R ours and let η1 ¥ η be as in De�-

nition 3.5. Then there exists a spanned ut droplet for η1XR with boundary

Hu1
of diameter at least c � a. By Lemma A.19 this implies the existene

of a droplet D spanned for η1 X R with q�4α
{C1 ¤ |D| ¤ 3q�4α

{C1. We set

Z � η1 XRXD.

Let us assume for a ontradition that there exists a whole droplet of

size at least q�α�1{4
{3 spanned for Z. It is easy to hek that there exists a

parallelogram of diameter at least q�α�1{4
{C1 spanned by Z (onsider a on-

neted omponent satisfying De�nition A.13, take the smallest parallelogram

ontaining it and use Observation 3.3). By Lemma 3.4 this ontradits the

absene of spanned ritial parallelograms for η1 XR.

Therefore, D is a ut droplet and by Lemma B.5 there exists a hierarhy

for D ourring for the zero set Z, whose labels are all ut droplets. Let

H pDq denote the set of suh hierarhies. Now, by the BK inequality [32℄,

for any hierarhy H we have the following analogue of [22, Equation (37)℄:

µpH oursq ¤

¹

xPSpHq

µpDx is spannedq

¹

px,yqPNpHq

µpDx P xDy Y pη XDxqyq.
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Thanks to Corollary A.20 and Lemma B.6, we dedue

µpCu1

R q ¤

¸

D

¸

HPH pDq

exp
�

�q�α
p|SpHq| � |NpHq|q{C5

�

.

The number of hoies for D is Oppd � bqq�4α
q. We separate the sum over

hierarhies aording to their number of verties vpHq � Θp|SpHq|�|NpHq|q.

By Lemma A.18 we have that vpHq � Ωp|D|{T q � Ωpq�3α�1{4
{C1q. Finally,

the number of hierarhies for a given ut droplet D with v verties is at most

q�Opvq
. Combining these bounds we have

µpCu1

R q ¤ pd� bq
¸

v�Ωpq�3α�1{4
{C1q

exp
�

�q�αΩpvq{C5

�

,

whih onludes the proof.
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