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Abstra
t

We study a general 
lass of intera
ting parti
le systems 
alled kine-

ti
ally 
onstrained models (KCM) in two dimensions tightly linked to

the monotone 
ellular automata 
alled bootstrap per
olation. There

are three 
lasses of su
h models [5℄, the most studied being the 
riti
al

one. In a re
ent series of works [18,20,26℄ it was shown that the KCM


ounterparts of 
riti
al bootstrap per
olation models with the same

properties [4℄ split into two 
lasses with di�erent behaviour.

Together with the 
ompanion paper by the �rst author [17℄, our

work determines the logarithm of the infe
tion time up to a 
onstant

fa
tor for all 
riti
al KCM, whi
h were previously known only up to

logarithmi
 
orre
tions. This improves all previous results ex
ept for

the Duarte-KCM, for whi
h we give a new proof of the best result

known [25℄. We establish that on this level of pre
ision 
riti
al KCM

have to be 
lassi�ed into seven 
ategories instead of the two in boot-

strap per
olation [4℄. In the present work we establish lower bounds

for 
riti
al KCM in a uni�ed way, also re
overing the universality re-

sult of Toninelli and the authors [18℄ and the Duarte model result of

Martinelli, Toninelli and the se
ond author [25℄.
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1 Introdu
tion and results

1.1 Kineti
ally 
onstrained models

Kineti
ally 
onstrained models (KCM) are a 
lass of intera
ting parti
le sy-

stems used sin
e the 1980s to model the liquid-glass transition [12, 13℄ (see

[14,30℄ for reviews). We will be interested in the very general 
lass of U-KCM

�rst introdu
ed by Can
rini, Martinelli, Roberto and Toninelli in 2008 [6℄,

whi
h in
ludes all previously 
onsidered 
ases on Zd
.

Let us start by introdu
ing these models dire
tly on the two-dimensional

latti
e, to whi
h we restri
t our attention. A KCM is a Markov pro
ess with

state spa
e Ω � t0, 1uZ
2

. For a 
on�guration η P Ω and a site x P Z2
, we

denote ηx the value of η at x. We say that x is empty or infe
ted if ηx � 0

and that it is o

upied or healthy if ηx � 1. We thus naturally identify a


on�guration η P Ω with the set of its infe
ted sites, so that η � Z2
.

A U-KCM is spe
i�ed by two parameters�an update family U and an

equilibrium measure µ. The measure µ on Ω is 
hosen to be the produ
t

Bernoulli measure su
h that ea
h site is infe
ted with probability q ¡ 0 and

healthy with probability 1� q. All asymptoti
s hereafter are taken as q Ñ 0.

The update family U is a �nite set of �nite nonempty subsets of Z2
zt0u 
alled

update rules. The dynami
s is the following. For ea
h site x P Z2
at rate 1

(i.e. at the times given by a Poisson point pro
ess on R
�

with intensity 1)

we attempt to update ηx by repla
ing it by an independent Bernoullip1� qq

variable. However, the update is only performed if there exists an update

rule U P U su
h that η � px�Uq, while otherwise the 
on�guration remains

un
hanged. In more formal terms the generator of the Markov pro
ess is the

following for any fun
tion f : Ω ÞÑ R depending on a �nite number of sites.

Lpfqpηq �
¸

xPZ2

1

tDUPU ,ηx�U�0upµxpfq � fqpηq,

where ηX denotes the restri
tion of η toXXZ2
forX � R2

and µxpfq denotes

the average of f with respe
t to ηx 
onditionally on all other o

upation

variables. We further view ηX as the element of t0, 1uZ
2

equal to η in XXZ2

and to 1 elsewhere. For ba
kground on the theoreti
al foundations of su
h

intera
ting parti
le systems the reader is referred to [23℄. In parti
ular, µ is

indeed a reversible invariant measure for the U-KCM.

For any KCM arguably the most natural quantity of interest des
ribing

the speed at whi
h memory of the initial state is lost is the �rst infe
tion

time of the origin

τ0 � inftt ¥ 0, pηptqq0 � 0u P r0,8s,
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where pηptqqt¥0 denotes the U-KCM pro
ess. As we will 
on
entrate on the

equilibrium properties of the KCM, we will rather be 
on
erned with Eµrτ0s,

that is the expe
tation of τ0 with respe
t to the law of the stationary U-KCM

with initial 
ondition distributed a

ording to its equilibrium measure µ.

1.2 Bootstrap per
olation and universality

Bootstrap per
olation is a 
lose relative of KCM, though the two �elds remai-

ned relatively independent for de
ades. Formally, the 
ontinuous time version

of U-bootstrap per
olation is the U-KCM with q � 1. However, bootstrap

per
olation has important additional properties and has attra
ted a great

deal of attention with di�erent motivation, also in non-latti
e settings, as

well as from 
omputer s
ien
e and so
iologi
al perspe
tives. We dire
t the

reader to [9, 29℄ and the referen
es therein for an overview of this ri
h �eld.

In U-bootstrap per
olation (the update family U being as above), for ea
h

integer t ¥ 0, a set At of infe
ted sites at time t is 
onstru
ted as follows.

Given an initial set of infe
ted sites A0 � Z2
we set for all integers t ¥ 0

At�1 � At Y tx P Z2 : DU P U , x� U � Atu.

That is, at ea
h dis
rete time step the sites su
h that the translate of a

rule by the 
orresponding site is already fully infe
ted also be
ome infe
ted,

while infe
tions never heal. Thus, given the initial 
ondition, U-bootstrap

per
olation is a monotone deterministi
 
ellular automaton. For any set

A0 � Z2
we denote by rA0s �

�

t¥0 At its 
losure with respe
t to the U-

bootstrap per
olation pro
ess, i.e. the sites that are eventually infe
ted when

the initial infe
tion is A0 (we may also use this notation when A0 � Z2
; it

will then mean rA0 X Z2
s). The best-studied setting, whi
h is also the one

relevant to us, is taking A0 random with law µ, so that ea
h site is infe
ted

independently with probability q. In this 
ase the most prominent questions

are for whi
h values of q we have rA0s � Z2
a.s. and, for su
h values of q,

what is the typi
al order of magnitude of the infe
tion time of the origin τ0
de�ned as for KCM.

The general U-bootstrap per
olation framework only gained visibility af-

ter the work of Bollobás, Smith and Uzzell [5℄. They introdu
ed several


ru
ial notions, whi
h we dis
uss next. We invite the reader unfamiliar with

these notions to systemati
ally 
onsult the examples in Figure 1 and apply

the de�nitions to them.

We denote by S1
� tz P R2, }z} � 1u the unit 
ir
le, whi
h we standardly

identify with R{2πZ, where } � } is the Eu
lidean norm of R2
(all distan
es

in this work will be Eu
lidean, denoted by dp�, �q). A dire
tion u P S1
will be
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alled rational when tan u P Q Y t8u. For a dire
tion u P S1
and a s
alar

x P R, we de�ne the open half-plane Hupxq � ty P R2, xu, yy   xu dire
ted

by u translated by x, and H̄upxq � ty P R2, xu, yy ¤ xu the 
orresponding


losed half-plane. We further set Hu � Hup0q. A dire
tion u P S1
is said

to be unstable (for U) if there exists U P U su
h that U � Hu and stable

otherwise. It is not hard to see (Theorem 1.10 of [5℄, Lemma 2.6 of [4℄) that

the set of stable dire
tions is a �nite union of 
losed intervals of S1
with

rational endpoints. Bollobás, Smith and Uzzell [5℄ introdu
ed the following

partition of update families into three 
lasses. In order to state their results

and others, we will need the following standard asymptoti
 notation. For

any real fun
tions fpqq, gpqq de�ned for q ¡ 0 su�
iently small, with g ¡ 0,

we write

• fpqq � Θpgpqqq when cgpqq ¤ fpqq ¤ Cgpqq,

• fpqq � Ωpgpqqq when fpqq ¥ cgpqq,

• fpqq � Opgpqqq when |fpqq| ¤ Cgpqq

for some 
onstants 0   c ¤ C   �8 when q ¡ 0 is su�
iently small. Finally,

we write fpqq � opgpqqq when
|fpqq|

gpqq
Ñ 0 when q Ñ 0. Let us note that all

su
h impli
it 
onstants are allowed to depend on the update family U and

all (�nite sets of) dire
tions 
onsidered, but never on q.

De�nition 1.1 (De�nition 1.3 of [5℄). An update family U is 
alled

• super
riti
al if there exists an open semi
ir
le of unstable dire
tions,

• 
riti
al if it is not super
riti
al, but there exists an open semi
ir
le with

a �nite number of stable dire
tions,

• sub
riti
al otherwise.

In [5℄ it was proved that for super
riti
al models τ0 � q�Θp1q
with high

probability

1

as q Ñ 0, while for 
riti
al ones τ0 � exppq�Θp1q
q. Completing

the justi�
ation of De�nition 1.1, Balister, Bollobás, Przyku
ki and Smith

[2℄ proved that for sub
riti
al models τ0 � 8 with positive probability for q

small enough. Albeit very general, these results were mu
h less pre
ise than

what was known for most spe
i�
 models studied previously, so one may view

them as only qualitatively identifying the three di�erent possible behaviours.

Super
riti
al models are fairly simple from the bootstrap per
olation

point of view, while still very little is known in general about sub
riti
al

1

This means there exist 
onstants 0   c   C   �8 su
h that µpq�c
¤ τ0 ¤ q�C

q Ñ 1

when q Ñ 0.
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ones [16℄. The remaining 
riti
al models are the most pursued. Bollobás,

Duminil-Copin, Morris and Smith [4℄ established mu
h more pre
ise quan-

titative results for this 
lass. To state their results, we need some more

notation.

De�nition 1.2 (De�nition 1.2 of [4℄). Let U be a 
riti
al update family and

u P S1
be a dire
tion. Then the di�
ulty of u, αpuq, is de�ned as follows.

• If u is unstable, then αpuq � 0.

• If u is an isolated stable dire
tion (isolated in the topologi
al sense),

then

αpuq � mintn P r1,8q : DZ � Z2, |Z| � n, |rHu Y ZszHu| � 8u,

i.e. the minimal number of additional infe
tions allowing Hu to infe
t

an in�nite set of sites.

• Otherwise, αpuq � 8.

We de�ne the di�
ulty of U by

αpUq � min
CPC

max
uPC

αpuq P r1,8q, (1)

where C � tHu X S1 : u P S1
u is the set of open semi
ir
les of S1

.

De�nition 1.3 (De�nition 1.3 of [4℄). A 
riti
al update family with di�
ulty

α is balan
ed if there exists a 
losed semi
ir
le in whi
h all dire
tions have

di�
ulty at most α and is unbalan
ed otherwise.

With these de�nitions, the main result of Bollobás, Duminil-Copin, Mor-

ris and Smith [4, Theorem 1.5℄, states

τ0 �

$

&

%

exp
�

Θp1q

qαpUq

	

for 
riti
al balan
ed models,

exp
�

Θpplog qq2q

qαpUq

	

for 
riti
al unbalan
ed models

(2)

with high probability as q Ñ 0. These are the best general estimates 
urrently

known, though for some spe
i�
 
hoi
es of U sharper results are available

[3, 10, 15, 21, 22℄.
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1.3 Universality for KCM

Super
riti
al KCM As we shall see, the situation for U-KCM is far more


omplex. Some new features already appear for super
riti
al models. The

general setting was treated only re
ently by Martinelli, Morris and Toninelli

[26℄ and Martinelli, Toninelli and the se
ond author [25℄, who identi�ed the

two relevant 
lasses of models.

De�nition 1.4 (De�nition 2.11 of [26℄). A super
riti
al update family U is

rooted if there exist two non-opposite stable dire
tions and unrooted other-

wise.

In [26℄ the upper bounds in the following result for U-KCM were establis-

hed: as q Ñ 0,

Eµrτ0s �

#

exp pΘplogp1{qqqq super
riti
al unrooted,

exp pΘpplogp1{qqq2qq super
riti
al rooted,
(3)

while the lower ones were supplied in [25℄, the lower bound for unrooted

models being trivial. The lower bound for rooted models relied mostly on a


ombinatorial result by the se
ond author [24℄ roughly stating that in order to

infe
t the origin starting from a 
on�guration in whi
h the infe
tion 
losest

to the origin is at distan
e d from it, the dynami
s has to go through a


on�guration with at least log d infe
tions at distan
e at most d from the

origin. This 
ombinatorial bottlene
k was originally identi�ed in [31℄ (see

also [8℄) for the ar
hetypal one-dimensional super
riti
al rooted model, whi
h

is, perhaps, the simplest and best-studied KCM�the East model (see [11℄

for a review). Extending the one-dimensional result to higher dimensions in

[24℄ required the development of a new approa
h, whi
h will be the starting

point for our analysis, although we will not be able to apply the result of [24℄

itself.

Criti
al KCM Turning to 
riti
al models, a �rst observation is that boot-

strap per
olation provides an automati
 lower bound for Eµrτ0s in the U-KCM

with the same update family. In parti
ular, it is easy to show (see [27, Lemma

4.3℄ and its improved version from [19, Se
tion 2℄) that the expressions in (2)

are lower bounds for Eµrτ0s for the 
orresponding U-KCM.

Led by the intuition from the results for super
riti
al models, Morris [28℄,

presenting his work with Martinelli and Toninelli, introdu
ed the following

notion (we simplify his terminology slightly).

De�nition 1.5 (De�nition 2.3 of [28℄). A 
riti
al update family of di�
ulty

α is 
alled rooted if there exist two non-opposite dire
tions of di�
ulty stri
tly

larger than α and unrooted otherwise.
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Initially it was believed, as explained in [28℄, that if a 
riti
al model is

unrooted, it satis�es Eµrτ0s � exppq�αpUq�op1q
q as q Ñ 0, but not if it is

rooted. This 
onje
ture was made more pre
ise by the same authors in [26℄,

who then suggested a di�erent de�nition of rooted/unrooted re�e
ting the

upper bounds they proved and 
onje
tured to be tight.

However, both 
onje
tures were disproved by Martinelli, Toninelli and

the �rst author [20℄, who proved stronger upper bounds than the ones in

[26℄, in parti
ular refuting the above 
onje
tures for some rooted models and

showing that the automati
 bootstrap per
olation lower bound is essentially

sharp for them as well. In a parallel work Toninelli and the present authors

[18℄ proved for all other models lower bounds essentially mat
hing the upper

ones from [26℄. Hen
e, the 
ombined results of [18,20,26℄ proved the following

universality pi
ture featuring yet a di�erent partition of 
riti
al models. As

q Ñ 0,

Eµrτ0s �

$

&

%

exp
�

plogp1{qqqOp1q

qαpUq

	


riti
al, �nitely many stable dire
tions,

exp
�

plogp1{qqqOp1q

q2αpUq

	


riti
al, in�nitely many stable dire
tions.

This result shows that ea
h universality 
lass in bootstrap per
olation

(models with the same value of αpUq) splits into two universality 
lasses of

KCM. This should indeed be viewed as the 
riti
al 
ounterpart of (3). While

the lower bound of [18℄ establishing the result for models with in�nitely many

stable dire
tions does re�e
t (and a
tually uses) the 
ombinatorial bottlene
k

of the one-dimensional super
riti
al rooted East model, the upper bound of

[20℄ is based on a very pe
uliar e�
ient me
hanism that uses a �quasi-lo
al�

East-type movement resulting in a super
riti
al unrooted dynami
s on larger

length s
ales. However, it remained un
lear whether this fairly unnatural

me
hanism of [20℄ and the purely East-like one used in [26℄ are indeed the


orre
t ones for all models 
on
erned.

1.4 Results

Our goal is to identify the dominant relaxation me
hanisms for ea
h model,

whi
h are re�e
ted in the s
aling of τ0. Therefore, together with the 
ompa-

nion work by the �rst author [17℄, we determine logEµrτ0s up to a 
onstant

fa
tor. In the present paper we establish all lower bounds by identifying

the 
orre
t bottlene
k (see Se
tion 2), while the 
ompanion one [17℄ provi-

des the remaining mat
hing upper bounds by exhibiting e�
ient relaxation

me
hanisms for all 
riti
al U-KCM.

In order to state our results we introdu
e the last bit of notation needed

to de�ne the seven re�ned universality 
lasses of 
riti
al U-KCM, whi
h we

7



in�nite stable dire
tions

�nite stable dire
tions

rooted unrooted

unbalan
ed (a) 2, 4, 0 (
) 1, 3, 0 (d) 1, 2, 0

balan
ed (b) 2, 0, 0 (e) 1, 1, 0

(f) 1, 0, 1

s.-dir. iso.

(g) 1, 0, 0

Table 1: Classi�
ation of 
riti
al U-KCM with di�
ulty α. Assuming [17℄,

for ea
h 
lass Eµrτ0s � exp

�

Θp1q
�

1
qα

	β �

log 1
q

	γ �

log log 1
q

	δ



as q Ñ 0.

The label of the 
lass and the exponents β, γ, δ are indi
ated in that order.

identify.

De�nition 1.6. A 
riti
al update family of di�
ulty α is 
alled

• isotropi
 if there is no dire
tion of di�
ulty stri
tly greater than α,

• semi-dire
ted if there exists exa
tly one dire
tion of di�
ulty stri
tly

greater than α.

Noti
e that the isotropi
/semi-dire
ted 
riti
al models form a partition

of unrooted balan
ed 
riti
al ones.

Theorem 1. Let U be a 
riti
al update family with di�
ulty α and in�nite

number of stable dire
tions. We have the following alternatives as q Ñ 0.

(a) If U is unbalan
ed, i.e. there exist two opposite dire
tions u P S1
with

αpuq ¡ α, then

Eµrτ0s � exp

�

Θ
�

plogp1{qqq
4
�

q2α

�

.

(b) If U is balan
ed, i.e. there do not exist two opposite dire
tions u P S1

with αpuq ¡ α, then

Eµrτ0s � exp

�

Θp1q

q2α




.

The upper bounds are proved in [26, Theorem 2(a)℄ and [17, Theorem

1(b)℄ respe
tively. Furthermore, for one spe
i�
 model of the 
lass (a), the

Duarte model, this result was known from [25℄. A di�erent proof of the lower

bound for 
ase (b) was given in [18℄.
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Theorem 2. Let U be a 
riti
al update family with di�
ulty α and �nite

number of stable dire
tions. We have the following alternatives as q Ñ 0.

(
) If U is unbalan
ed rooted, i.e. there exist at least three dire
tions u P S1

with αpuq ¡ α, two of whi
h are opposite, then

Eµrτ0s � exp

�

Θ
�

plogp1{qqq
3
�

qα

�

.

(d) If U is unbalan
ed unrooted, i.e. there exist exa
tly two dire
tions u P S1

su
h that αpuq ¡ α and they are opposite, then

Eµrτ0s � exp

�

Θ
�

plogp1{qqq
2
�

qα

�

.

(e) If U is balan
ed rooted, i.e. there exist at least two dire
tions u P S1

with αpuq ¡ α, but not two opposite ones, then

Eµrτ0s � exp

�

Θ plogp1{qqq

qα




.

(f) If U is semi-dire
ted, i.e. there exists exa
tly one dire
tion u P S1
su
h

that αpuq ¡ α, then

Eµrτ0s � exp

�

Θ plog logp1{qqq

qα




.

(g) If U is isotropi
, i.e. there exists no dire
tion u P S1
su
h that αpuq ¡ α,

then

Eµrτ0s � exp

�

Θp1q

qα




.

The upper bound in (
) was proved in [20, Theorem 1℄, while the re-

maining upper bounds are from [17, Theorem 1℄. The lower bounds for 
a-

ses (d) and (g) follow automati
ally from bootstrap per
olation results and

[27, Lemma 4.3℄ as dis
ussed in the previous se
tion.

The 
lassi�
ation results, assuming the remaining mat
hing bounds of

[17℄, are summarised in Table 1. In addition, a simple representative of ea
h


lass is given in Figure 1 for the reader's 
onvenien
e.

Remark 1.7. The lower bounds we prove in Theorems 1 and 2 for Eµrτ0s also

hold for another important 
hara
teristi
 times
ale of the 
orresponding U-

KCM, the relaxation time Trel (see e.g. [18, De�nition 2.5℄), whi
h is another

measure of the speed at whi
h the memory of the initial state is lost. Indeed,

[26, Equation (2.8)℄ yields Trel ¥ qEµrτ0s.
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2

1

8

(a) A model of Theorem 1(a).

1

1

8

(b) A model of Theorem 1(b).

2

12

2

(
) A model of Theorem 2(
).

2

2

11

(d) A model of Theorem 2(d).

1

12

2

(e) A model of Theorem 2(e).

1

11

2

(f) A model of Theorem 2(f).

1

1

11

(g) A model of Theorem 2(g).

Figure 1: Representative models of ea
h of the seven re�ned universality


lasses of 
riti
al U-KCM. For ea
h one the update rules are depi
ted on the

left with 0 marked by a 
ross and the sites of the rule denoted by dots. The

�gure on the right gives the stable dire
tions, whi
h are thi
kened and have

their di�
ulties next to them. The isolated stable dire
tions are marked by

dots. In all 
ases the di�
ulty α of the model is 1, as witnessed by the

right-hand open semi
ir
le.
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1.5 Comments

Let us emphasise that, 
ontrary to what is the 
ase in bootstrap per
olation,

where the exa
t asymptoti
s and 
orre
tive terms of log τ0 are sometimes

known, for KCM there exists only one model (the Duarte model treated by

Martinelli, Toninelli and the se
ond author [25℄) for whi
h logEµrτ0s is de-

termined up to a 
onstant fa
tor and none for whi
h the exa
t asymptoti
s is

known. Thereby, the 
ombined results of [17,20,26℄ and the present work im-

prove the best known results for all 
riti
al U-KCM ex
ept the Duarte-KCM

and give a new proof of the best known results for that last model. In view of

the state of the art in the simpler setting of U-bootstrap per
olation, it does

not seem 
urrently feasible to pursue higher pre
ision in full generality for


riti
al U-KCM. Theorem 1 establishes the lower bounds of [18, Conje
ture

7.1℄, while Theorem 2 proves the ones of [20, Conje
ture 6.1℄ (that 
onje
ture

was intentionally not as pre
ise 
on
erning the semi-dire
ted 
ase (f), whi
h

seemed quite mysterious at the time of writing of the 
onje
ture).

What is more, the present work treats all lower bounds in a systemati


and 
omprehensive way, by showing that the main obsta
le for the dynami
s

in all 
ases 
orresponds to a 
ombinatorial bottlene
k similar to the one of

the two-dimensional East model (see Se
tion 2 for more details). Moreover,

the 
ore of our argument 
arries over to higher dimensions with no further

di�
ulty, thus redu
ing su
h lower bounds for higher-dimensional KCM to

estimates for their bootstrap per
olation 
ounterparts.

1.6 Organisation of the paper

The remainder of the paper is organised as follows. In Se
tion 2 we pro-

vide an outline of the ideas of the proof. The 
ore of the proof is Se
tion 3,

where we establish the general 
ombinatorial bottlene
k for KCM dynami
s.

In Se
tion 4 we dedu
e our main results, Theorems 1 and 2, very dire
tly

from Proposition 3.7. It is not until Se
tion 4 that the distin
tion between

the di�erent 
lasses of models be
omes relevant. In addition to the 
en-

tral Proposition 3.7, Se
tion 4 requires several estimates regarding bootstrap

per
olation, whi
h are established in the appendi
es. Appendix A is rather

standard and provides bounds on the probability of �spanning� by uniting

arguments of Bollobás, Duminil-Copin, Morris and Smith [4℄ and of Toninelli

and the authors [18℄ without signi�
ant new input. This appendix may still

be of interest to bootstrap per
olation spe
ialists, as it gives a simpli�
ation

of the most te
hni
al part of the proof of the main result of [4℄. Finally, in

Appendix B we establish bounds on the probability of a notion of �
rossing�

inspired from [4℄ but modi�ed to suit our setting (see Se
tion 2), whi
h are

11



not parti
ularly di�
ult, given Appendix A.

2 Outline of the proof

Let us outline the main highlights of the proof, emphasising new ideas with

respe
t to our main sour
es of inspiration [4, 17, 18, 24℄. The di�eren
es

between the various universality 
lasses will be mu
h more apparent in [17℄,

where e�
ient me
hanisms for the infe
tion of the origin are implemented

for ea
h 
lass. Sin
e one of the main virtues of our work is that the 
ore

argument is independent of the universality 
lass, we invite the reader willing

to understand the origin of the 
hoi
es of length s
ales appearing in Se
tion

4 to 
onsult [17℄, whi
h is also our inspiration for 
hoosing them. For the

sake of 
on
reteness, unless otherwise indi
ated, in this se
tion we restri
t

our attention to the representative of the 
lass (e) of rooted balan
ed models

with �nitely many stable dire
tions given in Figure 1e.

The proof relies on the notion of �bottlene
k�: we show that before the

origin 
an be infe
ted, the dynami
s has to go through a set of 
on�gurations

with a probability small enough so that this does not happen for a very long

time.

Morally speaking, in this model the smallest mobile entity (�droplet�) is

an infe
ted square of size roughly 1{q. Indeed, typi
ally on its right and top

sides one 
an �nd an infe
tion, whi
h allows it to infe
t the 
olumn of sites on

its right and the row of sites above it. However, it is essentially impossible for

the infe
tion to grow down or left, as this requires two 
onse
utive infe
tions

and those are typi
ally only available at distan
e 1{q2 from the droplet. We

will only work in a region R of size 1{q7{4 around the droplet, so, morally,

su
h 
ouples of infe
tions are not available. Thus, we 
an think of the droplet

as performing the following simpler dynami
s. If there is a droplet present

at a 
ertain position, it may 
reate/destroy another one above it and to its

right. Therefore, the droplets follow the dynami
s of the two-dimensional

super
riti
al rooted KCM 
alled East model.

As mentioned in the introdu
tion, for super
riti
al rooted models, in
lu-

ding the (two-dimensional) East one, the se
ond author established in [24℄

the following bottlene
k: in order for an infe
tion (representing a droplet in

our original model) to rea
h the 
enter of a box R of size 3n initially fully

healthy it is ne
essary to visit a 
on�guration with at least n infe
tions simul-

taneously present in the box. This was a
hieved by an indu
tive argument

that we des
ribe next. It is enough to show that if R is initially fully healthy

and we 
an only have stri
tly less than n infe
tions at the same time in R, we


annot rea
h a 
on�guration with all infe
tions in the middle of R. Indeed,

12



this implies that there are stri
tly less than n�1 infe
tions at the same time

in the middle of R, and one 
an make an indu
tion on n. To show that

we 
annot rea
h a 
on�guration with all infe
tions in the middle of R, by

reversibility we may instead prove that if we start with infe
tions only in the

middle of R, but we are never allowed to have n infe
tions simultaneously

in R, we 
annot rea
h a 
on�guration fully healthy in R. The idea is to

ensure that for any path of the dynami
s starting with all infe
tions in the

middle of R in whi
h we never have n infe
tions at the same time in R, the

following two 
onditions remain true at all times. Firstly, a bu�er zone (see

the shaded frame B in Figure 2) with no infe
tions remains inta
t. Se
ondly,

there is always an infe
tion in the internal region en
ir
led by the bu�er, so

the dynami
s 
annot rea
h a 
on�guration 
ompletely healthy in R.

In order to a
hieve that, we use a se
ond indu
tion, on the step of the

path. We know that so far an infe
tion remains trapped in the internal

region en
ir
led by the bu�er, so we only have n � 1 infe
tions available for

disrupting the bu�er from the outside, whi
h is impossible by indu
tion on

n. Therefore, it su�
es to show that we may not disrupt the bu�er from the

inside either. By proje
ting the two-dimensional East model on ea
h axis it

is 
lear that no infe
tion 
an enter the left and bottom parts of the bu�er

from the inside, and the proje
tions of the lowest and leftmost parti
les in

the region inside the bu�er need to remain where they were initially. The

right part of the bu�er (and similarly the top one) 
annot be rea
hed from

the inside, be
ause at least one infe
tion needs to remain as far left as the

leftmost initial one was, so we only have n� 1 infe
tions with whi
h to rea
h

the right part of the bu�er, whi
h is impossible by indu
tion on n.

On a very high level we will pro
eed in the same way for 
riti
al models.

However, there are several obvious problems in making the above reasoning

rigorous for these models (in fa
t we do not think that a dire
t mapping to

the two-dimensional East model 
an be made rigorous for our purposes). Fir-

stly, we said above that the smallest mobile entities, �droplets,� were infe
ted

squares of size 1{q, but the smallest mobile entities are a
tually more 
ompli-


ated. One needs to identify an event, whi
h says whether or not something

is a droplet and this event should be both deterministi
ally ne
essary for

infe
tion to spread and su�
iently unlikely, so that having many droplets at

the same time has probability small enough to be a good bottlene
k. It turns

out that the notion of �spanning� introdu
ed in [4℄, following [7℄ is �exible

enough for us. Roughly speaking (see De�nition 3.1), a droplet is spanned if

the infe
tions present inside it are su�
ient to infe
t a 
onne
ted set tou
hing

all its sides. We 
all a droplet 
riti
al if it has size roughly 1{q. It is known

from [4℄ and obtained again in Appendix A in a more adapted form that the

probability of a spe
i�
 
riti
al droplet being spanned is roughly expp�1{qq.

13



Unfortunately, given a 
on�guration, spanned 
riti
al droplets may overlap,

so in order to obtain good bounds on the probability of the 
on�guration, one

needs to 
onsider disjointly o

urring ones. We may then de�ne the number

of spanned 
riti
al droplets as the maximal number of disjointly o

urring

ones.

Having �xed these notions, we en
ounter a more signi�
ant issue�the

(spanned 
riti
al) droplets may move a bit without 
reating another droplet,

by 
hanging their internal stru
ture. Worse yet, they are not really forbidden

to move left or down, but simply are not likely to be able to do so wherever

they want: it depends on the dynami
 environment. Indeed, being able

to move by a single step down is allowed by the presen
e of a 
ouple of

infe
tions on the side of the droplet, whi
h has probability only as small

as q and is by far not something we 
an ensure never happens up to time

T � expplogp1{qq{qq.

In order to handle these problems we introdu
e the 
ru
ial notion of


rossing (not to be 
onfused e.g. with the one of [4℄). Consider a verti
al

strip S of width 1{q3{2 of our domain, R, whi
h is a square of size 1{q7{4.

Roughly speaking (see De�nition 3.5 for a more pre
ise statement), we say

that S has a 
rossing if the following two events o

ur. Firstly, the infe
tions

in S together with the entire half-plane to the right of S are enough to infe
t

a path from right to left in S (this is essentially the notion of 
rossing in [4℄).

Se
ondly, S does not 
ontain a spanned 
riti
al droplet. Noti
e that these

two events go opposite ways�the former is favoured by infe
tions, while the

latter is not. In Appendix B we show that the probability of a 
rossing de
ays

exponentially with the width of S at our s
ales.

Having established su
h a bound on the probability of 
rossings, we may

safely assume (it happens with high probability) that they never o

ur until

time T and this is the property we use to formalise the intuition that �mo-

ving down or left is impossible.� More pre
isely, assume that initially the

only 
riti
al droplet is on the right of S and S never has a 
rossing. Then,

simply be
ause the KCM dynami
s 
an never infe
t more than what boot-

strap per
olation 
an, starting from the same initial 
ondition, the droplet

will not be able to rea
h the left side of S. Indeed, if it 
ould, there would be

a �trail� of infe
table sites from the right of S to its left, whi
h would imply

a 
rossing.
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3 Super
riti
al rooted dynami
s of droplets

3.1 Setting and preliminaries

Let U be an update family. Assuming they exist, we further �x two non-


ollinear rational stable dire
tions u1 and u2. We set u3 � u1�π, u4 � u2�π

and T � tu1, u2, u3, u4u. We will simply 
all parallelogram a set of the form

Rpa, b; c, dq �
 

x P R2
| xx, u3y P ra, cs, xx, u4y P rb, ds

(

� H̄u1
p�aq X H̄u2

p�bq X H̄u3
pcq X H̄u4

pdq

for real numbers a ¤ b, c ¤ d and denote by

8Rpa, b; c, dq its topologi
al inte-

rior. For parallelograms we will systemati
ally extend de�nitions by transla-

tion and inter
hange of u1 and u2 (resp. u3 and u4).

Finally,

C6 " C5 " C 1

2 " C1 " r � maxt}s� s1} | s, s1 P U Y t0u, U P Uu

are 
onstants not depending on q, but only on U and T , ea
h one su�
iently

large with respe
t to fun
tions of the next.

2

Furthermore, we systemati
ally

assume that q is small enough, as we are interested in q Ñ 0.

De�nition 3.1 ([4, De�nitions 2.3 and 2.4℄). A set Z � Z2
is strongly


onne
ted if it is 
onne
ted in the graph with vertex set Z2
de�ned by x � y

if }x� y} ¤ C 1

2.

Given K ¥ C2
1C

1

2 to be spe
i�ed in Se
tion 4, we say a parallelogram is


riti
al when its diameter is 
ontained between K{C1 and K.

A parallelogramD is spanned in η if there exists a strongly 
onne
ted set

X � rD X ηs su
h that the smallest parallelogram 
ontaining X is D.

If η, η1 are two 
on�gurations, we say that η ¤ η1 when ηs ¤ η1s for all s.

For instan
e, if a parallelogram D is spanned for η, then is is also spanned

for any η1 ¤ η. This order should not be 
onfused with the (inverted) one

indu
ed by in
lusion when viewing η as its set of infe
tions.

Noti
e that the event that a given parallelogram D is spanned depends

only on ηD and does not o

ur when ηD 
ontains no infe
tions. We further

state two immediate 
onsequen
es of De�nition 3.1 for future referen
e.

Observation 3.2. Let R � R2
. Then every parallelogram D spanned in ηR

interse
ts R.

2

We use C 1

2 instead of C2 and avoid C3 and C4 for 
oheren
e with the appendi
es.
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Observation 3.3. Let η be a 
on�guration and X be a strongly 
onne
ted


omponent of rηs. Then X � rη XXs.

Proof. By maximality of a strongly 
onne
ted 
omponent, rη X Xs � X is

at distan
e at least C 1

2 ¡ 2r from other strongly 
onne
ted 
omponents X of

rηs. Thus,

rηs �
§

Y

rη X Y s,

where the union is on all strongly 
onne
ted 
omponents of rηs.

Another standard fa
t is the following Aizenman-Lebowitz lemma origi-

nating from [1℄, whose proof 
an be found in Appendix A (Lemma A.9).

Lemma 3.4. Let D be a spanned parallelogram with diameter d ¥ C1C
1

2 and

let C1d ¥ k ¥ C1C
1

2. Then there exists a spanned parallelogram with diameter

d1 su
h that k{C1 ¤ d1 ¤ k. In parti
ular, if d ¥ K{C1, then there exists a

spanned 
riti
al parallelogram.

We next import and adapt the notion of 
rossing from [4, De�nition 8.16℄.

De�nition 3.5 (Crossing). We say that a parallelogram R � Rpa, b; 0, dq is

u1-
rossed if there exists a strongly 
onne
ted set in rHu1
Y pR X ηqs inter-

se
ting both Hu1
and H̄u3

paq.

Let Cu1

R denote the event that there exists η1 ¥ η su
h that R is u1-
rossed

for η1, but there is no spanned 
riti
al parallelogram for η1R.

We say that a parallelogram Λ � Rp0, 0;L,Hq has no pℓ, hq-
rossing (or

simply 
rossing) if the event Cu1

R does not o

ur for any R � Λ of the form

Rpa, 0; a� ℓ,Hq and the event Cu2

R does not o

ur for any R � Λ of the form

Rp0, b;L, b� hq.

In words, a parallelogram is u1-
rossed if, given an infe
ted boundary


ondition on its side opposite to dire
tion u1, the infe
tions inside it are

su�
ient to infe
t a �path� rea
hing its side in dire
tion u1. Thus, a u1-


rossing 
orresponds to the propagation of infe
tion a
ross the parallelogram

in the dire
tion u1. The event Cu1

R further demands that this 
rossing is

a
hieved without the help of large spanned parallelograms (in view of Lemma

3.4). We should note that, while parallelograms smaller than 
riti
al are

in
reasingly unlikely as their size grows, parallelograms larger than 
riti
al

ones roughly be
ome more likely with their size (hen
e the name of 
riti
al

ones), so Cu1

R for
es us to use only small unlikely parallelograms all along

the 
rossing. Relying on this fa
t, it will be possible to establish very strong

bounds on the probability of Cu1

R . This leads to the notion of a pℓ, hq-
rossing,

whi
h will one of the �good� properties we will require the dynami
s to satisfy.
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Finally, we say that a site s P Z2
is lo
ally infe
table in a 
on�guration η if

s P rηXps�Rp�2K,�2K; 2K, 2Kqqs. We also denote by ηs the 
on�guration

equal to η everywhere ex
ept at s, i.e. ηss � 1�ηs and ηss1 � ηs1 for any s1 � s.

We then have the following property, originating from [19, Se
tion 2℄.

Lemma 3.6. Let η P t0, 1uZ
2

, s P Z2
, U P U be su
h that s � U � η and let

R � Rp�2K,�2K; 2K, 2Kq. Assume that the origin is not lo
ally infe
table

in η, but is lo
ally infe
table in ηs. Then there exists a 
riti
al parallelogram

D spanned in ηsR su
h that D � Rp�3K,�3K; 3K, 3Kq.

Proof. By de�nition, 0 P rηs XRszrη XRs. Therefore, s P R and s� U � R.

In parti
ular, dps, 0q ¡ K. Let X be the strongly 
onne
ted 
omponent of

0 in rηs X Rs. We 
laim that s P X . Indeed, by Observation 3.3 we have

0 P X � rηsXRXXs, so if s R X , we have 0 P rηXRs whi
h is not the 
ase.

Let D0 be the smallest parallelogram 
ontaining X . Sin
e D0 
ontains 0

and s, its diameter is at least K. Moreover, X � rηsXRXXs � rηsRXD0s, so

X is a strongly 
onne
ted set in rηsRXD0s. Therefore, D0 is spanned in ηsR and

has diameter at least K. In parti
ular, by Lemma 3.4 there exists a 
riti
al

parallelogram D spanned in ηsR. By Observation 3.2, D interse
ts R, and by

De�nition 3.1 diampDq ¤ K. Thus, we have D � Rp�3K,�3K; 3K, 3Kq,

whi
h ends the proof of the lemma.

3.2 The 
ombinatorial bottlene
k

With the notation above we are ready to prove a very general deterministi


bottlene
k (Lemma 3.10 below), 
onstituting the 
ore of our work, whi
h

relatively straightforwardly translates into the following bound on Eµrτ0s.

The idea behind it is that for the 
enter of a parallelogram of size roughly

3n to be
ome infe
ted, either an pℓ, hq-
rossing should o

ur or we should

witness n�1 spanned 
riti
al parallelograms simultaneously. Assuming upper

bounds on the probabilities of these two events, we dedu
e a lower bound on

Eµrτ0s.

Proposition 3.7. Let T, L,H,K, ℓ, h be positive real numbers su�
iently

large with respe
t to C 1

2. Denote

ρ � max
D

µpD is spannedq,

where the max is over all 
riti
al parallelograms. Also set

p
�

� max
a,bPR

µ
�

Cu1

Rpa,b;a�ℓ,b�Hq

	

p
Ó

� max
a,bPR

µ
�

Cu2

Rpa,b;a�L,b�hq

	

.
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Assume that for some integer n ¥ 0 we have the following inequalities on

geometry:

L ¥ 3np11K � ℓq H ¥ 3np11K � hq, (4)

and probability:

1{8 ¥ µp0 is lo
ally infe
tableq (5)

1 ¥ T pLHq

2maxpp
Ó

, p
�

q (6)

1 ¥ TLHpLHK3ρqn�1. (7)

Then the U-KCM on Z2
satis�es Eµrτ0s ¥ T .

Remark 3.8. Although the boostrap per
olation estimates needed to make

use of this statement in higher dimensions are not yet available, let us mention

that our argument is not dimension sensitive.

The proof of Proposition 3.7 will o

upy the rest of the present se
tion.

We start by �xing T, L,H,K, ℓ, h as in the statement and introdu
ing the

following de�nitions.

Re
all that for any R � Z2
, we identify 
on�gurations η P t0, 1uR with

their zero set tx P R, ηx � 0u. Unless otherwise spe
i�ed, 
on�gurations

η P t0, 1uR are extended to t0, 1uZ
2

by keeping the same zero set.

De�nition 3.9 (Good paths and 
on�gurations). For any parallelogramR �

R2
, 
on�guration η P t0, 1uRXZ2

and integer n ¥ 0, we say that η is n-good

when the maximum number of 
riti
al parallelograms that are disjointly

3

spanned in η is at most n and R has no 
rossing for η.

A legal path in R is a sequen
e pηpjqq0¤j¤m of 
on�gurations in t0, 1uRXZ2

su
h that for every j P t0, . . . , m � 1u, there exists s P R X Z2
su
h that

ηpj�1q
� pηpjqqs and ps � Uq X R � ηpjq for some U P U . For any integer

n ¥ 0, the path is n-good if for every j P t0, . . . , mu, ηpjq is n-good. For any

A,B � t0, 1uRXZ2

, we say pηpjqq0¤j¤m is a path from A to B when ηp0q P A

and ηpmq P B (if A or B � tηu, we will write η to simplify).

We denote by GpRq the set of 
on�gurations in t0, 1uRXZ2

that 
ontain

no spanned 
riti
al parallelogram and su
h that R 
ontains no 
rossing, i.e.

the 0-good 
on�gurations. For any n P N, we de�ne

V pn,Rq �
!

η P t0, 1uRXZ2

| there is an n-good legal path from GpRq to η
)

.

3

As is standard [32℄, we say that the parallelograms R1, . . . , Rk are disjointly spanned

in η if one 
an �nd disjoint sets X1, . . . , Xk � η su
h that η1
Xi

� 0 implies that Ri is

spanned in η1 for all 1 ¤ i ¤ k.
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Finally, we de�ne our domain sizes for the indu
tion to 
ome:

Ln �
3n � 1

2
p9K � ℓq � 3nK Hn �

3n � 1

2
p9K � hq � 3nK, (8)

so that Ln � Ln�1 � 2Ln�1 � 9K � ℓ and Hn �Hn�1 � 2Hn�1 � 9K � h.

Lemma 3.10. For any non-negative integer n, for any parallelogram R �

Rpa, b; c, dq su
h that c � a ¥ 2Ln and d � b ¥ 2Hn, we have that for all

η P V pn,Rq, there is no spanned 
riti
al parallelogram in η interse
ting Rpa�

Ln, b�Hn; c� Ln, d�Hnq.

We �rst dedu
e Proposition 3.7 from Lemma 3.10.

Proof of Proposition 3.7, assuming Lemma 3.10. Clearly, it su�
es to prove

that Pµpτ0 ¡ 2T q ¥ 1{2. Let τ 1 � inftt ¥ 0, 0 is lo
ally infe
table in ηptqu.

Clearly, τ 1 ¤ τ0. We denote R � Rp�L{2,�H{2;L{2, H{2q and de�ne the

following events.

E1: τ 1 ¡ 0, i.e. 0 is not lo
ally infe
table in ηp0q.

E2: There is no 
riti
al parallelogram spanned in pηp0qqR.

E3: For all 0 ¤ t ¤ 2T , no n � 1 
riti
al parallelograms are disjointly

spanned in pηptqqR.

E4: For all 0 ¤ t ¤ 2T , R has no 
rossing for pηptqqR.

We 
laim that

�4

i�1Ei � tτ 1 ¡ 2T u. Indeed, let us assume

�4

i�1Ei o

urs.

By De�nition 3.9, E2 and E4 imply pηp0qqR P GpRq. Moreover, E3 and E4

give that pηptqqR is n-good for all t ¤ 2T . Thus, for all t ¤ 2T , the sequen
e of


on�gurations pηpt1qqR for t1 P r0, ts yields a n-good legal path from pηp0qqR P

GpRq to pηptqqR, therefore pηptqqR P V pn,Rq. Applying Lemma 3.10, this

yields that for all t P r0, 2T s there is no 
riti
al parallelogram spanned in

pηptqqR interse
ting

Rp�L{2 � Ln,�H{2�Hn;L{2 � Ln, H{2�Hnq

� R

�

�

9K � ℓ

2
,�

9K � h

2
;
9K � ℓ

2
,
9K � h

2




� Rp�3K,�3K; 3K, 3Kq,

re
alling (4) and (8). Finally, noti
e that 0 being lo
ally infe
table depends

only on the 
on�guration in Rp�2K,�2K; 2K, 2Kq. Thus, if E1 o

urs, we


an apply Lemma 3.6 with ηs :� pηpτ 1qqR and η :� limtÑτ 1,t τ 1pηptqqR, to de-

du
e that there is a 
riti
al parallelogram spanned in pηpτ 1qqR and 
ontained

in Rp�3K,�3K; 3K, 3Kq. Hen
e, τ 1 ¡ 2T , as 
laimed.
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We next brutally bound the probability of E1, . . . , E4. By (5), 1 �

PµpE1q ¤ 1{8. By the union bound on all (dis
rete) 
riti
al parallelograms

interse
ting R (re
all Observation 3.2) and (7) we have

1� PµpE2q ¤ OpLHK2
qρ ¤

LHK3ρ

8
¤

1

8pTLHq

1{pn�1q
¤

1

8
.

In order to treat E3 and E4, re
all from Se
tion 1.1 that the U-KCM may

be 
onstru
ted by asso
iating to ea
h site x P Z2
a standard Possion pro
ess

and attempting to update ηx at the times given by its Poisson pro
ess. We

will refer to these times as 
lo
k rings. Let N denote the number of 
lo
k

rings in R between 0 and 2T . Sin
e N is a Poisson random variable with

parameter 2T |R| � ΘpTLHq ¡ 1, we have PµpN ¥ C1TLHq ¤ 1{16 (e.g. by

the Bienaymé�Chebyshev inequality).

Let ηpjq denote the restri
tion of the 
on�guration to R X Z2
after the

j-th 
lo
k ring in R. We next 
laim that ηpjq is at equilibrium, the formal

proof being postponed for the moment.

Claim 3.11. With the above notation, ηpjq has the produ
t Bernoulli distri-

bution with parameter 1� q for all j.

For any η P t0, 1uRXZ2

we write Dn�1pηq � tthere are n�1 
riti
al paralle-

lograms disjointly spanned in ηu, so that E3 does not o

ur i�
�N

j�0Dn�1pη
pjq
q

does not. Then the union bound and Claim 3.11 give

1� PµpE3q ¤ PµpN ¥ C1TLHq �

C1TLH
¸

j�0

Pµ

�

Dn�1

�

ηpjq
��

¤

1

16
� 2C1TLHµpDn�1pηRqq. (9)

In order to bound µpDn�1pηRqq, we use the union bound on all pOpLHK2
qq

n�1

possible 
hoi
es of n � 1 
riti
al parallelograms interse
ting R (by Observa-

tion 3.2, a parallelogram spanned in ηR interse
ts R) together with the BK

inequality [32℄ to get that (9) is at most

1

16
� 2C1TLHpOpLHK2

qρqn�1
¤

1

8
,

using (7) in the last inequality.

Similarly, using (6), we have

1� PµpE4q ¤
1

16
� 2C1TLH � OpL�Hqmaxpp

Ó

, p
�

q ¤

1

8
.

20



Putting the bounds 1 � PµpEiq ¤ 1{8 for all i together and re
alling that

�4

i�1Ei � tτ 1 ¡ 2T u, we 
on
lude that

Pµpτ0 ¡ 2T q ¥ Pµpτ
1

¡ 2T q ¥ Pµ

�

4
£

i�1

Ei

�

¥ 1�

4̧

i�1

p1� PµpEiqq ¥
1

2
.

Proof of Claim 3.11. We �x j, and denote by t the time of the j-th 
lo
k ring

in R. For all s P r0, ts, we will 
onstru
t a (random) set of sites Xs su
h that

the 
on�guration in R at time t 
an be re
onstru
ted from the 
on�guration

in Xs at time s and the updates sin
e time s. The 
onstru
tion is as follows.

For all s P r0, ts, Xs 
ontains all sites in R. Moreover, for any x0 P R whi
h

had a 
lo
k ring before time t, for any s before this 
lo
k ring we add to Xs

the sites x1 su
h that x1�x0 P U, where U �

�

UPU U . Now, for any of these

x1 that had a 
lo
k ring before the 
lo
k ring at x0, for any s before this


lo
k ring at x1 we add the sites x2 su
h that x2 � x1 P U, et
. It is 
lassi
al

to see that the Xs are a.s. �nite. For example, one 
an see there are exa
tly

j 
lo
k rings in R before time t, so 
lo
k rings in R may add at most j|U|

sites to the Xs. Now, for any of these sites that is not in R, the number of

sites it brings 
an be bounded from above by a 
ontinuous time bran
hing

pro
ess with reprodu
tion law δ
|U|�1, so stays �nite.

We now 
onsider all the 
lo
k rings su
h that there exists s P r0, ts su
h

that the 
lo
k ring o

urs in Xs at time at most s, and order them 
hro-

nologi
ally. If s is the time of the j1-th su
h 
lo
k ring, η̄pj
1

q

will denote

the 
on�guration in Xs at time s. Let us denote by F the sigma-algebra

generated by all 
lo
k rings in Z2
. In parti
ular, for any s P r0, ts, Xs is

F -measurable. By indu
tion on j1, one 
an prove that 
onditionally to F ,

η̄pj
1

q

has law µ. Now, the j1 
orresponding to j depends only on F , hen
e ηpjq

has law µ, whi
h proves the 
laim.

Proof of Lemma 3.10. We will prove the lemma by indu
tion on n. For any

n let us 
all Hn the statement of the lemma for n. H0 holds by de�nition.

Let n ¥ 1 and assume that Hn�1 holds. Let R � Rpa, b; c, dq be su
h that

c � a ¥ 2Ln and d � b ¥ 2Hn. We de�ne a smaller parallelogram R1

in the

middle of R:

R1

� Rpa� Ln � Ln�1, b�Hn �Hn�1; c� pLn � Ln�1q, d� pHn �Hn�1qq

(see Figure 2). We will prove Lemma 3.10 by showingHn, using the following

result, whose proof we postpone for the moment.

Lemma 3.12. For all η P V pn,RqzGpRq (re
all De�nition 3.9), there exists

a 
riti
al parallelogram not interse
ting R1

that is spanned in η.
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Let η P V pn,Rq. The idea is that sin
e η is n-good, there are at most n

spanned 
riti
al parallelograms in η, and Lemma 3.12 implies one of them

has to be outside R1

. Thus, there 
an only be n � 1 su
h parallelograms in

R1

. This will allow us to use Hn�1 in R1

, whi
h will prevent the existen
e of a

spanned 
riti
al parallelogram interse
ting Rpa�Ln, b�Hn; c�Ln, d�Hnq.

We now give the rigorous argument. Sin
e η P V pn,Rq, there exists an

n-good legal path from GpRq to η, denoted by pηpjqq0¤j¤m. For any j P

t0, . . . , mu, we have ηpjq P V pn,Rq. Let us prove that there are at most

n � 1 
riti
al parallelograms disjointly spanned in η
pjq

R1

. If ηpjq P GpRq, it

is 
lear. If ηpjq R GpRq, Lemma 3.12 guarantees the existen
e of a 
riti
al

parallelogram D spanned in ηpjq that does not interse
t R1

. Now, let k be

the maximal number of 
riti
al parallelograms disjointly spanned in η
pjq

R1

, and

D1, . . . , Dk be su
h parallelograms. Sin
e D does not interse
t R1

, we have

thatD,D1, . . . , Dk are 
riti
al parallelograms disjointly spanned in ηpjq. Sin
e

ηpjq is n-good, it 
ontains at most n disjointly spanned 
riti
al parallelograms,

so k ¤ n � 1. Furthermore, if R1

had a 
rossing for η
pjq

R1

, R would have a


rossing for ηpjq, whi
h is not the 
ase, as ηpjq is n-good. Hen
e, R1

has no


rossing for η
pjq

R1

. We dedu
e that η
pjq

R1

is pn�1q-good in the parallelogram R1

.

Thus, if we 
onsider the path pη
pjq

R1

q0¤j¤m and keep only the steps η
pjq

R1

that

di�er from η
pj�1q

R1

, we obtain a pn � 1q-good legal path, going from GpR1

q to

ηR1

. This implies ηR1

P V pn � 1, R1

q. Therefore, we 
an apply Hn�1 to ηR1

,

whi
h yields that there is no spanned 
riti
al parallelogram in ηR1

interse
ting

Rpa� Ln, b�Hn; c� Ln, d�Hnq. This implies Hn and 
on
ludes the proof

of Lemma 3.10.

Consequently, it remains to prove Lemma 3.12.

Proof of Lemma 3.12. Another way to state Lemma 3.12 is to say that if

we start a n-good legal path from GpRq, we 
annot rea
h a 
on�guration

in whi
h all spanned 
riti
al parallelograms interse
t R1

. As legal paths

are reversible, we will prove that if we start an n-good legal path from a


on�guration in whi
h all spanned 
riti
al parallelograms interse
t R1

, it is

impossible to rea
h GpRq, be
ause there will always be a spanned 
riti
al

parallelogram �near� R1

.

In order to do that, we start by introdu
ing the following geometri
 regi-
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R

Rh

Rℓ

R1

Rℓ,Ó

Rh,Ó

Rℓ,Ò

Rh,Ò

γ

R1

ℓ,Ó

R1

h,Ó

R1

ℓ,Ò

R1

h,Ò

B1

B

u1

u2

u3

u4

Ln�1 3KK 3K Ln�1 2K�ℓ Ln�13KK3KLn�12K�ℓ

Hn�1

3K
K
3K

Hn�1

2K�h

Hn�1

3K
K
3K

Hn�1

2K�h

Figure 2: The setting of the proof of Lemma 3.12. For the �gure we assume

that u3 � 0 and u4 � π{2. B1

is the frame with thi
kened boundary, Rℓ

and Rh are the overlapping regions in dark gray. The regions R1

ℓ,Ó, R
1

h,Ó, R
1

ℓ,Ò

and R1

h,Ò are in lighter gray and the frame formed by their union is B. The

horizontally (resp. verti
ally) hat
hed regions are Rh,Ó and Rh,Ò (resp. Rℓ,Ó

and Rℓ,Ò). The 
ontour inside B1

is γ and its diagonally hat
hed interior is

8γ. All the regions drawn are 
losed subsets of R2
with the ex
eption of Rℓ,

Rh and 8γ, whi
h are open. The thi
ker version, γ̄, of γ and the set F � Z2

de�ned in (10) are not drawn.
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ons, represented in Figure 2.

Rℓ �
8Rpa� 2Ln�1 � 7K, b� 2Hn�1 � 7K; c� Ln�1 � 7K, d� 2Hn�1 � 7Kq

Rℓ,Ó � Rpa, b; a� 2Ln�1 � 7K, dq

Rℓ,Ò � Rpc� 2Ln�1 � 7K, b; c, dq

R1

ℓ,Ó � Rpa� Ln�1, b�Hn�1, a� Ln�1 � 7K, d�Hn�1q

R1

ℓ,Ò � Rpc� Ln�1 � 7K, b�Hn�1, c� Ln�1, d�Hn�1q

Rℓ will 
ontain the aforementioned spanned 
riti
al parallelogram �near� R1

.

In the parallelograms Rℓ,Ó and Rℓ,Ò, we will use Hn�1, and R1

ℓ,Ó, R1

ℓ,Ò are

the respe
tive �
entral� parallelograms inside that will not be interse
ted by

spanned 
riti
al parallelograms. We also de�ne similar regions with index h

instead of ℓ.

We further de�ne the two frames (see Figure 2)

B � R1

ℓ,Ó YR1

ℓ,Ò YR1

h,Ó YR1

h,Ò

B1

� Rpa� Ln�1 � 3K, b�Hn�1 � 3K; c� Ln�1 � 3K, d�Hn�1 � 3Kqz

8Rpa� Ln�1 � 4K, b�Hn�1 � 4K; c� Ln�1 � 4K, d�Hn�1 � 4Kq.

As the union of R1

ℓ,Ó, R
1

ℓ,Ò, R
1

h,Ó, R
1

h,Ò, the frame B will not be interse
ted by

spanned 
riti
al parallelograms. B will be a �bu�er� between the inner and

outer parts of R, and B1

its 
entral part. We will be able to �nd a 
ontour

γ 
ontained in B1

su
h that the dynami
s in the interior of the 
ontour is

�isolated� from the dynami
s outside in a spe
i�
 way. This is the goal of the

following 
laim.

Claim 3.13. Let η P t0, 1uRXZ2

be su
h that every 
riti
al parallelogram

spanned in η interse
ts R1

. Then there exists a 
losed 
ontour γ � R2

(that is, a self-avoiding and 
losed path obtained by 
onne
ting sites of Z2

by straight lines linking a site to its left, top, right or bottom neighbour)

satisfying the following properties:

• γ � B1

.

• dpγ, RzB1

q ¥ C2
1 .

• Every s P γ̄ is not lo
ally infe
table in η, where

γ̄ � ts P Z2
|dps, γq ¤ C1u.

• The (topologi
ally open) interior, 8γ � R2
, de�ned by γ 
ontains R1

.
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Proof. We pro
eed by renormalization. Let H denote the regular hexagon


entered at the origin with diameter C3
1 and having two horizontal sides.

Consider the tiling of the plane with translates of H and denote by T the

triangular latti
e formed by their 
enters. Let T � tt P T|H � t � B1

u be

the sites of T 
orresponding to B1

. We say that a site t P T is open if no site

in pt�Hq X Z2
is lo
ally infe
table in η.

If there exists a 
ontour of open sites in T surrounding R1

(where a 
ontour

in T is a self-avoiding and 
losed path in the graph pT, tpt, t1q P T2
|t�H and

t1 � H share a sideu), we may 
hoose γ approximating this 
ontour, whi
h


learly satis�es the 
onditions of the 
laim. Assume for a 
ontradi
tion that

su
h a 
ontour does not exist. In this 
ase, there is a path of 
losed sites in T

from the inner to the outer boundary of T . In parti
ular, this path yields a

strongly 
onne
ted (re
all De�nition 3.1) set X of sites of Z2
that are lo
ally

infe
table in η, with diameter at least K � 4C3
1 , 
ontained in either the �left

part� of the frame B1

, de�ned as

R2

ℓ,Ó � Rpa� Ln�1 � 3K, b�Hn�1 � 3K; a� Ln�1 � 4K, d�Hn�1 � 3Kq,

(see Figure 2) or in the top, right or bottom part of B1

, de�ned similarly.

Without loss of generality, assume that X is 
ontained in R2

ℓ,Ó. Sin
e the

sites of X are lo
ally infe
table in η, they are infe
table in ηR3

ℓ,Ó
, where R3

ℓ,Ó

is �R2

ℓ,Ó enlarged by 2K on ea
h side,� that is

R3

ℓ,Ó � Rpa� Ln�1 �K, b�Hn�1 �K; a� Ln�1 � 6K, d�Hn�1 �Kq.

X is then a strongly 
onne
ted set 
ontained in rηR3

ℓ,Ó
s.

We denote by X 1

the strongly 
onne
ted 
omponent of rηR3

ℓ,Ó
s 
ontaining

X , and we 
onsider the smallest parallelogram D 
ontaining X 1

. We 
laim

that D is spanned in ηR3

ℓ,Ó
. Indeed, Observation 3.3 yields X 1

� rηR3

ℓ,Ó
XX 1

s �

rηR3

ℓ,Ó
X Ds, so X 1

is a strongly 
onne
ted set in rηR3

ℓ,Ó
X Ds su
h that the

smallest parallelogram 
ontaining X 1

is D, whi
h means that D is spanned

in ηR3

ℓ,Ó
. Furthermore, D 
ontains X , whi
h has diameter at least K � 4C3

1 .

Therefore, by Lemma 3.4 there exists a 
riti
al parallelogram D1

spanned in

ηR3

ℓ,Ó
. D1

is then spanned in η. Moreover, by Observation 3.2, D1

interse
ts

R3

ℓ,Ó, and, sin
e D1

is 
riti
al, it has diameter at most K. Hen
e, D1

is


ontained inR1

ℓ,Ó. We dedu
e the existen
e of a 
riti
al parallelogram spanned

in η not interse
ting R1

, hen
e a 
ontradi
tion.

Now that most of the needed geometri
 regions are de�ned, we may start

the proof of Lemma 3.12 itself. We �x η P t0, 1uRXZ2

zGpRq su
h that every


riti
al parallelogram spanned in η interse
ts R1

. We will prove that there is
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no n-good legal path from η to GpRq. Sin
e legal paths 
an be reversed, this

implies η R V pn,Rq, whi
h proves Lemma 3.12.

We �x a 
ontour γ as provided by Claim 3.13 for the 
on�guration η (see

Figure 2), as well as its thi
kened version γ̄ and its interior 8γ. In order to

isolate the dynami
s in 8γ from the dynami
s outside, we need to de�ne

F � ts P B1

X Z2
|s is not lo
ally infe
table in ηu. (10)

We then have γ̄ � F . F will �shield 8γ from outside interferen
e.�

Let pηpjqq0¤j¤m be an n-good legal path with ηp0q � η. We will use an

indu
tion on j P t0, . . . , mu to prove that ηpmq R GpRq. More pre
isely, we will

prove by indu
tion on j that the following properties hold for j P t0, . . . , mu.

P1
j For every ζ P tℓ, hu, there exists a 
riti
al parallelogram 
ontained in

Rζ spanned in ηpjq.

P2
j The sites of F are not lo
ally infe
table in ηpjq.

P3
j For every pζ, ξq P tℓ, hu � tÓ, Òu, η

pjq

Rζ,ξ
P V pn� 1, Rζ,ξq.

P4
j rη

pjq

8γ s � rη
p0q

8γ s.

P4
j is what we mean by �the dynami
s inside 8γ is isolated from the outside�:

from time 0 to time j, the sites infe
table by the 
on�guration in 8γ have not


hanged. P2
j is ne
essary for F to play its role as a shield throughout the

path. P3
j , along with Hn�1, will ensure that there are no spanned 
riti
al

parallelograms at the 
enter of the Rζ,ξ, whi
h will help to preserve the shield.

Finally, if P1
m is satis�ed, then there exists a 
riti
al parallelogram spanned

in ηpmq, so ηpmq R GpRq, whi
h proves Lemma 3.12, so it su�
es to establish

the indu
tion.

We begin with a qui
k 
laim.

Claim 3.14. There exists a 
riti
al parallelogram spanned in η interse
ting

R1

.

Proof. Sin
e η belongs to an n-good legal path, R has no 
rossing for η, but

by the de�nition of η, η R GpRq, hen
e there exists a 
riti
al parallelogram

spanned in η. Moreover, by assumption, every 
riti
al parallelogram spanned

in η interse
ts R1

, hen
e the 
laim.

With this, we 
an start work on the indu
tion.

Base: j=0. P4
0 is trivial, and the de�nition (10) of F implies P2

0 . For

P1
0 , Claim 3.14 gives the existen
e of a 
riti
al parallelogram spanned in η

interse
ting R1

, hen
e 
ontained in Rℓ XRh, whi
h yields P1
0 .
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We now show P3
0 . Let pζ, ξq P tℓ, hu � tÓ, Òu. We 
laim that there is no


riti
al parallelogram spanned in ηRζ,ξ
. Indeed, by Observation 3.2 su
h a

parallelogram would have to interse
t Rζ,ξ so 
ould not interse
t R1

, whi
h

would 
ontradi
t the de�nition of η. Moreover, R has no 
rossing for η sin
e

η is n-good, so Rζ,ξ has no 
rossing for ηRζ,ξ
. Thus, ηRζ,ξ

P GpRζ,ξq, hen
e

ηRζ,ξ
P V pn� 1, Rζ,ξq, so P3

0 holds.

Indu
tion step. Let j P t0, . . . , m � 1u, and suppose that P1
j , P

2
j , P

3
j

and P4
j hold. Sin
e pηpkqq0¤k¤m is a legal path, we have ηpj�1q

� pηpjqqs and

ps� Uq XR � ηpjq for some s P RX Z2
and U P U .

We �rst prove P4
j�1, that is rη

pj�1q

8γ s � rη
p0q

8γ s, using that �F shields 8γ from

the in�uen
e of the exterior.�

Claim 3.15. P4
j�1 holds.

Proof. If s R 8γ, then η
pj�1q

8γ � η
pjq

8γ , so rη
pj�1q

8γ s � rη
pjq

8γ s � rη
p0q

8γ s by P4
j . Mo-

reover, if s P 8γ, then s � U � 8γ Y γ̄. Furthermore, the sites of γ̄ are in F ,

so by P2
j they are not lo
ally infe
table in ηpjq and, in parti
ular s1 R ηpjq

for all s1 P γ̄. Sin
e ps � Uq X R � ηpjq, this implies s � U � 8γ and so

rη
pj�1q

8γ s � rη
pjq

8γ s � rη
p0q

8γ s by P4
j .

We 
annot prove P1
j�1 yet, whi
h would be that Rℓ and Rh 
ontain a 
ri-

ti
al parallelogram spanned in ηpj�1q
. Instead, we establish a weaker result,

that there exists at least one spanned 
riti
al parallelogram of η
pj�1q

8γ �to the

left� of Rℓ,Ò (see Figure 2), as well as one �below� Rh,Ò (these two parallelo-

grams may be the same). The idea of the proof is that sin
e at the beginning

of the path all spanned 
riti
al parallelograms interse
t R1

, if at step j � 1

they have moved too mu
h to the right, then they must have left a trail of

infe
table sites behind them, whi
h 
onstitutes a 
rossing.

Claim 3.16. There exists a 
riti
al parallelogram 
ontained in Hu3
pc �

2Ln�1�7Kq that is spanned in η
pj�1q

8γ and similarly for Hu4
pd�2Hn�1�7Kq

(re
all from Se
tion 1.2 that Hupxq is the open half-plane dire
ted by u trans-

lated by a distan
e x and H̄upxq is its 
losure).

Proof. We will only treat H � Hu3
pc � 2Ln�1 � 7Kq as the argument for

the other half-plane is the same. Assume for a 
ontradi
tion that there is

no 
riti
al parallelogram 
ontained in H that is spanned in η
pj�1q

8γ . We will


onstru
t a 
rossing for ηpj�1q
, whi
h 
ontradi
ts the fa
t that ηpj�1q

is n-

good.

By Claim 3.14, there exists a 
riti
al parallelogram D spanned in ηp0q

interse
ting R1

. D is then 
ontained in 8γ (see Figure 2), hen
e spanned in

η
p0q

8γ . Let X be a strongly 
onne
ted set of rD X η
p0q

8γ s su
h that the smallest
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parallelogram 
ontaining X is D. Then, sin
e D is �su�
iently to the left�

to interse
t R1

, X interse
ts H̄u3
pc � 2Ln�1 � 9K � ℓq (see Figure 2). By

Claim 3.15 we have rη
pj�1q

8γ s � rη
p0q

8γ s, and X � rD X η
p0q

8γ s � rη
p0q

8γ s, so we


an 
onsider X 1

the strongly 
onne
ted 
omponent of rη
pj�1q

8γ s 
ontaining X .

Then X 1

interse
ts H̄u3
pc� 2Ln�1 � 9K � ℓq.

We will now prove that X 1

also interse
ts H̄u1
p�pc� 2Ln�1 � 8Kqq. The

smallest parallelogram D1


ontaining X 1


ontains X , thus it 
ontains D,

so it has diameter at least K{C1, sin
e D is 
riti
al (re
all De�nition 3.1).

By Observation 3.3, X 1

� rη
pj�1q

8γ X X 1

s � rη
pj�1q

8γXX1

X D1

s, so D1

is spanned

in η
pj�1q

8γXX1

. Hen
e, by Lemma 3.4, there exists a 
riti
al parallelogram D2

spanned for η
pj�1q

8γXX1

. By the assumption made at the beginning of the proof

of the 
laim, D2


annot be 
ontained in H , so D2

interse
ts H̄u1
p�pc �

2Ln�1 � 7Kqq. Furthermore, D2

is 
riti
al, so its diameter is at most K.

Thus, D2

is 
ontained in H̄u1
p�pc � 2Ln�1 � 8Kqq. In addition, sin
e D2

is spanned for η
pj�1q

8γXX1

, by Observation 3.2 D2

interse
ts X 1

, so X 1

interse
ts

H̄u1
p�pc� 2Ln�1 � 8Kqq.

We now 
onstru
t the re
tangle in whi
h the 
rossing will take pla
e. We

denote a0 � maxta1 |X 1

� H̄u1
p�a1qu (the �left end� ofX 1

). We 
laim a0 ¥ a.

Indeed, X 1

� rη
pj�1q

8γ s, and sin
e we have 8γ � Hu1
p�aq and u1 is a stable

dire
tion, we have rη
pj�1q

8γ s � Hu1
p�aq, so X 1

� Hu1
p�aq. Moreover, a0 ¤

c�2Ln�1�9K�ℓ, sin
e we proved that X 1

interse
ts H̄u3
pc�2Ln�1�9K�ℓq.

Furthermore, we saw that by Observation 3.3, X 1

� rη
pj�1q

8γ X X 1

s, so if we

denote RX1

� Rpa0, b; a0 � ℓ, dq, then X 1

� rpη
pj�1q

8γ X RX1

q Y Hu1
p�pa0 �

ℓqqs. Together with the fa
t that X 1

interse
ts H̄u1
p�pc � 2Ln�1 � 8Kqq �

Hu1
p�pa0� ℓqq, this yields that RX1

is u1-
rossed for η
pj�1q

8γ (re
all De�nition

3.5).

Moreover, sin
e 
riti
al parallelograms have diameter at mostK and a0 ¤

c� 2Ln�1 � 9K � ℓ, any 
riti
al parallelogram interse
ting RX1

is 
ontained

in H . This will imply that there is no 
riti
al parallelogram spanned for

η
pj�1q

8γ X RX1

, as by Observation 3.2 su
h a parallelogram would interse
t

RX1

, thus would be 
ontained in H , whi
h is impossible by the assumption

made at the beginning of the proof of the 
laim. Sin
e RX1

is u1-
rossed

for η
pj�1q

8γ and there is no 
riti
al parallelogram spanned for η
pj�1q

8γ X RX1

,

the event Cu1

RX1

o

urs for ηpj�1q
(re
all De�nition 3.5). But this whi
h is

a 
ontradi
tion with the fa
t that R has no 
rossing for ηpj�1q
, as it is a


on�guration in a n-good legal path. This 
ontradi
tion 
on
ludes the proof

of the 
laim.
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Claim 3.16 will allow us to prove half of P3
j�1, more pre
isely η

pj�1q

Rℓ,Ò
P

V pn� 1, Rℓ,Òq and η
pj�1q

Rh,Ò
P V pn� 1, Rh,Òq. The idea of the proof is that sin
e

Claim 3.16 yields that at least one spanned 
riti
al parallelogram is to the

left of Rℓ,Ò, and as the 
on�gurations are n-good, there are at most n spanned


riti
al parallelograms in total, this implies there are at most n� 1 spanned


riti
al parallelograms inside Rℓ,Ò (and similarly for Rh,Ò).

Claim 3.17. η
pj�1q

Rℓ,Ò
P V pn � 1, Rℓ,Òq and η

pj�1q

Rh,Ò
P V pn� 1, Rh,Òq.

Proof. We will only prove η
pj�1q

Rℓ,Ò
P V pn�1, Rℓ,Òq, as the other proof is similar.

It will su�
e to prove that η
pj�1q

Rℓ,Ò
is pn � 1q-good. Indeed, by P3

j we have

η
pjq

Rℓ,Ò
P V pn � 1, Rℓ,Òq, hen
e in the 
ase η

pj�1q

Rℓ,Ò
� η

pjq

Rℓ,Ò
we 
an say that there

exists an pn � 1q-good legal path from GpRℓ,Òq to η
pjq

Rℓ,Ò
. If we add η

pj�1q

Rℓ,Ò
to

this path, we then obtain an pn� 1q-good legal path from GpRℓ,Òq to η
pj�1q

Rℓ,Ò
,

hen
e η
pj�1q

Rℓ,Ò
P V pn� 1, Rℓ,Òq.

We now prove that η
pj�1q

Rℓ,Ò
is pn � 1q-good. Firstly, Rℓ,Ò has no 
rossing

for η
pj�1q

Rℓ,Ò
be
ause R has no 
rossing for ηpj�1q

. It remains only to show that

the maximal number k of 
riti
al parallelograms that are disjointly span-

ned in η
pj�1q

Rℓ,Ò
is at most n � 1. Let D1, . . . , Dk be 
riti
al parallelograms

that are disjointly spanned in η
pj�1q

Rℓ,Ò
. By Claim 3.16, there exists a 
riti-


al parallelogram D � Hu3
pc � 2Ln�1 � 7Kq that is spanned in η

pj�1q

8γ and,

therefore, also in η
pj�1q

D . D is then disjoint from Rℓ,Ò (see Figure 2), so we

dedu
e that D1, . . . , Dk, D are disjointly spanned in ηpj�1q
, so ηpj�1q


ontains

k � 1 disjointly spanned 
riti
al parallelograms. Sin
e ηpj�1q
is n-good, we

get k ¤ n � 1, whi
h ends the proof.

We are now ready to prove P1
j�1, that is, Rℓ and Rh 
ontain a 
riti
al

parallelogram spanned in ηpj�1q
. To do that, we will prove that a spanned


riti
al parallelogram in Hu4
pd � 2Hn�1 � 7Kq provided by Claim 3.16 is

in fa
t in Rℓ (and similarly for Rh). The idea of the proof is that Claim

3.16 prevents the parallelogram from being �too far up,� being �too far left

or down� would indu
e a 
rossing, so will be impossible, and being �too far

right� will be prevented be
ause Claim 3.17 will allow us to use Hn�1 in Rℓ,Ò.

Claim 3.18. P1
j�1 holds.

Proof. We only treat Rℓ, as Rh is similar. Assume for a 
ontradi
tion that

there is no 
riti
al parallelogram 
ontained in Rℓ spanned in ηpj�1q
.
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By Claim 3.16, there exists a 
riti
al parallelogramD 
ontained inHu4
pd�

2Hn�1 � 7Kq that is spanned in η
pj�1q

8γ . By assumption D � Rℓ. There are

three possibilities (see Figure 2):

a) D XRℓ,Ó � ∅, i.e. D is �too far left;�

b) D XRh,Ó � ∅, i.e. D is �too far down;�


) D X H̄u1
p�pc� Ln�1 � 7Kqq � ∅, i.e. D is �too far right.�

We �rst assume 
ase 
) o

urs. Sin
e D is spanned in η
pj�1q

8γ , by Obser-

vation 3.2, D interse
ts 8γ. In addition, sin
e D is 
riti
al it has diameter at

most K. This yields that the interse
tion of D and H̄u1
p�pc�Ln�1�7Kqq is

in R1

ℓ,Ò (see Figure 2). Sin
e D interse
ts R1

ℓ,Ò and has diameter at most K,

it is 
ontained in Rℓ,Ò, hen
e spanned in η
pj�1q

Rℓ,Ò
. However, by Claim 3.17 we

have η
pj�1q

Rℓ,Ò
P V pn�1, Rℓ,Òq, so Hn�1 implies there is no 
riti
al parallelogram

interse
ting R1

ℓ,Ò spanned in η
pj�1q

Rℓ,Ò
, so we get a 
ontradi
tion.

Cases a) and b) being analogous, we only treat 
ase a). Assume 
ase

a) o

urs. The argument will resemble the one in the proof of Claim 3.16.

Sin
e D is spanned in η
pj�1q

8γ , there exists a strongly 
onne
ted set X �

rDX η
pj�1q

8γ s su
h that D is the smallest parallelogram 
ontaining X . Let X 1

be the strongly 
onne
ted 
omponent of rη
pj�1q

8γ s 
ontaining X , and D1

be the

smallest parallelogram 
ontaining X 1

. Then D1


ontains X , hen
e it 
ontains

D and, sin
e D is 
riti
al, diampD1

q ¥ diampDq ¥ K{C1. Furthermore, X 1

is a strongly 
onne
ted 
omponent of rη
pj�1q

8γ s � rη
p0q

8γ s by Claim 3.15, so

X 1

� rη
p0q

8γ XX 1

s by Observation 3.3. This implies X 1

� rη
p0q

8γXX1

XD1

s, hen
e

D1

is spanned in η
p0q

8γXX1

.

Sin
e diampD1

q ¥ K{C1, Lemma 3.4 implies that there exists a 
riti
al

parallelogram D2

that is spanned in η
p0q

8γXX1

. Then D2

is spanned in ηp0q � η

and therefore interse
ts R1

by the de�nition of η. Sin
e D2

is 
riti
al, its

diameter is at most K, so, sin
e D2

interse
ts R1

, it is 
ontained in H̄u1
p�a�

2Ln�1 � 8K � ℓq (see Figure 2). Moreover, sin
e D2

is spanned in η
p0q

8γXX1

, by

Observation 3.2, X 1

interse
ts D2

hen
e X 1

interse
ts H̄u1
p�a�2Ln�1�8K�

ℓq. In addition, sin
e D interse
ts Rℓ,Ó by assumption a) and is the smallest

parallelogram 
ontaining X , then X interse
ts H̄u3
pa�2Ln�1�7Kq, thus X 1

interse
ts this half-plane as well.

Denote a0 � maxta1 |X 1

� H̄u1
p�a1qu (the �left end� of X 1

). Then a0 ¥ a,

sin
e X 1

� rη
p0q

8γ s � r8γs � rHu1
p�aqs � Hu1

p�aq as u1 is a stable dire
tion,

and a0 ¤ a�2Ln�1�7K, as X 1

interse
ts H̄u3
pa�2Ln�1�7Kq. As in Claim
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3.16 (re
alling that X 1

interse
ts H̄u1
p�a�2Ln�1�8K�ℓq), this entails that

RX1

� Rpa0, b; a0�ℓ, dq is u1-
rossed for ηp0q (re
all De�nition 3.5). However,

R has no 
rossing for ηp0q as ηp0q is n-good, so Cu1

RX1

does not o

ur for ηp0q.

Consequently, there exists a 
riti
al parallelogram spanned for η
p0q

RX1

, hen
e for

ηp0q. By Observation 3.2 this parallelogram interse
ts RX1

, so sin
e 
riti
al

parallelograms have diameter at most K and a0 ¤ a � 2Ln�1 � 7K it does

not interse
t R1

, whi
h 
ontradi
ts the fa
t that all 
riti
al parallelograms

spanned in ηp0q � η interse
t R1

.

The previous 
laim will allow us to 
omplete the proof of P3
j�1. We already

proved in Claim 3.17 that η
pj�1q

Rℓ,Ò
P V pn� 1, Rℓ,Òq and η

pj�1q

Rh,Ò
P V pn� 1, Rh,Òq,

so we need η
pj�1q

Rℓ,Ó
P V pn� 1, Rℓ,Óq and η

pj�1q

Rh,Ó
P V pn� 1, Rh,Óq. The argument

is identi
al to that of Claim 3.17: by Claim 3.18 we have a spanned 
riti
al

parallelogram inRℓ, whi
h entails that there are at most n�1 
riti
al spanned

parallelograms in Rℓ,Ó (and similarly for Rh,Ó), hen
e the result.

Claim 3.19. P3
j�1 holds.

Proof. The proof is a
tually the same as in Claim 3.17, repla
ing Hu3
pc �

2Ln�1 � 7Kq by Rℓ or Rh and Claim 3.16 by Claim 3.18.

It remains only to prove P2
j�1, i.e. that the sites of F are not lo
ally

infe
table in ηpj�1q
.

Claim 3.20. P2
j�1 holds.

Proof. Assume for a 
ontradi
tion that there exists s1 P F � B1

that is lo
ally

infe
table in ηpj�1q
. By P2

j , s
1

is not lo
ally infe
table in ηpjq. Therefore, by

Lemma 3.6, there exist ζ P tℓ, hu, ξ P tÓ, Òu and a 
riti
al parallelogram

D � R1

ζ,ξ spanned in η
pj�1q

Rζ,ξ
. However, by Claim 3.19 η

pj�1q

Rζ,ξ
P V pn � 1, Rζ,ξq,

so Hn�1 yields the desired 
ontradi
tion.

Claims 3.15, 3.18, 3.19 and 3.20 together establish the indu
tion step,

whi
h 
ompletes the proof of Lemma 3.12.

4 Appli
ation of Proposition 3.7

In this se
tion we derive Theorems 1 and 2 from Proposition 3.7. For that

purpose we require some estimates on the probabilities appearing in the

statement of the proposition, whi
h are mostly proved in the appendi
es. We

restate those results below as needed. Throughout the se
tion U is a 
riti
al

update family with di�
ulty α subje
t to further assumptions re
alled in ea
h
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subse
tion. Su
h a family admits two non-
ollinear rational stable dire
tions.

We set u1 and u2 to be two arbitrary su
h dire
tions, whi
h will be 
hosen

di�erently for ea
h 
lass of update families. We will use the de�nitions of

Se
tion 3 with u1 and u2.

Let us start with the easiest estimate.

Lemma 4.1. Let K ¤ q�2α
. Then,

µp0 is lo
ally infe
tableq ¤ 1{8.

Proof. Let R � Rp�2K,�2K; 2K, 2Kq. Sin
e U is 
riti
al, diamprηRsq ¤

C1K, so, starting the bootstrap per
olation dynami
s with ηR, the origin is

either infe
ted in time at most C3
1K

2
or not at all. We 
on
lude using e.g.

[5, Theorem 1.4℄, whi
h gives that with probability tending to 1 as q Ñ 0,

the infe
tion time is exppq�Θp1q
q.

Turning to the probability of spanning there are two 
ases to 
onsider.

For unbalan
ed models the following is essentially a reformulation of the most

di�
ult result of [4℄.

Lemma 4.2. Assume that U is unbalan
ed and K � q�α�1{4
. Then, for any


riti
al parallelogram D we have

µpD is spannedq ¤ exp

�

�

plogp1{qqq2

C5qα




.

Proof. By de�nition ifD is a spanned 
riti
al parallelogram, then there exists

a strongly 
onne
ted set X � rηXDs with diameter at least diampDq{C1. If

X 1

is the strongly 
onne
ted 
omponent of X in rηXDs, then by Observation

3.3, X 1

� rη X D X X 1

s. Therefore, if D1

is the smallest SU -droplet in the

sense of [4, De�nition 2.1℄ with the SU de�ned in [4, Lemma 6.2℄ su
h that

D1


ontains X 1

, then D1

is internally spanned by η X D (in the sense of

[4, De�nition 2.4℄

4

), and diampD1

q ¥ diampDq{C1 ¥ K{C2
1 . Repeating the

proof of [4, Lemma 8.37℄, we get that there is a 
riti
al droplet in the sense

of [4, De�nition 2.5℄ internally spanned by η X D. Then the union bound

over su
h droplets and [4, Lemma 8.36℄ yield the desired result.

Con
erning balan
ed models, in Appendix A (Corollary A.11) we esta-

blish the following, by 
ombining the te
hniques of [4, 18℄.

4

Te
hni
ally, it is not exa
tly the 
ase, as [4℄ uses a di�erent 
hoi
e of 
onstants.

However, their results that we use still hold in our setting.
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Lemma 4.3. Assume that U is balan
ed and q�α
{C5 ¤ K ¤ q�2α

. Then for

any 
riti
al parallelogram D we have

µpD is spannedq ¤ exp

�

�

1

C5qα




.

For the remaining 
onditions of Proposition 3.7 we need to distinguish

the di�erent 
lasses of models.

4.1 Proof of Theorem 1

In this se
tion we assume that U has an in�nite number of stable dire
tions.

We then 
hoose two rational dire
tions u1   u2   u1� π su�
iently 
lose to

ea
h other, su
h that all dire
tions in r2u1 � u2, 2u2 � u1s are stable and u1,

u2 satisfy a te
hni
al 
ondition whi
h the reader is advised to ignore, namely

that u1 and u2 are 
onstru
ted like the eponymous dire
tions in the proof of

[18, Lemma 4.1℄.

4.1.1 Proof of Theorem 1(a)

For this se
tion we further assume that U is unbalan
ed. We �x the values

of the parameters of Proposition 3.7 as follows.

K � q�α�1{4 ℓ � q�4α L � exp

�

plogp1{qqq2

C6qα




T � exp

�

plogp1{qqq4

C2
6q

2α




h � q�4α H � exp

�

plogp1{qqq2

C6qα




.

Proof of Theorem 1(a). The upper bound was proved in [26, Theorem 2(a)℄,

so we fo
us on the lower one. We will apply Proposition 3.7 with the above


hoi
e of parameters, so that we obtain the desired 
on
lusion: Eµrτ0s ¥ T .

Hen
e, it su�
es to verify the hypotheses of the proposition. Indeed, setting

n � plogp1{qqq2{p2C6q
α
q, we have

L � exp

�

plogp1{qqq2

C6qα




¥ 3n � 2q�4α
¥ 3np11K � ℓq

and similarly for H . By Lemma 4.1 we do have µp0 is lo
ally infe
tableq ¤

1{8. Moreover, re
alling that ρ ¤ expp�plogp1{qqq2{pC5q
α
qq by Lemma 4.2,

we obtain

TLHpLHK3ρqn�1
¤ exp

�

2plogp1{qqq4

C2
6q

2α
� n

�

3plogp1{qqq2

C6qα
�

plogp1{qqq2

C5qα





¤ exp

�

plogp1{qqq4

C6q2α

�

2

C6

�

3

2C6

�

1

2C5





¤ 1.

33



Finally,

T pLHq

2
¤ exp

�

2plogp1{qqq4

C2
6q

2α




¤ exp
�

q�3α
�

and Lemma 4.4 below yields maxpp
�

, p
Ó

q ¤ expp�q�3α
q. Therefore, we

obtain T pLHq

2maxpp
�

, p
Ó

q ¤ 1 and all the hypotheses of Proposition 3.7

are veri�ed on
e we establish Lemma 4.4.

Lemma 4.4. With the notation and assumptions above we have

maxpp
�

, p
Ó

q ¤ exp
�

�q�3α
�

.

This bound is proved in Appendix B (Lemma B.4), but let us provide a

rough sket
h for the reader's 
onvenien
e.

Sket
h of the proof of Lemma 4.4. Consider the re
tangleR � Rp�ℓ, 0; 0, Hq

and assume that Cu1

R o

urs with η1 � η in De�nition 3.5. Fix some u1-


rossing X � rHu1
YpRX ηqs of R. One 
an retra
e how X be
omes infe
ted

by the bootstrap per
olation pro
ess by a method known as a spanning algo-

rithm as follows. Starting from single infe
tions, we lump them into groups

of infe
tions by progressively merging two groups if their 
losures are 
lose

to ea
h other. Sin
e X has diameter at least ℓ, this pro
ess will eventually

produ
e a set of infe
tions of diameter roughly ℓ. We asso
iate to ea
h set of

infe
tions a droplet (appropriately shaped polygon) 
ontaining its 
losure.

We 
an then view the spanning algorithm run ba
kwards as a progressive

shattering of the initial droplet of size ℓ and re
ord its history. However, we

do not wish to register the entire history of all splittings. When a droplet

splits into two large droplets, we study the subsequent splittings of both

droplets, but when a large droplet splits into a large one plus a small one, we

ignore the small one. Still, if there are many su

essive su
h small splittings,

we o

asionally write down one of the resulting large droplets. We stop

studying the splitting when the droplets are of size roughly K. We then 
all

these droplets of size K seeds. In total, this gives us a tree of large droplets


alled hierar
hy re
ording how the droplet of size ℓ is produ
ed.

Re
all that the event Cu1

R requires the absen
e of spanned 
riti
al pa-

rallelograms, whi
h prevents the existen
e of 
lusters of infe
table sites of

size at least K, hen
e of droplets of size at least K. This seemingly forbids

the hierar
hy to exist. However, in the above we overlooked the presen
e

of the infe
ted boundary Hu1
. To take it into a

ount, we a
tually 
onsider

hierar
hies of 
ut droplets whi
h are �very �at triangles sti
king out of the

boundary.�

To bound the probability of Cu1

R , we bound the probability that su
h a

hierar
hy o

urs. There are two possibilities: either there are many splittings
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into two large droplets, or mu
h of the splitting is done into a large and a

small droplet. In the �rst 
ase, there will be many seeds. We establish a

preliminary upper bound on the probability of o

urren
e of a seed of order

expp�q�α
q. Sin
e ea
h seed should be 
ontained in the original droplet of

size ℓ, there are few possible 
hoi
es for them. We dedu
e an appropriate

bound on the probability of su
h a hierar
hy.

Assuming that most of the size ℓ of the initial droplet is gained by split-

tings into a large and a small droplet, let us 
onsider one su
h step. This

means that in the spanning algorithm, when we add to the infe
tions of a

large (
ut) droplet the few infe
tions 
ontained in a small droplet, we get to

infe
t a slightly larger droplet. This essentially implies the existen
e of an

infe
table set going from the boundary of the large droplet to that of the

larger one. This in turn yields the o

urren
e of another 
ut droplet of size

at least K. Hen
e, the preliminary bound on the probability of o

urren
e

of a seed allows us to bound the probability of su
h a splitting, 
on
luding

the proof.

4.1.2 Proof of Theorem 1(b)

For this se
tion we further assume that U is balan
ed. We �x the values of

the parameters of Proposition 3.7 as follows.

K � q�α ℓ � q�4α L � exp

�

1

C6qα




T � exp

�

1

C2
6q

2α




h � q�4α H � exp

�

1

C6qα




.

Then Theorem 1(b) follows dire
tly from Proposition 3.7 and the upper

bound from [17, Theorem 1(b)℄. Setting n � 1{p2C6q
α
q, the hypotheses of

the proposition follow like in Se
tion 4.1.1 from the 
hoi
e of parameters,

Lemmas 4.1 and 4.3, and Lemma 4.4, whi
h still applies.

4.2 Proof of Theorem 2

4.2.1 Proof of Theorem 2(
)

In this se
tion we assume that U is unbalan
ed, rooted and has a �nite num-

ber of stable dire
tions. Therefore, we 
an �nd rational dire
tions u1, u2, u3

su
h that u1 � π � u3, u2 P pu1, u3q and αpuiq ¥ α � 1 for all i P t1, 2, 3u.
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We �x the values of the parameters of Proposition 3.7 as follows.

K � q�α�1{4 ℓ � q�α�5{8 L � q�α�3{4

T � exp

�

plogp1{qqq3

C6qα




h � q�α�5{8 H � q�α�3{4.

Proof of Theorem 1(
). The upper bound was proved in [20, Theorem 1℄, so

we fo
us on the lower one. As previously, it su�
es to verify the hypotheses

of Proposition 3.7 with the above 
hoi
e of parameters. Indeed, setting n �

logp1{qq{C1, we have

L � q�α�3{4
¥ 3n � 2q�α�5{8

¥ 3np11K � ℓq

and similarly for H . By Lemma 4.1 we do have µp0 is lo
ally infe
tableq ¤

1{8. Moreover, re
alling that ρ ¤ expp�plogp1{qqq2{pC5q
α
qq by Lemma 4.2,

we obtain

TLHpLHK3ρqn�1
¤ exp

�

2plogp1{qqq3

C6qα
�

nplogp1{qqq2

2C5qα




¤ exp

�

plogp1{qqq3

qα

�

2

C6

�

1

2C1C5





¤ 1.

Finally,

T pLHq

2
¤ exp

�

2plogp1{qqq3

C6qα




¤ exp
�

q�α�1{4
�

.

Thus, on
e we establish Lemma 4.5 below, all the hypotheses of Proposition

3.7 are veri�ed.

Lemma 4.5. With the notation and assumptions above we have

maxpp
�

, p
Ó

q ¤ exp
�

�q�α�1{4
�

.

This bound is proved in Appendix B (Lemma B.3). Sin
e the proof is

quite di�erent from the one of Lemma 4.4, we also provide a sket
h.

Sket
h of the proof of Lemma 4.5. Consider R � Rp�ℓ, 0; 0, Hq. Our goal is

essentially to prove that µpCu1

R q ¤ e�ℓ
. To do this, we use an improvement of

the partition method of [4, Se
tion 8.3℄. We 
ut the re
tangle into strips of

a large 
onstant width and lump the strips together into groups 
rossed by

a spanned parallelogram. We establish that it is deterministi
ally ne
essary

for all strips to either be interse
ted by a spanned parallelogram as above or

to 
ontain a set of αpu1q ¥ α � 1 infe
tions. Yet, H is mu
h smaller than

q�α�1
, so it is unlikely that a strip 
ontains α � 1 infe
tions. As for the
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strips interse
ted by spanned parallelograms, sin
e Cu1

R assumes that no 
ri-

ti
al parallelogram is spanned, we only need to 
are about smaller spanned

parallelograms, for whi
h one may prove a preliminary probability bound

exponentially small in their size. Combining these fa
ts and taking into a
-


ount that the size of R is only polynomial in 1{q, we 
an 
ontrol the entropy

and 
on
lude that the probability of a 
rossing is indeed exponentially small

in its width.

4.2.2 Proof of Theorem 2(e)

In this se
tion we assume that U is balan
ed, rooted and with a �nite number

of stable dire
tions. Therefore, we 
an �nd non-opposite rational dire
tions

u1, u2 su
h that αpu1q ¥ α � 1 and αpu2q ¥ α � 1. We �x the values of the

parameters of Proposition 3.7 as follows.

K � 1{pC5q
α
q ℓ � q�α�1{2 L � q�α�3{4

T � exp

�

logp1{qq

C6qα




h � q�α�1{2 H � q�α�3{4.

Then Theorem 2(e) follows dire
tly from Proposition 3.7 and the upper

bound in [17, Theorem 1(e)℄. Setting n � logp1{qq{C1, the hypotheses of

the proposition follow like in Se
tion 4.2.1 from the 
hoi
e of parameters,

Lemmas 4.1 and 4.3, and Lemma 4.5, whi
h still holds.

4.2.3 Proof of Theorem 2(f)

In this se
tion we assume that U is semi-dire
ted. Therefore, we 
an �nd non-

opposite rational dire
tions u1, u2 su
h that αpu1q � α and αpu2q ¥ α � 1.

We �x the values of the parameters of Proposition 3.7 as follows.

K � 1{pC5q
α
q ℓ � q�α�1{2 L � q�α�3{4

T � exp

�

log logp1{qq

C3
6q

α




h �
log logp1{qq

qα
H �

plogp1{qqq1{4

qα
.

Proof of Theorem 1(f). The upper bound is proved in [17, Theorem 1(f)℄, so

we fo
us on the lower one. As previously, it su�
es to verify the hypotheses

of Proposition 3.7 with the above 
hoi
e of parameters. Indeed, setting n �

log logp1{qq{C1, we have

L � q�α�3{4
¥ 3n � 2q�α�1{2

¥ 3np11K � ℓq,

H �

plogp1{qqq1{4

qα
¥ 3n

2 log logp1{qq

qα
¥ 3np11K � hq.
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By Lemma 4.1 we do have µp0 is lo
ally infe
tableq ¤ 1{8. Moreover, re
al-

ling that ρ ¤ expp�1{pC5q
α
qq by Lemma 4.3, we obtain

TLHpLHK3ρqn�1
¤ exp

�

2 log logp1{qq

C3
6q

α
�

n

2C5qα




¤ exp

�

log logp1{qq

qα

�

2

C3
6

�

1

2C1C5





¤ 1.

Finally,

T pLHq

2
¤ exp

�

2 log logp1{qq

C3
6q

α




¤ exp

�

log logp1{qq

2C2
6q

α




¤ exppq�α�1{4
q.

Thus, on
e we establish Lemma 4.6 below, all the hypotheses of Proposition

3.7 are veri�ed.

Lemma 4.6. With the notation and assumptions above we have

p
�

¤ exp
�

�q�α�1{4
�

p
Ó

¤ exp

�

�

log logp1{qq

2C2
6q

α




.

This bound is proved in Appendix B (Lemma B.3) like Lemma 4.5.
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A Bounds on spanning

Relation to previous works Let us start by explaining why additional

arguments are needed, as spe
ialists would probably expe
t su
h bounds to

be automati
. In [4℄ two main algorithms were used�the 
overing and the

spanning ones. The former provides bounds of the type we need but for

a notion of 
overed droplet invoking only the initial 
on�guration. On the

other hand, the spanning algorithm works with the 
losure of the initial
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on�guration inside droplets, whi
h obstru
ts obtaining results analogous

to those for the 
overing algorithm in the same way. Yet, it is the spanning

algorithm whi
h is the most useful and parti
ularly so for unbalan
ed models.

In [4℄ an indu
tive multi-s
ale s
heme was used to bootstrap the bounds on

the probability of droplets being spanned from a size whi
h is easily 
ontrolled

by the more rudimentary prede
essor of the 
overing algorithm developed in

[5℄. This fairly te
hni
al pro
edure 
an be 
ir
umvented using our method.

Indeed, if one has bounds analogous to the ones for 
overed droplets up to

size 1{qαpUq, one 
an dire
tly prove the result of [4℄ in one step, whi
h was

made there as well.

The reason why in [4℄ one 
ould not dire
tly transfer the easier bounds

on 
overing, whi
h were established there anyway, to spanning is that the


overing algorithm there la
ks the key property of being essentially 
losure-

invariant in a sense made pre
ise below. This property was one of the main

features gained in [18℄ by using a less wasteful notion of 
luster. Therefore,

we a

omplish our goal as follows. We 
arry through (a simpli�ed version of)

the s
heme of [18℄ to obtain general bounds for droplets 
overed in the sense

of [18℄ and we use the key 
losure lemma (see below) to dire
tly transfer those

to spanning. On the more te
hni
al level, we should mention that analogous

bounds on spanning were established in [4℄ in the 
ourse of their indu
tion,

but the proof needlessly uses that the model is unbalan
ed and 
onstrains the


hoi
e of dire
tions used for de�ning droplets, whi
h we will need to 
hoose

freely. Moreover, [18℄ made unne
essary use of the existen
e of strongly stable

dire
tions

5

, whi
h is only needed for treating the algorithm with boundary


ondition. We are thus obliged to review the proofs. The reader familiar

with the details of [18℄ would probably be satis�ed by skipping dire
tly to

Appendix B and 
onsulting the statements as needed there.

Outline The appendix is stru
tured as follows. In se
tion A.1 we re
all

several results from [18℄, leading up to Lemma A.6 providing good bounds

on the probability of being 
overed (in a sense made pre
ise below) and to

the Closure lemma A.7 relating the results of the 
overing algorithm for a

set and for its 
losure. In se
tion A.2, using the latter lemma we transfer

the bounds of the former one to the notion of spanning used throughout

the body of the paper. Se
tion A.3 establishes, yet again, the same bounds

on the probability of spanned droplets o

urring, but in the presen
e of an

infe
ted boundary, following the same reasoning and relying more 
losely on

[18℄.

5

Strongly stable dire
tions are those 
ontained in the topologi
al interior of the set of

stable dire
tions.
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Notation For the remainder of the paper we �x an arbitrary 
riti
al update

family U with di�
ulty α. Following [18℄ we 
onsider 
onstants

1 ! C1 ! C 1

2 ! C2 ! C3 ! C 1

4 ! C4 ! C5 ! C6

su
h that ea
h one is larger than a suitable fun
tion of the previous ones, de-

pending on T , T0, Su, et
. to be de�ned below and on U . These 
onstants do

not depend on q, whi
h is always assumed small enough, as we are interested

in q Ñ 0.

For any �nite set of dire
tions V � S1
a V-droplet is a set of the form

�

vPV H̄vpavq for some av P R.

A.1 Covering and 
losure

We start by studying the 
overing algorithm in the spirit of [18, Se
tion 5℄

(but without the boundary and rugged edge present there). The reader is

invited to 
onsult that work for most proofs and more details, as indi
ated

below. By de�nition 1.2 we 
an �x a set of non semi-isolated rational stable

dire
tions

6 T0 with di�
ulty at least α, su
h that the 
onvex envelope of the

elements of T0 
ontain 0 in its interior and either

• |T0| � 3 or

• |T0| � 4 and one has T0 � tu, v, u� π, v � πu for some u, v P S1
.

Let Γ be the graph with vertex set Z2
but with x � y i� }x� y} ¤ C2.

De�nition A.1 ([18, De�nitions 5.1 and 5.3℄). Fix a �nite set Z � Z2
. Let

κ be a 
onne
ted 
omponent of the subgraph of Γ indu
ed by the vertex set

Z.

• κ is a 
rumb for Z if there exists a set Pκ � Z2
su
h that rPκs � κ and

|Pκ| � α � 1.

• If κ is not a 
rumb for Z, we say that a C � κ is a α-
luster (or simply


luster) of Z if the following 
onditions hold

� diampCq ¤ C3.

� C is 
onne
ted in Γ.

� For all x P κzC and y P C su
h that x � y in Γ we have diampCY

txuq ¡ C3.

6

Semi-isolated stable dire
tions are the endpoints of intervals of stable dire
tions with

nonempty interior.
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It 
an be proved [18, Observation 5.4℄ that any 
luster 
ontains at least

α sites. Moreover, Corollary 5.17 of [18℄ yields that a 
rumb has diameter

at most αC2. For a 
luster C we denote by QpCq the smallest T0-droplet


ontaining the set tx P R2 : dpx, Cq ¤ C4u.

We next de�ne the 
overing algorithm we will use. It is an adaptation of

the droplet algorithm of [18℄ and should not be 
onfused with the 
overing

algorithms of [4, 5℄.

De�nition A.2 (Covering algorithm). Given a �nite set Z � Z2
of infe
tions

the 
overing algorithm outputs a set D of disjoint T0-droplets as follows.

• Form an initial 
olle
tion D of T0-droplets 
onsisting of QpCq for all


lusters C of Z.

• Whenever there exist D1, D2 P D with D1 X D2 � ∅, repla
e them

with the smallest T0-droplet 
ontaining their union, whi
h we denote

by D1 _D2.

• Output the 
olle
tionD obtained when all T0 droplets in D are disjoint.

Equivalently, D is the minimal 
olle
tion (with respe
t to in
lusion of the

union of its elements) of disjoint T0-droplets 
ontaining the union of QpCq

for all 
lusters C of Z. In parti
ular, D does not depend on the order in

whi
h droplets are merged.

We say that a T0-droplet D is 
overed by a set Z of infe
tions if the above

algorithm for Z XD outputs a T0-droplet 
ontaining D.

We make the 
onvention that all T0-droplets have diameter at least C 1

4

and 
ontain a site of Z2
.

We next state some properties of the 
overing algorithm.

Lemma A.3 (Lemma 4.6 of [5℄). Let D1 and D2 be T0-droplets su
h that

D1 XD2 � ∅. Then

diampD1 _D2q ¤ diampD1q � diampD2q.

This immediately implies the Aizenman-Lebowitz lemma (see e.g. [5,

Lemma 4.8℄).

Lemma A.4 (Aizenman-Lebowitz). Let Z be a set of infe
tions and D be

a T0-droplet 
overed by Z. Then for all C1C4 ¤ k ¤ diampDq there exists a

T0-droplet D
1


overed by Z with k ¤ diampD1

q ¤ 2k.

A further 
onsequen
e of Lemma A.3 is the following.
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Lemma A.5 (Lemma 5.14 of [18℄). Let Z be a set of infe
tions and D be

a T0-droplet 
overed by Z. Then D 
ontains at least rdiampDq{C2
4 s disjoint


lusters of Z XD.

We are now able to dedu
e the relevant bounds on 
overing following

[18, Lemma 5.15℄.

Lemma A.6. Let D be a T0-droplet with d � diampDq. Let 1 ¡ ǫ ¡ 0. Then

we have

µpD is 
overedq ¤

$

'

'

&

'

'

%

qdǫ{p3C
2

4
q

if d ¤ C1

qα�ǫ

e�C1C4d
if

1
C1qα�ǫ ¤ d ¤ C1

e
C4
4 qα

d2e�C1{pC5q
α
q

if

1

C1e
C4
4 qα

¤ d.

(11)

Proof. Let Z be the (random) set of infe
tions in D. By Lemma A.5 we have

that if D is 
overed, it 
ontains at least rd{C2
4 s disjoint 
lusters of Z, ea
h

one having diameter at most C3 and at least α sites. Thus, the union bound

gives

µpD is 
overedq ¤

�

C2α
3 d2

rd{C2
4 s




qαrd{C2

4
s.

For d ¤ C2
4 this gives C2α

3 d2qα, whi
h 
on
ludes the proof. For C2
4 ¤ d ¤

C1{pe
C4

4 qαq we use the inequality
�

n

k

�

¤ pne{kqk to obtain the desired bounds.

For the 
ase d ¥ 1{peC
4

4 qαq we use Lemma A.4 to extra
t a smaller T0-droplet

D1


overed by Z (hen
e interse
ting D) with 1{p2eC
4

4 qαq ¤ diampD1

q ¤

1{peC
4

4 qαq. We then apply the se
ond bound to D1

and use the union bound

to 
on
lude.

We would now like to use analogous bounds on the probability of T0-

droplets being 
overed with initial 
ondition rZs instead of Z. Unfortunately,

we do not have a

ess to the law of rZs when Z follows µ. Therefore, we

rather bound the output of the 
overing algorithm for the 
losure using the

original output. For that purpose, we de�ne parallel notions of Γ1, modi�ed


lusters and modi�ed 
overing, by repla
ing C2 by C 1

2 and C4 by C 1

4.

We then have the following key property, whose proof is identi
al to the

one of [18, Proposition 5.20℄, up to the relevant simpli�
ations (we do not

have rugged edges and there is no boundary).

Lemma A.7 (Closure). Let Z � Z2
be a �nite set and let D1

be the 
olle
tion

of T0-droplets given by the modi�ed 
overing algorithm with input rZs. Let

D be the output of the 
overing algorithm for Z. Then

�D1

P D1

DD P D, D1

� D.
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A.2 Spanning

Let T be an arbitrary �nite set of rational dire
tions 
ontaining the origin in

the interior of its 
onvex envelope. We then generalise the notion of spanning

from De�nition 3.1.

De�nition A.8 (Spanning). LetD be a T -droplet. We say thatD is spanned

by Z � Z2
if there exists a set C � rZ XDs 
onne
ted in Γ1 su
h that the

smallest T -droplet 
ontaining C is D.

We will need the following Aizenman-Lebowitz type lemma. Though this

is a very 
lassi
al result, some additional arguments are needed to prove it,

be
ause T is not 
omposed of stable dire
tions.

Lemma A.9 (Aizenman-Lebowitz). Let Z � Z2
and D be a T -droplet span-

ned by Z with diampDq ¥ C1C
1

2. Then for any C 1

2 ¤ k ¤ diampDq, there

exists a T -droplet D1

spanned by Z XD with k ¤ diampD1

q ¤ C1k.

Proof. If k ¥ diampDq{C1 there is nothing to prove, as D
1

� D is as desired.

Assume k ¤ diampDq{C1. Let C be a 
onne
ted 
omponent of rZ X Ds in

Γ1 with maximal diameter. By De�nition A.8 diampCq ¥ diampDq{
?

C1. By

Observation 3.3 and [4, Lemma 6.18℄ (we use it although de�nitions slightly

di�er from [4℄, see Footnote 4) there exists C 1

� C 
onne
ted in Γ1 su
h that

C 1

� rC 1

X Z X Ds and k ¤ diampC 1

q ¤

?

C1k. Denoting D1

the smallest

T -droplet 
ontaining C 1

, we are done.

Observation A.10. LetD be a T -droplet spanned by Z � Z2
with diampDq ¥

C4. Then there exists a T0-droplet D̄ 
overed by Z, interse
ting D and su
h

that diampD̄q � ΘpdiampDqq.

Proof. Let C be as in De�nition A.8. Noti
e that, sin
e diampDq ¥ C3,

we 
an �nd modi�ed 
lusters for rZ XDs whose union is a 
onne
ted set in

Γ1 
ontaining C. Then there is a T0-droplet in the output of the modi�ed


overing algorithm for rZ XDs 
ontaining C. By Lemma A.7 there is also a

T0-droplet D̄ in the output of the 
overing algorithm for ZXD 
ontaining C,

so that diampD̄q ¥ diampCq � ΩpdiampDqq. But D̄ is at most the smallest

T0-droplet 
ontaining tx P R2 : dpx,Dq ¤ C4u, so diampD̄q � ΘpdiampDqq.

Moreover, sin
e D̄ is in the output of the 
overing algorithm for Z XD, it is


overed by Z and interse
ts D.

We immediately dedu
e from this observation and Lemma A.6 the desired

bounds on spanning.
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Corollary A.11. Let D be a T -droplet with d � diampDq and let 1 ¡ ǫ ¡ 0.

Then

µpD is spannedq ¤

$

'

&

'

%

qdǫ{C5
if d ¤ q�α�ǫ

e�2C4d
if q�α�ǫ

¤ d ¤ C1

C5qα

dOp1qe�2{pC5q
α
q

if

1
C5qα

¤ d.

(12)

A.3 Boundary and spanning

We next turn to the treatment of an in�nite infe
ted boundary 
ondition,

following [18℄, whi
h is appli
able only for models with an in�nite number

of stable dire
tions. Indeed, for a model with a �nite number of stable

dire
tions a bounded set of infe
tions next to the boundary 
an indu
e a

set of supplementary infe
tions and, thereby, a droplet of the size of the

boundary, making similar algorithms useless. We therefore �x an update

family U with an in�nite number of stable dire
tions and di�
ulty α, to

whi
h the treatment of [18℄ applies.

For the rest of this se
tion let Su � tu�, u�, v1, v2u be a set of 4 dire
ti-

ons 
hosen as in [18, Lemma 4.1℄

7

(we rename pu1, u2q from that work into

pu�, u�q to avoid notational 
on�i
t) with u � pu� � u�q{2. The proof of

[18℄ allows us to 
hoose u� and u� as 
lose as we want, even depending on

v1 and v2. We will 
hoose them 
lose enough for our results to hold. Let

B � Hu. For any set Z � Z2
we write rZs

B

� rZYBszB. We will use the term


luster in the sense of [18, De�nition 5.3℄, extending De�nition A.1 (
rumbs


lose to B are 
onsidered as 
lusters instead and Z is repla
ed by ZzB). We

repla
e the notion of DYD from [18℄ by that of Su-droplet and the notion of

CDYD be
omes that of 
ut Su-droplet�a nonempty set of the form

�

H̄u�pxq X H̄u�pyq
�

zB (13)

for some x, y P R, whi
h is a geometri
 triangle. We further repla
e the use

of the diameter by 
onsidering the size | � | from [18, De�nition 5.7℄. Namely

for a 
ut Su-droplet D we denote |D| � diampDq{C1, while for an Su-droplet

D, |D| denotes the length of its proje
tion parallel to v1. We then de�ne


orrespondingly an extension of the 
overing algorithm as in [18, Se
tion 5.4℄

and a notion of 
overed (
ut) Su-droplet. For the reader unfamiliar with

[18℄, let us indi
ate that the 
hange with respe
t to the 
overing algorithm

of De�nition A.2 
orresponds to repla
ing at ea
h stage of the algorithm any

Su-droplet D interse
ting B by the smallest 
ut Su-droplet 
ontaining DzB.

7

It is not hard to see that in [18, Lemma 4.1℄, with a �nite number of ex
eptions, given

any rational strongly stable dire
tion u P S1
we 
an de�ne Su 
orrespondingly.
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The properties of [18, Se
tion 5.5℄, analogous to Lemmas A.3-A.5 and A.7,

remain valid for this setting. Furthermore, 
ombining the proofs of Lemma

A.6 and [18, Lemma 5.15℄ shows that the following holds.

Lemma A.12. Let D be a 
ut Su-droplet or an Su-droplet not interse
ting

B with d � |D|. Let 1 ¡ ǫ ¡ 0. Then (11) holds.

We similarly extend De�nition A.8 to the setting with boundary.

De�nition A.13 (Spanning with boundary). We 
all whole Su-droplet any

Su-droplet at distan
e at least C3 from B and, by abuse, we 
all 
olle
tively

Su-droplet any 
ut or whole Su-droplet. We say that an Su-droplet D is

spanned by Z � Z2
if there exists a set C � rZ XDs

B


onne
ted in Γ1 su
h

that the smallest Su-droplet 
ontaining C is D.

We next re
all several properties of the spanning algorithm following 
lo-

sely [4℄.

De�nition A.14 (De�nition 6.15 of [4℄). Let Z � tz1, . . . , zk0u be a �nite

set of infe
tions. Set Z0
� tZ0

1 , . . . , Z
0
k0
u with Z0

i � tziu. For ea
h t ¥ 0 do

the following.

• If there exist Zt
i and Zt

j su
h that rZt
i sBYrZt

jsB is 
onne
ted in Γ1, then

set Z t�1
� pZ t

ztZt
i , Z

t
juq Y tZt

i Y Zt
ju.

• Otherwise, de�ne the span of Z by xZy � tDpZt
q, Zt

P Z t
u, where

DpZ 1

q denotes the smallest Su-droplet 
ontaining Z 1

, and terminate

the algorithm.

Similarly, for any A � R2
we denote xAy � xAX Z2

y.

Observation A.15 (Lemma 6.16 of [4℄). We have xZy � tDpκ1q, . . . , Dpκkqu,

where the κi are the 
onne
ted 
omponents of rZs
B

in Γ1.

Observation A.16 (Lemma 6.17 of [4℄). A nonempty Su-droplet is spanned

i� D P xD X Zy.

Lemma A.17 (Lemma 6.21 of [4℄). Let Z be a �nite set of at least two

infe
tions su
h that rZs
B

is 
onne
ted in Γ1. Then there exists a nontrivial

partition Z � Z1\Z2 su
h that rZ1sB, rZ2sB and rZ1sB Y rZ2sB are 
onne
ted

in Γ1.

The next lemma follows from the de�nition of size and [18, Lemma 5.12℄.

Lemma A.18. For any Su-droplets D,D1, D2 with |D1| ¥ C3 or |D2| ¥

C3 su
h that xD1y � tD1u, xD2y � tD2u and xD1 Y D2y � tDu we have

|D1|{C1 ¤ |D| ¤ |D1| � |D2| �OpC 1

2q.
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This standardly implies (see e.g. [4, Lemma 6.18℄) the following.

Lemma A.19 (Aizenman-Lebowitz). Let D be a spanned Su-droplet and

C3 ¤ k ¤ |D|. Then there exists a spanned Su-droplet D
1

� D with k ¤

|D1

| ¤ 3k.

Similarly to Corollary A.11 we obtain the following.

Corollary A.20. Let D be an Su-droplet with d � |D| ¥ 1{pC5q
α
q. Then

µpD is spannedq ¤ dOp1qe�2{pC5q
α
q.

Remark A.21. Let us note that the results of this se
tion remain valid

if B is repla
ed by any su�
iently regular boundary 
ondition. Namely, if

u
K

� u� π{2 and f is a δ-Lips
hitz fun
tion for δ   tanppu� � u�q{2q, then

we 
an use any B with topologi
al interior

tx P R2, xx, uy   fpxx, u
K

yqu

su
h that B, B YD are stable for any 
ut Su-droplet.

Finally, one 
an also remove the boundary by 
onsidering infe
tions suf-

�
iently far from it to re
over the setting of the previous se
tion for the

dire
tions under 
onsideration.

B Bound on 
rossing

For this appendix we pla
e ourselves in the 
ontext of Se
tion 3 (in parti-


ular, T -droplets will be parallelograms). In se
tions B.1 and B.2 we show

that 
rossings are unlikely in dire
tions with respe
tively �nite and in�nite

di�
ulty. Of 
ourse, though we treat u1, the results are also valid for u2.

B.1 Crossing in a dire
tion with �nite di�
ulty

One 
an use Corollary A.11 to show that if u1 has �nite di�
ulty, a u1-


rossing without large droplets is extremely unlikely. To do that, we will use

a 
on
ept of partition 
lose to the one from [4, De�nition 8.20℄.

De�nition B.1. Assume that 0   αpu1q   8. Let R � Rpa, b; c, dq be a

parallelogram and Z � R X Z2
. Set m � tpc � aq{pC1C6qu ¥ 1 and

Si � Hu1
p�pc� iC1C6qq X H̄u2

p�bq X H̄u3
pc� pi� 1qC1C6q X H̄u4

pdq

for 1 ¤ i ¤ m � 1 and Sm � Rpa, b; c � pm � 1qC1C6, dq. A u1-partition of

R for Z is a sequen
e a1, . . . , ak of positive integers with m � a1 � � � � � ak
su
h that, setting tj � a1 � � � � � aj , we have either
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• aj � 1 and Stj 
ontains an αpu1q-
luster for Z (see De�nition A.1) or

• there exists a T -droplet D spanned by ZX
�tj

i�tj�1�1 Si, with C1C6aj ¥

diampDq ¥ ajC6.

The following lemma is 
lose to [4, Lemma 8.21℄.

Lemma B.2. Let R be a parallelogram. If 0   αpu1q   8 and R is u1-


rossed then there exists a u1-partition for η XR.

Proof. For notational 
onvenien
e we assume that R � Rp�a, 0; 0, dq. In

this proof, all 
lusters and 
rumbs are with respe
t to αpu1q. The proof is by

indu
tion on m.

Suppose that the property holds for any m1

¤ m � 1. If S1 
ontains a


luster of η X R, we set a1 � 1 and we are done, sin
e Rp�a, 0;�C1C6, dq

is u1-
rossed. Let us assume S1 
ontains no 
luster of η X R. Then S 11 �

Rp�C1C6 � C1C3, 0; 0, dq interse
ts no 
luster of η X R, so if K is the set

of 
onne
ted 
omponents of η X S 11 in Γ, ea
h κ P K is a 
rumb of η X S 11.

In parti
ular, all elements of rκs and rκ Y Hu1
szHu1

are at distan
e at most

C1 of κ (see Observation 5.16 and the proof of Corollary 5.17 in [18℄). As

elements of K are at distan
e at least C2 from one another, this means that

rηX S 11s �
�

κPKrκs, and that Z̄ �

�

κPK1

rκYHu1
s is 
losed, where K1

� tκ P

K : dpκ,Hu1
q ¤ C2u. Moreover, the diameter of a 
rumb is at most αpu1qC2,

so all elements of Z̄ are at distan
e at most pαpu1q � 2qC2 of Hu1
. Sin
e R

is u1-
rossed, this implies that there exists z P Z̄ and w P rpη X RqzZ̄s su
h

that dpz, wq ¤ C 1

2. Then dpw,Hu1
q ¤ pαpu1q � 2qC2 � C 1

2.

Let X be the 
onne
ted 
omponent in Γ1 of rpη XRqzZ̄s 
ontaining w. If

X � rη X S 11s, then X �

�

κPKrκs, so X � rκs for some κ P K, sin
e they are

at distan
e more than C 1

2 from one another. Moreover, by Observation 3.3,

X � rppη XRqzZ̄q XXs, so X � Z̄, so κ R K1

. However, this 
ontradi
ts the

fa
t that dpw, zq ¤ C 1

2, as dpZ̄, rκsq ¥ C2 � 2C1.

Therefore, X � rη X S 11s, so X interse
ts RzS 11. Let a1 � maxti ¥

1, X X Si � ∅u and D be the smallest T -droplet 
ontaining X . Clearly,

diampDq ¥ diampXq ¥ a1C6, sin
e dpw,Hu1
q ¤ C3. Furthermore, sin
e

X � rppη XRqzZ̄q XXs, D is spanned by η X
�a1

i�1 Si. We then 
on
lude by

Lemma A.9 and the indu
tion hypothesis for Rp�a, 0;�a1C1C6, bq.

We next require a more sophisti
ated version of [4, Lemma 8.23℄.

Lemma B.3. Fix K in De�nitions 3.1 and 3.5 by

K �

#

1{pC5q
α
q if U is balan
ed

q�α�1{4
if U is unbalan
ed.
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Assume that 0   αpu1q   8. Let R � Rpa, b; c, dq with d � b ¤
logp1{qq

C3

6
qαpu1q

and

1{qC1
¥ c� a ¥ 1{q. Then

µpCu1

R q ¤

#

exp
�

�pc� aq exp
�

�2C2
6pd� bqqαpu1q

�

{C2
6

�

if U is balan
ed

exp
�

�pc� aqq1{4{C6

�

if U is unbalan
ed.

Proof. For notational 
onvenien
e, we assume that R � Rp�a, 0; 0, dq. If

Cu1

R holds, there exists η1 ¥ η su
h that R is u1-
rossed for η1 and there

is no spanned 
riti
al T -droplet for η1 X R. By Lemma B.2, there exists a

u1-partition for η1 X R and, by Lemma A.9, all 
orresponding spanned T -

droplets have diameter at most K{C1. We noti
e that any empty site or

spanned droplet for η1 is still an empty site or spanned droplet for η.

We �rst assume that U is balan
ed. Given a partition P we de�ne its

numbers and total sizes of big/small/
luster parts by

B � tj : 1{
?

q   aj ¤ 1{pC5C6q
α
qu b � |B| B �

¸

jPB

aj

S � tj : 1   aj ¤ 1{
?

qu s � |S| S �

¸

jPS

aj

C � tj : aj � 1u c � |C|.

We denote by Ppb, s, c, B, Sq the set of partitions P with the 
orresponding

numbers and total sizes of parts.

Then, using Corollary A.11, we get that the probability of a given P

o

urring is at most

ΠpPq �
¹

jPC

p1� p1� qαpu1q
q

C2

6
d
q

¹

jPS

qaj
?

C6

¹

jPB

e�C3C6aj

� p1� p1� qαpu1q
q

C2

6
d
q

cqS
?

C6e�C3C6B

by the union bound on all possible droplets and their positions, re
alling

that d � q�Op1q
. Indeed, the probability that there is no set of αpu1q zeroes


onne
ted in Γ1 in a given Si is the probability that for any possible su
h set

C, ηC � 0, whi
h, by the Harris inequality, is bigger than the produ
t of this

probability for ea
h set C.

Assuming for simpli
ity that 1{
?

q and 1{pC5C6q
α
q are integers, we 
an


ount Ppb, s, c, B, Sq in the following way (the �rst binomial 
oe�
ient 
or-

responds to the de
omposition of B into ordered parts, the se
ond one to the

de
omposition of S, and the last two to the ordering of the parts of B, S, C):

|Ppb, s, c, B, Sq| ¤

�

B � b{
?

q � 1

b� 1


�

S � s� 1

s� 1


�

b� s� c

b


�

s � c

s




¤ 2B�S
pb� s� cqbps� cqs ¤ eB�Sq�C1s,
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re
alling that C6pB � S � cq   a ¤ 1{qC1
. Therefore, denoting by m �

ta{pC1C6qu � B � S � c the total number of strips, we have

¸

B,S,b,s

¸

PPPpb,s,m�B�S,B,Sq

ΠpPq

¤ m4max
B,S

�

1�
�

1� qαpu1q
�C2

6
d
	m�B�S

qS
?

C6{2e�C3C6B{2

¤ m4 max
0¤c¤m

e�c exp
p

�2C2

6
dqαpu1q

qe�C2C6pm�cq

¤ exp
�

�

m

2
exp

�

�2C2
6dq

αpu1q
�

	

,

whi
h 
on
ludes the proof in the balan
ed 
ase, re
alling the hypotheses of

the lemma.

We next 
onsider U to be unbalan
ed. Noti
e that, sin
e K � q�α�1{4
,

there may be droplets with diameter larger than 1{pC5q
α
q. Therefore, we

further set

H �

 

j : 1{pC5C6q
α
q   aj ¤ 1{pC6q

α�1{4
q

(

h � |H| H �

¸

jPH

aj .

Then Corollary A.11 gives that the probability of a given P o

urring is at

most

ΠpPq �
�

qOp1qe�2{pC5q
α
q

�h
¤ ΠpPq � exp

�

�Hq1{4C6{C5

�

.

We further easily 
he
k that

�

H � h{pC5C6q
α
q � 1

h� 1




¤ eH
?

q

�

h� b� s� c

h




¤ eH
?

q,

so, as above the probability of any P o

urring is at most

m6 exp
�

�m.min
�

C6q
1{4
{p2C5q, exp

�

�2C2
6dq

αpu1q
���

¤ exp

�

�

C6mq1{4

3C5




,

whi
h 
on
ludes the proof.

B.2 Crossing in a dire
tion with in�nite di�
ulty

If U has an in�nite number of stable dire
tions, we need to treat an infe
ted

boundary 
ondition. This is essential, as we will work in exponentially large

regions, for whi
h the bounds from the previous se
tion 
annot be applied.

We pla
e ourselves in the setting of Se
tion 4.1. We will write (
ut/whole)

droplet for (
ut/whole) Su1
-droplet in the sense of De�nition A.13, with u�1
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and u�1 su�
iently 
lose to u1. These should not be 
onfused with T -droplets,

whi
h are 
alled parallelograms to avoid any 
onfusion.

We will seek to apply Corollary A.20 rather than A.11 to prove the follo-

wing.

Lemma B.4. Fix

K �

#

q�α
if U is balan
ed

q�α�1{4
if U is unbalan
ed

for De�nitions 3.1 and 3.5. Let R � Rpa, b; c, dq with C1 ¤ d�b ¤ exppq�3α
q

and c� a ¥ q�4α
. Then

µpCu1

R q ¤ exp
�

�q�3α
�

.

Our strategy is as follows. Instead of 
onsidering u1-partitions, we dire
tly

retra
e the spanning algorithm to obtain a hierar
hy of droplets rea
hing

a 
ut droplet of size roughly c � a. We reassure the reader familiar with

[22℄ that our hierar
hies will be very simple and impre
ise, as the a priori

hypothesis that there are no 
riti
al parallelograms removes the metastability

(it is no longer easy for large droplets to grow) together with the need of �ne

tuning. Namely, their seeds will be of size roughly K whi
h will also be the

in
rement of the size of unary verti
es (the reader unfamiliar with hierar
hies

is invited to 
onsult the de�nitions below). The la
k of 
riti
al parallelograms

entails that all droplets in the hierar
hy are 
ut (so they are simply very �at

triangles). The bound on the probability of seeds being spanned is provided

by Corollary A.20 and entropy is easily subdominant, so we 
an fo
us on

the probability that the infe
tions around a 
ut droplet are su
h that if that

droplet is infe
ted, the infe
tion 
an expand to �ll a slightly larger 
ut droplet.

However, this would imply that there is a (smaller s
ale) u�1 -
rossing from

the side of the smaller one to side of the larger one (see Figure 3b). The

probability of this event is again bounded dire
tly by Corollary A.20, taking

into a

ount Remark A.21.

Let us begin by introdu
ing our hierar
hies following Holroyd [22℄. Let

T � q�α�1{4
. Fix a droplet D. A hierar
hy H for D is a rooted unary-binary

tree with ea
h vertex x labelled by a droplet Dx � D, so that the label of

the root is D. We denote by Npxq the set of 
hildren of x P V pHq, so that

|Npxq| P t0, 1, 2u for all x. The leaves are 
alled seeds and the binary verti
es

are 
alled splitters. We alert the reader that in reality there will only be


ut droplets in our hierar
hies, but for te
hni
al reasons we de�ne them in

general. A hierar
hy is de�ned to satisfy the following 
onditions.

• If y P Npxq, then Dy � Dx.
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• If Dx is a whole droplet, then x is a seed and T {3 ¤ |Dx|.

• If Dx is a 
ut droplet, then T {3 ¤ |Dx| ¤ T if and only if x is a seed.

• If Npxq � tyu and |Npyq| � 1, then T   |Dx| � |Dy| ¤ 2T .

• If Npxq � tyu, then |Dx| � |Dy| ¤ 2T .

• If Npxq � ty, zu, then |Dx| � |Dy| ¡ T and xDy YDzy � tDxu.

We set

SpHq � tx P V pHq : |Npxq| � 0u

NpHq � tpx, yq P pV pHqq2 : Npxq � tyu, |Npyq| � 1u

and remark that |SpHq|�1 is the number of splitters. We say that a hierar
hy

H o

urs if the following events o

ur disjointly (are witnessed by disjoint

sets of infe
tions, see [32℄).

• For every seed x P SpHq we have that Dx is spanned.

• For every x P V pHq su
h thatNpxq � tyu we have Dx P xDyYpηXDxqy.

Lemma B.5. If D is a spanned droplet with |D| ¥ T {3, then some hierar
hy

for D o

urs.

Proof. The proof is very similar e.g. to [4, Lemma 8.7℄. Assuming that D0

is a spanned droplet with |D0| ¥ T {3, we 
onstru
t an o

urring hierar
hy

by indu
tion on D0 with respe
t to in
lusion. If |D0| ¤ T or D0 is a whole

droplet, the hierar
hy with only vertex labelled by D0 is as desired.

Assume that D0 is a 
ut droplet and |D0| ¡ T . Let Z be a 
onne
ted


omponent for Γ1 of rD0X ηs
B

su
h that the smallest droplet 
ontaining Z is

D0, and let Z0 � Z X η. We then have rZ0sB � Z. By Lemma A.17 there

exist sequen
es Z1, . . . , Zm and Z 1

1, . . . , Z
1

m of subsets of Z0 and D1, . . . , Dm

and D1

1, . . . , D
1

m su
h that the following 
onditions hold for all 0   i ¤ m.

• Zi�1 � Zi \ Z 1

i, rZisB, rZ
1

isB and rZisB Y rZ 1

isB are 
onne
ted in Γ1.

• Di � DprZisBq and D1

i � DprZ 1

isBq.

• xDi YD1

iy � tDi�1u and |Di| ¥ |D1

i|

• m ¥ 1 is the minimal index su
h that one of the following holds:

1. |D0| � |Dm| ¡ T ;
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2. Dm is a whole droplet;

3. |Dm| ¤ T .

If 1 does not hold, then we atta
h a seed labelled by Dm to the root and

we are done, as |Dm| ¥ |Dm�1|{3 ¡ T {3 by Lemma A.18 and minimality of

m. Indeed, Dm being spanned is witnessed by Zm, whileD0 P xDmYpηXD0qy

is witnessed by Z0zZm.

Assume that 1 holds. Then we 
onsider two 
ases. If T   |D0| � |Dm| ¤

2T , we atta
h a hierar
hy for Dm (o

urring for Zm) to the root D0 and we

are done using Lemma A.18 to get that |Dm| ¡ T {3 as above. Otherwise we

atta
h a splitter labelled by Dm�1 to the root D0 (if m � 1, then D0 is the

splitter) and hierar
hies for Dm and D1

m to that splitter. Then we are done,

re
alling Lemma A.18, to get that |Dm| ¥ |D1

m| ¥ |Dm�1| � |Dm| �OpC 1

2q ¥

T �OpC 1

2q.

In order to bound the probability that a hierar
hy o

urs, we will need

the following result.

Lemma B.6. Let D1 � D2 be two 
ut droplets for B � Hu1
su
h that T  

|D2| � |D1| ¤ 2T and |D2| ¤ q�4α
. Then

µpD2 P xD1 Y pη XD2qyq ¤ e�q�α
{C5.

Proof. The proof is illustrated in Figure 3. Let us denote Di � pH̄u�
1

pxiq X

H̄u�
1

pyiqqzHu1
for i P t1, 2u. De�ne the strips X � H̄u�

1

px2qzH̄u�
1

px1q and Y �

H̄u�
1

py2qzH̄u�
1

py1q and assume without loss of generality that y2� y1 � ΩpT q.

Assume that D2 P xD1 Y pη X D2qy o

urs. Setting η1 � η X Y X D2, this

implies D2 P xpD2zY q Y η1y. We 
onsider two 
ases.

Assume that D2 P xη
1

y. By Corollary A.20 the probability of this event

is at most q�Op1qe�2{pC5q
α
q

.

Assume that, on the 
ontrary, D2 R xη
1

y and set B

1

� Hu1
YH̄u�

1

py1q. Then

by Observation 3.3 there exists a set C � rD2 X ηs
B

1


onne
ted in Γ1 su
h

that dpC,Hu�
1

py1qq ¤ C 1

2 and C � Hu�
1

py2q. By de�nition this implies the

existen
e of a 
ut Su�
1

-droplet spanned by D2 X η with boundary B

1

, where

the two dire
tions of 
ut droplets in Su�
1

are u�1 and u��1 � 2u�1 � u�1 (re
all

Remark A.21). Hen
e, by the union bound over all possible su
h droplets

and Corollary A.20 we obtain the desired result.

We are now ready to assemble the proof of Lemma B.4 as outlined at the

beginning of the se
tion.
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u�
1

u��
1

u�
1

u1

v1

v2 u4

u2

u3

(a) We re
all all dire
tions in the 
ontext of

Lemma B.6, stable ones being thi
kened. The

only relevant ones for a u1-
rossing are u1, u
�

1 ,

u�1 and u��1 (or similarly u��1 ). Indeed, v1 and

v2 are only used for whole droplets and to bound

the probability of a u1-
rossing we 
onsider 
ut

droplets with dire
tions u�1 , u
�

1 . Note that u1
and u2 should be very 
lose and u�1 even 
loser,

but this is avoided here for visibility.

u�
1

u�
1

u�
1 u��

1

u1D1

D2

(b) Growth of the infe
tion in the hat
hed 
ut droplet D1 to the thi
kened one,

D2, requires a path of infe
tions su
h as the one on the right, indu
ing the shaded

spanned 
ut Su�
1

-droplet.

Figure 3: Illustration of the proof of Lemma B.6 bounding the probability

that the infe
tions around a 
ut droplet, D1, allow an infe
tion �lling D1 to

grow and �ll the slightly larger 
ut droplet, D2.

Proof of Lemma B.4. Assume that Cu1

R o

urs and let η1 ¥ η be as in De�-

nition 3.5. Then there exists a spanned 
ut droplet for η1XR with boundary

Hu1
of diameter at least c � a. By Lemma A.19 this implies the existen
e

of a droplet D spanned for η1 X R with q�4α
{C1 ¤ |D| ¤ 3q�4α

{C1. We set

Z � η1 XRXD.

Let us assume for a 
ontradi
tion that there exists a whole droplet of

size at least q�α�1{4
{3 spanned for Z. It is easy to 
he
k that there exists a

parallelogram of diameter at least q�α�1{4
{C1 spanned by Z (
onsider a 
on-

ne
ted 
omponent satisfying De�nition A.13, take the smallest parallelogram


ontaining it and use Observation 3.3). By Lemma 3.4 this 
ontradi
ts the

absen
e of spanned 
riti
al parallelograms for η1 XR.

Therefore, D is a 
ut droplet and by Lemma B.5 there exists a hierar
hy

for D o

urring for the zero set Z, whose labels are all 
ut droplets. Let

H pDq denote the set of su
h hierar
hies. Now, by the BK inequality [32℄,

for any hierar
hy H we have the following analogue of [22, Equation (37)℄:

µpH o

ursq ¤

¹

xPSpHq

µpDx is spannedq

¹

px,yqPNpHq

µpDx P xDy Y pη XDxqyq.

53



Thanks to Corollary A.20 and Lemma B.6, we dedu
e

µpCu1

R q ¤

¸

D

¸

HPH pDq

exp
�

�q�α
p|SpHq| � |NpHq|q{C5

�

.

The number of 
hoi
es for D is Oppd � bqq�4α
q. We separate the sum over

hierar
hies a

ording to their number of verti
es vpHq � Θp|SpHq|�|NpHq|q.

By Lemma A.18 we have that vpHq � Ωp|D|{T q � Ωpq�3α�1{4
{C1q. Finally,

the number of hierar
hies for a given 
ut droplet D with v verti
es is at most

q�Opvq
. Combining these bounds we have

µpCu1

R q ¤ pd� bq
¸

v�Ωpq�3α�1{4
{C1q

exp
�

�q�αΩpvq{C5

�

,

whi
h 
on
ludes the proof.
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